An integer $$k$$ which consists of $$n$$ digits and equals the sum of its numbers raised to the power $$n$$ is called a narcissistic number. Some examples: \[ \begin{aligned}[c] 153 &= 1^3 + 5^3 + 3^3 \\ 1634 &= 1^4 + 6^4 + 3^4 + 4^4 \\ 54748 &= 5^5 + 4^5 + 7^5 + 4^5 + 8^5 \\ 548834 &= 5^6 + 4^6 + 8^6 + 8^6 + 3^6 + 4^6 \\ 1741725 &= 1^7 + 7^7 + 4^7 + 1^7 + 7^7 + 2^7 + 5^7 \nonumber \end{aligned}\]

Input

The number $$k \in \mathbb{N}$$.

Output

If $$k$$ is a narcissistic number, the text narcissistic should appear, otherwise the text not narcissistic should appear.

Example

Input:

153

Output:

narcissistic