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Curvature and Creases: A Primer on Paper

DAVID A. HUFFMAN, FELLOW, IEEE

Abstract-This paper presents fundamental results about how
zero-curvature (paper) surfaces behave near creases and apices
of cones. These entities are natural generalizations of the edges and
vertices of piecewise-planar surfaces. Consequently, paper surfaces
may furnish a richer and yet still tractable class of surfaces for
computer-aided design and computer graphics applications than
do polyhedral surfaces.
Major portions of this paper are dedicated to exploring issues of

curvature definition, convexity, and concavity, and interrelation-
ships among angles associated with creases and generalized vertices
and the orientations of associated surfaces in their vicinities. An
electrical network representation is suggested in which there flow
currents that are analogous to curvature components on the sur-
face.

Index Terms-Computer-aided design, computer graphics, de-
velopable surfaces, Gaussian curvature, scene analysis.

INTRODUCTION

OBJECTS bounded by planes were reasonable ones
upon which to do initial research in scene analysis.

(For an overview of recent research in this area see [1] and
[2] in which the work of Clowes, Guzm.an, Huffman, Waltz,
and others is summarized.) Similarly, piecewise-planar
surfaces were simple approximants to more complex sur-
faces for computer-aided design and computer graphics
applications. Polyhedra presented researchers with po-
tentially complex, but yet not totally arbitrary, surfaces,
and a corresponding opportunity to develop intuition and
analytic techniques. (The reader is referred to [3] for a
representative sample of other recent theoretical and ap-
plied work on surfaces.)

It is unlikely that one can say much of practical value
about,surfaces of complete generality. No two neighboring
points on an arbitrary surface need have the same tangent
plane. By contrast, all points on a plane surface have the
same tangent plane. On a developable (or "paper") surface,
on the other hand, all points on a given line embedded in
the surface have the same tangent plane. That is, the
neighborhood of a point on a paper surface can be char-
acterized by a single-parameter family of tangent planes.
The author proposes that a paper surface offers a com-
plexity that is, therefore, in a very real sense exactly mid-
way between that of a completely general surface and that
of a plane surface. Consequently, paper surfaces constitute
a class that may be ideally suited to be both richer than
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that of plane surfaces and more tractable analytically than
that of totally arbitrary surfaces. This paper explores many
of the extraordinarily delightful and relatively simple re-
lationships that exist among the quantities associated with
a typical point on a paper surface.
Throughout this paper there is exploited a basic fact

about a developable surface: the Gaussian curvature (de-
fined later in this paper) is exactly zero at every point on
a developable surface. Special attention is given to the
simplest possible class of polyhedral vertices that can be
formed on paper surfaces. This simplest type has just four
plane sectors (the angles of which sum to 360 degrees).
A major part of the paper is dedicated to derivation of

equations that express relationships among the sector
angles for the basic degree-4 vertex, the associated dihedral
angles between the plane sectors, and the angles between
these sectors and the osculating plane associated with the
vertex. A single parameter that expresses the amount of
"flexing" near the vertex is defined. An electrical network
representation is developed in which the currents are
analogous to the curvature components near the vertex.
Finally, the understanding of the basic degree-4 vertex is
utilized to develop an understanding of issues of curvature
and convexity in the vicinity of apices of arbitrary cones
and of points on arbitrary creases on paper surfaces.

THE GAUSSIAN SPHERE AND GAUSSIAN CURVATURE

In this section we review briefly the concept of Gaussian
curvature at a point on a surface. An excellent and more
detailed treatment of the subject is given in the book by
Hilbert and Cohn-Vossen [5].

Consider a closed contour k oriented, say, clockwise and
enclosing the given point on the surface. Each point on the
contour has an associated unit length vector normal to the
surface and oriented away from the surface. Let this set of
normal vectors be transferred so that the spatial direction
of each is preserved and so that each starts at the center
of a unit radius sphere (the Gaussian sphere) and ends on
the surface of that sphere. The ratio K of the area G en-
closed by the resulting closed contour k' (which we shall
call here the trace of the contour k) on the sphere to the
area F enclosed by the contour k has a definite limit as k
shrinks to the given point. This ratio is defined to be the
Gaussian (or total) curvature at the point. When k' is
oriented clockwise, the curvature is positive. When k' is
oriented counterclockwise, the curvature is negative. The
net area enclosed by a trace k' that is more complex is
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considered positive when it encloses more area clockwise
than it encloses counterclockwise, and negative if more
area is enclosed counterclockwise than clockwise.

It is well known that at a given point the Gaussian cur-
vature K is equal to the product of the two principal cur-
vatures at that point. Each of these latter curvatures is
equal to the reciprocal of a corresponding one of the two
principal radii of curvature, r, and r2. As examples the
reader should consider the Gaussian curvature at typical
points:

1) on the outside of a sphere of radius r (the two radii
of curvature have the same positive values and hence
K=1/= ,

2) on the inside of a spherical surface of radius r (the
two radii of curvature have the same negative value
and hence again K = I/r2),

3) on an ellipsoid (where r1 and r2 are both positive and
K==1rjr2),

4) on a saddle surface, such as a hyperbolic paraboloid
(where r1 and r2 have opposite signs and K is there-
fore negative),

5) on a right circular cylinder (where one of the radii is
infinite and hence K = 0, and

6) at the apex of a cone (where each radius is zero and
consequently K is infinite).

THE GENERAL POLYHEDRAL VERTEX

We next consider the representation on the Gaussian
sphere of the plane sectors associated with an arbitrary
polyhedral vertex. As a specific example, consider the
corner of a cube [see Fig. 1(a)] having the three associated
planes A, B, and C, and some (it makes no difference
which) contour enclosing the vertex clockwise. The +
symbols are labels indicating that the corresponding edges
are convex, rather than concave. It is clear that the trace
consists of three segments, each a great circular arc ir/2
units in length, and encloses an area on the sphere equal
to one eighth of the total surface area: (1/8)(4nr) = 7r/2. We
note also that the trace makes three abrupt turns to the
right, each corresponding to the angle 7r/2 associated with
each of the sectors. The angles A, B, and C equal both the
exterior angles of the spherical triangle and the sector
angles on the cube. (We shall use a given capital letter to
refer both to a surface plane and to the corresponding
sector angle, using context to make the distinction clear.)
Each segment of the trace has a length equal to the dihe-
dral angle between the corresponding two planes on the
cube. A given segment of trace represents the set of nor-
mals associated with all of the planes tangent to the surface
and containing the associated edge of the surface.

Another example of a polyhedral vertex is given in Fig.
2. It has two concave (-) as well as two convex (+) edges.
The configuration is to approximate a saddle surface. This
requires that the four sector angles, A, B, C, and D (all

(a) (b)
Fig. 1. Representation of a simple polyhedral vertex. (a) Contour around

a cube vertex and (b) corresponding trace on the Gaussian sphere.

(a) (b)
Fig. 2. Representation of another polyhedral vertex. (a) Contour around

a "saddle point" vertex and (b) corresponding trace on the Gaussian
sphere.

assumed here to be equal), must have a sum that exceeds
2-r and thus each sector angle must exceed 7r/2. Again the
trace on the sphere does not depend on exactly which
contour we choose, but only upon the sector angles and the
dihedral angles between the pairs of adjacent planes. We
show a case in which these dihedral angles are all the same,
although that is not a necessity. Note that the orientation
of those parts of the trace between planes A and B and
between planes C and D is opposite to the orientation of
the surface contour. This occurs because of the concavity
of the corresponding edges. The area within the trace can
be considered to be negative because that area is enclosed
counterclockwise and it remains the same even as the
contour shrinks toward the vertex. The magnitude of the
curvature at the vertex is, therefore, infinite.

In examining the traces of both Fig. l(b) and Fig. 2(b)
we see that the angle by which the trace changes its di-
rection corresponds to the angle of the associated plane
sector of the surface at the vertex. This turning is clockwise
in all cases (since the corresponding turning of the contour
on the surface was assumed always to be clockwise) even
though the trace itself may progress counterclockwise. A
classic theorem in spherical trigonometry states that the
area of a spherical triangle on a unit radius sphere is
equal to the sum of the interior angles minus r. This
quantity is often called the "excess angle." By decomposing
the area within a trace on the Gaussian sphere into trian-
gles so that this theorem can be applied it is easy to show
that the area within the trace is equal to 2wr minus the sum
of the sector angles on the corresponding surface. If the
sum of these sector angles is less than 27r the area within
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the trace is positive [as in Fig. 1(b)]. If the sum of the sector
angles is more than 2r the area within the trace is negative
[as in Fig. 2(b)].
Except for the case in which the sum of the sector angles

at a vertex is 2x, we can then consider that the curvature
at a polyhedral vertex is an impulse, the weight of which
is equal to the net area enclosed by the corresponding
trace. An important observation is that this result is in-
dependent of the dihedral angles between the plane sec-
tors.

THE SIMPLEST ZERO-CURVATURE POLYHEDRAL
VERTEX

An especially important subclass of polyhedral vertices
is that for which the sum of the sector angles is 2X. This
constraint applies to each point on an idealized paper
surface. (We consider only regions on such surfaces away
from the boundary edges and on which no cutting and re-
joining has taken place.)
The simplest way that a trace on the Gaussian sphere

can correspond to a polyhedral vertex and yet enclose zero
net area is illustrated in Fig. 3(b). Four sectors are easily
seen to be necessary because three sectors can only lead to
a single triangle. Each degree-4 polyhedral vertex on a zero
curvature surface either has three convex and one concave
edge (as shown in our example) or has three concave and
one convex edge. The latter type of vertex is essentially the
mirror image of the type we shall consider as our standard
for expository purposes.
The left portion of the trace encloses a triangle having

a positive area that is of exactly the same magnitude as that
of the triangle enclosed by the right portion of the trace.
The symbols m, n, p, and q refer to the magnitude of the
dihedral angles between the plane-pairs AB, CD, BC, and
DA, respectively.
The arc from B to C in the spherical representation

represents the normals to planes that are tangent to the
surface along the edge between these two planes. Similarly,
the arc from D to A represents the normals to planes that
are tangent to the surface along the edge between the latter
two planes. The angle 6 is the angle between these two
edges. The point Q represents the normal to the plane
containing both these edges. The magnitudes of the (di-
hedral) angles between the plane Q and the planes A, B,
C, and D are designated a, b, c, and d, respectively, as
shown in the figure. It is apparent that p = b + c, and q =
a + d.

Imagine now that the surface pictured in Fig. 3(a) is
flattened out so that all dihedral angles are zero (but so
that the sector angles remain constant). In that case the
common area E of each of the two triangles would become
zero (since all normal vectors would have the same spatial
orientation). The angle 6 would then become equal to C +
D = 2w- (A + B). More generally (when the paper surface

A q (V' q aid+ C~~++ p +

(a) (b)
Fig. 3. Basic degree-4 polyhedral vertex on a zero-curvature surface.

(a) Vertex configuration and (b) trace on the Gaussian sphere.

is not flattened) the angle 0 between the two edges would
be less than that amount.
We observe from Fig. 3(b) that the excess angle in the

left and right triangles is (r- A) + (r- B) + (r- 0) - -

= (2 - (A + B)) -0 and C + D + (r -0) - = (C + D)
-0, respectively. Each of these is equal to the common
area, E, of the two triangles. We thus conclude that the
area of each of the triangles is equal to the decrease in angle
between the edges common to B and C and common to D
and A as the configuration is flexed from its flattened' state
to that corresponding to the originally specified dihedral
angles. Therefore E can be considered to be a useful pa-
rameter that indicates the amount of flexing at the ver-
tex.
Another possible parameter that indicates the amount

of flexing at the vertex is obtained by first considering a
sheet of paper ruled with a regular pattern of lines obtained
by iterating the basic configuration [see Fig. 4(a)]. This
type of iteration is possible for any set of sector angles that
sum to 2r. The four sector angles are shown at each of the
vertices. All edges between sectors marked C and D are to
be concave; all others are to be convex. We note also that
the vertices are in two classes and that the ruling remains
the same when the paper is rotated by r.
Now assume that each edge is given its originally spec-

ified dihedral angle (m, n, p, or q). This is possible to do
in a consistent way because the opposite ends of any line
are associated with the same pair of planes from the con-
figuration around the basic vertex. Consider now, for ex-
ample, the normals to the sequence of planes P1, P2, - - *,
P7. It is clear that the angles between Pi and P3, P3 and P5,
P5 and P7, and P7 and P9 are all equal. Similarly, the angles
between P1l and P12, P12 and P14, P14 and P16, and P16 and
P18 are all equal. By rotating the pattern and recalling the
symmetry noted above we conclude in turn that these two
angles must be equal. That is, the angles between pairs of
planes in the sequence P1, P3, P5, P7, P9; in the sequence
P2, P4, P6, P8; in the sequence P1o, P12, P14, P16, P18; and
in the sequence Pll, P13, P15, P17 are all equal.
There is only one way that the normal vectors for the

planes described above can be placed on the Gaussian
sphere: The even-numbered planes and the odd-numbered
planes must have normal vectors that lie above and below
some great circle (an equator) on two parallel circles of
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constant latitude, one a given angular distance I above that
equator and the other the same distance 1 below that
equator. The situation is represented in Fig. 4(b) (a cy-
lindrical projection with the lines straightened for sim-
plicity of representation). The traces associated with two
typical vertices (one from each of the two classes) are
shown by heavy lines. Our iterated pattern [Fig. 4(a)] was
constructed so that the axis of cylindrical symmetry was
vertical, as the reader can verify by doing the folding
himself, but of course that is not necessarily the case in the
general situation.
Our conclusion from the discussion above is that the

midpoints of the four arcs constituting the trace for an
arbitrary polyhedral vertex of degree four on a zero-cur-
vature surface must lie on a common great circle. The
vectors normal to the four plane sectors lie above or below
that circle at a common angular distance 1. Thus that angle
1 is another parameter than can be related to the amount
of flexing at the vertex.

RELATIONSHIPS AMONG ANGLES AT THE DEGREE-4
VERTEX

In this section we derive several basic relationships
among the various dihedral and other angles at the general
degree-4 polyhedral vertex on a zero-curvature surface. In
the diagrams related to these derivations we shall draw the
various traces using straight lines. The reader should keep
in mind, however, that the segments of the traces shown
are actually segments of arcs of great circles on the
Gaussian sphere. The appropriate formulas are, therefore,
from the realm of spherical trigonometry. In these for-
mulas a segment of arc is measured by the angle between
the two radial lines extending from the center of the sphere
to the endpoints of the arc. The area of a spherical triangle
is itself measured as an angle: the excess angle referred to
earlier.
One formula from spherical trigonometry relates the

tangent of half the area of a triangle to the tangents of half
the two adjacent sides and to the sine and cosine of the
angle between these sides. This formula applied to the
triangle shown in Fig. 5 yields

E
tan =

2

tan
a
tan

b
sin (r - 0)

2 2

1 + tan
a
tan

b
COS (ir - 6)

2 2

tan - tan -sin (r- 0)
2 2

=

d

1 + tan -tanl cos (r-6)
2 2

It can be derived in a straightforward way that

a b c d
tan - tan - = tan - tan -.

2 2 2 2

(a)

P6
PiQ Pi2 Pi4 Pi6 Pie

(b)
Fig. 4. Paperfolding having cylindrical symmetry. (a) Iterated network
and (b) set of traces.

A "cosine law" of spherical trigonometry relates the
cosine of one (interior) angle of a triangle to the sine and
cosine of the other two angles and to the cosine of the side
opposite the first angle. This formula applied to the tri-
angles of Fig. 5 yields

cos (r - 0) = -cos (r - A) cos (7r- B)
+ sin Or - A) sin Or - B) cos m

and

cos Or - 0) = -cos C cos D + sin C sin D cos n.

By equating these and by adding sin A sin B + sin C sin D
to each side

(sin A sin B - cos A cos B)
+ sin A sin B cos m + sin C sin D
= (sin C sin D - cos C cos D)
+ sin C sin D cos n + sin A sin B.

(1) Since A + B + C + D = 7r the two parenthesized expres-
sions are each equal to'-cos (A + B) = -cos (C + D). It
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follows that

sin A sin B (1 - cos m) = sin C sin D (1 - cos n).

Because 2sin2a = 1 - cos 2a for any angle a, we conclude
that

.m
sin2 -

2 sin C sin D

sin2 n sin A sin B-
2

(2a)

By extending the parts of the trace associated with the
dihedral angles m and n, we obtain the construction shown
in Fig. 5. The two large triangles have the same area and,
therefore, we can apply the cosine law to these two trian-
gles in the same way that we did in the above derivation.
A derivation of the same style leads us to conclude that

sin2 P
2 sinA sinD (2b)

sin2 q sin B sin C
2

A more difficult derivation, not recorded here, allows us
to establish that

. Usin2 -
2 sinA sin C

sin2 v sin B sin D
2

where u and v (shown in Fig. 5) are, respectively, the angle
between the (normals to the) planes B andD and the angle
between the planes A and C.
The symmetry among (2a)-(2c) is apparent. The first

of these has an especially interesting interpretation. If a
sheet of paper is creased according to the plan illustrated
in the diagram of Fig. 3(a), it becomes apparent that as the
configuration is flexed either the angle p or the angle q will
first become equal to u. In either case we call the state the
"binding" of the configuration.' Once this state is reached
no further flexing is possible that keeps the sectors plane,
as is required. Which event occurs first is determined by
the ratio sin A sin D: sin B sin C. If that ratio is greater
than one, the bind first occurs because p becomes equal
to r; if it is less than one the bind first occurs because q
becomes equal to r. If the ratio equals one both angles
become equal to ir simultaneously (as do the angles m and
n). It can easily be shown that this latter situation occurs
only when A + C = B + D = 7r.

Because (2a)-(2c) are all especially simple and because
each involves the sines of half of two of the dihedral angles,
it would be natural to suspect that the relationships be-

1 The term "binding" is due to Dr. R. Resch of the Department of
Computer Science at the University of Utah. Dr. Resch is a computer-
artist whose paperfoldings are well known.

A

Ii
I,

I'
rn ,,- n

I

i~~~~~c
-I

Fig. 5. Quantities related to the derivation of (M)-(3).

tweon pairs of adjacent dihedral angles (m and p, p and n,
etc.) are also simple ones. This, unfortunately, is not the
case. By a very difficult derivation the author has proved
that, for example,

sinAsinD sin2 q

I isn sinD 1sinB sin(C

sin sinC 1 2

l+sinBsinDss sn Asi.n D

sin A sin C

= 1 - sin B sin D
sin A sin C

sin C sin D . n
1- sin2-I

sin A sin B 2

1-sin2n
2 _

(3)

The implications of this and similar equations on the
flexings of networks of polyhedral vertices on zero-cur-
vature surfaces will be pursued in a later paper.

AN ELECTRICAL NETWORK ANALOGY FOR A
GENERAL POLYHEDRAL VERTEX ON PAPER

In Fig. 6(a) is shown an example of a rather complex
configuration of lines at a vertex on a paper surface before
it is flexed; that is, when all the dihedral angles are incre-
mental ones. All of the normal vectors have nearly the same
orientation and occupy only a small region on the Gaussian
sphere. This small region is nearly a plane and the trace is
typified by the one given in Fig. 6(b). (For a more general
discussion of the problem of representing the information
on the Gaussian sphere on a plane, see [4]). Note that each
segment of the trace is perpendicular to the corresponding
edge on the surface and that the direction of the trace is
reversed when the surface contour traverses a sector that
is a boundary between a region of + edges and a region of
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(a)

(b)

(c)

Fig. 6. Electrical network analog for a zero-curvature polyhedral vertex
configuration. (a) Vertex configuration, (b) trace, and (c) analogous
network.

- edges. When the various dihedral angles are larger the
trace covers more of the Gaussian sphere, always however
in such a way that the angles between successive segments
remain constant. As long as these angles sum to 2-r the net
area within the trace will be zero.
The area within the trace may also be computed to be

zero by summing the areas of a set of triangles, each cor-

responding to a segment of the trace. Consider, for in-
stance, an arbitrarily placed origin such as the one desig-
nated by 0 in Fig. 6(b). This origin would ordinarily be the
normal to the picture plane upon which the vertex con-

figuration is projected. One of the components of the sum
is the area of the triangle OAB. This area is considered
negative because the directed segment AB has a counter-
clockwise orientation with respect to 0. Another compo-

nent is the area of the triangle OFG. This area is positive
since the directed segment FG has a clockwise orientation
with respect to 0. The sum of such areas is zero regardless
of the position of the origin.

When all dihedral angles are incremental (the only case
to be considered here) the area of a component triangle is
proportional to the base of the triangle times its height. For
instance, the area of the triangle ODE is proportional to
the product of the length ofDE by the distance from the
origin, 0, to that segment. The former is the dihedral angle
along the edge common to planes D and E. The latter can
be interpreted to be the tangent of the angle between that
edge and the reference (picture) plane. (See [4] for a de-
tailed explanation of these results and some of those that
immediately follow.) If the dihedral angle is divided by a
given quantity and the tangent is multiplied by that same
quantity the product is unaltered. It is convenient to
choose that quantity to be the projected length of the edge
upon the picture plane because the tangent times this
length is equal to the change in range (measured, say, from
the camera) along that edge.
Because change in range to various points on a surface

is a potential-like quantity (for instance, the sum of these
changes around a closed contour on a surface is zero) the
following electrical network analogy suggests itself. (See
Fig. 6(c); the broad line segments represent resistors.) Let
each edge on the zero-curvature surface correspond to a
resistor. The voltage across the resistor will be the change
in range along the corresponding edge. The conductance
of the resistor will be the dihedral angle associated with
that edge divided by the projected length of the edge. The
sign of that conductance is the label (+ or -) that is asso,
ciated with the edge.

For our example the form of the network and the current
and voltage directions corresponding to the given position
of the origin are shown in Fig. 6(c). Note especially that
with the conventions given above for the signs of the
voltage and conductance for each element, the resulting
component of current flow will be away from or toward the
node depending on whether the corresponding triangular
area component is positive or negative, respectively. Be-
cause these areas sum to zero, the currents also do. Con-
sequently, in this analogy currents are proportional to
curvature components. The choice of the origin (that is,
the choice of the direction from the surface to the viewer)
determines both the conductances and the voltages across
these conductances. For any choice of origin, however, the
net current at a network node is zero.
Other analogies are of course possible in which dihedral

angles, slopes of edges, and components of curvature cor-
respond to currents, resistances or conductances, and
voltages in different ways. For the more general case of a
vertex at which the curvature is not zero the analogous
network would require a current proportional to the area
enclosed by the trace to be injected into the node. Finally,
the situation in which the surface is not almost flat would
require that the appropriate formulas from spherical
rather than plane trigonometry be used in calculating the
areas. These other analogies and extensions will not be

1015

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 10, 2009 at 16:12 from IEEE Xplore.  Restrictions apply.



IEEE TRANSACTIONS ON COMPUTERS, OCTOBER 1976

elaborated on in this present paper.---hepuposefalt-such--
analogies is to present an alternate visualization of the
surface.

THE GENERAL ZERO-CURVATURE CONE

It is well known [6] that a surface having zero curvature
contains embedded "generating" lines and that for every
point on a given line the surface has the same tangent
plane. Thus if at a given point on a surface there is an as-
sociated normal vector, that vector is also appropriate at
all other points of the same generating line.
The configurations of edges at the polyhedral vertices

shown in Figs. 3(a) and 6(a) are special examples of cones.
A set of lines that are all incident at the apex of a cone can
be embedded in the conical surface. In general, the surface
surrounding the apex will be divided into regions that may
be classified as convex (+) interleaved with those that may
be classified concave (-), as is shown in Fig. 7(a). In our
example we show the boundaries between these regions as
dashed lines. The convexity or concavity associated with
these regions may be distributed over them so that the
dihedral angle for a given embedded line may be arbitrarily
small.
We assume again that the sheet of paper forming the

cone is nearly flat so that all tangent planes have ap-
proximately the same orientation. More generally, the
trace will cover an appreciable area of the sphere, but the
turnings of the trace to the left or right will be the same as
are described here.

Consider a circular contour on the surface of the cone,
centered at the apex. This contour crosses each of the
generating lines at a right angle. Therefore, the instanta-
neous direction of the trace at a given point is exactly the
same as at the corresponding point on the contour if the
given point is in a convex region (for instance, point i). For
a point (such as j) in a concave region these two directions
are exactly opposite to each other. The various cusps in-
dicated by "A" in Fig. 7(b) correspond to the boundaries
previously mentioned. The net area enclosed by the trace
is, of course, zero. If a noncircular contour is chosen on the
surface [for example, the one indicated in Fig. 7(a)] the
corresponding trace will still be the one demonstrated since
there is a single tangent plane corresponding to all points
on a given generating line.

It is apparent that a distributed resistive network as-
sociated with the conical surface is possible. For the general
case we may expect that the current (component of cur-
vature) that flows along a given generating line will be an
incremental one unless -that- line has a nonincremental
dihedral angle.
We note also that in the example of Fig. 7(b) there is a

locus of points (shown shaded) such that each point has
the following property: the portions of the trace that cor-
respond to convex (+) regions turn clockwise around the
point and those that correspond to concave (-) regions

/3

(a)

6

' 2

/34

(b)
Fig. 7. Cone having distributed curvature. (a) Conical surface and (b)

trace.

turn counterclockwise. Such points on the Gaussian sphere
correspond to planes that are tangent to the vertex in such
a way that the surface near the vertex would be entirely
beyond the tangent plane; that is, further away from the
viewer. This type of vertex can therefore be classified as
"convex."~

If we were to consider a related conical surface obtained
from the one depicted in Fig. 7(a) by changing the sign of
the dihedral angle associated with each generating line, a
vertex would result that would be classified as "concave.9"
For a concave vertex there is a locus of points on the
Gaussian sphere that is associated with tangent planes that
would be beyond the surface. These points on the sphere
are passed clockwise by the - portions of the trace and
passed counterclockwise by the + portions of the trace.
The traces of Figs. l(b), 3(b), and 6(b) indicate that the

associated vertices are convex. The normals to tangent
planes that establish the vertex of Fig. 3(a) as convex are
represented inside triangle ABQ. It can be seen that the
trace of Fig. 2(b) indicates that there can be no tangent
plane entirely on one side or the other of the given surface.
That vertex is neither convex nor concave.

It is possible to have vertices that terminate edges on a
paper surface. The convexity or concavity of the terminal
vertex can make a dramatic difference on the orientation
of the nearby surface normals. In Fig. 8(a), for example, we
depict a cone associated with a convex vertex; one of the
generating lines of the cone is convex and has a nonzero
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+ + ~~ ~~~~ ~~~~~~~~~~~~L+sR

r+ ~~L Ro- - ±H(z
(a) (b)

(a) (b)
Fig. 8. Convex vertex terminating a convex edge. (a) Conical surface Fig. 9. Concave vertex terminating a convex edge. (a) Conical surface
and (b) trace. and (b) trace.

L3
3R3

La * R2

+

(a)

+ Q1 Q

L ~~~~~~~R2
L k- R R3

(b)
Fig. 10. Approximation to a curved convex crease. (a) Surface and (b)

corresponding trace.

dihedral angle. A possiblecorresponding trace is shown in as we move along the crease is orthogonal to the orienta-
Fig. 8(b). The points L and R correspond to planes that tion of the corresponding portion of the crease itself.
both contain the indicated line. In Fig. 9(a) there is de- We are interested in the trace as the two vertices ap-
picted a cone associated with a concave vertex. Again one proach each other and as all three L -planes (and all three
line is convex and has a nonzero dihedral angle. The trace R-planes) become the same. The resulting situation is the
for this cone is quite different from the preceding one. one that- pertains at a single point on a curved crease. The

pair of planes L and R are then the planes that contain that
TRACES FOR SURFACES NEAR CURVED CREASES point and that are tangent to the surfaces to the left and

right of the crease. It is apparent because of the zero-area
In the preceding section we generalized the concept of constraint that in this limiting situation the point Q must

a polyhedral vertex to include the apex of an arbitrary be midway between the points L and R. In other words, the
cone. In this section we generalize the concept of an edge tangent planes L and R make equal angles with the os-
of a polyhedron to include an arbitrarily curved crease. As culating plane Q.
we shall see, the fact that the surfaces with which we are We next consider the implications of this result when
dealing have zero curvature places significant constraints it is applied to a crease (see Fig. 11) that is forced to lie in
on the orientation of the nearby tangent planes. a given plane. That plane is, for this special case, the os-

Surfaces near a portion of a convex crease can be ap- culating plane for all points on the crease. Note that the
proximated by planes such as those shown in Fig. 10(a). In trace consists of two components that have rotational
the corresponding trace of Fig. 10(b) we recall that the symmetry about the point Q. Observe also that the line
points Q and Q'- represent the planes-determined by por- L3QR3 is perpendicular to the tangent to the crease at the
tions of the crease (indicated by heavy lines) at the two corresponding point. Because of the rotational symmetry,
vertices. These planes correspond to "osculating planes" the tangents to the pair of points (for instance, L3 and R3)
[71 for the crease. In general, neighboring points on a- crease on the trace have- thesame direction (perpendicular to the
will have different osculating planes. We observe from Fig. corresponding generating lines) and the distances to these
10(b) that the change in position of the representation of tangents from Q must be the same. We conclude that, for
the osculatingplane (from Q to Q' along the line L2R2) the case of a crease contained in a single osculatingPlane.
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region)

( + region)

(+ region)

(- region)

(a)

(b)
Fig. 11. Representation of a convex crease contained in a single oscu-

lating plane. (a) Convex crease with associated generating lines and
(b) corresponding trace.

(region)7X L7

5 ~~~~~~~Le R2

L5locus of
(region) Q

(a) (b)
Fig. 12. Representation of a convex crease with a changing osculating

plane. (a) Convex crease with associated generating lines and (b) cor-
responding trace.

the pair of generating lines at any point on the crease
makes equal angles with that plane. That is, the gener-
ating lines are reflected from the plane as rays of light
would be reflected from a mirror. This is certainly a fun-
damental and aesthetically pleasing result.
A special case is worthy of separate mention. If all the

generating lines (projected onto the single osculating
plane) cross the crease at right angles then all portions of
the trace [Fig. 11(b)] lie on a single circle. The angular
distance from the point Q to any point on the trace is then
a constant that depends only upon the amount of flexing
along the crease. This angular distance can be interpreted
as one half of the dihedral angle between the two tangent

planes associated with any point on the crease. This di-
hedral angle is constant for all points on the crease as long
as all portions of the crease lie in the single osculating
plane. As the crease is flexed, this common dihedral angle
also increases and the radii of curvature associated with
all points on the crease are multiplied (decreased) by a
common factor. This factor can be proven to be the cosine
of one half of the dihedral angle associated with the crease.
(A future paper will elaborate on this and other related
issues.)
More generally, we can expect that as we move a point

along a curved crease the associated osculating plane will
change its orientation. (The concept of "torsion" [81 applies

1018

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 10, 2009 at 16:12 from IEEE Xplore.  Restrictions apply.



! ~ :: 7 fi, g I t; i: I

HUFFMAN: CURVATURE AND CREASES

to this situation, but an exploration of that concept in the
context of zero-curvature surfaces is beyond the scope of
this paper.) An example of such a crease is given in Fig. 12.
As was noted in the example of Fig. 10, the direction of the
change in orientation of Q (as depicted in the representa-
tion of the Gaussian sphere) is perpendicular to the tan-
gent to the crease. The pair of tangents to the trace, for
example at points # 3, need not be parallel and, therefore,
the generating lines need not take a common direction in
the picture. Nor is it generally necessary that the angles
that a pair of generating lines make with respect to their
corresponding osculating plane be equal to each other.

SUMMARY

This paper has attempted to place before the reader in
a single place a number of the most important facts about
how zero-curvature surfaces behave near creases and
apices of arbitrary cones. These latter concepts are anal-
ogous to those of edges and vertices on objects bounded by
plane surfaces. I hope that the reader as a result ofmy ef-
forts may have begun to appreciate the singular beauty of
the relationships I have demonstrated for this more general
type of surface. In particular, I suggest that it may be
fruitful to visualize components of curvature to be flowing
over a surface in such a way that the net flow at any point
is equal to the curvature at that point. The zero-curvature
surfaces discussed here furnish the simplest examples for
this kind of visualization.
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