Gauss made a formula to determine the day
$$D$$ and the month $$M$$ in which Easter is celebrated in a certain year $$J$$.
Suppose that the notation $$\lfloor x\rfloor$$ is used for the whole part of
a real number $$x$$. In the first instance, the following values are
defined: \[\begin{aligned} k &=\left\lfloor
\frac{J}{100}\right\rfloor \\ a &= J\mathrm{\;mod 19}\\ b &=
J\mathrm{\;mod 4}\\c&=J\mathrm{\;mod 7}\\ p &=\left\lfloor
\frac{13 +8k}{25}\right\rfloor \\ q&= \left\lfloor
\frac{k}{4}\right\rfloor \\ m &= (15-p+k-q) \mathrm{\;mod 30}\\ d
&= (19a + m) \mathrm{\;mod 30}\\ n &= (4+k-q) \mathrm{\;mod 7}\\ e
&= (2b+4c+6d+n) \mathrm{\;mod 7}\end{aligned}\] Here, we see all
divisions as real divisions. Then, $$D$$ and $$M$$ are defined as follows:

if $$d+e\leq 9$$, then $$D=22+d+e$$ and $$M=3$$

if $$d=29$$ and $$e=6$$, then $$D=19$$ and $$M=4$$

if $$d=28$$ and $$e=6$$ and $$a>10$$, then $$D=18$$ and $$M=4$$

else $$D=d+e-9$$ and $$M=4$$.

### Input

A year.

### Output

The day and month in which Easter is
celebrated in the year of the input, each on a separate line.

### Example

**Input:**

`2012`

**Output:**

```
8
4
```