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Abstract 

The turnpike problem, also known as  the partial digest problem, is: 

Given a multiset of (:) positive numbers AX, does there 

exist a set X such that AX is exactiy the multiset of al1 

positive pairwise difierences of the elements of X. 

The complexity of the problem is aot known. 

We write the tumpike problem as a O - 1 quadratic program. in order to solve 

a quadratic program, we relax it to a semidefinite program, which can be solved in 

polynomial time. We give three different formulations of the turnpike problem as a 

O - 1 quadratic program. 

For the first O - 1 quadratic program we introduce a sequence of semidefinite 

relaxations, similar to the sequence of semidefinite relaxations proposed by Lovisz 

and Schrijver in their seminal paper "Cones of matrices and set-functions and O - 1 

optimization" (SIAM Journal on Optimimtion 1, pp 166190, 1990). Although a 

powerful tool, this method has not been used except in their original paper to de- 

velop a polynomial time algorithm for finding stable sets in perfect graphs. We give 

some theoretical results on these relaxations and show how they c m  be used to solve 

the turnpike problem in polynomiai tirne for some classes of instances. These classes 

include the class of instances constructed by Zhang in his paper "-4n exponential ex- 

ample for partial digest mapping algorithrn" (Tech Report, Cornputer Science Dept., 

Penn State University 1993) and the class of instances that have a unique solution and 

al1 the numbers in AX are diierent and on which Skiena, Smith and Lemke's back- 

tracking procedure, from their paper "Reconstructing sets from interpoint distances" 

(Proc. Sixth ACM Symp. Computational Geomety, pp 332 - 339, 1990) backtracks 



only a constant number of steps. Previously it was not known how to solve the former 

in polynomial t h e .  

We use our theoretical formulations to develop a polynomial time heuristic to solve 

general instances of the problem. 

We perform extensive numerical testing of our methods. To date we do not have 

an instance of the turnpike problem for which our methods do not yield a solution. 

The second O - 1 quadratic program formulation of the turnpike problem will be 

too large for practical purposes. We use association schemes and some other methods 

to reduce its size and obtain the third O - 1 quadratic program. We establish a 

connection between this relaxation and the first relaxation and show its limitations. 
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Chapter 1 

Introduction 

In this section we give basic definitions and background results needed in this thesis. 

1.1 The Turnpike Problem 

1.1.1 Problem definition 

The turnpike problem, also known as the partial digest problem, is: 

Given a multiset of (:) positive numbers AX, does tbere 

exist a set X such that AX is exactly the multiset of al1 (p) 
positive pairwise differences of the elements of X. 

If the answer to the above question is positive, we cal1 the multiset AX the dif- 

ference set of X and the set X a solution set. 

If the answer to the above question is negative, we say that for the multiset 4X 
there are no solution sets. 

The problem first appeared in the 1930s in experiments on X-ray crystallography 

[24],[25],[26]. According to Skiena, Smith and Lemke [31] it was dso posed in 1977 

by Shamos as a computational geometry problem [30]. 

The word tunzpike refers to a toll road and the problem got its name from the 

problem of reconstructing the order of cities dong the road from their pairwise dis- 

tances. 
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Another name for the turnpike problem is the partial digest problem, which arises 

in molecular biology and in particular in restriction site analysis of DNA, [7]. A DNA 

molecule can be regarded as a string on the alphabet of nucleotides {A, C, G, T), 
where -4 represents adenine, C cytosine, G guanine and T thymine. A restriction 

enzyme is a chemicai that cuts a DNA molecule at places, called restriction sites, 

determined by certain sequences of nucleotides. The lengths of the cut fragments can 

be measured. The restriction site analysis is the method of using this information to 

determine where the restriction sites are on the molecule. 

A few types of experiments can be performed. A full or complete digest is an 

experiment in which for a given DNA molecule and a restriction enzyme the chem- 

icai reaction is allowed to complete. If there is more than one restriction site any 

permutation of the obtained fragments is a possible interpretation of the molecule. 

To gain additional information about the molecule, more than one complete digest 

using different restriction enzymes that cut the molecule at different sites can be per- 

formed. For example, if two different enzymes are used, the experiment is cailed a 

double digest. 

If there are many identical molecules and the chernical reaction is not ailowed to 

complete, then al1 fragments between any two restriction sites are obtained. Such an 

experiment is called a partial digest. Therefore, in order to reconstruct the molecule 

we have to answer the question that is similar to the turnpike problem. 

1.1.2 Known facts and algorithms 

Two subsets X, Y of the set of real numbers W are said to be congruent if X = Y -a = 

{y - ajy E Y), for some a E IR, or X = -Y + a = {-y + aly E Y), for some a E R. 
It is easy to see that if two sets X and Y are congruent, the multisets AX and 

AY are identical. Therefore, given a multiset AX, we can assume that both O and 

the largest element of AX are in the solution set X. Henceforth we always assume 

that O E X. 
Two noncongruent sets X and Y are homeometric if the multisets AX and AY 

are identical. 
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For a given multiset (al, a?, . . . , ai) we define its generating function by 

f (z) = C xoi . 

Now, if Q(x) is the geoerating function for a multiset AX u ( -4X)  and P(x) the 

generating function for a solution set X, and if n is the number of points in X,  then 

In [28] Rosenblatt and Seymour work over rings of the form 

where K is either Z, IR or @, and use factoring to reconstruct X from 4X. How- 

ever, their main results are not algorithrnic, but rather give necessary and sufficient 

conditions for two sets to have the same difference set. 

In case the multiset AX contains only integers, the polynomial Q(x) + n can be 

factored over the ring of polynomiais with integer coefficients in time polynomial in 

the largest exponent [17]. By combining this fact with the theoretical results from (281 

Lemke and Werman obtain a reconstruction algorithm that runs in time polynomial 

in the largest difference in the multiset AX, [16]. 

In [31] Skiena, Smith and Lemke propose a backtracking algorithm to solve the 

turnpike problem. To visualize their algorithm, we observe that if a given multiset 

AX is a difference set of X = {O < XI < ..- < x,-~), the elements of AX can be 

organized in a pj-rarnid that on one side has the elements of X - {O), and on the 

other side elements of the set (x,-, - X) - {O). For example, if 

and 

X = (O, 4,10,15,17,18), 

the pycamid is 
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In the bottom row of the pyramid we put the differences of two consecutive e le  

ments of ,Y, i.e. the differences of the form xi+l- xi, for z = O, . . . , n - 1. The second 

row from the bottom contains differences of the fom xi+a - X i ,  for i = O,. . . , n - 2, 

and in general, the k-th row from the bottom contains the differences of the elements 

of ,Y of the form xi+k - Xi, for i = O,. . . , n - k - 1. 

Notice also that that the numbers decrease going down along any diagonal parallel 

to the sides of the pyramid. 

The backtracking procedure of Skiena, Smith and Lemke positions the numbers of 

AX in the pyramid. Suppose that we positioned 1 numbers on the top left side of the 

pyramid and k numbers on the top right side of the pyramid. Then al1 the numbers 

that are in the shaded region of the pyramid in Figure 1.1 are also determineci. 

Figure 1.1: The shape of the pyramid at  each step of emution of Skiena's et ai. 
backtracking procedure. 

Because of the above observations, for the largest remaining unpositioned distance, 

there are only two possible locations: either the topmost unfiiied space on the left 

side of the pyramid, or the topmost d e d  space on the right side of the pyramid. 
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Therefore, the procedure always positions the largest remaining distance on the 

topmost unfiiled space on the Left side of the pyramid and tries to fil1 in al1 the numbers 

in the regions that have the shape of the shaded regions shown in Figure 1.1. If this 

is not possible, the procedure backtracks. The backtracking step consists of putting 

the largest remaining distance on the topmost unfilled space on the right side of the 

pyrarnid, and if this leads to an inconsistency, the procedure backtracks one level up. 

The pseudocode for the backtracking procedure as given by Zhang [35] is shown 

in Figure 1.2. 

Skiena, Smith and Lemke 1311 proved that in general this procedure runs in 

O(2"n log n)-time, although instances for which it takes more than 0(n2  log n)-time 

are rare. A class of examples for which this algorithm takes exponential time is given 

by Zhang [35]. 

Skiena and Sundaram [32] adapt t t i i  backtracking algorithm to work with data 

that contains experimental errors. The experimentai errors they consider are "noisy" 

interpoint distances and missing fragments lengths. 

Finally, we mention some results on the number of homeometric sets. Let H(n) 

be the maximum possibb number of mutuaily noncongruent and horneometric sets 

on n elements. In [31] Skiena, Smith and Lemke prove that 

where the lower bound inequality holds for an infinite number of values of n and the 

upper bound inequality holds for al1 values of n. 

We Say that an instance A X  of the turnpike problem has k solutions, if k is the 

number of homeometric sets that have A X  as their difference set. It can also be 

shown t hat for a given multiset AX, the number of solution sets is O or a power of 2, 

[311. 
It is important to Say that for aimost al1 instances AX, the solution set X, if 

it exists, is unique, and therefore partial digest is a good method for restriction site 

analysis. However, the importance of the method is diminishing with the reduction 

in cost of DNA sequencing. 



CHAPTER 1. INTRODUCTION 

set X 
int wzdth 

procedure PartialDigest ( List L) 
width=DeleteMax(L) ; 
X = {O, wa'dth); 
Place(L); 

end 

procedure Place(List L) 
if L = 0 then 

output solution X; 
exit; 

endif 
y=DeletehIax(L); 
if A({y) u X) c L then 

X = X u {y); 
Place(L - A({y) ,Y)); // place on the left 
'Y = x - {y); 

endif 
if A({width - y) U ,Y) c L then 

X = X ü {width - y); 
Place(L - A((width - y} U X)); // place on the right 
X = X - (width - y); 

endif 
end 

Figure 1.2: Pseudocode for Skiena's et al. backtracking procedure. 
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It is not known if the turnpike problem is solvable in time polynomial in the 

number of elements in the given rnultiset &Y. 

1.2 Semidefinit e prograrnming 

Semidehite programming is a special case of convex programming and a special case 

of linear progamming over cones or cone-LP. A combinatorial optimization problem 

was first written in the form of a semidefinite program in the work by Lovkz [18] on 

the Shannon capacity of a graph. 

In the seminal paper [191 Lovkz and Schrijver show how to use semidefinite p r e  

gramming to find maximum stable sets in perfect graphs. 

Lately, a great deai of interest in the application of semidefinite programming in 

combinatorial optimization has arisen due to the paper by Goemans and Williamson 

(101 in which they give a 0.87û-approximation algorithm for MAX CUT and MAX 
2SAT and a 0.7554-approximation algorithm for MAXSAT. 

Semidefinite programs can be soIved within an error E > O in polynomial time using 

the ellipsoid algorithm, standard polynomial time aigorithms for convex programming 

or intecior point methods. 

1.2.1 Definition and Basic Facts 

A convex optimization problem in which the feasible region consists of real symmet- 

ric positive-semidefinite matrices X whose entries satisfy linear constraints, and the 

objective function is a linear function of the entries of X, is cailed a semidefinite 

program. -4 semidefinite program can be written in the following way: 

Min C X 

.;limX=bi, fora'= 1, ... ,m (SDP) 

X Z O  

where C, Ai, i = 1,. . . ,m and X are ra x n matrices, X >_ O indicates that X 
is a positive semidefinite matrix and for two matrices U and V, U l V denotes their 

Hadamard product, i.e. U l V = Cij 
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It is convenient to assume that the matrices C and Ai in (SDP) are symmetric. If, 
for example, C is not symmetric, n e  c m  replace C by i(C +c) since c OX = CoX 
for symmetric matrices X. 

Now we can define the dual of the problem (SDP): 

Max bTy 

The duality theory for semidefinite programming can be viewed as a special case 

of the cone duaiity for the generai convex progams. There are many similarities 

between the duaiity theory for semidefinite programming and the duaiity theory for 

linear progamming. Uader some additional assumptions, one can prove a version of 

Farkas' Lemma, the strong duality theorem and the complementary slackness theorem 

for semidefinite prograrns. 

1.2.2 Methods for Solving SDP 

Various methods for solving linear programs and general convex programs can be 
applied to solve semidefinite programs. For example the ellipsoid method and the 

interior point methods can be used to solve a semidefinite program within an additive 

constant E > O. Grotschel, Lovkz and Schrijver [12] proved that there exists a 

polynomial time algorithm for solving a positive semidefinite program. They obtained 

this result as a direct consequence of the general results on applications of the ellipsoid 

algorithm to convex programming. 

In practice, the ellipsoid method is slow. In (11 Alizadeh has adapted the interior 

point method of Ye [34] to semidefinite programming. He olso claims that many other 

interior point methods for linear prograrnrning can be extended to polynornial time 

methods for semidehite programming in the same way. 



1.3 Applications to Combinatorid Optimizat ion 

So far semidefinite programming has been used in combinatorial optimization to prove 

that certain optimization problems can be solved in polynomid time (see [12], [13j, 

[19]) and to obtain better approximation algorithm for NP-hard problems (see [8], 

[911 [loi, WI, [201, p l ) .  
The paper by Lovisz [18] was a pioneering work in the application of positive- 

semidefinite programrning to combinatorial optimization. It describeà the ideas which 

were later generalized and used to solve other problems. In this paper Lovkz defined 

the now famous Lovaisz number v(G) of a graph G. He uses v(G) to bound the 

Shannon Capacity of G. Later he proved that v(G) is actually sandwiched between 

the chromatic number of the complement of G and independence number of G, i.e. 

4G) I W )  I x(Q. 
Solutions of many problems in combinatorial optimization can be written as O - 1 

vectors, which are characteristic vectors of appropriate sets. The convex hull C of 

those vectors can be described as the set of solutions of a system of linear inequalities. 

The problem is that the convex huil C might have exponentially many facets and can 

only be described by a linear system of exponential size. So, research has been centered 

on trying to find an approximation to C, i.e. a convex set that would be bigger than 

C but over which we cm optimize in polynomial time. One way, for example, would 

be to take a polynomial sized subset of the set of linear inequaiities that describe C. 

In [19] Lovisz and Schrijver give a general technique to constmct higher dimensional 

polyhedra (or more generally, c o n ~ . u  sets) whose projections approximate the convex 

hull C of O - 1 vectors and over which we can optimize in polynomial tirne. Here we 

sketch their construction. 

First, we need a couple definitions: 

In order to have a homogeneous system of inequalities, the n-dimensional space is 

embedded in P+' as the hyperplane xo = 1. 

For a convex cone K in IIP"+' let fl denote the cone spanned by al1 O - 1 vectors 

in K .  
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Let K' be the polar cone of a cone K, i.e. 

K' = {u E IR"+' : u% > O for ail x E K). 

Let Q denote the cone spanned by ail O - 1 vectors x E W"+l with x0 = 1. 

Furthemore, let ei denote the i-th unit vector in W"+' and let fi = ei -eo. It is easy 

to see that the dual cone Q* is spanned by the set of vectors q and fi, a = O, . . . , n. 
For any matrix Y, we denote the vector composed of diagonal entries of Y by 

diag(Y) . 
For a convex cone K E Rn+l, the higher dimensionai cone whose projection would 

approximate K0 consists of the symmetric (n + 1) x (n + 1) matrices Y that include 

xxt, where x E K0 and xo = 1. The diagonal of Y is an element of the cone K. 
The idea is that the constraints on the elements of matrices Y can induce cuts of the 

cone K, so it approximates the cone K0 better. This motivates the definitions of the 

cones hl (K1, K2) and AI+ (Ki, K2) below. The reason why two cones Ki and K2 are 

considered is technical. Only two special cases are considered: KI = K2 = K and 

Ki = K and K2 =Q. 
Now we define the cones hf (Ki, K2) and A1+(Kl, K2)- 

Let K1, K2 C Q be convex cones. Let M(KL, h;) C R("+')~(""') be the cone 

which consists of al1 matrices Y which satisfy the following conditions: 

(i) Y is symmetric; 

(ii) diag(Y) = Yeo, Le. = yw for ail 1 5 i 5 n; 

(iii) uTYv > O holds for every u E Kr and v E Ki .  

Note that (iii) can be rewritten as 

(iii') YK; K1. 

We also consider the cone M+(KI, Kz) which consists of matrices Y which satisfy 

(i)-(iii) and the additional constraht : 

(iv) Y is positive semidefinite. 
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Since KI and Kz are contained in Q, Q' is contained in K; and Ki, and every 

matrix Y contained in M(K1, K2), and therefore in M+ (KI, K2), satisfies 

Y i j  2 0, 

Yi j  5 Yii = Y% 5 YOO, (1.1) 

Y i j  2 Yii + Y j j  - YOO- 

We can project cones 1II (KI, K2) and M+ (KI, K2) to (n + 1)-dimensional space 

by defiaing cones 

and 

It is easy to see that if KI and K2 are polyhedral cones, then hI(Kr, K2) and 

N (KI, K2) are polyhedrai cones as well, [19]. The cones ICI, ( K I ,  K2) and N+ (KI, K2) 

are also convex but generally not polyhedral. 

Note that if x is a O - 1 vector in KI  fl K2 then the matrix xxT satisfies conditions 

(i)-(iv). Moreover, the following lemma is proved in [19]. 

In general, N(K1, K2) is much smaller than KI fl K2. We only consider two 

special cases K1 = K2 = K and KI = K, K2 = Q. Although, N(K, K) C N(K,Q)  
we consider N(K, Q) because it behaves better aigorithmically. Because of (iii') we 

can notice that a matrix k' E hI(K, Q) has the property 

(iii") Every column of Y is in K and the difference of the first column and any other 

columns is in K. 

To abbreviate the notation we write N(K) = N(K,Q), M(K) = M ( K , Q ) ,  

N+(K) = lV+(K? Q) ~~d M+(K) = M+W, QI. 
An element of the cone N(K), and therefore aiso N+(K),  can be represented as a 

sum of two elements of cone K that on a position i either have O or an entry that is 
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qua1  to the entry on the position O. More precisely, if Hi = {z E HP"+L [si = O )  and 

Ci = {X E IP1 = xo}, L O V ~  and Schrijver [19] prove the following lemma 

Lemma 1.2 For every convex cone K Q and every i E (1,. . . , n), 

N ( K )  G ( K  n Hi) + ( K  n Gi).  

We c m  get better approximations of the cone K0 by iterating the operator N and 

N+, i.e. we c m  define NO(K) = K ,  N t ( K )  = N ( W L ( K ) )  and similarly N!(K)  = K, 

$ ( K )  = N+(N:-'(K)). Lovisz and Schrijver [19] prove the following theorem. 

Theorern 1.3 iVn(K) = KO. 

The importance of the above theory lies in the fact that we can optimize linear 

functions over N ( K )  and N+(K)  in polynomial time. The following theorem was also 

proved in [19]: 

Theorem 1.4 Suppose that we have a weak sepamtion oracle for K .  Then the weak 

sepamtion problem for N ( K )  and N+(K)  can be solved in polynomial time. 

1.3.1 Stable Sets in Graphs 

Lovisz and Schrijver 1191 apply their results to obtain polynomial time aigorithms for 

finding maximum stable sets in certain classes of graphs. 

A stable set in a graph G = (V, E)  is a subset of the set of vertices V, such that 

no two of them are adjacent. 

A maximum stable set in a graph G is a stable set whose cardinality is maximal 

over al1 stable sets of the graph. 

The problem of finding a maximum stable set in a general graph is NP-hard. 

In order to apply the results of the previous section, we have to define the following 

convex sets. 

Let G = (V, E) be a graph with vertices V = {1,2,. . . , n). For each X C V, 

let 3 f {O, 1)' denote its characteristic vector, i.e. the vector that for every vertex 
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i E (1,. . . , n) of G has 1 as its i-th coordinate if i E X, and O otherwise. The stable 

set polytope of G is defined as 

STAB(G) = C O ~ V { ~ ~ ~ X  is a stable set for G), 

i.e. the convex hull of characteristic vectors of al1 stable sets of G.  
Let 

i.e. the set of vectors obtained by adding prefix 1 to each vector of STAB(G). 
Also, define the cone FR(G) C IR"+', such that for any vector (xo,  X I ,  . . . , xn) E 

FR(G) the nonnegativity constraints 

Xi  2 O for every O 5 i < n 
and edge constraints 

xi + xi 5 zo for each edge ij of G 

are valid. 
For any matrix Y = ( y i j )  E M(FR(G)), the following is valid: 

For any edge i j  of G, yi, = O because of (iii'). The constraint xi + xj  < xo must 

be satisfied by Yei, and therefore y+; + yji 5 ~ o i  = Yi,, which implies yij = 0. 

Also, Yek must satisfy the same inequality xi + xj t;. 10, and therefore 

Moreover, Yeo - Yek must satisS. the same inequality, so 

Note that the intersection of the cone FR'(G) with the hyperplane xo = 1 is 

equal to ST(G). The cone FR(G) is described by the number of inequalities that is 
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polynomial in n, the number of vertices in G. We can therefore optimize any linear 

function over FR'(G) in polynomial time. Unfortunately, FR(G) n Ho = ST(G), 
where Ho is the hyperplane xo = 1, holds only for bipartite graphs, [13]. 

Using the previous section, we look at the cones Ni(FR(G)) and Ni(FR(G)) for 

O < i 5 n. Lovbz and Schrijver [19] prove the following theorem: 

Theorem 1.5 The mazimum stable set problem is polynomial time solvable for graphs 

G for which there k t  a constant c such that ST(G) = N$(FR(G)). 

For perfect graphs we have ST(G) = N+(FR(G)) n Ho, which enables us to con- 

struct the only known algorithm for finding maximum stable set in these graphs. 

In fact, L o v h  and Schrijver [19] prove that for perfect graphs ST(G) is determined 

by diagonal elements of the matrices that satisfy oniy a subset of constraints in the 

definition of M+(FR(G)). For a graph G we define the cone iiIfTH that consist of 

(V ü {O)) x (V ü {O)) matrices that satisfy the following constraints: 

1. Y is a symmetric positive semidefinite matri.; 

2. yii = gh , for every i E V; 

3. yij = 0, for every edge i j E E(G).  

Now we can prove the following lemma: 

Lemma 1.6 For a perfect graph G ,  

No class of graphs for which ST(G) = NZ(FR(G)), for some constant c > O is 

known. 

1 A.2 Quadratic Prograrns 

In this subsection, we show how to relax a general O - 1 quadratic program to a 

semidefinite program. We follow the exposition of Helmberg et ai. [14], although 



similar results can be found in earlier papers by Baias et ai. [5]. The results of tbis 

subsection follow very closely the results from the previous subsection, but are more 

general. An integer 0 - 1 program c m  be mit  ten as a quadratic 0 - 1 program because 

for the O - 1 variables xi of an integer program we have t hat x: = zj. 

A quadratic O - 1 program, is an optimization problem defined in the following 

way : 

Max xvx 

z f A i x  5 bi, for i = 1, ... , k  (QP) 

x E {O, 11, 

where x is an n-dimensional vector, C and Ilif i = 1,. . . , k, are real symmetric n x n 

matrices, and bil i = 1 , .  . . , k are real numbers. Note that, since the entries x, of the 

vector x are either O or 1, Le. x: = xi, the linear constraints on the entries of x can 

be written using a diagonal matrix A. 

Solving a quadratic O - 1 program is NP-hard. One way of relauing a general 

quadratic O - 1 program is to write it as a semidefinite program. The key idea is to 

use a n x n symmetric matriv Y to represent the pairwise product of entries of the 

vector x, so that 

gjj = XiXjl  for Z, j € il,. . . , n) 
Yii =xS = x i  for i E (1, . . .  ,n). 

Inequalities similar to the inequalities (1.1) can be obtained by exploiting the O - 1 

properties of the variables xi. We have 

and therefore 
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The matrix Y is of the form xxT and is therefore positive semidefinite. Nso 

diag(Y) = x. Furthemore, the matrix 

(x + v)(x + v ) ~  = xxT + xuT + vxT + uvT 

is positive semidefinite for any vector u E W. Hence, Y can be constrained to satisfy 

Y + diag(y)vT +  dia^(^)^ + vuT > 0, (1.4) 

for any vector v E P. The condition (1.4) cm be rewritten as 

The above constraint is in particular valid when v = -diag(Y), so the intersection 

over al1 vectors v E Rn of the constraints (1.5) is characterized by 

The constraint (1.6) is not a linear constraint on the entries of Y, but it c m  be 

rewritten using the Schur complement as 

Now we can relax (QP) to a semidefinite program. For a n x n matrix U, let O' 
denote the (n + 1) x (n + 1) matriu, indexed by O, 1,. . . , n, whose entries of the &th 

row and column are equal to O, and 

u:, = Uijl for i , j  E (1 ,... ,n). 

The relaxation of (QP) as a semidefinite program is given by 

Max Cf Y 

A : e Y s b i ,  f o r i = l  ,..., k 

Y00 = 1 

= g i  for i E (1, ... ,n)  

yij 2 0  f o r i , j €  (1, ... ,n) 
yii 2 Yij for i , j  E (1, ... ,711 
y00 + yij 2 + Yjj for z,j E (1,. . . , n). 
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Note that for any entry yij of Y, from the positive semidefinitness of Y, we have 

that yij < 1. TO see that, we can first look at the submatrix of Y indexed by the 0th 

row and any otber row. Because of the constraints ph = yii, t his matrix has the form 

from which directly follows that yii < 1, for i E (1,. . . , n). 

Also any submatriv indexed by some i, j E {l,  . . . , n) has the form 

Yii Yij 

Yij Y j j  

and since it is pasitive semidefinite y: < yi iyj j  < 1. 

There are other constraints that a O - 1 rnatrix feasible for (SDP) satisfies and 

that can be added into the definition of (SDP). For example we have the triangle 

inequalities: 

and 

for i , j , k  E {l, . . -  ,n}. 

These inequalities are sometimes used to improve the approximation, aithough 

they contribute substantiaily to the computing time. 

1.4 Thesis Overview 

In this section we give a brief overview of the thesis. 

The main theoretical results of the thesis are given in Chapter 2. In that chapter 

we write the turnpike problem as a O - 1 quadratic program. 

For the 0- 1 quadratic program we introduce a sequence of semidefinite relaxations, 

similar to the sequence of semidefinite relaxations proposed by Lovkz and Schrijver 

~ 9 1 -  
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We show that there exists a polynomial tirne algorithm for solving the turnpike 

problem on classes of instances for which there exist a constant c, such that the 

instances are solveà by the c-th semidefinite relaxation in the sequence. 

In Chapter 3 we give classes of instances that are solved by the first relaxation in 

the sequence, (SI). In fact most of the instances are solved by a relaxation that is 

weaker t hen (SI). 
We show that if for a given set X, the instance AX cm be solved by the relaxation 

(SI), than the instance AY, where AY is the difFerence set of 

and a is greater than the maximum element of X, cm also be solved by the relaxation 

(S1). 
Alsol if the instance h X  cm be solved by the relaxation (SI) and has the property 

that every solution contains a point that is not in any other solution, the instance 

AY, where AY is the difference set of 

where 

QI > 3 d ~  + 1 
a, 2 3ai-1 +du + 1 for i E (2,. . . , k), 

can be solved by the relaxation (SI). Here dM denotes the largest element of AX. 
?Ve also prove that the relaxation (SI) solves the instances constructed by Zhang, 

[35]. Previously it was not known how to solve these instances in polynomial time. 

In Chapter 3 we also consider the instances AX that have unique solutions and 

al1 the differences in 4X are diiferent. We show that if during the execution of the 

Skiena's et al. backtracking procedure, k is the biggest number of steps that the 

procedure has to backtrack, then the (k + 1)-st relaxation in the sequence descnbed 

in Chapter 2 solves the instance AX. That means that if for a class of instances k is 

a constant, the relaxation (Sk+l) has polynomial size and the turnpike problem cm 

be solved in polynomial time for the instances of the class. 



In Chapter 4 we show how to develop heuristics for solving the turnpike problem, 

based on the theoretical results of Chapter 2. 

In the first section we describe a heuristic that is based on the relaxation (SI). 

It also uses cuts from the second relaxation in the sequence from Chapter 2 and a 

rounding technique. 

In the second section we show how the relaxation (SI) can be used to reduce the 

number of backtracking steps of the backtracking procedure of Skiena et al. 

In Chapter 5 we enumerate the instances of the turnpike problem for which their 

relaxations (SI) were implemented. The computational results show that most of the 

examineci instances are solved by their relaxation (SI), and the ones that are not have 

a feasible point of the form 

where Ai 2 O and zi are O - 1 vectors for i E (1,. . . , k), but not necessarily charac- 

teristic vectors of the solutions of 4 X .  
In particular we give some instances that are not solvable by their relaxation (SI) 

and show how to use them to construct classes of instances that are not solvable by 

the relaxation (SI). 

We do not have an instance of the turnpike problem wbich is not solved by the 

second relaxation (Sz) of the sequence described in Chapter 2. 

In Chapter 6 we present two relaxations of the turnpike problem proposed by A. 

Schrijver 1291. These relaxations are interesting from the theoretical point of view. 

First, the turnpike problem is formulated as a O - 1 quadratic program, whose 

semidefinite relaxation is too large for practical purposes. We use association schemes 

and some other methods, to reduce the size of the O - 1 quadratic program to obtain a 
semidefinite relaxation which is smaller and practically possible to solve using today's 

compu ters. 

Finally, we present an instance hX such that &Y is not a difierence set, but its 

relaxation is feasible. 



Chapter 2 

Theoret ical Result s 

2.1 Introduction 

In t his chapter we write the turnpike problem as a 0 - 1 quadratic program. The back- 

tracking algorithm described in Chapter 1 takes into account only a certain nuinber 

of differences at any given time during the execution, whereas a quadratic program 

treats al1 the differences simultaneously, which is naturally more powerful. 

For the 0-1 quadratic program we introduce a sequence of semidefinite relaxations, 

similar to the sequence of semidefinite relaxations proposed by Lovisz and Schrijver 

[19]. Although a powerful tool, this method has not been used except in their originai 

paper to develop a polynomial time algorithm for finding stable sets in perfect grapbs 

as outlined in Chapter 1. Here we give some theoretical results on these relaxations. 

2.2 Main results 

Throughout this chapter we assurn ie that AX contain 1s (i) elements, and that 

AX' = (dl  < d2 < . . . < dM) U {do), 

where do = O, is the set that consists of al1 different elements of the multiset &Y and 

O. Also, for i > O, 44) denotes the multiplicity of 4 in AX, i.e. the number of times 

the number 4 appears in M. 
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We only consider solution sets X containing O, so we have that X C AX'. Then 

we can assign a O - 1 variable x4 to each element 4 of AX'. For a fixed solution set 

X, 14 = 1 if and only if di is in X. Note that XO = 1, because we assume t hat O E X .  

Consider the set Q C {O, 1) M+l, detemined by the following system: 

xdi E {O, 1) for i E {O,. . . , hl). 

Shen the problem (P) is equivalent to the non-emptiness of the set Q and we have: 

Proposition 2.1 A multiset 4 X  is  a diference set if and only if the set Q is non- 

empty. 

Proof: If the given &Y is the difference set of a set ,Y, we can set the variables xdi 

to 1 for al1 di E X, and to O for al1 4 $ X. If there are (<;) elements in AX, there 

are n elements in X and therefore 

For each difference dk E AX', k > O, there exist exactly v(dk) pairs (d i ,  d j )  in 

X x X, such that dj - di = dk, and therefore also xdxd, = 1, and therefore 

Conversely, if Q is non-empty, for a point (xdo, xd,, . . . , xdM) E Q we can set 



Then the set X contains n elements. For every dk f AX', k > O, in the equation 

there are exactly v(dk)  summands x4xdj qua1 to 1, which meaas that di and dj are 

in X and that there are exactly v(dk) pairs (4, d j )  in X x X, such that dj - di = dr.  

rn 

Problem (Q) describes a feasible region of a quadratic O - 1 program. We can not 

test for feasibility of a quadratic O - 1 program in polynomial time (unless "P=NPV ). 

Our approach is to relax (Q) to a program which we can test for feasibility in poly- 

nomial time. 

One way to relax (Q) is to assume that each variable xdi is a vector, as described 

in Chapter 1. We get a feasible region of a semidefinite program by introducing new 

variables x&,d, for the dot product xdixdj of two vector variables xdi and xdj. The 

variables x&,d, can be organized in a (hl + 1) x (M + 1) symmetric matrix XI whose 

rows and columns are indexed by the elements of AX', i.e. O, di, . . . , dAf . So, on the 

position (di, d j )  of ,YL we have xdi,dj. 

Since ive assurned that xo = 1, for the O - 1 variables X i  we have 20xi = Xixi and 

therefore we set the constraint X O , ~  = xdi,di, for i E (1, . . . , M )  to hold for XI. 

Also, if di and d j  can not simultaneously be in any solution, xdixd, = O and in XI 
we can constrain x4,dj = 0. 

This leads to the convex region RI described by the following constraints: 

C x&,d, = nxo,d, for j = O,. . . , M 

X O , ~  = x4,4, for i = l,.. . , M, 

X ~ J ,  = 0, if 4 and dj  can not both be in a solution, 



CHAPTER 2. THEORETICAL RESULTS 

x4,dj 2 0, for 2 ,  j = 1, . . . , M ,  

Xl positive semidefinite. 

The constraints of the type x d i , d j  = O, if di and dj cm not both be in a solution, 

are calleù the pymmid cowtmants because the nurnbers in the pyrarnid constructed 

from the difference set of the set {O, di, dj, dM) must form a submultiset of AX. 
Note tbat for any point of Rl 

We now prove that (RI) is a relaxation of (Q) in the sense that the 0 - 1 solutions 

of (Ri) are relateà to the elements of Q. The elements of Q are (hl + 1)-tuples and 

the elements of R1 are (hl + 1) x (hl  + 1) matrices. The idea is that the set of vectors 

determined by O - 1 diagonals of matrices in R1 is qua1 to Q. More precisely, let K 
denote the projection cone determined by the diagonal elements of the matrices XL 

feasible for (RI), and let K0 denote the cone spanned by al1 O - 1 vectors of K. 
Then we can prove 

Proposition 2.2 The wnva hull of Q is equal to Ko. 

Proof: We can arrange the 0 - 1 values x4 of a point in Q into a vector y of size hl + 1, 

indexed by the differences (li of 4X'. Similarly as in the proof of Proposition 2.1 we 

can see that the matrix yyT satisfies al1 the constraints that define RI,  and therefore 

y E KO. 
Conversely, if y E KO, then the rnatrix yyT f Rl and it is easy to see that y 

satides dl the constraints in the definition of Q. I 

The conwx region R1 is a feasible region of a semidefinite program and therefore 
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we can optimize over Ri in polynornial time using standard algorithm for solving 

semidefinite prograrns. 

In order to make the exposition clear, we homogenize Rl, to obtain a convex cone 

Si, in the following way: 

C x&,d, = ~ l ( $ ) x ~ , ~ ,  for k = 1,. . . , M 

i = O ,  ... ,M 

xg,di = x&,di, for i = 1,. . . ,Ml 

xdi,dj = O, if di and dj can not both be in a solution, 

xdi,dj 1 0, for i, j = 1,. . . , M, 

,Y1 positive semidefinite. 

Note that we can obtain RI by intersecting the cone Si with the hyperplane 

xo,o = 1. The computer implementation of the relaxation (Ri) shows that the instan- 

ces for which that relaxation does not give the right answer to the turnpike problem 

(P) are rare and some classes are given in Chapter 5. 

Anottier way of relaxing (Q) to a semidefinite program is to look at the vector z 

indesed by the pairs of elements of 4X': (O, 0) and (4, d j ) ,  for i, j E {O,. . . , M ) ,  
i < j. 

Again we can look at the matrix X2 = xxT. The diagonal elernents of this matrix 

are 

and 

x,&dj,&dj , for il j E {O,. . . , M), i < j. 



The off-diagonal elernents of X2 are 

X a , 4 d j  for i, j c {O,. . . , hl}, a < j 

and 

xd,d, ,dkdi,  for a, j, k , l  E {O,. . . , M } ,  i < j ,  k < 1. 

The lnatrix X2 satisfies the following constraints: 

for every a E {l, . . . , hf) and k,1  E (O,. . . , hl): 

for every j , k , l  E ( O  ,... ,hl) : 

the pyramid constraints: 

x b d ,  ,dildi = 0, if di, dji dk, dl can not simultaneously 

al1 occur in a solution, 

and the mixing conditions for i, j, k ,  I E (O,. . . M ) :  
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Xdidj,dkd1 1 O, 

X; positive semidefinite. 

Note that in the above definition of S2, in order to simplify the notation, we did 

not always specify that for a variable x4d j , dkd l  di < dj and dk < dl. Because of the 

mixing conditions, ail variables indexed by the elements of the set {di, di, da, d l }  have 

the same value, so we can index a variable by the set {di, di, dk, di). 

The rniving constraints arise from the fact that an element xdid,,dkdt of a rnatrix 

X2 in S2 can be regarded as a product of four indicator O - 1 variables x d , ,  x d j ,  xdk 

and x d l .  Also we know that xo = x d ,  = 1 .  

The pyramid constraints got their name because for any (4, dj7 dkl dl) C AX' 
we can calculate the difference set of the set {di, dj, dk, dl, O, d b f }  and organize the 

differences in the pyramid as described in Chapter 1. The entry xd,dj ,dkd1 is qua i  to 

O if the elements of the pyramid are not a subset of 4 X .  
A matriv X2 feasible for (32) has many interesting properties, one of the rnost 

interesting being that it contains matrices feasible for (Si) that have some additional 

properties. 

Let Z:idj be the matrix whose elements are the elements of the row of X2 whose 

diagonal element is xdidj ,didj  such that for da, db E AX' 

and 

The matrices Zi4 are (M + 1) x (M + 1) matrices and we prove that they satisfy 

aii the equality constraints in (SI). 
We also prove that the matrices Z& that arise from the rows of X2 indexed by the 

pair of differences (O, 4)  are positive-semidefinite for any i E {O, . . . , M). Mre denote 
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these matrices by 

The matrix Z& is of special interest and is denoted by Xf. So, 

If X2 is a matrix in S2 n H2, where H2 is the hyperplane x w , ~  = 1, then X t  is 

an element of Si n Hl, where Hl is the hyperplane xo,o = 1. The matrix X t  has 

the property that for any a E (1, . . . , kI - 11, it cm be represented as a convex 

combination of two matrices that have 1 on the diagonal position indexed by the 

difference 0, and O or 1 on the diagonal position indexed by di. In order to see this, 

first we prove 

Proposition 2.3 The matrices Gd, satisfy al1 the equaiity comlraints in (Si). 

Proof: Note that the equality constraints of (SI) are a subset of the equality con- 

straints of (&). For example, the constraint 

holds for any choice of dk and di,  so in particular when dk = dl = O, we have 

More precisely, we have: 

= u ( d k ) ( Z i d j ) m  for k E {l: . . . , M )  

and 
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and 

and 

(Zidj)dkdl = O, if dk and dl can not both be in a solution, 

because of the pyramid constraints. The above calculations prove the claim of the 

proposition. I 

In the next proposition we prove that X4 is positivesemidefinite for any i E 

(0, . . . , hl) and therefore, because of Proposition 2.3, feasible for (SI). 
The next proposition also proves that the rnatriv 

x; - xi 

is feasible for (SI) for i E {O, . . . , M ) .  

Proposition 2.4 For any i E { O , .  . . ,hl): 

1. The mat* X i  is b i b l e  for (Si). 

2. The mat* Xt - X i  is jeasible for (SL,i. 

Proof: Since X2 is a positive-semidefinite matrix, there exists a matrix V, such that 
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For any two differences da, da f AX', da < da, let v k d b  be the column vector of V 
indexed by the pair of differences d,, db. 

For a fixed a E {O,. . . , M), let Vdi be the matrix whose columns are the vectors 

v4dj for j E {O?..  . , M). Then 

because 

and 

Therefore, X:, is positive-semidefinite and satisfies al1 the equality constraints 

from (Si) because of Proposition 2.3, so we can conclude that Xi is in Si. 

To see that X: -Xi is in Si, let Wdi be the matrix whose columns are the vectors 

vod, - U 4 d ,  for j = 0, . . . , M. Then 

because of the definition of X:, Xi and the mUting constraints in (Si). 
Therefore, 

The matrix X: - Xi is positive-semidefinite and satisfies al1 the equality con- 

straints in (Si) because these constraints are homogeneous and both matrices X: and 

Xi satis& them. 
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The third part of the proposition follows directly from the first two. 8 

The third part of Proposition 2.4 is important because of the following properties 

of the matrices X:,  Xi and X: - Xi: 
The diagonal entry of Xi indexed by the difference 4 is qua1 to the diagonal 

entry indexed by the difference O, i.e. 

because 

and the diagonal entry of (Xt - Xi) indexeci by the difference di is O, i.e. 

because 

So, the third part of Proposition 2.4 tells us that for any i E (1,. . . ,hl - 11, the 

matriv X: that is a submatrix of a matrix X2 feasible for (Sz) can be represented as 

a sum of two matrices such that one of them has the diagonal entry indexed by the 

difference di equal to the diagonal entry indexed by 0, and the other matrtv bas the 

diagonal entry indexed by di equal to O. 

Moreover, if .Y; E SI nH1, where Hi is the hyperplane XO,O = 1 and (X2)04,0di  = a 

we have 

so .Y: is represented as a convex combination of two matrices that have 1 on the 

diagonal entry indexed by the difference 0, and O or 1 on the diagonal entry indexed 

by the ciifFerence di. 

This additional property of the matrices Xf that arise from the matrices feasible 

for ($4 induces a cut on the cone K determineci by the diagonal elements of the 
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matrices feasible for (SI). This is because the m a t h  X: has the property that for 

each i = 1, . . . , M, the row indexed by the difference di is in the projection cone K, 
and the difierence of the zemth row of X: and the row indexed by di is in K. The 

row of X: indexed by di is just the diagonal of Xdi and the difference of the zer+th 

row of ,y and the row indexed by di is the diagonal of X: - X i .  
The cone determined by the diagonal elements of the matrices Xf that arise from 

feasible matrices for the relaxation (S2), denoted K2, is similar to the cone N+(K) 
introducd by Lovhz and Schrijver in [191 in the sense that every elernent of K2 n Ho, 
where Ho is the hyperplane xo = 1, can be represented as a convex combination of 

two elements of K that have a O or 1 on a position indexed by the difference di, for 

any i E (1,. . . , M - 1). This result is similar to Lemma 1.2. 

Unfortunately, the matrices X i  and (X: - ,%) do not obviously arise from ma- 

trices feasible for (&), so the above decomposition can not be iterateà. 

In order to iterate the above construction we can define a sequence of feasible 

regions for semidefinite programa. The first region in the sequence is (SI), the second 

is (Sz). 
.4ny other relaxation (Sk) in the sequence has the property that it contains a 

feasible rnatrix for the relaxation (SI) that tan be represented as a sum of matrices 

whose entries on k - 1 6xed diagonal places are either O or equal to the entry i n d e d  

by O, o. 
In the k-th relaxation, we consider the vector x indexed by the k-tuples of elements 

of AX': 

k times 

00-.-O di, + 
k - l times 

k - 2 times 
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where di ,  < di2 < . < 4,. 
The eleinents of the vector x c m  be regarded as the product of k indicator varia- 

bles, i.e. variables whose value is equal to 1 if the indicated difference is in a solution 

and O otherwise. 

For any multiset of differences A = { d i t ,  di,, . . . ,di , ) ,  where the differences di f 

A,Y' can appear at most once and O can appear more than once, the permutation of 

A obtained by sorting the differences in ascending order is called the proper i n d u  of 

A. 

Let I be the set of al1 proper indices. 

In order to simplify the notation, we assume that al1 the permutations of the 

multiset A are equivalent to the proper index of A, and sometimes we index the 

elements of x by the multiset associated with the proper index. 

Again, we can look at the matriu ,Yk = xxT. This matriv must satisfy the following 

condit ions: 

for every a E (1,. . . , M )  and every A = {d i , ,  di,, . . . , d i , ) ,  and any à E 1: 

for every -4 = {di2,  . . . , dit ) , and any i E I 

the pyramid constraints: 

x1,,12 = O ,  if the elements of the indices 1, and I2 

can not simultaniously all occur in a solution, 
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the mixing conditions similar to the mixing conditions in (S2) 

for any four proper indices such that the elements different from O and hi are the 

same in 1, U l2 and kl U k2, although some might appear different nwnber of times in 

LI u I2 than in kl u k2 

xi, J, 2 0, for any two proper indices 1 1, 12. 

Xk positive semidefinite. 

The mixing conditions are obtained from the fact that a variable x&,,d,?, ...,4, is 

actually a product of k indicator O - 1 variables. 

Note that the mking constraints contain the following: if the multiset Li U l2 

contains two copies of the difference dj, Ive can replace one copy of dj  by O in II U l2 

and write a mixiag constraint. If l1 or l2 contains O, we can replace it with M and 

write a mixing constraint. 

Mow, we examine the properties of a matrix ,Yk feasible for (Sk). These properties 

are similar to the properties of the matrices X2 feasible for (S2). First we prove that 

a matriv Xk in Sk n Hk, where Hk is the hyperplane 

k riiles k rimes 

contains as a submatrk a matkv that is contained in Si fi Hi, for any i E (1,. . . , k). 
For j E {O,. . . , M ) ,  let Xj be the submatrix of .Yk E Sk determined by the 

rows and columns indexed by al1 possible submultisets (4, . . . , di,) that determine 

a proper index in (S,). The diagonal elements of X: are 
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and the off-diagonal elements of X: are 

($)& ,... 4,d~l...d~, = (xk) 00. . . O  di ,... 4 . .  00. . .O  4,.-.dlj 
T ' *  k- j times k - j times 

The matrices .Y: are just a generalization of the matrices Xt defined previously. 

We can prove: 

Proposition 2.5 The matriz Xf is feasible for (S,), for any j = 1,. . . , k. 

Proof: The matrix X: is positive-semidefinite as a submatrix of the positive semide 

finite matriv Xk. The equality constraints of (S j )  hold because they are just a subset 

of the equality constraints of (Sk). The formal proof follows that of Proposition 2.3. 

I 

Now we generalize the matrices X i .  We define the matrix (Xt) in the following 

way : 

for any two proper indices da, . . . da,-, and dbl . . . dbk-, for (Sk-1). 
We cari now generalize Proposition 2.4: 

Proposition 2.6 For any i E ( 1 , .  . . , M ) :  

1. The matriz X t  is feasible for 

2. The matriz Xt-, - X$ is  feBJible for (Sk-,) 

Proof: We just outline the proof since it is essentially the same as the proof of 

Proposition 2.4. 

S i c e  Xk is a positive-semidehite matrk, there exist a matrix V such that 
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Let v4 L... kk, for any proper index di,, . . . , d<,, be the column vectors of Y .  
For a 6 x 4  i let Vd; be the mat* whose column vectors are 

for any proper index da, . . . dak-, for (Sk-l). 
Similarly, let W4 be the matdu whose columns are 

and 

and therefore the matrices x:; and Xf- ,  - .Y: are positiveaemidefinite. 

To see that these matrices satisfy al1 the equality constraints follow the proof of 

Proposition 2.3. H 

The matrices Xj-,, .Xt and .Y:-, - ~ d ;  from Proposition 2.6 contain as submatri- 

ces matrices feasible for (Si). Notice t hat the mat rix (x:-,):-' is equal to the mat rix 

Xf, i.e. 

The m a t h  

is feasible for (SI) and has the diagonal entries 
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and the matrix 

is also feasible for (SI) and has the diagonal entries 

kk-l index4 by the difference d, is the In particular, the diagonal entry of (X4 )1 

same as the diagonal entry indexai by the difference 0, and the diagonal entry of 
k k-1 

(x:-l -X4)~ indexed by the difference di is equd to O. 

Also, we bave 

which follows from Proposition 2.6 by taking the appropriate submatrices of xL,, 
Xi and ?YL~ - X i .  

Therefore, we have proved: 

Lemma 2.7 Let ,Yk be a feasible matrîx /or (Sk) and let ,Y: be its submatriz. feasible 

for (SI). Then for any i E (1,. . . ,Ml ,  X: can be represented as a sum of two 

matrices that are jeasible !or (SI). One m a t h  has the diagonal entry on the position 

indexed by the diference di epa l  to the diagonal entry indexed by the diflerence 0. 

The other mat* has the diagonal e n t q  indexed by the diference di equal to O. 

Moreover, if the matriz -Yk gs in Sk n Hk , whefe Hk iS the hyperplane X O . . .  = 

1, than Xf can be represented as a conuez combination of the two matrices. Both 

matrices haue 1 on the position i n d d  by the dinefence 0, and one has 1 on the 

position indexed by the diference à, and the other has O on that position. 

Now we are ready to prove the central theorem of this section. 



Theorern 2.8 A feasible matriz Xk for (Sk) contains the matriz Xf jeasiblejor ( S I )  
that can be represented as a sum of matrices that are feasible for (SI) and on fized 

k - 1 diagonal places have entries that are either equal to the diagonal e n t y  indezed 

by  the diference 0, or are equal to O. 

If Xk f Sk n Hk, where Hk is the hyperplane xo...o,o...o = 1 ,  the mat* X: can be 

represented as a convex combination of matrices that are feasible for (SI) and have O 

or 1 on fied k - 1 diagonal places. 

Proof: We prove the first statement of the theorem by induction on k. The second 

statement can be proved by slight modifications of this proof. 

When k = 2, the statement follows directly from Lemma 2.7. 

So, let us assume that for a k > 2, any feasible matrix Xk for (S& the matriv 

Xf feasible for ( S i )  can be represented as a sum of matrices that are feasible for (Si) 
and on fixed k - 1 diagonal places have entries that are either equd to the diagonal 

entry indexed by the difference O, or are 0. Let these places be the entries indexed by 

differences dil, . . . , dik . 
Let Xk+l be a feasible matrix for (Sk+') and let di,+, be a difference different than 

Il, . . . , dik . By Proposition 2.6 and Lemma 2.7, we can represent the submatrix x:+' 
as the sum of two matrices 

such that for the submatrices (x:")!, (x::)! and (xi+' - ,Yqii k + ~  ) k , we have 

Furthermore, the matrix (x:::)! bas the diagonal entry indexed by the difference 

dk+i equai to the diagonal entry indexed by 0, and the matrix (xiC' - ~dL:)f has O 

on the diagonal entry indexed by dk+1. 
k+l k The matrix ( X k  ) ,  is equai to the matrix XP'. 

Now the matrices xzl and x:+' - xk+' dk+l are feasible for (Sk) by Proposition 2.6 
k+l k and by the induction hypothesis the matrices (Xdk+l ) l  and (xi+' - XE): can be 

represented as a sum of matrices that are feasible for ( S i )  and on diagonal places 



indexed by the àifferences di,, . . . , &Ii, have entries that are either equal to the entry 

indexed by the difference O, or are qua1 to O. 

Therefore the matrix x:+' can be represented as a sum of matrices that are feasible 

for (SI), and on h e d  k diagonal places have entries that are either equal to the entry 

indexed by the difference O, or are qua1 to O. 

This completes the proof. I 

Let Ki be the projection cone determined by the diagonal elements of the matrices 

Xf , for i E (1, . . . , hl + 1). Then Ki+l C Ki ,  and every point of Ki+, n Ho, where 

Ho is the hyperplane xo = 1, can be represented as a convex combination of two 

elements of Ki that have O or 1 on the position indexed by some difference dj, for any 

j E (1,. . . , M - 1). Therefore we have obtained a sequence of cones such that 

and each relaxation (Si) introduces further cuts on the cone K. The cone Kw+1 is 
obviously equal to KO. Unfortunately, the size of the problem ( S M + 1 )  is not obviously 

polynomial. 

Furthermore, we have a theorem similar to Theorem 1.5: 

Theorem 2.9 The turnpike problern is polynomial tinie solvable for classes of instan- 

ces for which the= &t a constant c, such that K0 = Kc for each instance in the 

class. 

In practice, no instances of the turnpike problem for which the relaxation (S2) 
does not give the correct answer are known. Tbat is, there is no known instance of 

the turnpike problem for which K0 # K2. 
In Chapter 5, we discuss instances for which relaxations (SI) and (Sz) give the 

correct answer to problem (P). 

2.3 Some additional properties of the matrices Xk 

Here we iist some interesting properties of the matrices Xk. For example we can also 

generalize the matrices defined in the previous section, in the foliowing way: 
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Let Xk be a feasible matrix for (Sk) and let 1 = L$J. Let 

if k is even and 

if k is odd. 

Then we cm prove a proposition similar to Proposition 2.3: 

Proposition 2.10 The matrices (%..4) satisfy a11 the equalaty constrnants in (SI). 

Proof: Similar to the proof of Proposition 2.3. 

Another way of generalizing matrices Xi is to define matrices in the 

following way. 

Let XZk be a matrix feasible for (Szk) and let ,Gk be its submatriv feasible for 

(Sk) as in Proposition 2.5. For any proper index {di, ,  . . . , dik ) let 

be the matrix determined by the elements of the row of indexed by the di, ,  . . . , & k ,  

i.e. the matrix such that 

Let 

Then another generalization of Proposition 2.4 is: 

Proposition 2.11 For any proper indez {di, ,  . . . , dik ) :  

1. The matrù Xi: .,.. " feusible for (Si) .  

2. The mat* is feasible for (Sk) and 



CHAPTER 2. THEORETICAL RESULTS 

Proof: The proof is similar to the proof of Proposition 2.4. For any proper index 

{&, ¶ . .  . , 4 , } ,  it is easy to check that the matrix Xi: satisfies ail the equaiity 

constraints in (Sk). It is just a matter of recognizing that these constraints are the 

subset of the equaiity constraints for (SPk) .  
It is a bit harder to prove that these matrices are positive-semidefinite. 

Let 

and let ud,, ...d,,, be the column vectors of V. 

Then 

where M.' is a matrix whose colurnns are column vectors of V 

for da,, . . . ,da, al1 possible indices for matrix feasible for (Sk). 

The equation (2.1) is easy to verify, by using the definitions of , and the 

mixing constraints of (SZk) and is essentially the sarne as the proof in Proposition 2.4. 

The matrix Xlk  - -Y$ m..9k satisfies al1 the equality constraints in (Sk) because it 

is a difference of two matrices that satisfy those constraints. We need to prove that 

XiL  - Xi: .,,+, is positivemidefinite. Sa, let U be the matrix whose columns are 

the vectors 

for da, . . .da, al1 possible indices for matrix feasible for (Sk). 



Note that 

which completes the proof. 

Now, we show a property of the matrices . Y $ , , , + , ~ ~ ,  namely, we have: 

Proposition 2.12 The matriz 

has 2k diugonal entries equal to 1. 

Prooi: The diagonal entries of the matrix (Xi: .-.& L ) are 

For any set A, if II E {di,, . . . , di,) the diagonal elements determined by A and the 

appropriate number of zeros are qua1 to xo .... O,*,, ... 4, p .... o , g ,  ... di, = ...4k )O ... O,O ... O 

because of the mixing constraints in (Sa). This proves the first statement of the 

t hwrem. 

Therefore, any matrix Xk feasible for (Sk) contains a submatriv feasible for (SI) 
that has k - 1 diagonal entries equal to the diagond entry indexed by the difference 

o. 



Chapter 3 

Classes for which the Turnpike 

Problem is Solvable in Polynomial 

Time 

3.1 Introduction 

In this chapter we give classes of instances of the turnpike problem that can be solved 

in polynomial time. 

We Say that an instance 4X of the turnpike problem is solved by its relaxation (Sk) 

from Chapter 2, if the subrnatrix Y determined by the diagonal elements ZO...O~~,O...O~,, 

di E 4X', of a feasible matrix Xk for the relaxation (Sk) is of the form 

where si is a characteristic vector of a solution of the turnpike instance 4X and 

ai > O. 

In the 6rst section we look at the instances that are salved by the relaxation (SI) 
with modified pyramid constraints, i.e. the relaxation in which we only take a subset 

of the pyramid constraints valid for (SI). We show that if for a given set X, the 

instance 4X c m  be solved by the relaxation (Si) with modified pyramid constraints, 
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than the instance AY, where AY is the dflerence set of 

Y = X u (X + a )  ü.. . u (X + (m - l)a), 

can be solved by the relaxation (SI) with modifieci pyramid constraints. Here we have 

to choose a to be greater than the maximum element of AX, 

Also, if the instance AX can be solved by the relaxation (SI) with modified pyra- 

mid constraints and has the property that every solution contains a point that is not 

in any other solution, the instance AY, where AY is the difference set of 

then the instance AY can be solved by the relaxation (Si) with modified pyrarnid 

constraints. The numbers al, . . . , ak have to satish 

ai > 3dM++1, 

ai 1 + dM + 1 for i E (2,. . . , k), 

where dM is the maximum element of h,Y. 
Note that the instances that have only one solution, satisfy the above property. 

In the second section we show that the relaxation (SI) solves the instances con- 

structed by Zhang, [35]. Therefore our technique solves the turnpike problem on 

these instances in polynomial time, whereas the backtracking procedure of Skiena et 

al. takes exponential time on these instances. 

Finally in the last section we consider the instances AX that have unique solutions 

and al1 the differences in M are different. We show that if during the execution of 

the Skiena's et al. backtracking procedure, k is the biggest number of steps that the 

procedure has to backtrack, the relaxation solves the instance AX. That means 

that for this class of instances if k is constant, the relaxation (Sk+,) has polynomial 

size and can therefore be solved in polynomial time. 
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3.2 Generat ing bigger instances solvable in poly- 

nomial time from smaller instances solvable in 

polynomial time 

In this section we show how to generate bigger instances that are solvable by the 

relaxation (Si) with rnodified pyramid constraints, from smaller ones that can be 

solved by the same kind of relaxation. 

By modified pyrarnid constraints, we mean that in the relaxation ( S I )  of an in- 

stance AX of the turnpike problem we only include the pyramid constraints of the 

type 

Xdi,dM -4 = 0, if di and d~ - di can not both be in a solution, 

where di E AX. Note that this type of constraints depends only on the multiplicity 

of di and dM - di in 4X. We can write the above constraint if and only if v(dJ = 1 

or v(dhf - di)  = 1. 

We denote the relaxation (SI) with modified pyramid constraints by (SI). Note 

that the relaxation (Si) is weaker than the relaxation (SI) in the sense that any matrix 

feasible for (SI) is also feasible for (Si).  

Some of the generated instances have more solutions than the instances they were 

derived from. 

For a given set X ,  we define another set Y by 

where a is greater than the maximum element of X. 

If PX is the difference set of X, and AY the difference set of Y, it is easy to see 

that AY is well-defined, in the sense that if Xi is another solution set of the instance 

PX and 

t hen 
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Now, we c m  prove: 

Theorem 3.1 Let X = { O  < al < . < an- l )  be a set and let AX be its difference 

set. Let a be a number such that a > an-1, and let m > 1 be an integer. 

Furthennore, let 

Then if the relaxation (Si) solves the instance ,Y of Lumpilce problem, it also solves 

the instance Y .  

Proof: First notice that the cardinality of Y is mn and that the multiplicity of the 

difference a in AY is (na - 1)n and the multiplicity of the difference (m - l ) a  in AY 
is n. 

Let 

be a feasible matrk fur the relaxation (Si) of the instance AY of the turnpike problem. 

For ease of presentation, let us  assume that the matrix A is indexed by al1 numbers 

between O and u,,-1 + (m - l)a, and let v, be the column of V indexed by i. 

Now we can look at 

on-i+(m-2)o On-1 0-1 (m- 1)a- 1 
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Note that the above caiculations do not change if we know that some of the vectors 

U i  are zero vectors. 

Rom (3. l), we have 

Since a > a,-l we have that in AY the multiplicity of ai + (rn - l )a  is equal to 

the multiplicity of ai in AX, for i E (1,. . . , n - 1). 
This cornbined with the fact that 

vo = qm-1)a 

va, = vai+(,,,-,p, for 2 € {1, . . . , n - 1) 

which is a part of (3.21, enables us to conclude that the submatrix of A indexed by 

the elements of X satisfies al1 the constraints of the relaxation (Si) of the instance 

4X.  
The vectors vol . . . , van-, can be arranged as column vectors of a rnatrix U. 
Since we assumed that the relaxation (Sf) solves the instance AX, the rnatrix 

P U  has the forrn 

where ai > O and s, are characteristic vectors of the solutions of the instance M. 
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Therefore 

where for each solution Xi whose characteristic vector is si, q is the characteristic 

vector of Xi U (Xi + a)  U . . . (Xi + (na - 1)a). 

Next we prove that, under certain conditions, the set Y from Theorem 3.1 can 

be constructed by adding numbers that are not multiples of a single number to the 

elements of X. Namely we look at the sets Y that have the form 

where 

and show that the result analogous to Theorem 3.1 holds for these sets under sorne 

condition on set ,Y. The proof of that fact is substantially harder than the proof of 

Theorem 3.1. First we prove three lemmas. 

The first lemma shows us how to construct a matrix V from the solutions XI,.  . . , 
Xk of an instance 4 X  of the turnpike problem, such that the matrix 

is feasible for the relaxation (SI), and therefore (Si), of the instance A X  of the 

turnpike problem. 

Lemma 3.2 Let X be a set on n elements, O E X and let 4 X  be the difference set of 

,Y. Let XI,. . . , ,Yk be solution sets for the turnpike instance 4 X  and let us assume 

that O E Xi for i E (1 , .  . . , k}. 
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Furthennore, let {ul,. . . , uk} be a set of mutually orthogonal vectors in R~ und 

let 
k 

II, = Cxij~j, for i E AX' 

where 

1, the diflerence a is in the solution set Xj; 
X i j  = 

0,  otherurise. 

Let V be the mat& whose row uectors are the vectors ui, i E 4X'. Then the 

is feasible for the reluxation (SI) of the instance AX. 

Proof: Note that 
k 

since O E Xi for i E (1,. . . , k). 
Let us now look at the constraint for the difference a E 4X. We have 
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But for every solution set Xi 

because the difference a in the solution Xi must appear v(a) times. 

Therefore 

b,c E AX' i= 1 

c - b = a  

~ ? x c , i  c xb,i = 
i= 1 MAX" 

The pyramid constraints hold because if two Merences b and c are not together 

in any solution set Xi, then 

from which we can conclude that 



CHAPTER 3. P0LYNOnIIA.L TIME CLASSES 50 

which completes the proof. 

Nea ne show that any matri.. of the form Y = x=, S ~ S T  where si are the charac- 
teristic vectors of solutions of the turnpike problem for instance 4 X ,  can be decom- 
posed as VVT such that the matrix V is of the form describeci in Lemma 3.2. 

Lemma 3.3 Let X be a set, O E X and let 4X be the difemnce set of X .  Let Y be a 

matriz such that Y = c:=, XisisT where si are the chamcteristic vectors of solutions 

of the tumpike problem for instance 4 X ,  and X i  > 0, for i E (1,. . . , k ) .  Then there 

ezist a mat* V such that 

and the row vectors vit i E 4 X '  satisfy 

for sorne orthonormal set of vectors {ul, . . . , uk). 

Proof: Look at 

But 
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which completes the proof. I 

In the next lemma we consider the instances AX that have the property that 

every solution contains a point that is not in any other solution. For example, the 

instances that have unique solutions satisb this property. We prove that under certain 

conditions a matrix feasible for the relâuation (Si) of such instance can be split into 

two matrices feasible for the same relaxation. 

We have: 

Lemma 3.4 Let ,Y be a set and let hX be the dinerence set of X and assume that 

the instance AX has the property that e v e y  soiutaon contains a point that is not in 

any other solutions. 

Let Y be a matriz such that Y = CL, Xisisf where si are the characteristic vectors 

of solutions of the turnpike problem for instance AX, and X i  > 0,  for a E (1,. . . , k ) .  

Furthennore, let 

and let vi, i E AX' be row vectors of V .  If there exist vectors ai and b,, for i E 4X' 
such that 

and 

aibj = 0, for i, j € AX1 

and 

Then the matBces YI = AAT and = B B ~ ,  where A ia the mat* whose mws 

are vectors and B is the mat* whose rows are vectors bi, for i E AX', are feasible 

for the relaxation (SI) of the instance 4X. 
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Proof: Because of Lemma 3.3 we can choose V such that its row vectors are 

for some orthonormal set of vectors (ul,. . . , uk). 
First, notice that if the vectors ui, P E AX' satisfy the equation 

the vectors a, and vectors bi satisfy the same equation. i.e 

and 

To see this look at 

For each solution Xi,  let xSi be a number that is in Xi, but not in any other 

solution set. Let Z be the set of nurnbers zSi for i E (1,. . . , k). 
Then the vectors T = {vili E 2) are mutually orthogonal and therefore the 

vectors (aili E 2) are mutually orthogonal and the vectors {bi(i E 2) are mutually 

orthogonal. 

Also note that the set T is an orthogonal basis of the vector space spanned by the 

vectors {ql i  E AX). 
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Thetefore, the set { q l i  E 2) is an orthogonal generating set for {a$ E AX) and 
the set {bili E 2) is an orthogonal generating set for (b , [ i  E A X ) .  

Because of (3.3), (3.4) and ( 3 4 ,  if 

and 

for any i E AX' - 2. 
Now, we cm use Lemma 3.2 to complete the proof. 

Before we prove the general theorem, let us first look at an exampIe. The exposi- 

tion of this example can be easily modifiecl into a proof of the theorem. 
Let ,Y = (0,1,4,6} and let 

It cm easily be seen that the number 64 appears in the multiset AY four times, 

and so do numbers 45 and 19. The numbers 7,8, . . . , 12, 26, 27, . . . , 38, 52, 53, 

. . . 57 are not dements of AY, and therefore any feasible matnv A for (Si) has the 

property t hat 
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Let 

and let ui, i E AY' be the column vectors of V. Then because of (3.6) and (3.7) 

Next, we look at the equation in (Si) induced by the differences 64, 45 and 19. 

We have 

and 

and 

because of (3.2). 
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Now, we use (3.8), (3.9) , (3.10), (3.6) and (3.7) to evaluate the foUowing sum 

Sirice we started with a positive expression, we can conclude that 

vi+19 + 0i+45 = vil for i € {O, . . . ,6) 

Next we prove that for any a ,  j E {O,. . -61, 

We need that 
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We see this by observing that 

because of equalities (3.11) and (3.12). Therefore 

Next we prove tbat 

.4gain, we have 

because of equalities (3.11). 

From (3.13) and (3.11) ive have 

and t herefore 
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Figure 3.1: The form of a matrix feasible for the relaxation (SI)  of the instance Al.'. 

i\ny feasible matrix for the relaxation (Si) of the instance AY has the form shown 

in Figure 3.1 

If 

and 

then the entries of A in the subrnatrix Al sum to 48 and the entries in the submatrkv 

-42 sum to 4a. 
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This is because 

Similar equations can be written for 6 ,, CE!! aji. 

Now, observe that in AY there are 26 nurnbers that are greater than or qua1 to 

45. The variables associated with these differences are in the submatrices Al, A*, B, 
and D. But because of (3.14), (3.15) and (3.16) the entries in the submatrices Al, 

Ali and C sum to 

Therefore, the entries of the subrnatrix D are O and we have proved that 

and the vectors (vo, . . . , u~}, {vis, . . . , v ~ )  and {q5, . . . , vS1) satisfy the conditions 

of Lemma 3.4. 
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It is easy to check that any matrix 2 feasible for the relaxation (Si) of the instance 

AX is of the form 

where al, a2 3 O and si, 92 are characteristic vectors of the solutions of the instance, 

and that sl is the mirror image of sz, i.e. that the instance PX has only one solution. 

Therefore if Vl is the matrix whose row vectors are {v19,. . . , v ~ ~ )  and is the 

matrix whose row vectors are {vd5,.  . . , u ~ ~ ) ,  then 

and 

because of Lemma 3.4. 

Because of (3.17) matrix A can be split into two matrices Yi and fi feasible for 

(SI), such that 
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and 

Now, the vectors {v19,. . . , ~ 2 ~ )  represent a combination of solutions X1 and X2 for 

the instance AX, and therefore the matrix Y, represents the combination of solutions 

X1 U (X1 + 19) U (XI + 64) and ,Y2 U (d& + 19) U (,& + 64). Similar statement can 

be written for the matrix h. 
Now we state and prove the general theorem: 

Theorem 3.5 Let X be the set of cardinalaty n and let O E X .  Let a and be be such 

that 

and 

where dM is the largest eiemerit of AX. 
Furthemore, let 
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Then if the instance AX is solved by its reluution (Si), and has the property that 

its every solution contains a point that 2s not contained in any other solution, then 

the instance BY is solved by its relazution (Si). 

Proof: Let A be a feasible matrk for the relaxation (SI) of the instance AY and let 

and let ui, i € AY' be the row vectors of V. 
Notice that the numbers 

d M + l , d M + 2  ,... , a - d M - 1 ,  

a + d h l + l , a + d M + 2  ,... , b - a - d M -  1 ,  

d M + b - a + l , d h f + b - a + 2 ,  ... , b - d h f - 1  

and 

So, because of the conditions on a and 6, the only non-zero vectors vi of V are a 
subset of 

Also, the Merences a ,  b - a and b appear in the multiset AY evactly n times 

each. 
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Therefore 

and 
dhf+b-a dhf +b-a 

and 

We now present two crucial parts of the proof which ensure that Lemma 3.4 can 

be invoked and the matrix A split as in the above example. We prove that 

and 

Vi+aVj+b-a = O, for il j E AX'. 

To prove (3.21) and (3.22) let us look at 
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because (3.18), (3.19), (3.20) and the fact that b - 2a is not in AY, which completes 

the proof of (3.21) and (3.22). 

To prove (3.23) notice that in AY there are 

numbers bigger than b - a, because there are n2 nurnbers obtained as - xj where 

xi E X + b and xj E X and there are (i) numbers in the range b . .  . b + dM. 
Now, the matriv A looks like the matrkv on Figure 3.1. Similarly as in the above 

example, we can show that the entries of the subrnatrices Al, A2 and B sum to n2+ (:) 
and therefore the entries of D sum to O. This proves (3.23). I 

The statement of the theorem also holds if a = 1, which can be shown in the sarne 

way. 

Next we prove that we can add more than two different numbers to the elernents of 

the set X in order to obtain a set similar to the set Y from Theorem 3.5 that satisfies 

the claim of that theorem. 

We have 

Theorem 3.6 Let X be a set of curdindity n and let O E X .  Let a,, i E (1,. . . , k }  
be numbers such that 

and 
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where dM is the largest element of AX .  
Furthemore, let 

Then if the instance A X  is solved by its relaxation (Si), and ha9 the property that 

its euey  solution contains a point that is not contained in any other solution, then 

the instance 4Y is solued b y  its relaxation (Si). 

Ptoof: The proof is by induction on k. 
When k = 1 the statement follows from Theorem 3.1. 

When k = 2 the statement follows from Theorem 3.5. Let us assume that the 

statement of the theorem holds for any set Y that is a union of k sets 

and assume that a set Y is a union of k + 1 sets. 

Let A be a feasible matLu for the relaxation (S1) of the instance 4Y and let 

and let v,, i f AY' be the row vectors of V. 

By careful examination of AY we can see that the only vectors vi, i E AY' that 

can be different from the nul1 vector are 
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-41~0, the differences ai - aj, i > j, appear in 4Y exactly n times and, because of 

(3.24), in the relaxation (SI) for the instance AY the equation corresponding to the 

dserence ai - aj is 

Next we prove that 

Ui = ~ i + ~ ~ ,  for i E AX' 

and 

If k is odd, we look at the following sum 

which proves (3.26) and (3.27). 

If k is even, similarly we can calculate that the following sum is O: 
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Similarly, we can prove that for i E AX' and i E ( 1 , .  . . , k - 1) 

w+oi + Vl+ok-ai = al. (3.28) 

Now, we look at the submatrix B of A indexeci by the differences i E AY' such 

that ui # O (as in (3.24)) other than 

~ a ~ ) % ~ + l ,  - - -  > u a ~ + d ~ ,  

V a k - a l ,  Vok-a~+1,. . ,uak-al+d~.  

Because of (3.26), (3.27) and (3.28) we can conclude that B satisfies al1 the con- 

straints of the relaxation (Si) of the instance 

Now, we can invoke the induction hypothesis to conclude that this instance is 

solved properly by its relaxation (Si). Now, it follows directly that the instance AY 

is solved by its relaxation (Si) because from (3.27) we have 

which completes the proof. 

3.3 Zhang's instances 

In [35] Zhang constructed a cIass of instances for which Skiena, Smith and Lemke's 

backtracking procedure takes exponential time to find a solution. The instances have 

unique solutions and are difference sets of the sets A deüned in the following way. 

Let O < r < hn. Let 

A2 = { é , 2 ~ , .  . . ,ne,) 
A3 = ( ( n  + l ) e ,  (n  + 2 ) q  . . . ,2714, 

Aq = { (Sn  + 1)q (2n + 2 ) ~ ,  . . . ,3nc),  

Ag = ( 1  - 3nq . . . , 1 -  (272 + 2)e, 1 - (2n + 1)é). 

Al = 1 1 - n e  ,..., 1 - 2 q l - € 1 ,  
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Let F and G be disjoint sets such that A3 = F U G', and let D = F U G, where 

G 8 = { 1 - g 1 g ~ G ) .  L e t A = A l ~ A 2 ~ A q ~ A 5 ~ D ~ { 0 , 1 ) .  
Zhang [35], proved the following proposition 

Proposition 3.7 With the aboue notation, we con choose D such that, giuing AA to 

the Skiena at al. backtmcking algorithm, it takes at least Q(2"-') time to f i d  A. 

We prove that the relaxation (Si) solves these instances. Mie need the following 

lemma: 

Lemma 3.8 Let ai7 i = 1 , .  . . , 4 ,  and x be uectors in Rn such thot 

If ala3 + a2a4 = 9 then al = a3 and a2 = ad. 11 ala3 = O and a2a4 = O then al = a4 

and a* = a3. 

Proof: From 

we have 

and therefore al = a3. Similarly we can show a2 = a4, which proves the first statement. 

If ala3 = O and ~ 2 ~ 4  = O then 

and we can use the first part of the lemma to conclude that al = a4 and a2 = as. 

Now we are ready to prove the main result of this section, i.e. that the relaxation 

Si defined in the previous section, of the instance AA solves the turnpike probiem on 

that instance. 
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Theorem 3.9 For the above defined sets A, the instance AA of the turnpf e problem 

con be solued by its relaxation (Si). 

Proof: First we list some properties of AA: 

(4 liL - .dl c [l - 2ne, 1 - %], 

A, - AS c [l - 3nq  1 - (n + 2 ) 4  

ill - .d4 c [f - 4 n ~ ,  1 - (Sn + 2)c], 

A, - Ag c [(n + l ) ~ ,  (37~ - l )~] ,  

A, - A2 c [f, (Sn - l)el, 

.& - A2 c [(n + l ) ~ ,  (3n - l ) ~ ] ,  
- c [i - 4nq 1 - (2n + S)e], 

.A4 - .A3 c [q (2n - l)t], 
A~ - A~ c [l - 5nq I - (3n + 2 ) 4  
&. - -A4 C [l - 6ne, 1 - (4n + 2)4, 

.A1 - A; c [c, (2n - l ) ~ ] ,  

-4; - & c [l - 3nq 1 - (n + S)E], 

A; - .A, c [1 - 5nc, 1 - (3n + 2 ) 4  
-4; - At c [t, (2n - l ) ~ ] ,  

(b) The numbers in Ail are of the form kc, where k is a non-negative integer less 

or equal to 3n, or 1 - k ~ ,  wbere k is a nonnegative integer less or q u a i  to 672. 

Therefore, in Ai3 there are no numbers in the interval (3nq I - ône). 

(c) The k-th largest element of Al, 1 - k ~ ,  appears in LIA k + 1 times. 

Proof: The number 1 - k~ is the ciifference of the following numbers: 
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where the first number of the difference is an element of Al or 1, and the second 

is an element of A2 or 0. 

(d) The k-th smallest element of A.,, (2n + k ) ~ ,  appears in 4 A  2(n - k + 1)-times. 

Proof: The number (2n + k ) ~ ,  is the difference of the following aumbers: 

The first number in the above differences is from A4 or 1, and the second is from 

.-l2 or O, or the first number is from .4, and the second is from Ag. I 

(e) The k-th smallest element of Ai, 1 - (2n - k + 1)c appears in 4 A  n + 1-times. 

Proof: The number 1 - (2n - k + 1)e is the difference of the following numbers: 
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where the 6 n t  number is in Al and the second number is in A*. In this way, we 

represented the number 1 - (2n - k + 1)c  as a difference of k pairs of numben. 

To get the additional n - k + 1 pairs, depending on the partition of As, we can 
represent 1 - (2n - k + 1 ) é  as a difference of 

1 - (n + 1)c - ( n e  or 1 - ( n - k ) ~  - ( n + l ) c .  

( f )  The number of differences in 4.4 that are between é and 2c or between 1 and 

1 -(2n+3)é depends on the partition of A3. In particular the number of elements 

of A5, that are in 4 A  depends on the partition of A3, with the exception of 

number of the differences 1 - (2n + 1)r and 1 - (2n + 2)e. The difference 

1 - (2n + 1 ) é  appears in 4.4 n + 2-times, as the difference of the following 

nurnbers 

Similarly, we can see that the difference 1 - (2n + 2)e appears in AA n +3 times. 

I 

Now, let X be a feasible matrix for the relaxation (Si) of the instance AA, and 
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and let vi be the row vectors of V, for i E AA. 

Because of (b), for the ciifferences i in AA, that are in the range (3ne, 1 - 6nc) or 

(6nq 1 - 3ne), we have vi = O. Note that because of the condition that n < d n ,  the 

intervals (3nq 1 - 6ne) and (6nq 1 - 3ne) form a continuous interval (3nc, 1 - 3ne). 

Because of (c), in the relaxation (Si) for the numbers in Ai we have the following 

constraints: 

We can therefore conclude that 

ut = = 'UO, 

'U1 = V l - 2 t  = 210, 

Une = V l h n c  = 'UO. 

Because of (d) for numbers in Aq we get: 

x0,3nc + 21-3ncJ 

x0,(3n-l)c f xc,3nc + Xl-c,i-3nr + X1,1-(3n-i)c  

We can combine (3.29) and (3.30) to conclude that 
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Because of (e), (3.29) and (3.31) for the numbers in A; we get: 

X0,1-2nc + x2nc,i = 1. 

Now, let us look at the equations we have for the elements of Ag. Because of (f) 

we have: 

Using (3.29), (3.31) and (3.32), we have 

Now, we can look at the equations 

Erom (3.32) and the equation 
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from (3.33). We can see that if the differences ( n  + 1)é and ( n  + 2)c are either 

both in F or both in C', then u( l  - (2n + 3 ) ~ )  - (n  - 2) - 6 = O and otherwise 

~ ( 1 -  (2n+3)c)  - (n - 2) - 6  = 1 .  

We can now apply Lemma 3.8 to conclude that v(,+l), = U(n+2)r and v ~ - ( ~ + l ) ~  = 

~ l - ( ~ + 2 ) ~  in the h t  case and u[,+i), = ~ 1 - ( ~ + 2 ) ~  and ~l-(,+l), = w(,+Î), in the second 

case. 

Now, we can plug in the obtained values for the vectors u(,+l),, v ( ~ + * ) ~ ,  Vl-(n+l)c, 

~ 1 - ( ~ + 2 ) ~  into the third equation in (3.33) and apply the lemma again. 

Working our way from top, using the Lemma 3.8 we cm conclude that the vectors 

assigned to each number of F are identical and that the vectors assigned to each 

number of G are identical. 

Examples that can be solved by the backtrack- 

ing procedure in polynomial time 

In this section we assume that the multiset AX is a set, Le. that al1 the differences 

are different, and the instance h X  has a unique solution. 

ive say that the Skiena's et al. algorithm, described in Chapter 1, has order k on 

an instance AX of the turnpike problem, if k is the maximum number of steps the 

algorithm backtracks, i.e. if we assume that an element a is in a solution set X that 

the algorithrn is currently constructing, we need to put k - 1 more elements in the 

set X before we can conclude that the assumption that a E X was incorrect. 

We Say that the backtracking algorithm has order O, if at any execution step we 

can conclude that either a or dM - a is in the solution set X that is currently being 

constructed, for a the largest difference that is in the difference set AX, but is not in 

the difference set of the partial solution set X, and dM is the largest element of AX. 

In this section we prove that if for an instance 4 X  of the turnpike problem that 

has a unique solution and al1 the nurnbers in AX' are different, the backtracking 

procedure has order k, then the instance AX is solved by the relaxation (Sk+J. 
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This result is not surprising because the relaxation (Sk+l) operates with the (k+l)- 

tuples of differences from AX' and therefore has the capability to see k steps ahead 

in the backtracking procedure. 

The following theorem is also important because for the above described instances, 

if k is a constant that does not depend on the size of the instance, Our relaxation has 

polynomial size and therefore alsa runs in polynomial time. 

First we prove the following lemma: 

Lemma 3.10 Let Y be a feasible matriz for the relmation (Sk) of the instance A X  

of the turnpike problem. Let 

and let v 4  ,... ak be the row vectors of V ,  jor any pmper index { d i ,  . . . d i , } .  I j j o r  any 

two diferences da, db E AX' 

and 

for any proper index {di, . . . 4k,l ) . 

Proof: The lemma follows from the mixing constraints for the relaxation (Sk). Na- 

mely, we have 



CHAPTER 3. POLYNOM1.4L TIME CLASSES 

because 

Similarly, 

because of the first part of the Lemrna. 

The key part of the proof of the main result of this section is the following lemma: 

Lemma 3.11 Let 4 X  be an instance of the turnpike problem and let us assume that 

al1 the differences in  AX are diferent and that the instance 4 X  has only one solution. 

Let us assume that we know that the numbers xi > - . -  > XI are Zn the solution 

set ,Y and let us assume that the bacletracking procedure positioned the numbers bl > 
. > bk in X ,  and the n& to be positioned is c. 

Let Y be afeasible mat* for the relaxation (Sk+,) ojthe instance AX, and assume 

that the TOW vectors of V satisfy 

Then, if u - u = c, u, u # O,dM, where dnr is the largest number in AX,  

Proof: Since c is the largest unpositioned difference, in the equation 
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u and PI cm not both be in the set 

If u = dhf - xi or u = d M  - bi then obviously 

because of Lemma 3.10 and because the differences are unique, so the pyramid con- 

straints c m  be written for the differences xi and dhf - xi or bi or dM - bi. 

Similarly, the lemma holds if v = dhf - x, or v = d~ - bi. 

If u = bi - b, or .v = bi - bj, the lemma holds since the difference bi - bj appears 

exact ly once. 

We have to examine three other possibilities: 

3. u = bi and v = bj - Xjcj. 

For Case 1 we have 

because bi - u = xi so the above equation is just a pyramid coustraint in the relauat ion 

(Sk+L). NOW because of Lernma 3.11 the claim foiiows frorn (3.35). 

Case 2 can be shown in the same way. 

For Case 3 notice that 

because bj - xj = u so we can conclude that the lemma holds in the same way as in 

the Case 1. 

Now, we are ready to prove the main theorem of this section: 



CHAPTER 3. POLYNOMIAL TIME CLASSES 77 

Theorem 3.12 Let AX be an instance of the tumpike pmblem and let w assume 

thal d l  the di,gerences in hX are diflerent and that the instance AX has oniy one 

solution. If the Skiena's et al. backtracking procedure has order k on the instance 

AX, then the reluxation (Sk+l) solves the instance PX.  

ProoE 
Let Y = vVT be a feasible rnatrix for the relaxation (Sk+L) of the instance 4 X  

and let vi, i E 4 X  be the row vectors of V. 

.4ssume that the backtracking procedure has constructed a partial solution set 

X = { x l  > . . . > xi). We prove by induction on 1, the number of elements in X, that 

al1 the vectors assigneci to the elements of the partial solution set X are equal, i.e. 

that 

The above statement is obviously true when 1 = 1. 

So assume that the statement is true when there are 1 elements in the partial 

solution set X. 
Assume that the backtracking procedure extended the partial solution set ,Y by 

the numbers B = (a > 6, > - - . > b e - 1 ) ,  making c the largest unpositioned difference. 

Also assume that the backtracking procedure can not extend the set X U B by c or 

dM - c- We prove that then ~ Z ~ ~ O . . . O + ~ < ~ O . . ~ O  = O and YdM-%idM- a0...0,dM-ridu-a0...0 = O 

and therefore by using Lemma 3.8 we have that v,,o...o = U ~ ~ - ~ O . . . D .  Similar argument 

holds if the number of elements of the set B is less than k. 

If the backtracking procedure can not put c in X U B that means either that for 

some element z E X U B, the difference z - c does not exist or that there are two 

identical differences z l  - c = z2 - 2 3 ,  for some z ~ , Q ,  z3 E X U B. 
Then because of Lemma 3.10 for the elements of the rnatrix Y we have 

and 
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If we now look at the equation for the difïerence c 

and multiply it by Vzlabl...bk-l , because of Lemma 3.11 and (3.36) and (3.37), we can 

conclude that 

Next, we prove that 

This is obviously true if the set X can not be extended by the elernents {a, bl ,  . . . , dM- 
bk- [). If this is not the case, we can prove (3.39) similarly as (3.38), using the equation 

for some difference d, which is next to position if we put the difference dM - bk-[ in 

the partial solution set. 

Now, we can multiply the equation for bk-1 

by V z 1 ~ l . . , b k - 2 0  and use Lemma 3.11 and equations (3.38) and (3.39) to obtain that 

Now, 

because otherwise we can put dM - bk-* in the partial solution set X and in the same 

m y  as above conclude that 
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and from there that 

After repeating this process k - I times, we can conclude that 

If the procedure backtrack less than k steps, we aIso can conclude (3.40) by sarne 

reasoning. 

Similady, by regarding the mirror image of the partial solution set X we can 

conclude that 

Also, note that 

and 

so we can use Lemma 3.8 to conclude that 

This proves that the vectors assigneci to the numbers of a partial solution set of 

size 1 + 1 are identical. I 



Chapter 4 

Heurist ics 

4.1 Introduction 

In this chapter we show how to develop heuristics for solving the turnpike problem, 

based on the theoretical results of Chapter 2. 

In the first section we describe a heuristic that is based on the relaxation (SI). It 
also uses cuts from the relaxation (S2) and a rounding technique. 

In the second section we show how the relaxation (SI) can be used to reduce the 

number of backtracking steps of the backtracking procedure of Skiena et al. 

4.2 Introducing cuts from (S2) into (SI) 

As we show in Chapter 5, the instances that are not solved by their relaxation (SI) 
seem to be rare and we only need to add a couple of constraints from (S2) to the 

relaxation (SI) to solve these instances. 

Also, for an instance AX of size m, a feasible point of its relaxation (SI) is an 

(m + 1) x (m + 1) size matrix and there are O(m) constraints in the definition of 

(SI). The relaxation (S2) of AX is much larger; a feasible matrix for (S2) is an 
x mat, and there are 0(m3) constraints in the definition of (S2). 

Therefore an implementation of (S2) is much more computationdy demanding than 

an implementation of (SI). 
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Therefore, we develop heuristics that would be based on (SI) with additional cuts 

from (S2) for solving the tumpike problem. 

When developing the heuristics bsed on the relaxation (SI), we assume that the 

variable xo,o = 1. This makes feasible matrices belonging to the solution sets O - 1 

mat rices. 

Semidefinite program solvers are based on interior point methods and although 

a feasible region of a semidefinite program might be a convex combination of O - 1 

matrices, the solver might output a matrix that is not a 0 - 1 matrix as the optimum. 

Therefore, we have to choose an objective function for (Si) that guarantees that if 

the feasible region for (Si) is a convex combination of O - 1 matrices, the optimum is 

a O - 1 matrix. For a given instance hX, where 

one such objective function is 

To see this, assume that that the optimum is achieved for a vector (aO, . .  . , L Y M ) ~ ,  

where O < U M  < 1. Then since 

of O - 1 matrices, we have that 

we assumed that the feasible region is a convex hull 

Now we show that the value of the objective function (4.1) on the vector (hl. . . , 
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l)= is greater than the d u e  on the vector (a,. . . , ~ r , + t ) ~ .  This is because 

Now, we can see that the other coordinates of the optimal vector have to be O or 

1 in the similar way. 

If the optimal matriv of the relaxation (SI) is not a O - 1 matrix, we can introduce 

cuts from (S2) into the relaxation (Si). We c m  add four main kinds of constraints: 

(i) For each pyramid constraint x0&,djdk = O, where dildjldk E AX', in (Sz), we 

can add the following two constraints to the relaxation (SI) 

These constraints hold for a O - 1 matrix that is feasible for (SI), because if 

xo&,d,dk = O, at most two of the differences 4 ,  di, da can be in a solution set. 

Also for a pyramid constraint of the type x 4 d j , d t d l  = O, where 4, di, dk ,  di E ut, 
ive can add the following constraint to the relaxation (SI) 

These constraints hold for a O - 1 matrix that is feasible for (SI), because if 

x&dj,dkd,  = O ,  at most three of the ciifferences di, di, dk, dl can be in a solution 

set. 
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(ii) Let XI be a feasible matrix for the relaxation (Si) and X2 be a feasible matrix 

for the relaxation (Sz) of an instance AX. Since X2 is positive semidefinite, 

there exists a matrix V such that 

Let u&qi for di,dj € AX', denote the row vectors of V. Then for every con- 

straint in the relaxation (&) of the type 

there is a corresponding relation between the row vectors of V. Narnely, we have 

This easily follows from the constraints of (S2), by looking at the expression 

and using the pyramid equalities to evaluate it to O. 

The equation (4.2) cm be multiplieci by any other row vector of V, to obtain a 

constraint on the elements of the matrix X2. This constraint obviously already 

holds for the elements of X2. 

Assume that there exkt a a t o r  uodjt d j  f AX' such that for any vector Uda,4, 

da - db = di, d,,db # O, d.,,db # d M ,  we either have that ~ ) Q , ~ ~ Z I O , ~ ~  = 0, or 

da = dj  or db = d j .  

We can multiply the equality (4.2) by the vector umj to obtain a constraint t hat 

hoIds for the elements of X2 
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when db = dj  or 

when da = di. 

This constraint can easily be translated into a constraint for (SI): 

For example if 4X = {28,26,25,23,. . . ) the constraint for the difference 23 in 

the relaxation ( S I )  is 

from which in the above described way we can obtain another constraint valid 

for (Si): 

because of the pyramid constraint x316,02 = O in (&). 

Also, if 

for some subset D of hX', we can multiply (4.3) by one of the summands vd,,& 

in (4.3), to obtain a pyramid constraint x k d b , d , 6  = O, for da, db E D ,  da # du 
and db # 4. We can add these pyramid constraints to the relaxation ( S i ) ,  as 

described in (i). 



for some subset D of AXt, we cm multiply (4.4) by v d , ~  to obtain a pyramid 

constraint x ~ & , d , , d , ,  = 0, for da, db E D, da # du and db # 4. We can add these 

pyramid constraints to the relaxation (4) too, as described in (i). 

Note that the last two types of constraints are just the regular pyramid con- 

straints if (4.3) and (4.4) are of the type (4.2). We need these constraints because 

a heuristic which we will construct maintains a list of constraints which hold for 

AX and partial solution set that is being constructeci. The list is updated at 

each execution step. 

(iii) If in (54 for some row vectors of C7 the following holds 

then for the variables of (Sz) we have 

This foilows from 

by evaluating the right hand side of the above equation and using the pyramid 

constraints from (S2). 

We can t herefore add the constraint 

to the definition of (SI). 

(iv) In (S2) we have that 
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These constraints can be used to obtain constraints on the variables of (SI), from 

any constraint from (S2) which represents a variable xwi,wj , for di,  d j  E AX', 
as a sum of some other variables of (S2). 

Now, we can use (i)-(iv), to construct a heuristic for solving the turnpike problem. 

The heuristic first checks if the relaxation (Si) solves the given instance. If not, it adds 

the pyramid constraints as described in (i), and checks if the new relaxation solves 

the instance. If it does not, the heuristic starts adding constraints described in (ii) 

and (iii) until it obtains a O - 1 solution that corresponds to a solution of the instance 

or concludes that it can not proceed, at which point it outputs the partial solution 

set it constructed up to this step. The heuristics maintains a list of constraints and 

a list of differences in a partial solution set that it is constructing. At each step it 

constrains the variable corresponding to the largest unpoûitioned difference to be 1. 

Then it recomputes the list of the positioned differences and the list of constraints 

and applies (ii) and (üi) to obtain more constraints from the updated list. 

Now, we give the heuristic: 

Given an instance AX of the turnpike problem, where 

and the size of AX = C): 

1. Write and solve the relaxation (Si) of the instance AX with the objective func- 

tion (4.1). 

2. If the solution is a O - 1 matrix, output the solution and stop. Otherwise 

initialize the set of differences S that are set to 1 or O to be the empty set. 

Initialize the list of constraints to the equality constraints in (Si). Update the 

list of constraints. If in the set S there are n elements whose indicator variables 

are set to 1, output the solution and stop. Otherwise continue with Step 3. 

3. -4dd the pyramid constraints from (S2), as de~ctibed in (i) above, to the relax- 

ation (Si) and to the list of constraints. Solve the new relaxation. 
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4. If the solution is a O - 1 matrix output the solution and stop. Otherwise add the 

constraints described in (ii) and (iii) to the relaxation and the list of constraints. 

Update the list of constraints. Solve the new relaxation. 

5. If the solution is a O - 1 matrix, output the solution and stop. 

Ot herwise 

Set the indicator variable x4-4 of the largest unset difference to 1. 

Solve the new relaxation. 

If the relaxation is feasible: 

Add di to the set S. 
Update the list of constraints. 

If in the set S there are less than n differences whose indicator 

variables are set to 1, solve the new relaxation and go to step 4. 

If the relaxation is not feasible 

Set x d i r r - 4 , d , - d i  to 1. 

Solve the new relaxation. 

If the relaxation is feasible: 

.4dd dM -di to the set S. 
Update the list of constraints. 

If in the set S there are less than n differences whose 

indicator variables are set to 1, solve the new 

relaxation and go to step step 4. 

If the relaxation is infeasible, output the elements of 

the set S and stop. 

To update the constraints we repeat the following until no further changes to the 

list of constraints are possible or inconsistency is found: 
If x d i , 4  is set to 1, for every constraint in the list, replace any occurrence of x 4 d j  

by %dj for di E AX'. If in any constraint the value of one or more variables is 1, 

subtract them from the value on the right side. If there is a new constraint of the 
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type 

put the differences di,, for 1 = 1,. . . , k in S and in any constraint erase t h  summands 

of the form xdi,,d,, for 1 = 1,. . . , k and j E AX'. 
If there is a new constraint of the type 

put di, in S and set x4,,4, to 1 for 1 = 1,. . . , k. 
If an inconsistency is found, print out a message and stop. 

This heuristic is used to solve some instances in Chapter 5. It was noticed that 

only one iteration of step 4 was sufficient to solve instances that we examined. 

Using the relaxation (Si) in conjunction with 

the backtracking procedure 

The backtracking procedure by Skiena et al. takes into account only a certain number 

of differences at any given time during the execution, whereas the relaxation (SI) 
t reats al1 the differences simultaneously. 

We could therefore solve the relaxation (Si) at each step of the backtracking 

procedure. If the backtracking procedure is currently positioning a difference di and 

if it can position di in the partial solution set without creating a conflict, the relaxation 

(SI) can serve as another check for the validity of that positioning. We can constrain 

the indicator variables of the elements of the partial solution set that the backtracking 

procedure is constructing and the indicator variable x4,4 of the relaxation (Si) to be 

equal to 1, and solve the relaxation. If the relaxation is feasible we put the difference 

di in the partial solution set and continue the execution of the backtracking procedure. 

If the relaxation is not feasible, we bypass the backtracking steps and immediately 

assume that the difference dM -di is in the partial solution set. Again we c m  establish 



the feasibility of the relaxation (SI) under this new assumption. If it is infeasible, we 

immediately backtrack. 
This heuristic can be quite powerful, especially since the instances of the class 

constructed by Zhang, [35], on which the backtracking procedure takes exponential 

time, are solved by the their rela.xations (SI), as shown in Chapter 3. 



Chapter 5 

Computational Results 

5.1 Introduction 

In this chapter we enumerate the instances of the turnpike problem for which their 

relaxations (Sf ) , (Si) and (Sz) were implemented. The computational results show 

that most of the examined instances are solved by their relaxation (Si) and the ones 

that are not, have a feasible point of the form 

where, Xi  2 O and Zi are O - 1 vectors for i E (1,. . . , Ic) ,  but not necessarily charac- 

teristic vectors of the solutions of 4 X .  Wheu implementing the relaxation (Si) and 

(SI) we constrained the element y o , ~  of any feasible matrix Y for these relaxations to 

be 1. That means that the combination (5.1) is a convex combination, i.e. 

In particular we give five instances that are not solvable by their relaxation (Si) 

and show how to use them construct classes of instances that are not solvable by the 

relaxation (Sf ). 

We do not have an instance of the turnpike problem which is not solved by its 

relaxation (Sz). 
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5.2 Result Description 

The instances 4 X  of the turnpike problem for which the relaxation (SI) was imple- 

mented are 

1. ali AX containing 10 numbers, al1 of which are different and the largest differ- 

ence in AX is l es  or equal to 21, 

2. ali AX containing 15 numbers, al1 of which are different and the largest differ- 

ence in AX is less or equal to 24, 

3. al1 AX containing 21 numbers, al1 of which are different and the largest differ- 

ence in AX is less or equal to 28, 

4. al1 A X  containing 28 numbers, al1 of which are different and the largest differ- 

ence in 4 X  is lm or qua1 to 31, 

5. al1 AX is a difference of a set X that contains at most 13 elements and if we 

sort the elements of ,Y, the difference of two consecutive elements is at most 2, 

6. the numbers of AX are chose randomly with uniform distribution and the size 

of AX is l e s  or equai to (y)  (about 10 000 instances). 

Semidefinite prograrns are solved using SDPSOL, developed by Wu and Boyd, [6]. 

-4lthough we encountered problems with the stability of the code, this package was 

chosen because of the nice modelling language. 

The computational results show that the relaxation (Si) solves most of the above 

enumerated instances AX, i.e. the feasible matrices Y for the relaxation (Si) of AX 

are of the form 

k where Ci=, X i  = 1 and for i E (1,. . . , k), Xi  > O and Yi is a characteristic vector of 

a solution set ,Yi of the instance AX. 
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If the relaxation (Si) does not sohe an instance AX for the instances we examined, 

any feasible matrix for the relaxation (Si) of AX has the form 

where x!,, hi = 1 and for i E {l,.  . . , 1 ) ,  Ai > O and z, are 0 - 1 vmtors, but not 

necessarily characteristic vectors of the solutions of LX. 
We now list al1 the instances of the above enumerated examples which are not 

solved by their relaxation (SI). 

1. The set 

is not a difference set of any set X, but there is a feasible point for the relaxation 

(Si) of AX. To see this let t l  and 22 be vectors indexed by the elements of 

PX. Let zl be O everywhere except on the positions 0, 4, 8, 10, 11, and let 

z2 be O everywhere except on the positions 0, 3, 5, 10, 11. Then the matrix 

Y = 0.5(zizf + zZz$) is feasible for (Si). This is easily seen if we construct 

difference sets associated with 21 and 22 md organize them in pyramids as 

described in Chapter 1 and shown in Figure 5.1. 

Figure 5.1: Différence sets of {0,4,8, IO, 11) and {O, 3,5,10,11). 

Now, in the pyramid associated with zl we have two 4 entries and no 5 entries, 

and in the pyramid associated with 22 we have no 4 entries and two 5 entries. 

Therefore the convex combination of the two is exactly M. 
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2. The set 

is also not a difference set of any set, but there is a feasible point for the 

relaxation (Si) of the instance 4X.  In order to see that, we just write the 

pyramids associateci with the points tl and z2 as above 

Now we look at the number of tirnes the elements of 4 X  appear in the dif- 
ference sets of the sets Z1 = {O, 5,9,17,22,23,25) (labelled z1 above) and 

Z2 = {O, 3,7,13,14,23,25) (labelled z2 above). In Table 1, we have dl the 

elements of 4 X ,  that either appear in the multisets b Z I  and AZ2 more than 

once or not at ail. 

Table 1 
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Now it is easy to see that if rl is the characteristic vector of ZL indexed by 

the elements of AX,  and 22 is the characteristic vector of Z2 indexed by the 

elements of h X ,  that the matrix 

is feasible for the relaxation (3;) of the instance AX. 

3. The set 

is not a difference set, but a feasible point of the relaxation (Si) c m  be con- 

structed similarly as above, if we consider the following pyramids 

The elements of OX that appear in AZ1 and AZz more than once or not at ail 

are given in Table 2. 

Table 2 



4. The relaxation (Si) of the instance LU, where AX is the difference set of 

X = {O, 2,3,5,7,9,10,11,12,13,15,16) 

is satisfied by a point that is obtained in the same way as above and determineà 
by the pyramids: 



CHAPTER 5. COMPUTATION.4L RESULTS 96 

In Table 3 we give the iist of elements of AX that appear in AZ1 and AZ2 
dinerent number of times than in M. The number of times these elements 

appear in AX, AZl and AZ2 is also given. 

Table 3 

5. The relaxation (Si) of the instance h X ,  where AX is the difference set of 

x = {O, 3,5,7,10,11,12) 

is satisfied by a point that is obtained in the same way as above and determined 

by the pyramids: 

In Table 4 we give the List of elements of AX that appear in 4 Z 1  and AZ2 
different number of times than in 4X. The number of times these elements 

appear in hX, A& and 4Z2 is also given. 
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Table 4 

Note that 

is another solution of the instance AX. 

The relaxation (S2) solves al1 of the above instances. The relaxation (S2) is too 

large for computational purposes, so we added constraints from (S2) to the relaxation 

(S1)- 
In fact the instances 1, 2 and 3 are solved by the relaxation (Si). 
Let us now look at the instance 4. Assume that Yl is a feasible matrix for the 

relaxation (Si) and is a feasible matrix for the relaxation (S2) of that instance. It 

is easy to see that the constraint for the difference 11 in (Si) can be reduced to 

If V is a matriv such that 

and vd,d, are row vectors of V for 4, dj E AX', then the constraint for the difference 

11 in (S2) can be written in tems of vectors ukd, as 

We can multiply the above constraint by vs,ll and use the pyramid equalities from 

the dehition of (5'4 to obtain that 
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Using this constraint we can introduce cuts on S; as described in Chapter 4. The 

cuts are 

If we add these constraints to the constraints of (Si), the newly obtained relaxation 

solves the instance 4. 

Sirnilarly, let 6 be a feasible matrix for the relaxation (Si) and is a feasible 

matrix for the relaxation (S2) of the instance 5. Again, let V be a matrix such that 

and vdidj are row vectors of V for di, d j  E 4X1. The constraint for the difference 9 in 

(SI) is 

and therefore we have the following constraint 

for the vectors VO,~, ~ 1 ~ 1 0 ,  ~ 2 , ~ 1 ,  v3,12 and volo. We can multiply the above constraint 

by vo,~, vo,ll, v o , ~  and vo,lo and use the pyramid constraints from the definition of (S2) 
to obtain the foliowing cuts on Si, as described in Chapter 4: 

If we add the constraints (5.1) to the constraints of (Si) the newly obtained relaxation 

solves the instance 5. 

For al1 of the above instances, the feasible points in their relaxation (Si) are of 

the form 
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where xfZl 4 = 1 and for i E I l , .  . . k}, A, > O and 3 are O - 1 vectors that are not 

necessarily characteristic vectoa of the solutions. 

If & is a feasible matrix for a relaxation (Sz) of an instance AX of the turnpike 

problem, and if 

where CE, Ai = 1 and for i E (1,. . . ,na}, Ai > O and ui are O - 1 vectors, then the 

submatrix Y: of &, detemined by the diagonal elements 04, for di E AX', is of the 

fom 

where si are 0- 1 vectors that are characteristic vectors of the solutions of the instance 

AX. 
To see this, we first prove the well known inequality between the arithmetic and 

quadratic mean: 

Lemma 5.1 Let xi ,  i = 1,. . . , n be non-negative numbers and let 

/or Ai 2 0 ,  i = 1 ,... , k ,  and z:=,Ai = 1. Thsn 

and equalaty holds if and only if al1 the numbers x, are equal. 



Proof: From (5.5) we have 

from which the daim of the lemma follows direetly because C:,,=, &%(xi -xj)' > 0. 

New, we can prove 

Lemma 5.2 Let ,\; be a mat* feasible for the relaxation (S2) of the instance 4X 
of the tumpike probiem. Let ,Y: be the submatrix of X2 determined by the diagonal 

elements (4Y2)04,0di , for di E 4 X .  If 

where CgR=, Xi = 1 and for i E (1, .  . . , m), Xi 2 O and ui are O - 1 uectors, then 
m 

where uectors si are charucteristic uectors of the solutions of the ànstance AX .  

Proof: Because of the way X: is constructeci, it is obvious that it is of the form 
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for some O - 1 vectors Yi, i E (1,. . . , m}. We only have to prove that Yi are charac- 

teristic vectors of the solutions of 4 X .  

For a difference 4 E AX, we can look at the submatriv A of X2 detemineci by 

the diagonal elements (X2)d,dk,djdk, wbere di - dk = di. Because of the constraints in 

(S2), the diagonal of A sums to v(di), the number of times the difference 4 occurs in 

AX, and al1 the entries of A sum to v(di)*. 

Let Q = u$ for 1 E (1,. . . , m} and let xi denote the sum of the diagonai entries 

of Ui. Then because of the form of l$ we have 

and 

Now from Lemma 5.1 we have that xi = v(di) for 1 E (1,. . . , rn) and therefore for 

a O - 1 matrix of the form 

al1 the equality constraints of (SI) hold, so we can conclude that the vectors Yi  are 

characteristic vectors of the solutions of LX. I 

Since, we have no instance for which a feasible matrk of its relaxation ($1 would 

not be a convex combination of O - 1 matrices, it is remnable to expect that aay 

feasible matrix of its relaxation (S2) would also be a convex combination of O - 1 

vectors in which case, because of Lemma 5.2, the instance would be solved by tbat 

relaxation. 

-4 class of instances which are not solvable by their relaxation (Si) cm be obtained 

from any of the instances 1-5, in a similar way in which new instances were constructed 

from smaller ones in Chapter 3. 

For example, for the first instance, Le. 
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Let Q(x) be the generating function for the multiset LU U (-LX), Pl(x) be the 

generating polynomiai for the set {O, 4,8,10,11) (this is the set associated with the 

vector zl from the instance l), and P2(x) be the generating polynomial for the set 

{O, 3,5,10,11) (this is the set associated with the vector 22 from the instance l) ,  Then 

The equation (5.6) can be multiplied by R(x)R(x-'), where R(x) is a polynomial such 

that the coefficients of the polynomiai R(x)Pl (x) are O or 1 and the coefficients of the 

polynomial R(x)P2(x) are O or 1. This condition is needed because it ensures that 

the exponents of R(x) Pl (x), R(x)  P4x)  respectively, form a set so we can construct 

their difference sets. We have 

for some polynomiais Tl(x) and T2(x) whose coefficients are O or 1. 

Then if 

let AY be the instance that contains ai copies of nurnber 2 ,  for a = 1,. . . , n. 

Then, it is easy to choose polynomials R(x) such that the instance AY is not 

a difference set. For example, if R(x) = 1 + Cy=l Q ~ X '  are the polynomials from 

Theorem 3.6, i.e. if 

and 

ai 2 + dM + 1 for i E (2, . . . , n), (5.8) 

where dM is the maximum element of the instance 1, then the instance AY is not a 

difference set. We can see this in the same way as in the proof of Theorem 3.6, by 
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recognizing that the instance AY contains the instance 1, as a subproblem, and dso 

that the feasibility of the relaxation (Si) of the instance AY depends on the feasibility 

of the relaxation (Si) of the instance 1. 

However, the instances obtained fiom the instances 1 by using polynomials R(x)  
that satisfy (5.7) and (5.8) are solved by their relaxation (S2). This can be show by 

closely following the reasoning behind the proof of Theorem 3.6. 

The instances which are obtained from instance 1, in the way described above and 

using the polynomials that do not satisfy (5.7) or (5.8) were tested computationally, 

but not extensively, so they still might be good candidates for the instances that are 

not solved by their relaxation (S2). 
Similar constmction can be done if we start with the instances 2-4 instead of 

instance 1, 



Chapter 6 

Ot her relaxations 

6.1 Introduction 

The two relaxations of the turnpike problem presented in this chapter were proposed 

by -4. Schrijver [29]. 

First, the turnpike problem is formulated as a O - 1 quadratic program, whose 

semidefinite relaxation is too large for practical purposes. We use association schemes 

and some other methods, to reduce the size of the O - 1 quadratic program to obtain 

a semidefinite relaxation which is smaller and practically possible to solve by today's 

computers. 

6.2 Formulation of the Relaxations 

In order to simplify the exposition, we will assume that the given multiset h X  is 

a set, i.e. that the nwnbers in AX do not repeat. So, let n E N, m = (;), and 

AX = (dl < d2 < . . . < &). Furthermore let 



CHAPTER 6. OTHER RELAX4TIONS 

and 

A = ((a, u)[u, v E V, u # v). 

If the given AX is a difkrence set, there exists a function 

such that 

First, let us look at the directed complete graph on n vertices whose vertices are 

labelled by the elements of X, which is a solution of the instance AX, and whose 

edges are labelled by the elements of D, such that an edge (u, v) is labelled by v - u. 

Obviously al1 the elements of 4X appear as edge labels. Figure 6.1 shows the directed 

graphs obtained in that way from the set X = {O, 1,3,8,14,18) and its mirror image, 

i.e. the set dm - X. 

Figure 6.1: K, labelled by the elernents of 4X. 

Note that a function f that satisfies the above conditions can be obtained by 

assigning any permutation of V to vertices of the above graphs and defining f (i) to 

be equal to the label of the vertex to which a' is assigned. For our example f could be 
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given by: 

Then there also exists a bijection g : .4 + D, such that 

g(u, 21) = -g(u, u), for al1 u, 21 E V, u # u 

g(u, v) + g(u, w )  + g(w, u) = 0, for al1 distinct u, v, w E V. 

One such bijection is obviously g(u, v) = f (u) - j(u) , for any of the above functions 

f .  
Let 

H = {(a, d) E A x Dlg(a) = d ) .  

Let y = xH be a characteristic vector of H in Ax D. So, y(,,q = 1 if the difference d 

is reaiized on the arc a, and O otherwise. Then the turnpike problem (P) is equivalent 

to the question of non-emptiness of the following subset of H T ~ ( " - ~ ) ~ :  

= 1, for every d E D 

Y(.A = 1, for every a E A 
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Y(a,d) E {O, 1) for every a E A and d E D 

We now show that (Q2) is a good formulation of the turnpike problem, i.e. that 

for an instance AX, the points in (Q2) correspond to the solutions of 4X. 
Let 4 X  be an instance of the turnpike problem of size (;), and let y be a feasible 

point in Q2. This point induces a labelling of the edges of a complete graph K,, such 

that if ~ ( ~ , d )  = 1, the arc a is labelled by the difference d, for a E A and d E D. Now 

we can label the vertices of K,, in the following way. We assign label O to the starting 

point s of the arc that is labelled with the maximum difference. If the arc (s, i) is 

labelled by the difference d we label the vertex i by d. It is easy to check that the 

labels of the vertices form a solution set for the instance AX. 
Again we c m  look at the matrix Y = X H ( ~ H ) T  to get the following relaxation of 

(Q2): 

for every h < i < j E V and every d E D 

Y is positive semidefinite 

The relaxation (R2) is too big for computational purposes. .41so, ail the solution 

functions f described above are quivalent, in the sense that they represent the same 

solution set X. Let us therefore look at the matrix T which is the average of al1 
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matrices 

where P ranges over al1 permutation matrices of A x D such that there exist a permu- 

tation ?r of A and a permutation p of D, such that p(d) = d for al1 d E D or p(d) = -d 

for al1 d E D and P permutes ((u, ot), d) to ( ( ~ ( u ) ,  ~ ( v ) ) ,  p id ) ) .  

For each a = (u, v)  E A, let xa E Rv, be defined by: 

x"(v) = 1 

xa(u) = - 1 

x'yw) = O, for W # u, V 

For two arcs a, b E A, let 

Thus, #(a,a) = 2 and 4(a, -a) = -2. If two arcs a and b are different and have 

common starting or ending points then @(a, b) = 1, If two arcs are different and the 

endpoint of one is the start point of the other, #(a, b) = -1. And findly, if two arcs 

have no point in common, 4(a, b) = 0. 
The matrix T arises from different labellings of the graphs on Figure 6.1. An 

element t(a,d),(b,e) of T will be O unless arcs a and 6 in some permutation P coincide 

with the directed edges labelled d and e. Therefore, t(a,d),(b,e) depends only on #(a, 6) 

and d and e, and there exists a number y4,dPc such that for 4 = -2,. . . , 2  and d,  e f D 

Now, for aii d, e E D and aii t$ = -2,. . . , 2  the following holds 
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4. &,die = 1, if e = d and O otherwise; 

(To see that Y2,d.d = 1, note that the number of permutations of A x D in which 

a fixed arc is labelled d is 2(n - 2)!.) 

5. #-2& = 1, if d = -e and 0 otherwise; 

6. yb,d,e = O, if q5 = - 1,0,1 and d = f e; 

8. For every d E D 

9. For al1 a E .4 and d, e E D, 

We can summarize the above if we introduce the following notation. For 4 = 

-2,. . . , 2 ,  let Y@ be the D x D matrut defined by 

for d, e E D. Let rg be the number of b such that 4(a, 6) = 4, where a is a fixed 

element of A. Note that this definition does not depend on the choice of A. Then 

r2 = r - ~  = 1, ri = 2(n - 2) because for a h e d  a, we c m  choose an arc b that has the 

same starting point as a in (n - 2) ways and we can choose an arc b that has the same 

ending point as a in (n - 2) ways. Similarly, r-l = 2(n - 2). Also ro = (n - 2) (n - 3), 

because we can choose the endpoints of an arc that is disjoint from a in (n - 2)(n - 3) 

ways. 
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Let P be the D x D permutation matrix that permutes d to -d for every d E D. 
Then because of the above 

PY4P = Y4, for qi = - 2 , .  . . , 2  

Y4P = Y-4, for q5 = - 2 , .  . . , 2  

where J is the all-one matrix. 

For I$ = - 2 , .  . . , 2 ,  let Rg be the A x A, 0-1 matrix such that (R&),,b = I if and 

only if d(a, b) = qi. Note that R2 = 1, R-* = P ,  ( n  - 2)(n - 3)& is a permutation of 

h, 2 ( n  - 2)R1 is a permutation of Y, and 2(n  - 2 ) R - ,  is a permutation of Y-,. 
The matrices R-2, . . . , R2, form an association scheme. It is easy to check that 

they satisfy the definition of an association scheme. i.e. 

1. R* = I ;  

2. R, = Ri*, for i E ( - 2 , .  . . , 2 ) ;  

3. C b - 2 ~  = J 

4 .  f$R, = ~ ~ - , a ~ ~ ~ ,  for il  j E { - 2 , .  . . , 2 } .  

The eigenspaces of this association scheme are: 

SO = {xlVa, b E A : x,  = xb) ,  

Si = {x13p : V + R : (p (V)  = O and Va = (u, u )  : x,  = p(u) + p(v ) } ,  

S2 = ( 5 1 3 ~  : V + R : (p (V)  = O and Va = (u ,  u )  : x,  = p(u) - p(v)), 

S3 = {xIVa '0 A A: x, = x-,; Vu E V : x(p (v ) )  = O } ,  

S4 = {xlVu E A : x, = -z-,;Vu E V :  x ( p ( v ) )  = 0). 
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The eigenvalues Ai,& of R$ corresponding to the eigenspace Si are given in 

following table: 

Note that Ao,& = rs for each 9. 

Eigenspace 

30 
4 
s2 

s3 

s4 

the 

For every i = 1 , .  . . ,4 we choose a vector u f Si such that llull = 1. Let U be the 

( A  x D) x D matriv defined by 

R2 

1 

1 

1 

1 

1 

U(a,dl,e = u, if d = e, and O otherwise 

Let Z be the D x D matrix defined by 

RI 

2(n-2) 

n - 4  

71-2 

-3 

-2 

So, Z is positive semidefinite and for the elements of Z we have 

and t herefore 

& 
(n-2)(n-3)  

-2(n-3) 

O 

2 

O 

R-l 
2(n-2) 

n - 4  

- n + 2  

-2 

R-2 

1 

1 

-1 

1 

dim 

1 

n - 1  

n - 1  

f n(n - 3) 
i (n  - l)(n - 2) 2 -1 



This gives us four positive semidefinite constraints for combinations of Y&. 

Note that if we know the matrix Y-, we know al1 the matrices Y*. 
Also if i = 1 OC i = 3, Ai,# = Xi,-9 for each r$ and 

&-2 +=-2 &=-2 

so Zd,e = Z-d,e for al1 d, e and the condition on positive sernidefinitness of Z is 

equivalent to tbat of a $101 x submatrix. 

Similarly, if i = 2 or à = 4, Xi& = -Ai,-$ and 

2 2 2 

e - 2  4=-2 4-2 

so ZdIc = -Z-d,e for dl d, e and the condition on positive sernidefinitness of Z is 

equivalent to that of a kl Dl x 1 /DI submatrix. 

6.3 Implementation 

In this section we show how to implement the above relaxation. 

First note that matrices Y*, for 4 = -2,. . . , 2  are indexed by the set D. 
Because of the properties 1, 2, and 3 of the entries y&,*, of the matrices Y& 

q5 = - 1 , l ,  these matrices have the following form 

and 

for some AX x AX matrices A and B. 
Also, 
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and 

and 

for some AX x 4 X  matrix C. 
Now, because of (6.1) and (6.2), we have that 

Also, for the elements of the matrices A and B because of the property 8 frorn the 

previous section, we have 

From property 7, if d, e E D and d + e 4 D, then if d > O and e > 0 ,  

aldl,lel = 0- (6.6) 

If d, e, f E D and d + e + f = O then if the sign of f is different than the sign of d and 

e, 
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If the sign of e is different than the sign of d and f ,  

If the sign of d is different than the sign of e and f ,  

We can now combine (6.3), (6.4), (6.5), (6.6), (6.7), (6.8) and (6.9) into a semide- 

finite program (R3). 

Next, we need to see that the program (R3) on an instance AX of a turnpike 

problem is a relaxation of the problem, in the sense that al1 O - 1 solutions of (R3) 

correspond to the solutions of AX. 
Because, of (6.4) we see that matrices A, B and C are not O - 1 matrices and ive 

will instead look at the matrices 

We look at these matrices because if Y-1 corresponds to a solution of a turnpike 

instance of size n, from the above construction we can see that the entries of Y-1 are 

O and 2(n 2)' 

Now we prove that if A', B' and C' are O - 1 matrices, the matrices Y# for 4 = 

-1,0,1 correspond to a solution of a turnpike instance. 

The positive-semidefinite constraint from (R3) 

can be written in terms of A' and B' as 
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Now, the row of B' indexed by the largest element M of 4X must sum to O because 

of (6.7), (6.8) and (6.9). Therefore because of (6.4), the elements of the row of X 
indexed by the largest element sum to 2(n - 2). 

If the size of a solution set, n is 3, it is easy to see that if the matrices A', B' and 
C' are O - 1 matrices, that they correspond to a solution of the instance. 

If n > 4, tbere exists an element x such that a , ,  = 1 and a,, = 1 for some 

u,u € AX. But then alsoa ,-,, = 1, a ,-,, = 1, bu,-, = 1 and b, ,,,, = 1. 

Now we look at the submatrix of D indexed by z, u, u and x - v .  This matrix has 

the form: 

E = 

where al ,  a*, bl, 62 are either O or 1 and ai + b, 5 1, because of I + -4' + @ + B' = J .  
Therefore, €or the nurnbers al, a*, bl, we have the following possibilities: 

1. al = O, a2 = O ,  bl = O ,b2 = 0; 

2.  al = 0, a2 = O ,  bl = 1 ,b2 = 0; 

3. al = O ,  aa2 = O ,  bl = O ,b2 = 1; 

4. al  = O ,  a2 = O ,  bl = 1 rh = 1; 

5. al = 1,  a2 = O ,  bl = O  ,b2 = 0; 

6. al = 1 ,  a2 = O ,  bl = O  ,b2 = 1; 

7 .  al = O, a2 = 1, bl = O ,b2 = 0; 

8. al = O, a2 = 1, bl = 1 ,b2 = 0; 

9. al = 1, a2 = 1, bl = O ,b = 0 .  
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The matrix E is positive-semidefinite only in cases 5 and 7 above, which we verify 

using some computational tool, such as mmatkab. 
If we look at the submatrix of E indexed by x, u, v ,  x - v and x - .u, this matrix 

has the form 

where a, for i = 1, . . . ,4  is O or 1 and al + a* = 1 and similarly a3 + a4 = 1. Again, we 

use matlab to see that positivesemidefinetness of D implies that al = ad and a2 = a3. 

Hence, we showed that if a , ,  = 1 and G, = 1, for some u, u, x E D, then either 

a,,," = 1, a2-us-v = 1 ,  = O and a ,,-, = O or a ,,-, = 1, and a,,z-, = 1, 

au," = O  and a ,-,, z-, = 0. 

Therefore, the entries of the row of A' indexed by the largest element of 4 X  are 

split into two classes, and they detemine al1 the other elements of A' and B'. We 

show that the elernents of each class determine a solution of the turnpike instance. 

The solution determined by one class is obviously a mirror image of the solution 

detemined by the other class. 

To see that each class determines a solution of the turnpike instance, let us assume 

t hat one of the classes is Y = (xi, . . . , z,-1). Then because of the above a,,Ji-,j = 1 

for i > j, and because of (6.6) X i  - xj Lj f X. Therefore, 4Y C A S .  Now, because 

of (6.4) we can see that each difference - x, in AY appears at most once, and 

therefore AX = AY, which proves that the scaled O - 1 solutions of the relaxation 

(R3) of an instance 4X of the turnpike problem, correspond to the solutions of the 

instance. 

It is easy to construct O - 1 matrices A', B' and C' that satisfy constraints (6.4), 

(6.5), (6.6), (6.7), (6.8) and (6.9) but not positive-semidefinite constraints (6.3), that 

do not correspond to a solution of an instance of the turnpike problem. 

We aiso implemented the relaxation (R3) using the semidefinite program solver 

SDPSOL [6]. Finding an instance that can not be solved by this relaxation is not 



CHAPTER 6. OTHER RELAXATIONS 

hard. For example, the instance 

is not a difference set, but its relaxation (R3)  contains a feasible point. The matrices A 
and B that are feasible for the relaxation (R3) of this instance are convex combination 

of O - 1 matrices Ai, i = 1,. . . , k and Bi, i = 1,. . . , k, respectively These matrices 

correspond to the solutions of subinstances of LX. It is easy to see that the equality 

constraints of (R3)  hold for t hese O - 1 matrices, as do the constraints 

for i E {l , .  .. ,k}. 
The constraints 

do not hold for each pair of O - 1 matrices separately, but they do hold for the convex 

combination of sufficiently large number of O - 1 matrices. 

In this respect, the relaxation (R3)  does not seem to be very powerful. 

6.4 A Connection Between (R3)  and (SI) 

To finish, we mention one more property of the matrices A' + B' and A' - BI. If 

X = {O,xl,. . . ,x,-~) is a solution of a turnpike instance AX, we cd1 the sets X, 

X -21 ,  X - x 2 ,  ... , X-x,,1 the strealcsofx. 

If A' and B' correspond to the solution X, then 

where u, is the characteristic vector of size s,-1, of the set that contains absolute 

values of the elements of the set X - xi- 
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Also 

where vi is a vector of size xndl, whose entries are 0,1, -1, and vi has 1 on the position 

indexeà by the difference x, - xb, a > 6, if x, - xb is in the steak X - xi- The vector 

vi has -1 on the position indexed by the difference x, - xb, a > b, if -(x, - xb) is in 

the steak X -xi 
Notice that the matrices uour and V,-~VL, are submatrices of a feasible matrix 

for the relaxation (Si). 

This fact can be used to strengthen the constraints of the relaxation (R3) ,  i.e. we 

cm constrain A' + B' and A' - B' to be of the form (6.12) and (6.13), respectively. 



Chapter 7 

Conclusions 

In this thesis we considered the turnpike problern. Although the major open question, 

whether the problem is in the class P of problems solvable in polynomiai time, is 

open, we have presented methods for solving some classes of instances in polynomial 

time. These classes include the class of instances constructed by Zhang, [35] on which 

Skiena's et al. backtracking procedure takes exponential time. There is no other 

known class of instances on which the backtracking procedure takes exponential time. 

Our rnethods are based on representing the turnpike problem as a O - 1 quadratic 

program which is then relaxed to a semidefinite program that can be solved in poly- 

nomial tirne. We represent the turnpike problem as a 0 - 1 quadratic program in three 

different ways. For one such representation, we consider a sequence of semidefinite 

relaxations sirnilar to the sequence of semidefinite relaxations proposed and used by 

Loviisz and Schrijver in [19] to constnict an algorithm for finding maximum stable 

sets in perfect graphs. We do not have an instance which would not be solved by the 

second semidefinite relaxation in the sequence. We prove that there exists a polyno- 

mial time algorithm for solving the turnpike problem on classes of instances for which 

there exist a constant c, such that the instances are solved by the c-th semidefinite 

relaxation in the sequence. 

Finding instances for which the constant c is greater than two would be interesting 

because Lovbz and Schrijver do not have a class of graphs for which the maximum 

stable sets could not be found by a semidefinite relaxation which corresponds to the 
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second relaxation in our sequence. 

We aiso performed extensive numerical testing of our methods. Since we approach 

the turnpike problem from the theoretical cornputing science viewpoint, our numerical 

results are obtained by examining al1 instances with socne given properties. It would 

be interesting to see how our met hods behave on the instances that arise from partial 

digest experiments. 
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