The Grerory-Leibnitz series1 approximates \(\pi\) using the alternate series
\[4 \times \left(\frac{1}{1} - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \cdots\right)\]Write a function gregory_leibnitz
that takes an integer \(n \in \mathbb{N}_0\) (int
). The function must return the approximation for \(\pi\) obtained from the first \(n\) terms in the Grerory-Leibnitz series.
>>> gregory_leibnitz(1)
4.0
>>> gregory_leibnitz(10)
3.0418396189294032
>>> gregory_leibnitz(100)
3.1315929035585537
>>> gregory_leibnitz(1000)
3.140592653839794