Continuing on the Boston dataset
> lm.fit <- lm(medv ~ crim, data = Boston)
> summary(lm.fit)
Call:
lm(formula = medv ~ crim, data = Boston)
Residuals:
Min 1Q Median 3Q Max
-16.957 -5.449 -2.007 2.512 29.800
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 24.03311 0.40914 58.74 <2e-16 ***
crim -0.41519 0.04389 -9.46 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 8.484 on 504 degrees of freedom
Multiple R-squared: 0.1508, Adjusted R-squared: 0.1491
F-statistic: 89.49 on 1 and 504 DF, p-value: < 2.2e-16