We wensen een uitspraak te kunnen doen of er al dan niet een effect is
van het toedienen van Captopril op de systolische bloeddruk? Beslissen
op basis van gegevens is niet evident. Er is immers onzekerheid of de
bevindingen uit de steekproef generaliseerbaar zijn naar de populatie.
We stellen ons dus de vraag of het schijnbaar gunstig effect
systematisch of toevallig is? Een natuurlijke beslissingsbasis is het
gemiddeld verschil
Dat
Hiervoor hebben statistici zogenaamde toetsen ontwikkeld om met dit soort vragen om te gaan. Deze leveren een ja/nee antwoord op de vraag of een geobserveerde associatie systematisch is (d.w.z. opgaat voor de studiepopulatie) of als er integendeel onvoldoende informatie in de steekproef voorhanden is om te besluiten dat de geobserveerde associatie ook aanwezig is in de volledige studiepopulatie. Tegenwoordig is het haast onmogelijk om een wetenschappelijk onderzoeksartikel te lezen zonder de resultaten van dergelijke toetsen te ontmoeten. Om die reden wensen we in dit hoofdstuk in te gaan op de betekenis van statistische toetsen en hun nomenclatuur.
We weten dat we volgens het falcificatieprincipe van Popper nooit een hypothese kunnen bewijzen op basis van data (zie Sectie 1.1). Daarom zullen we twee hypotheses introduceren: een nulhypothese en een alternatieve hypothese. We zullen dan later a.d.h.v. de toets de nulhypothese trachten te ontkrachten.
We introduceren hypothese testen eerst intuïtief a.d.h.v. het captopril voorbeeld.
Op basis van de steekproef kunnen we niet bewijzen dat er een effect
is van het toedienen van captopril (
We veronderstellen daarom dat er geen effect is van captopril
We noemen dit de nulhypothese
Falsify (“probeer te ontkrachten”) de
Hoe waarschijnlijk is het om een effect waar te nemen dat
minstens zo groot is als wat we in de steekproef in een
willekeurige steekproef hebben gezien als