An integer $$n \in \mathbb{N}$$ is called a torn number if it can be chopped in two parts $$n_1$$ and $$n_2$$, such that $$(n_1 + n_2)^2$$ equals the original number $$n$$. Both parts need to contain at least one digit.
For instance, 88209 is a torn number because \[(88 + 209)^2 = 297^2 = 88209\]
An integer $$n \in \mathbb{N}$$.
The text torn if $$n$$ is a torn number or the text not torn if $$n$$ is not a torn number.
Input:
88209
Output:
torn
Input:
88210
Output:
not torn