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Abstract

The turnpike problem, also known as the partial digest problem, is:

Given a multiset of (g) positive numbers AX, does there
exist a set X such that AX is exactly the multiset of all
positive pairwise differences of the elements of X.

The complexity of the problem is not known.

We write the turnpike problem as a 0 — 1 quadratic program. In order to solve
a quadratic program, we relax it to a semidefinite program, which can be solved in
polynomial time. We give three different formulations of the turnpike problem as a
0 — 1 quadratic program.

For the first 0 — 1 quadratic program we introduce a sequence of semidefinite
relaxations, similar to the sequence of semidefinite relaxations proposed by Lovasz
and Schrijver in their seminal paper “Cones of matrices and set-functions and 0 — 1
optimization” (SIAM Journal on Optimization 1, pp 166-190, 1990). Although a
powerful tool, this method has not been used except in their original paper to de-
velop a polynomial time algorithm for finding stable sets in perfect graphs. We give
some theoretical results on these relaxations and show how they can be used to solve
the turnpike problem in polynomial time for some classes of instances. These classes
include the class of instances constructed by Zhang in his paper “An exponential ex-
ample for partial digest mapping algorithm” (Tech Report, Computer Science Dept.,
Penn State University 1993} and the class of instances that have a unique solution and
all the numbers in AX are different and on which Skiena, Smith and Lemke’s back-
tracking procedure, from their paper “Reconstructing sets from interpoint distances”
(Proc. Sizth ACM Symp. Computational Geometry, pp 332 - 339, 1990) backtracks



only a constant number of steps. Previously it was not known how to solve the former
in polynomial time.

We use our theoretical formulations to develop a polynomial time heuristic to solve
general instances of the problem.

We perform extensive numerical testing of our methods. To date we do not have
an instance of the turnpike problem for which our methods do not yield a solution.

The second 0 — 1 quadratic program formulation of the turnpike problem will be
too large for practical purposes. We use association schemes and some other methods
to reduce its size and obtain the third 0 — 1 quadratic program. We establish a
connection between this relaxation and the first relaxation and show its limitations.

iv
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Chapter 1
Introduction

In this section we give basic definitions and background results needed in this thesis.

1.1 The Turnpike Problem

1.1.1 Problem definition

The turnpike problem, also known as the partial digest problem, is:

Given a multiset of (’2') positive numbers A X, does there
exist a set X such that AX is exactly the multiset of all (P)
positive pairwise differences of the elements of X.

If the answer to the above question is positive, we call the multiset AX the dif-
ference set of X and the set X a solution set.

If the answer to the above question is negative, we say that for the multiset AX
there are no solution sets.

The problem first appeared in the 1930s in experiments on X-ray crystallography
[24],(25],[26]. According to Skiena, Smith and Lemke [31] it was also posed in 1977
by Shamos as a computational geometry problem [30].

The word turnpike refers to a toll road and the problem got its name from the
problem of reconstructing the order of cities along the road from their pairwise dis-
tances.
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Another name for the turnpike problem is the partial digest problem, which arises
in molecular biology and in particular in restriction site analysis of DNA, [7]. A DNA
molecule can be regarded as a string on the alphabet of nucleotides {A,C,G,T},
where A represents adenine, C cytosine, G guanine and T thymine. A restriction
enzyme is a chemical that cuts a DNA molecule at places, called restriction sites,
determined by certain sequences of nucleotides. The lengths of the cut fragments can
be measured. The restriction site analysis is the method of using this information to
determine where the restriction sites are on the molecule.

A few types of experiments can be performed. A full or complete digest is an
experiment in which for a given DNA molecule and a restriction enzyme the chem-
ical reaction is allowed to complete. If there is more than one restriction site any
permutation of the obtained fragments is a possible interpretation of the molecule.
To gain additional information about the molecule, more than one complete digest
using different restriction enzymes that cut the molecule at different sites can be per-
formed. For example, if two different enzymes are used, the experiment is called a
double digest.

If there are many identical molecules and the chemical reaction is not allowed to
complete, then all fragments between any two restriction sites are obtained. Such an
experiment is called a partial digest. Therefore, in order to reconstruct the molecule
we have to answer the question that is similar to the turnpike problem.

1.1.2 Known facts and algorithms

Two subsets X, Y of the set of real numbers R are said to be congruentif X =Y —a =
{y~alyeY},forsomeaeR or X =-Y+a={-y+aly€e Y}, forsomea R

It is easy to see that if two sets X and Y are congruent, the multisets AX and
AY are identical. Therefore, given a multiset AX, we can assume that both 0 and
the largest element of AX are in the solution set X. Henceforth we always assume
that 0 € X.

Two noncongruent sets X and Y are hAomeometric if the multisets AX and AY
are identical.
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For a given multiset {a,,as, ... ,a;} we define its generating function by

{
f(z) = Zz"".
i=1

Now, if Q(z) is the generating function for a multiset AX U(~AX) and P(z) the

generating function for a solution set X, and if n is the number of points in X, then
1

Q) +n= P(z:)P(;).

In [28] Rosenblatt and Seymour work over rings of the form

KR =) {au2’:0, € K,ne R},

where K is either Z, R or C, and use factoring to reconstruct X from AX. How-
ever, their main results are not algorithmic, but rather give necessary and sufficient
conditions for two sets to have the same difference set.

In case the multiset AX contains only integers, the polynomial @Q(z) + n can be
factored over the ring of polynomials with integer coefficients in time polynomial in
the largest exponent [17]. By combining this fact with the theoretical results from (28]
Lemke and Werman obtain a reconstruction algorithm that runs in time polynomial
in the largest difference in the multiset AX, [16].

In [31] Skiena, Smith and Lemke propose a backtracking algorithm to solve the
turnpike problem. To visualize their algorithm, we observe that if a given multiset
AX is a difference set of X = {0 < z; < :-- < Z,_}, the elements of AX can be
organized in a pyramid that on one side has the elements of X — {0}, and on the
other side elements of the set (z,-; — X) — {0}. For example, if

AX = {1,2, 3,4,5,6,7,8,10,11,13, 14, 15,17, 18}
and
X ={0,4,10,15,17,18},

the pyramid is



CHAPTER 1. INTRODUCTION 4

18
17 14
15 13 8
10 11 7 3
4 6 5 2 1

In the bottom row of the pyramid we put the differences of two consecutive ele-
ments of X, i.e. the differences of the form z;,; —x;, fori =0,... ,n—1. The second
row from the bottom contains differences of the form z;,0 — z;, fori =0,... ,n -2,
and in general, the k-th row from the bottom contains the differences of the elements
of X of the form z;., — 2;, fori =0,... ,n -k - 1.

Notice also that that the numbers decrease going down along any diagonal parallel
to the sides of the pyramid.

The backtracking procedure of Skiena, Smith and Lemke positions the numbers of
AX in the pyramid. Suppose that we positioned { numbers on the top left side of the
pyramid and k¥ numbers on the top right side of the pyramid. Then all the numbers
that are in the shaded region of the pyramid in Figure 1.1 are also determined.

Figure 1.1: The shape of the pyramid at each step of execution of Skiena's et al.
backtracking procedure.

Because of the above observations, for the largest remaining unpositioned distance,
there are only two possible locations: either the topmost unfilled space on the left
side of the pyramid, or the topmost unfilled space on the right side of the pyramid.
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Therefore, the procedure always positions the largest remaining distance on the
topmost unfilled space on the left side of the pyramid and tries to fill in all the numbers
in the regions that have the shape of the shaded regions shown in Figure 1.1. If this
is not possible, the procedure backtracks. The backtracking step consists of putting
the largest remaining distance on the topmost unfilled space on the right side of the
pyramid, and if this leads to an inconsistency, the procedure backtracks one level up.

The pseudocode for the backtracking procedure as given by Zhang [35] is shown
in Figure 1.2

Skiena, Smith and Lemke [31] proved that in general this procedure runs in
O(2"nlogn)-time, although instances for which it takes more than O(n?logn)-time
are rare. A class of examples for which this algorithm takes exponential time is given
by Zhang [35).

Skiena and Sundaram [32] adapt this backtracking algorithm to work with data
that contains experimental errors. The experimental errors they consider are “noisy”
interpoint distances and missing fragments lengths.

Finally, we mention some results on the number of homeometric sets. Let H(n)
be the maximum possible number of mutually noncongruent and homeometric sets
on n elements. In [31] Skiena, Smith and Lemke prove that

1 1
§no.3107144 < Hn) < _2_nl.2334827‘

where the lower bound inequality holds for an infinite number of values of n and the
upper bound inequality holds for all values of n.

We say that an instance AX of the turnpike problem has & solutions, if & is the
number of homeometric sets that have AX as their difference set. It can also be
shown that for a given multiset AX, the number of solution sets is 0 or a power of 2,
[31].

It is important to say that for almost all instances AX, the solution set X, if
it exists, is unique, and therefore partial digest is a good method for restriction site
analysis. However, the importance of the method is diminishing with the reduction
in cost of DNA sequencing.
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set X
int width

procedure PartialDigest( List L)
width=DeleteMax(L);
X = {0, width};
Place(L);

end

procedure Place(List L)
if L = then
output solution X;
exit;
endif
y=DeleteMax(L);
if A({y} U X) C L then
X=Xu{yh
Place(L — A({y} U X)); // place on the left
X=X-{v}
endif
if A({width — y} U X) C L then
X = X U {width — y};
Place(L — A({width — y} U X)); // place on the right
X = X - {width — y};
endif
end

Figure 1.2: Pseudocode for Skiena’s et al. backtracking procedure.
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It is not known if the turnpike problem is solvable in time polynomial in the
number of elements in the given multiset AX.

1.2 Semidefinite programming

Semidefinite programming is a special case of convex programming and a special case
of linear programming over cones or cone-LP. A combinatorial optimization problem
was first written in the form of a semidefinite program in the work by Lovasz 18] on
the Shannon capacity of a graph.

In the seminal paper [19] Lovdsz and Schrijver show how to use semidefinite pro-
gramming to find maximum stable sets in perfect graphs.

Lately, a great deal of interest in the application of semidefinite programming in
combinatorial optimization has arisen due to the paper by Goemans and Williamson
[10] in which they give a 0.878-approximation algorithm for MAX CUT and MAX
2SAT and a 0.7554-approximation algorithm for MAXSAT.

Semidefinite programs can be solved within an error € > 0 in polynomial time using
the ellipsoid algorithm, standard polynomial time algorithms for convex programming
or interior point methods.

1.2.1 Definition and Basic Facts

A convex optimization problem in which the feasible region consists of real symmet-
ric positive-semidefinite matrices X whose entries satisfy linear constraints, and the
objective function is a linear function of the entries of X, is called a semidefinite

program. A semidefinite program can be written in the following way:

MinCe X
Aio X =¥, fori=1,...,m (SDP)
X2>0
where C, A;, i = 1,...,m and X are n x n matrices, X > 0 indicates that X

is a positive semidefinite matrix and for two matrices U and V, U e V denotes their
Hadamard product, i.e. UeV =3, .U;Vj;.
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It is convenient to assume that the matrices C and A; in (SDP) are symmetric. If,
for example, C is not symmetric, we can replace C by 1(C+C7T) since CTeX = CeX
for symmetric matrices X.

Now we can define the dual of the problem (SDP):

Max b’y

C-Zm:yiAi > 0.

i=}

(Dual)

The duality theory for semidefinite programming can be viewed as a special case
of the cone duality for the general convex programs. There are many similarities
between the duality theory for semidefinite programming and the duality theory for
linear programming. Under some additional assumptions, one can prove a version of
Farkas’ Lemma, the strong duality theorem and the complementary slackness theorem
for semidefinite programs.

1.2.2 Methods for Solving SDP

Various methods for solving linear programs and general convex programs can be
applied to solve semidefinite programs. For example the ellipsoid method and the
interior point methods can be used to solve a semidefinite program within an additive
constant € > 0. Grotschel, Lovisz and Schrijver [12] proved that there exists a
polynomial time algorithm for solving a positive semidefinite program. They obtained
this result as a direct consequence of the general results on applications of the ellipsoid
algorithm to convex programming.

In practice, the ellipsoid method is slow. In [1] Alizadeh has adapted the interior
point method of Ye [34] to semidefinite programming. He also claims that many other
interior point methods for linear programming can be extended to polynomial time
methods for semidefinite programming in the same way.
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1.3 Applications to Combinatorial Optimization

So far semidefinite programming has been used in combinatorial optimization to prove
that certain optimization problems can be solved in polynomial time (see [12], [13],
[19]) and to obtain better approximation algorithms for NP-hard problems (see [8],
9], [10], (18], [20], [22]).

The paper by Lovdsz [18] was a pioneering work in the application of positive-
semidefinite programming to combinatorial optimization. It described the ideas which
were later generalized and used to solve other problems. In this paper Lovasz defined
the now famous Lovdsz number »(G) of a graph G. He uses v(G) to bound the
Shannon Capacity of G. Later he proved that »(G) is actually sandwiched between
the chromatic number of the complement of G and independence number of G, i.e.
a(G) < ¥(G) < x(G).

Solutions of many problems in combinatorial optimization can be written as 0 — 1
vectors, which are characteristic vectors of appropriate sets. The convex hull C of
those vectors can be described as the set of solutions of a system of linear inequalities.
The problem is that the convex hull C might have exponentially many facets and can
only be described by a linear system of exponential size. So, research has been centered
on trying to find an approximation to C, i.e. a convex set that would be bigger than
C but over which we can optimize in polynomial time. One way, for example, would
be to take a polynomial sized subset of the set of linear inequalities that describe C.
In [19] Lovasz and Schrijver give a general technique to construct higher dimensional
polyhedra (or more generally, convex sets) whose projections approximate the convex
hull C of 0 — 1 vectors and over which we can optimize in polynomial time. Here we
sketch their construction.

First, we need a couple definitions:

In order to have a homogeneous system of inequalities, the n-dimensional space is
embedded in R**! as the hyperplane z; = 1.

For a convex cone K in R**! let K denote the cone spanned by all 0 — 1 vectors
in K.
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Let K* be the polar cone of a cone K, i.e.
K*'={ueR* :uTz>0forallz € K}.

Let @ denote the cone spanned by all 0 — 1 vectors z € R**! with 7, = 1.

Furthermore, let e; denote the i-th unit vector in R**! and let f; = e;—ey. It is easy
to see that the dual cone Q* is spanned by the set of vectors e; and f;, i = 0,... ,n.

For any matrix Y, we denote the vector composed of diagonal entries of Y by
diag(Y).

For a convex cone K C R"*!, the higher dimensional cone whose projection would
approximate K consists of the symmetric (n + 1) x (n + 1) matrices Y that include
zz', where £ € K° and z, = 1. The diagonal of Y is an element of the cone K.
The idea is that the constraints on the elements of matrices Y can induce cuts of the
cone K, so it approximates the cone K° better. This motivates the definitions of the
cones M (K, K;) and M, (K, K;) below. The reason why two cones K, and K, are
considered is technical. Only two special cases are considered: K, = K; = K and
K,=K and K, =Q.

Now we define the cones M (K, K,) and M, (K, K3).

Let K, K, C Q be convex cones. Let M(K,, K;) C R*+Ux(n+l) he the cone
which consists of all matrices Y which satisfy the following conditions:

(i) Y is symmetric;
(ii) diag(Y) =VYey, i.e. yii =y forall1 <i < n;
(iii) uTYv > 0 holds for every u € K} and v € Kj.
Note that (iii) can be rewritten as
(iii') YK; C K;.

We also consider the cone M, (K7, K5} which consists of matrices Y which satisfy
(i)-(iii) and the additional constraint:

(iv) Y is positive semidefinite.
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Since K, and K, are contained in @, Q* is contained in K} and K3, and every
matrix Y contained in M (K, K,), and therefore in M, (K}, K,), satisfies

yij 20,
Yij < ¥ii = Yoi < Yoo, and (1.1)
Yij 2 Yii +Yi5 — Yoo

We can project cones M (K, K,) and M, (K, K3) to (n + 1)-dimensional space
by defining cones

N(K[,KQ) = {Yeo :Ye A/I(Kl,Kz)} = {dlag(Y) :Ye AJ(K[,KQ)}
and
Ny (K, K2) = {Yeo : Y € My (Ko, Ka)} = {diag(Y) : Y € My (Ky, K2}

It is easy to see that if K; and K, are polyhedral cones, then M(K}, K3) and
N(K\, K;) are polyhedral cones as well, [19]. The cones M, (K}, K;) and N (K, K?)
are also convex but generally not polyhedral.

Note that if x is a 0~ 1 vector in K N K, then the matrix xxT satisfies conditions
(1)-(iv). Moreover, the following lemma is proved in [19].

Lemma 1.1 (Kl q K2)0 - N+(K1,K2) - N(Kl,Kg) " K1 N Kg.

In general, N(K,, K2) is much smaller than K, N K,. We only consider two
special cases K| = K, = K and K, = K, K, = Q. Although, N(K,K) C N(K,Q)
we consider N(K, Q) because it behaves better algorithmically. Because of (iii’) we
can notice that a matrix Y € M(K, @) has the property

(iii") Every column of Y is in K and the difference of the first column and any other
columns is in K.

To abbreviate the notation we write N(K) = N(K,Q), M(K) = M(K,Q),
N(K) = N.(K, Q) and M, (K) = M.(K, Q).

An element of the cone N(K), and therefore also N, (K}, can be represented as a
sum of two elements of cone K that on a position 7 either have 0 or an entry that is
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equal to the entry on the position 0. More precisely, if H; = {x € R**!|z; = 0} and
G; = {z € R""!|z; = 1,}, Lovisz and Schrijver [19] prove the following lemma

Lemma 1.2 For every convez cone K C Q and everyi € {1,... ,n},
N(K) C (KN H;) +(KNG;).

We can get better approximations of the cone K° by iterating the operator N and
N,,i.e. we can define N°(K) = K, N{(K) = N(N*"!(K)) and similarly N(K) = K,
N!(K) = N.(N{Y(K)). Lovasz and Schrijver [19] prove the following theorem.

Theorem 1.3 N*(K) = K°.

The importance of the above theory lies in the fact that we can optimize linear
functions over N(K) and N, (K) in polynomial time. The following theorem was also
proved in (19]:

Theorem 1.4 Suppose that we have a weak separation oracle for K. Then the weak
separation problem for N(K) and N.(K) can be solved in polynomial time.

1.3.1 Stable Sets in Graphs

Lovasz and Schrijver [19] apply their results to obtain polynomial time algorithms for
finding maximum stable sets in certain classes of graphs.

A stable set in a graph G = (V| E) is a subset of the set of vertices V', such that
no two of them are adjacent.

A mazimum stable set in a graph G is a stable set whose cardinality is maximal
over all stable sets of the graph.

The problem of finding a maximum stable set in a general graph is NP-hard.

In order to apply the results of the previous section, we have to define the following
convex sets.

Let G = (V, F) be a graph with vertices V = {1,2,...,n}. Foreach X C V,
let x* € {0,1}V denote its characteristic vector, i.e. the vector that for every vertex
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i€{1,...,n} of G has 1 as its i-th coordinate if i € X, and 0 otherwise. The stable
set polytope of G is defined as

STAB(G) = conv{x*|X is a stable set for G},

i.e. the convex hull of characteristic vectors of all stable sets of G.
Let

ST(G) = {(1,z)|z € STAB(G)}.

i.e. the set of vectors obtained by adding prefix 1 to each vector of STAB(G).
Also, define the cone FR(G) C R"*!, such that for any vector (zo,Zy,... ,Zn) €
FR(G) the nonnegativity constraints

zi2>20forevery 0<i<n
and edge constraints
T; + z; < 1z for each edge ij of G

are valid.

For any matrix Y = (y;;) € M(FR(G)), the following is valid:

For any edge ij of G, y;; = 0 because of (jii’). The constraint z; + x; < zo must
be satisfied by Ye;, and therefore ¥:; + y;i < Yoi = yii, which implies y;; = 0.

Also, Ye, must satisfy the same inequality r; + z; < Zo, and therefore

Vi + Yik < Y-
Moreover, Yey — Ye, must satisfy the same inequality, so
(vii — yix) + (Y55 — Yix) < Yoo — Yeks
i.e.
Yik + Yjk 2 Vi + Yii + Yk — Yoo-

Note that the intersection of the cone FR%(G) with the hyperplane 7, = 1 is
equal to ST(G). The cone FR(G) is described by the number of inequalities that is



CHAPTER 1. INTRODUCTION 14

polynomial in n, the number of vertices in G. We can therefore optimize any linear
function over FR%(G) in polynomial time. Unfortunately, FR(G) N Hy = ST(G),
where Hj is the hyperplane zo = 1, holds only for bipartite graphs, [13].

Using the previous section, we look at the cones N*(FR(G)) and Ni(FR(G)) for
0 < i < n. Lovdsz and Schrijver [19] prove the following theorem:

Theorem 1.5 The mazimum stable set problem is polynomial time solvable for graphs
G for which there ezist a constant ¢ such that ST(G) = N5 (FR(G)).

For perfect graphs we have ST(G) = N,(FR(G)) N Hy, which enables us to con-
struct the only known algorithm for finding maximum stable set in these graphs.

In fact, Lovisz and Schrijver [19] prove that for perfect graphs ST(G) is determined
by diagonal elements of the matrices that satisfy only a subset of constraints in the
definition of M, (FR(G)). For a graph G we define the cone Mry that consist of
(VU {0}) x (VU {0}) matrices that satisfy the following constraints:

1. Y is a symmetric positive semidefinite matrix;
2. Yii = Yo, forevery i € V;

3. ui; = 0, for every edge ij € E(G).

Now we can prove the following lemma:

Lemma 1.6 For a perfect graph G,
ST(G) = {Yeo|lY € Mry,(Y)o =1}
No class of graphs for which ST(G) = N{(FR(G)), for some constant ¢ > 0 is

known.

1.3.2 Quadratic Programs

In this subsection, we show how to relax a general 0 — 1 quadratic program to a

semidefinite program. We follow the exposition of Helmberg et al. [14], although
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similar results can be found in earlier papers by Balas et al. [5]. The resuits of this
subsection follow very closely the results from the previous subsection, but are more
general. An integer 0~ 1 program can be written as a quadratic 0—1 program because
for the 0 — 1 variables z; of an integer program we have that z? = z;.

A quadratic 0 — 1 program, is an optimization problem defined in the following

way:
Max z'Cz
Az <b, fori=1,... .,k (QP)
z € {0,1},
where r is an n-dimensional vector, C and A;, i = 1,... , k, are real symmetric n x n
matrices, and b;, ¢ = 1,... ,k are real numbers. Note that, since the entries z; of the

vector z are either 0 or 1, i.e. z? = z;, the linear constraints on the entries of z can
be written using a diagonal matrix A.

Solving a quadratic 0 — 1 program is NP-hard. One way of relaxing a general
quadratic 0 — 1 program is to write it as a semidefinite program. The key idea is to
use a n X n symmetric matrix Y to represent the pairwise product of entries of the
vector z, so that

yi; = xig;, for i,j € {1,... ,n}
wi=zr=zforie{l,...,n}

Inequalities similar to the inequalities (1.1} can be obtained by exploiting the 0—1
properties of the variables z;. We have

IiT; 2 0,
.'B,'(l - Ij) 2 0: (1‘2)
(1 - I.)(l - ‘r..‘f) 2 01
and therefore
¥i; 20,
¥i < ¥ij, and (1.3)
¥ij 2 Y + 955 — 1.
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The matrix Y is of the form zz” and is therefore positive semidefinite. Also
diag(Y’) = z. Furthermore, the matrix

(z+v)(z+0)7 =227 + 207 +vzT + 0T
is positive semidefinite for any vector v € R". Hence, Y can be constrained to satisfy
Y +diag(Y)oT + vdiag(Y)? + w0 >0, (1.4)

for any vector v € R*. The condition (1.4) can be rewritten as
Y + (diag(Y) + v)(diag(Y) + v)T - diag(Y)diag(Y)" > 0. (1.5)

The above constraint is in particular valid when v = —diag(Y’), so the intersection
over all vectors v € R* of the constraints (1.5) is characterized by

Y - diag(Y)diag(Y)” > 0. (1.6)
The constraint (1.6) is not a linear constraint on the entries of Y, but it can be
rewritten using the Schur complement as

1 diag(Y)T
diag(Y) Y

2 0.

Now we can relax (QP) to a semidefinite program. For a n x n matrix U, let U’
denote the (n + 1) x (n + 1) matrix, indexed by 0,1,... ,n, whose entries of the 0-th
row and column are equal to 0, and

U,; =Uy, fori,je{1,...,n}.
The relaxation of (QP) as a semidefinite program is given by

Max C' @Y
AleY <, fori=1,... ,k
Yoo = 1
Yoi = yii fori € {1,... ,n} (SDP)
yi; 20fori,je{1,...,n}
vi 2y fori,j € {1,... ,n}
Yoo + i > i+ for i,y € {1,... ,n}.
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Note that for any entry y;; of Y, from the positive semidefinitness of Y, we have
that y;; < 1. To see that, we can first look at the submatrix of Y indexed by the Oth
row and any other row. Because of the constraints yp; = y;;, this matrix has the form

Iy
Yii Y ’

from which directly follows that y;; < 1, fori € {1,...,n}.

Also any submatrix indexed by some ¢,j € {1,... ,n} has the form

[ Yii Uij ]
Yij Yii ’
and since it is positive semidefinite yfj <wiy;; £ 1
There are other constraints that a 0 — 1 matrix feasible for (SDP) satisfies and

that can be added into the definition of (SDP). For example we have the triangle
inequalities:

Yik + Uik < Yk + Yij

and
Yie + Vi + Yij 2 Yii + Yi; + Yk — Yoo,

fori,j,ke{l,...,n}.
These inequalities are sometimes used to improve the approximation, although
they contribute substantially to the computing time.

1.4 Thesis Overview

In this section we give a brief overview of the thesis.

The main theoretical results of the thesis are given in Chapter 2. In that chapter
we write the turnpike problem as a 0 — 1 quadratic program.

For the 0—1 quadratic program we introduce a sequence of semidefinite relaxations,
similar to the sequence of semidefinite relaxations proposed by Lovdsz and Schrijver
[19].
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We show that there exists a polynomial time algorithm for solving the turnpike
problem on classes of instances for which there exist a constant c, such that the
instances are solved by the c-th semidefinite relaxation in the sequence.

In Chapter 3 we give classes of instances that are solved by the first relaxation in
the sequence, (5)). In fact most of the instances are solved by a relaxation that is
weaker then (5)).

We show that if for a given set X, the instance AX can be solved by the relaxation
(S1), than the instance AY, where AY is the difference set of

Y=XU(X+a)U...U(X +(m—-1)a),

and a is greater than the maximum element of X, can also be solved by the relaxation
(S1).

Also, if the instance AX can be solved by the relaxation (S;) and has the property
that every solution contains a point that is not in any other solution, the instance
AY, where AY is the difference set of

Y:XU(‘\,+G])U---U(‘Y+0I¢)$

where

a 23dM+1
a; >3, +dy+1forie{2,...,k},

can be solved by the relaxation (S5;). Here dps denotes the largest element of AX.
We also prove that the relaxation (S;) solves the instances constructed by Zhang,
[35]. Previously it was not known how to solve these instances in polynomial time.
In Chapter 3 we also consider the instances AX that have unique solutions and
all the differences in AX are different. We show that if during the execution of the
Skiena's et al. backtracking procedure, k is the biggest number of steps that the
procedure has to backtrack, then the (k + 1)-st relaxation in the sequence described
in Chapter 2 solves the instance AX. That means that if for a class of instances £ is
a constant, the relaxation (Sy;) has polynomial size and the turnpike problem can

be solved in polynomial time for the instances of the class.
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In Chapter 4 we show how to develop heuristics for solving the turnpike problem,
based on the theoretical results of Chapter 2.

In the first section we describe a heuristic that is based on the relaxation (S;).
It also uses cuts from the second relaxation in the sequence from Chapter 2 and a
rounding technique.

In the second section we show how the relaxation (S;) can be used to reduce the
number of backtracking steps of the backtracking procedure of Skiena et al.

In Chapter 5 we enumerate the instances of the turnpike problem for which their
relaxations (S;) were implemented. The computational resuits show that most of the
examined instances are solved by their relaxation (S,), and the ones that are not have
a feasible point of the form

k
Y= z XizizT, (1.7)
i=l

where \; > 0 and 2; are 0 — 1 vectors for i € {1,...,k}, but not necessarily charac-
teristic vectors of the solutions of AX.

In particular we give some instances that are not solvable by their relaxation (S,)
and show how to use them to construct classes of instances that are not solvable by
the relaxation (S;).

We do not have an instance of the turnpike problem which is not solved by the
second relaxation (S;) of the sequence described in Chapter 2.

In Chapter 6 we present two relaxations of the turnpike problem proposed by A.
Schrijver {29]. These relaxations are interesting from the theoretical point of view.

First, the turnpike problem is formulated as a 0 — 1 quadratic program, whose
semidefinite relaxation is too large for practical purposes. We use association schemes
and some other methods, to reduce the size of the 0 — 1 quadratic program to obtain a
semidefinite relaxation which is smaller and practically possible to solve using today's
computers.

Finally, we present an instance AX such that AX is not a difference set, but its
relaxation is feasible.



Chapter 2

Theoretical Results

2.1 Introduction

In this chapter we write the turnpike problem as a 0—1 quadratic program. The back-
tracking algorithm described in Chapter 1 takes into account only a certain number
of differences at any given time during the execution, whereas a quadratic program
treats all the differences simultaneously, which is naturally more powerful.

For the 0—1 quadratic program we introduce a sequence of semidefinite relaxations,
similar to the sequence of semidefinite relaxations proposed by Lovasz and Schrijver
[19]. Although a powerful tool, this method has not been used except in their original
paper to develop a polynomial time algorithm for finding stable sets in perfect graphs
as outlined in Chapter 1. Here we give some theoretical results on these relaxations.

2.2 Main results
Throughout this chapter we assume that AX contains (;) elements, and that
AX' = {d1 <d2 < - <dM}U{d0},

where dy = 0, is the set that consists of all different elements of the multiset AX and
0. Also, for i > 0, v(d;) denotes the multiplicity of d; in AX, i.e. the number of times
the number d; appears in AX.

20
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We only consider solution sets X containing 0, so we have that X C AX'. Then
we can assign a 0 — 1 variable z,, to each element d; of AX’. For a fixed solution set
X, z4, = 1if and only if d; is in X. Note that 4 = 1, because we assume that 0 € X.

Consider the set @ C {0,1}M*!, determined by the following system:

Z T4, T4; = U(dk), for k € {1,. . ,AII},
,j=0,... M
dj —d; = di

S aen @

i=0,... .M
zq; € {0,1} fori € {0,... ,M}.

Then the problem (P) is equivalent to the non-emptiness of the set @ and we have:

Proposition 2.1 A multiset AX is a difference set if and only if the set Q is non-
empty.

Proof: If the given AX is the difference set of a set X, we can set the variables g,
to 1 for all d; € X, and to 0 for all d; ¢ X. If there are (3) elements in AX, there
are n elements in X and therefore

Z L4, = N.

i=0,...,M

For each difference dy € AX’, k > 0, there exist exactly v(dy) pairs {d;,d;) in
X x X, such that d; — d; = dy, and therefore also x424, = 1, and therefore

Z T4, Tq; = v(di).
ii=0,....M
dj - di = dy

Conversely, if Q is non-empty, for a point (24, Z4,, ... ,Zd4,,) € @ We can set

X={d,':1‘d‘.=1}.
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Then the set X contains n elements. For every dp € AX’, k > 0, in the equation

Z a:d‘.zdj = ‘U(dk).

i,7=0,... M
dj —di = d;

there are exactly v(dx) summands z4z,, equal to 1, which means that d; and d; are
in X and that there are exactly v(dy) pairs (d;,d;} in X x X, such that d; — d; = d;.
|

Problem (Q) describes a feasible region of a quadratic 0 — 1 program. We can not
test for feasibility of a quadratic 0 — 1 program in polynomial time (unless “P=NP”).
Our approach is to relax (Q) to a program which we can test for feasibility in poly-
nomial time.

One way to relax (Q) is to assume that each variable z4, is a vector, as described
in Chapter 1. We get a feasible region of a semidefinite program by introducing new
variables z4, 4, for the dot product z4q4; of two vector variables r4, and z4,. The
variables z4, 4, can be organized in a (M + 1) x (M + 1) symmetric matrix X, whose
rows and columns are indexed by the elements of AX’, i.e. 0,d,,...,ds. So, on the
position (d;, d;} of X, we have z4,4;.

Since we assumed that zq = 1, for the 0 — 1 variables z; we have 24z; = z;z; and
therefore we set the constraint zo4, = 24, 4,, for i € {1,..., M} to hold for X.

Also, if d; and ¢; can not simultaneously be in any solution, z4,z4, = 0 and in X,
we can constrain z4, 4, = 0.

This leads to the convex region R, described by the following constraints:

Z -Td(,d,- = v(dk) for k = 1, v ,1‘/!

4$i=0,... M
d; - di =d;

z T4, d; = nZTog, forj=0,... . M
i=0,...,M (Ri)

Iog = 11
Tod, =T, g, fori=1,..., M,

z4.4; =0, if d; and d; can not both be in a solution,
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'rdi,dj 2 01 for 1,]' = 1, e ,M,
X, positive semidefinite.

The constraints of the type z4, 4, = 0, if di and d; can not both be in a solution,
are called the pyramid constraints because the numbers in the pyramid constructed
from the difference set of the set {0, d;, d;, dys} must form a submultiset of AX.

Note that for any point of R,

Z I, d, =N,

i=0,..., M

because

Z Ta, b = Z T, do =

i=0,... M i=0,...,M
= nTop = N.

We now prove that (R,) is a relaxation of (Q) in the sense that the 0 — 1 solutions
of (R;) are related to the elements of Q. The elements of @ are (M + 1)-tuples and
the elements of R, are (M +1) x (M + 1) matrices. The idea is that the set of vectors
determined by 0 — 1 diagonals of matrices in R, is equal to . More precisely, let K
denote the projection cone determined by the diagonal elements of the matrices X,

feasible for (R, ), and let K® denote the cone spanned by all 0 — 1 vectors of K.
Then we can prove

Proposition 2.2 The convez hull of Q is equal to K°.

Proof: We can arrange the 0—1 values z,4, of a point in € into a vector y of size M +1,
indexed by the differences d; of AX’. Similarly as in the proof of Proposition 2.1 we
can see that the matrix yy7 satisfies all the constraints that define R,, and therefore
y € KO

Conversely, if y € K°, then the matrix yy7 € R, and it is easy to see that y
satisfies all the constraints in the definition of Q. [ ]

The convex region R, is a feasible region of a semidefinite program and therefore
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we can optimize over R, in polynomial time using standard algorithms for solving
semidefinite programs.

In order to make the exposition clear, we homogenize R), to obtain a convex cone
S1, in the following way:

Z T4, d; = v(dg)Too, fork=1,... . M

,j=0,... M
dj —~di =dy

Z T4 4, = NTog; for j=0,..., M
1=0,... M

: (1)
Zod; = Td; d;» fori= 1,... ,A/I,

z4,4; =0, if d; and d; can not both be in a solution,
T4, 20, fori,j=1,... M,
X positive semidefinite.
Note that we can obtain R, by intersecting the cone S, with the hyperplane
Zoo = 1. The computer implementation of the relaxation (R,) shows that the instan-

ces for which that relaxation does not give the right answer to the turnpike problem
(P) are rare and some classes are given in Chapter 5.

Another way of relaxing (Q) to a semidefinite program is to look at the vector =
indexed by the pairs of elements of AX": (0,0) and (d;,d;), for ¢,5 € {0,...,M},
i<j.

Again we can look at the matrix X, = rz7. The diagonal elements of this matrix
are

Zoo,00

and

Td;d; did;» fori,j € {0, ,M},i < J.



CHAPTER 2. THEORETICAL RESULTS 25

The off-diagonal elements of X, are
Toodid; for i, € {0,... ,M},i< ]
and
Tad; dpdyy fOr 3,5, k,0€{0,... M}, i<j k<l

The matrix X, satisfies the following constraints:

foreverya€ {1,...,M}and k,l € {0,... ,M}:

Z Tdd; dydy — 'U(dn)xﬂo.dkdn
5,j=0,...,.M
dj—di=ds

for every j,k,l€ {0,... ,M}:
Z xd.'dj,d;,d; = nxﬂdj Wedy s
i=0,... M

the pyramid constraints:

T4,d; dpd; = 0, if dj, dj, d, d; can not simultaneously

(S2)
all occur in a solution,

and the mixing conditions for ¢,j,k,{ € {0,... M}:

Too,d,d; = Tdid; ;i d;»
Tod; 0d; = Tdid; d;djs
Z0dy did; = Tod; did; 1
Tod, did; = Tod; did
Tody did; = Tdpd; dyd;»
20d,,did; = Tdjdi,d;d>
Tod, did; = Tdid;dide>

Iﬂd{,djdk = IMd{,djdkr
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zd.‘dj dedy = zd.‘d),,djd( ’

Tdidj ddy = Tdidy,djdy-

Taidj dpdy 2 0,

X, positive semidefinite.

Note that in the above definition of S,, in order to simplify the notation, we did
not always specify that for a variable 44, 4,4, di < d; and di < d;. Because of the
mixing conditions, all variables indexed by the elements of the set {d;, d;, d,d;} have
the same value, so we can index a variable by the set {d;,d;, dx,d}.

The mixing constraints arise from the fact that an element 744, 4,4, of a matrix
X2 in > can be regarded as a product of four indicator 0 — 1 variables z4;, z4;, Zq4,
and z,4,. Also we know that zy = z4,, = 1.

The pyramid constraints got their name because for any {d;,d;,di,d;} C AX'
we can calculate the difference set of the set {d;,d;,d,d;,0,ds} and organize the
differences in the pyramid as described in Chapter 1. The entry T44, 4,q, is equal to
0 if the elements of the pyramid are not a subset of AX.

A matrix X, feasible for (S;) has many interesting properties, one of the most
interesting being that it contains matrices feasible for (S,) that have some additional
properties.

Let Zﬁidj be the matrix whose elements are the elements of the row of X; whose
diagonal element is 24,4, 4,4; Such that for d,,d, € AX'

(Zg"dj )dcdo = (X2)dg‘dj,0d¢y

and

(Z3a,)dats = (X2)did dady

The matrices Zi_d’_ are (M +1) x (M +1) matrices and we prove that they satisfy
all the equality copstraints in (S)).

We also prove that the matrices ZZ,. that arise from the rows of X, indexed by the
pair of differences (0, d;) are positive-semidefinite for any ¢ € {0,... , M}. We denote
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these matrices by
X:=2%.
The matrix Z% is of special interest and is denoted by X?. So,
Xi=23,.

If X; is a matrix in S; N Hy, where H is the hyperplane zgog = 1, then X2 is
an element of S) N H), where H, is the hyperplane zo9 = 1. The matrix X? has
the property that for any i € {1,...,M — 1}, it can be represented as a convex
combination of two matrices that have 1 on the diagonal position indexed by the
difference 0, and 0 or 1 on the diagonal position indexed by d;. In order to see this,
first we prove

Proposition 2.3 The matrices ZZ.-d,- satisfy all the equality constraints in (S;).

Proof: Note that the equality constraints of (S,) are a subset of the equality con-
straints of (S,). For example, the constraint

Z: Tdid;,dpdy = ”(du)zm.dkdc
di—d;=d,
holds for any choice of di and d, so in particular when d; = d; = 0, we have
Y a0 = v(da)To0.00-
dj—di=d,
More precisely, we have:

Y @aw= Y, Tadad =

a,b=0,... M a,bh=0,...,M
dy —da = di dy —da =dy

= v(dk)Td,4;,00

= v(de)(Z54,)00 for k € {1.... , M}

and
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Z (Z4a,)dats = Z Tdid; dady =

a=0,... , M a=0,..., M
= NTdd; 0dy, =
=n(Z34,)oq for b€ {0,..., M}

and
(Zi'dj)o‘fa = Td;d; 0d; = (Zi-dj)doda’

and

(Zidj )aud, = 0, if di and d; can not both be in a solution,

because of the pyramid constraints. The above calculations prove the claim of the
proposition. a

In the next proposition we prove that X is positive-semidefinite for any ¢ €
{0,..., M} and therefore, because of Proposition 2.3, feasible for (S,).
The next proposition also proves that the matrix

Xt-x3
is feasible for (S,) for i € {0,... , M}.
Proposition 2.4 For anyi€ {0,...,M}:
1. The matriz X3, is feasible for (S).
2. The matriz X} — X3, is feasible for (S,).
3. Xt=X:+(X2-X}).
Proof: Since X is a positive-semidefinite matrix, there exists a matrix V, such that

X, =VTv.
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For any two differences d,,d, € AX', d, < d), let vq,4, be the column vector of V
indexed by the pair of differences d,, d;.

For a fixed i € {0,..., M}, let V4, be the matrix whose columns are the vectors
vg,q; for j € {0,..., M}. Then

X =Vvy.
because

(Xi.)d,,,d, = (X2)Od.'.dkdn

and

(Vi Vaddod, = Vaas Ve = (X2)ods duds-

Therefore, X}i is positive-semidefinite and satisfies all the equality constraints
from (S,) because of Proposition 2.3, so we can conclude that X7 isin .
To see that X7 — X3 is in S, let Wy, be the matrix whose columns are the vectors

vo,,j — Ud,d, fOl‘j = 0, ey M. Then

(WaWa)dya, = (Vod, — Vaia, ) (vod, = Vaya) =

= Vod, Vod, — Vd;d, Vod, — Vod, Vd;d;, + Vd;dy Vdid, =

= (Xo)adaar ~ (X2)aidaide ~ (Xo)aiay i + (X2)didy didy =
= (X2)duti ety ~ (X2)didria, =
= (XD)dedy — (X3 )ars

because of the definition of X7, X7 and the mixing constraints in (S;).
Therefore,

WIW, =X? - X3.

The matrix X7 — X3 is positive-semidefinite and satisfies all the equality con-
straints in (S)) because these constraints are homogeneous and both matrices X? and
X}, satisfy them.
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The third part of the proposition follows directly from the first two. "

The third part of Proposition 2.4 is important because of the following properties
of the matrices X?, X2 and X? — X3:

The diagonal entry of X2 indexed by the difference d; is equal to the diagonal
entry indexed by the difference 0, i.e.

(X3)aa; = (X3 oo,

because
(X2)a, 4 = (X2)dige 00 = (X2)oo0ds = (X3, )oo-
and the diagonal entry of (X7 — X7 ) indexed by the difference d; is 0, i.e.
(X} - X3 )aas =0,
because

(X2 - X3 )dia, = (X2)oo0a; — (X2)aia;,00; = 0.

So, the third part of Proposition 2.4 tells us that for any ¢ € {1,... ,M — 1}, the
matrix X7 that is a submatrix of a matrix X, feasible for (S,) can be represented as
a sum of two matrices such that one of them has the diagonal entry indexed by the
difference d; equal to the diagonal entry indexed by 0, and the other matrix has the
diagonal entry indexed by d; equal to 0.

Moreover, if X2 € S;N H), where H, is the hyperplane zo9 = 1 and (X3)oq, 04, = @
we have

X2 = (= X3) + (1 - (== (X} - X3).

so X? is represented as a convex combination of two matrices that have 1 on the
diagonal entry indexed by the difference 0, and 0 or 1 on the diagonal entry indexed
by the difference d;.

This additional property of the matrices X? that arise from the matrices feasible
for (S;) induces a cut on the cone K determined by the diagonal elements of the
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matrices feasible for (S)). This is because the matrix X7 has the property that for
eachi=1,..., M, the row indexed by the difference d; is in the projection cone K,
and the difference of the zero-th row of X7 and the row indexed by d; is in K. The
row of X? indexed by d; is just the diagonal of X, and the difference of the zero-th
row of X} and the row indexed by d; is the diagonal of X} - X3.

The cone determined by the diagonal elements of the matrices X? that arise from
feasible matrices for the relaxation (S;), denoted K, is similar to the cone N, (K)
introduced by Lovasz and Schrijver in [19] in the sense that every element of K,N Hy,
where Hy is the hyperplane zy = 1, can be represented as a convex combination of
two elements of K that have a 0 or 1 on a position indexed by the difference d;, for
any i € {1,...,M —1}. This result is similar to Lemma 1.2.

Unfortunately, the matrices X3 and (X} — X2 ) do not obviously arise from ma-
trices feasible for (S53), so the above decomposition can not be iterated.

In order to iterate the above construction we can define a sequence of feasible
regions for semidefinite programs. The first region in the sequence is (S;), the second
is (S2).

Any other relaxation (S;) in the sequence has the property that it contains a
feasible matrix for the relaxation (S,) that can be represented as a sum of matrices
whose entries on k — 1 fixed diagonal places are either 0 or equal to the entry indexed
by 0,0.

In the k-th relaxation, we consider the vector z indexed by the &-tuples of elements
of AX"

00...0

k times
00...0d;,

k ~ 1 times
00...0d; d;,

k —~ 2 times
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0,dids,...d;,_,
dl'ldiz s dfh—ldiv

where d;, < d;, <--- < d,,.

The elements of the vector z can be regarded as the product of k indicator varia-
bles, i.e. variables whose value is equal to 1 if the indicated difference is in a solution
and 0 otherwise.

For any multiset of differences A = {d;,,d,,,... ,d;, }, where the differences d; €
AX' can appear at most once and 0 can appear more than once, the permutation of
A obtained by sorting the differences in ascending order is called the proper index of
A

Let I be the set of all proper indices.

In order to simplify the notation, we assume that all the permutations of the
multiset A are equivalent to the proper index of A, and sometimes we index the
elements of z by the multiset associated with the proper index.

Again, we can look at the matrix X; = zz7. This matrix must satisfy the following
conditions:

forevery a € {1,..., M} and every A4 = {d;,,d;;,... ,d;. },and any 1 € [

3 Ld;, digdigdiy i = V(da)Z00dsy iy is
iz =9,... M
dig 4y = dy

for every A = {d;,,... ,d; },and any i e [
Z Td; dipdiy..dip i = BLOd;,y .. di i
i =0,.... M

the pyramid constraints:

Z1, 4, = 0, if the elements of the indices {; and [, (S0
k
can not simultaniously all occur in a solution,
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the mixing conditions similar to the mixing conditions in (S;)

I ly = Tkykos

for any four proper indices such that the elements different from 0 and M are the
same in [; U l; and k, U ks, although some might appear different number of times in
[y Uly than in ky Uk

zy, 1, > 0, for any two proper indices !y, .

X positive semidefinite.

The mixing conditions are obtained from the fact that a variable zq, 4.4, is
actually a product of k indicator 0 — 1 variables.

Note that the mixing constraints contain the following: if the multiset !, U l;
contains two copies of the difference d;, we can replace one copy of d; by 0 in {; Ul,
and write a mixing constraint. If [, or [, contains 0, we can replace it with M and
write a mixing constraint.

Now, we examine the properties of a matrix X feasible for (Si). These properties
are similar to the properties of the matrices X, feasible for (S,). First we prove that
a matrix X in Si N Hi, where Hj is the hyperplane

60...000...0=1
k times  k times
contains as a submatrix a matrix that is contained in S; N H;, for any i € {1,... ,k}.
For j € {0,..., M}, let X} be the submatrix of Xi € S; determined by the
rows and columns indexed by all possible submultisets {d;,... ,d;} that determine
a proper index in (S;). The diagonal elements of X} are

k -
(X5 )yt ity = (Xk) 00 .. 0 i), 00 .. 0y ot

k ~ j times k — j times
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and the off-diagonal elements of X} are

k —
(X5 )y -t = (X) 00...0 a0, 00. .. 0 dy .,

k — j times k — j times

The matrices X5 are just a generalization of the matrices X? defined previously.

We can prove:
Proposition 2.5 The matriz X} is feasible for (S;), for any j=1,... ,k.

Proof: The matrix X f is positive-semidefinite as a submatrix of the positive semide-
finite matrix Xj. The equality constraints of (S;) hold because they are just a subset
of the equality constraints of (Sx). The formal proof follows that of Proposition 2.3.
|

Now we generalize the matrices X3. We define the matrix (X, %) in the following
way:

k
(‘Ydi )d“l "'d°k—l vdbl '"dbk-l = (Xk)dt 'd"l "'dﬂk—l ydidbl "'dbk—l ?

for any two proper indices d, ...d,,_, and dy, .. .dy, _, for (Sg_1).
We can now generalize Proposition 2.4:

Proposition 2.6 For anyi€ {1,...,M}:
1. The matriz X} is feasible for (Sk-1).
2. The matriz Xf_, — X} is feasible for (Sx_y)
5. X, = XE + (XE_, - X5).

Proof: We just outline the proof since it is essentially the same as the proof of
Proposition 2.4.

Since X; is a positive-semidefinite matrix, there exist a matrix V such that

X, =VTV.
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Let vy, . g, , for any proper index d;,, . .. , d;,, be the column vectors of V.
For a fixed i let V;; be the matrix whose column vectors are

Vdid -y,

for any proper index d,, ...d,, , for (Sk-1).
Similarly, let W, be the matrix whose columns are

Vo, ...day_, ~ Vdida,.-da,_,
Then it is easy to see that
Xk =vilv,
and
Xt - Xk =wWiW,,

and therefore the matrices X and X§_, — X} are positive-semidefinite.
To see that these matrices satisfy all the equality constraints follow the proof of

Proposition 2.3. a

The matrices X5_,, X* and X5_, — X% from Proposition 2.6 contain as submatri-
k-1t Vg, k-1~ A4,
ces matrices feasible for (S;). Notice that the matrix (X§_,)5~! is equal to the matrix
k-1

Xf, ie

- k

(X:-l)'f t= X
The matrix
k \k—i
(Xg 1t

is feasible for (5)) and has the diagonal entries

(Xk)a0..0d;,d:0..04; for j =0,... , M.
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and the matrix
(X:—l - Xg.-)’f_l

is also feasible for (S)) and has the diagonal entries

(Xk)o..04; 0..04; — (Xk)a0..04; d0..04; for j=0,... , M.

In particular, the diagonal entry of (X(fi ¥5~! indexed by the difference d; is the
same as the diagonal entry indexed by the difference 0, and the diagonal entry of
(XE_, — X5)}™" indexed by the difference d; is equal to 0.

Also, we have

(XET = (X + (X - X

which follows from Proposition 2.6 by taking the appropriate submatrices of X§_,,
X} and Xf | - X§.

Therefore, we have proved:

Lemma 2.7 Let X; be a feasible matriz for (S;) and let X¥ be its submatriz feasible
for (51). Then for any i € {1,... , M}, XF can be represenied as a sum of two
matrices that are feasible for (S, ). One matriz has the diagonal entry on the position
indezed by the difference d; equal to the diagonal entry indezed by the difference 0.
The other matriz has the diagonal entry indezed by the difference d; equal to 0.

Moreover, if the matriz Xy is in Si 0 Hy, where Hy is the hyperplane zo_09.0 =
1, than X¥ can be represented as a convez combination of the two matrices. Both
matrices have 1 on the position indezed by the difference 0, and one has 1 on the
position tndezed by the difference d; and the other has 0 on that position.

Now we are ready to prove the central theorem of this section.
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Theorem 2.8 A feasible matriz X for (Si) contains the matriz X} feasible for (S,)
that can be represented as a sum of matrices that are feasible for (S,) and on fized
k — 1 diagonal places have entries that are either equal to the diagonal entry indezed
by the difference 0, or are equal to 0.

If X € Sy N Hy, where Hy is the hyperplane zo_00.0 = 1, the matriz XF can be
represented as a convex combination of matrices that are feasible for (S,) and have 0
or 1 on fized k — 1 diagonal places.

Proof: We prove the first statement of the theorem by induction on k. The second
statement can be proved by slight modifications of this proof.

When k& = 2, the statement follows directly from Lemma 2.7.

So, let us assume that for a k > 2, any feasible matrix X for (Si), the matrix
XF feasible for (S)) can be represented as a sum of matrices that are feasible for (S))
and on fixed k — 1 diagonal places have entries that are either equal to the diagonal
entry indexed by the difference 0, or are 0. Let these places be the entries indexed by
differences d;,, ... ,d;,.

Let X4, be a feasible matrix for (Sx+1) and let d;, ., be a difference different than
di,,...,d;,. By Proposition 2.6 and Lemma 2.7, we can represent the submatrix X :“
as the sum of two matrices

k+1 _ vkt k+1 k41
“*k - dk+l + ("‘ Xdk.{.l)

such that for the submatrices (X5*')f, (Xz*:)f and (XF*' - X3+ )k we have

k+1 k k+1 k+1 k+1\k
(" k (Xdk-..x)l + ( - X k+1)

Furthermore, the matrix (X‘:,“!+ 11) has the diagonal entry indexed by the difference

dy+1 equal to the diagonal entry indexed by 0, and the matrix (X! - X:: ")f has 0
on the diagonal entry indexed by di.,.

The matrix (XF+')¥ is equal to the matrix X*+!,

Now the matrices X*' and X§*! — X{*+! are feasible for (Si) by Proposition 2.6
and by the induction hypothesxs the matnces (X3 F and (X — X3 can be
represented as a sum of matrices that are feasible for (S;) and on diagonal places
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indexed by the differences d;,, ... ,d;, have entries that are either equal to the entry
indexed by the difference 0, or are equal to 0.

Therefore the matrix X;*! can be represented as a sum of matrices that are feasible
for (S)), and on fixed k diagonal places have entries that are either equal to the entry
indexed by the difference 0, or are equal to 0.

This completes the proof. [ ]

Let K; be the projection cone determined by the diagonal elements of the matrices
Xj, forie {1,... , M +1}. Then K, C K;, and every point of K, N Hy, where
Hp is the hyperplane o = 1, can be represented as a convex combination of two
elements of K; that have 0 or 1 on the position indexed by some difference d;, for any
j€{1,..., M —1}. Therefore we have obtained a sequence of cones such that

Kyn CKuC.. . K;CK,

and each relaxation (S;) introduces further cuts on the cone K. The cone Ky, is
obviously equal to K°. Unfortunately, the size of the problem (Sys+,) is not obviously
polynomial.

Furthermore, we have a theorem similar to Theorem 1.5:

Theorem 2.9 The turnpike problem is polynomial time solvable for classes of instan-
ces for which there exist a constant ¢, such that K° = K, for each instance in the

class.

In practice, no instances of the turnpike problem for which the relaxation (S,)
does not give the correct answer are known. That is, there is no known instance of
the turnpike problem for which K? # K.

In Chapter 5, we discuss instances for which relaxations (S:) and (S;) give the
correct answer to problem (P).

2.3 Some additional properties of the matrices X;

Here we list some interesting properties of the matrices X;. For example we can also

generalize the matrices Zy, 4, defined in the previous section, in the following way:
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Let X; be a feasible matrix for (S¢) and let ! = [£]. Let

K
(Zdy...d oy ey ity = (K, oy, .,

if k is even and

k
(Zdl...dk )d‘l da, ‘dbl mdbl = (Xk)dl v, 0da ...dql dbl "'d"l

if k is odd.
Then we can prove a proposition similar to Proposition 2.3:

Proposition 2.10 The matrices (2}, ) satisfy all the equality constraints in (S;).

Proof: Similar to the proof of Proposition 2.3. [ |
Another way of generalizing matrices X3 is to define matrices Xgt , in the
following way.

Let Xy be a matrix feasible for (Sy;) and let X?* be its submatrix feasible for
(Sk) as in Proposition 2.5. For any proper index {d;,,...,d;} let

2k
o di; "'dik

be the matrix determined by the elements of the row of Xy, indexed by the d;,,. .. ,d;,,
i.e. the matrix such that

2% -
(X&) My oy oy oy, = (Xk)diy iy oy i iy
Let

2k — Y2k _ y2%
Yd‘l"'dik - Xk ‘ d"l"‘d“k.

Then another generalization of Proposition 2.4 is:
Proposition 2.11 For any proper indez {d;,,... ,d; }:
matriz Y2 ; :
1. The matric Xd‘,l i, 1S feasible for (Si).

2. The matriz Y}-‘f---"ik is feasible for (Si) and
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2%k _ Y2k k
3- 4¥ -_— Xd{l"‘dik + Y‘?‘-l"‘d‘-k .

Proof: The proof is similar to the proof of Proposition 2.4. For any proper index
{di, ... ,di}, it is easy to check that the matrix Xi‘*1 .4, satisfies all the equality
constraints in (Si). It is just a matter of recognizing that these constraints are the
subset of the equality constraints for (Sa).

It is a bit harder to prove that these matrices are positive-semidefinite.

Let

Xo = VTV,

and let Vd;, ..djy, be the column vectors of V.
Then

% — wT
Xi a4, = Ww, (2.1)
where W is a matrix whose columns are column vectors of V

Vd;, ...diy o oday )

for d,,,... ,d,, all possible indices for matrix feasible for (Sy).
The equation (2.1) is easy to verify, by using the definitions of X}f‘l iy and the
mixing constraints of (Sz;) and is essentially the same as the proof in Proposition 2.4.
The matrix X2 — X:;'fl .4, Satisfies all the equality constraints in (Sk) because it
is a difference of two matrices that satisfy those constraints. We need to prove that
Xi* - X3 4, is positive-semidefinite. So, let U be the matrix whose columns are
the vectors

Y0..0,da, ..day — Vdi, ...diy \da)...da;,

for d,, .. .d,, all possible indices for matrix feasible for (Si).
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Note that

(v0.0d, ey, — Ud.~l..J;k,d,l...dq)(vo...o,d.l...d&k - Vd;, ..d;, ,d,,t...d,,,,) =
= (Xok)0. 0, .. day 0.0y, .y, — (K2k)0..0d0, .o, iy di o, -y, T
+ (Xok)ai, i, doy -y 0.0y, dy, — (X2k)di, iy da ey i iy, -y, =
= (X2k)0...0du oy 0.y, -y, — (K2k)0..0da, coclay iy iy o, ey, =
= (X )ty oty sty -y, ~ (KT, Vo, oyl
Therefore,

2% 2% =T
Xk - dtl !"'|d1.k - U U’

which completes the proof. [ ]

Now, we show a property of the matrices Xi,"l ., NBMely, we have:

Proposition 2.12 The matriz

(X 3: iy, )0.00..0

has 2% diagonal entries equal to 1.

Proof: The diagonal entries of the matrix (Xﬁ: ---di.,) are

k
(X ot Moy oy iy, = (XokYa, i duy oy iy iy gy

For any set A, if A C {d;,,... ,d;,} the diagonal elements determined by A and the
appropriate number of zeros are equal to 20,..0,d;; .. diy 0,..0diy iy = (Xﬁ iy Jo..00..0
because of the mixing constraints in (S). This proves the first statement of the
theorem.

Therefore, any matrix X feasible for (Si} contains a submatrix feasible for (S;)
that has k — 1 diagonal entries equal to the diagonal entry indexed by the difference
0.



Chapter 3

Classes for which the Turnpike
Problem is Solvable in Polynomial

Time

3.1 Introduction

In this chapter we give classes of instances of the turnpike problem that can be solved
in polynomial time.

We say that an instance AX of the turnpike problem is solved by its relaxation (S)
from Chapter 2, if the submatrix Y determined by the diagonal elements zy._ o4, 0..04;,
d; € AX’, of a feasible matrix X for the relaxation (Si) is of the form

Y = ZO,‘S{S?,
i

where s; is a characteristic vector of a solution of the turnpike instance AX and
a; > 0.

In the first section we look at the instances that are solved by the relaxation (S;)
with modified pyramid constraints, i.e. the relaxation in which we only take a subset
of the pyramid constraints valid for (S)). We show that if for a given set X, the
instance AX can be solved by the relaxation (S;) with modified pyramid constraints,

42
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than the instance AY, where AY is the difference set of
Y=XuU(X+a)U...U(X + (m-1)a),

can be solved by the relaxation (S,) with modified pyramid constraints. Here we have
to choose a to be greater than the maximum element of AX,

Also, if the instance AX can be solved by the relaxation (S,) with modified pyra-
mid constraints and has the property that every solution contains a point that is not
in any other solution, the instance AY, where AY is the difference set of

Y=XUX+a)U...u(X +a),

then the instance AY can be solved by the relaxation (S;) with modified pyramid
constraints. The numbers q,,... , e, have to satisfy

ay 2 3dy + 1,
a; > 3a;  +dy+1lforie {2, ,’C},

where dj; is the maximum element of AX.

Note that the instances that have only one solution, satisfy the above property.

In the second section we show that the relaxation (S)) solves the instances con-
structed by Zhang, (35]. Therefore our technique solves the turnpike problem on
these instances in polynomial time, whereas the backtracking procedure of Skiena et
al. takes exponential time on these instances.

Finally in the last section we consider the instances AX that have unique solutions
and all the differences in AX are different. We show that if during the execution of
the Skiena’s et al. backtracking procedure, k is the biggest number of steps that the
procedure has to backtrack, the relaxation (Si.,) solves the instance AX. That means
that for this class of instances if k is constant, the relaxation (Si.,) has polynomial
size and can therefore be solved in polynomial time.
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3.2 Generating bigger instances solvable in poly-
nomial time from smaller instances solvable in
polynomial time

In this section we show how to generate bigger instances that are solvable by the
relaxation (S)) with modified pyramid constraints, from smaller ones that can be
solved by the same kind of relaxation.

By modified pyramid constraints, we mean that in the relaxation (S)) of an in-
stance AX of the turnpike problem we only include the pyramid constraints of the
type

Td; dy-d; =0, if d; and dy — d; can not both be in a solution,

where d; € AX. Note that this type of constraints depends only on the multiplicity
of d; and dy; — d; in AX. We can write the above constraint if and only if v(d;) = 1
orv(dy —d;) =1.

We denote the relaxation (S5,) with modified pyramid constraints by (S]). Note
that the relaxation (S}) is weaker than the relaxation (S)) in the sense that any matrix
feasible for (S;) is also feasible for (S7]).

Some of the generated instances have more solutions than the instances they were
derived from.

For a given set X, we define another set ¥ by

Y=XU(X+a)U...U(X +(m-1)a),

where a is greater than the maximum element of X.

If AX is the difference set of X, and AY the difference set of Y, it is easy to see
that AY is well-defined, in the sense that if X, is another solution set of the instance
AX and

i =XiU(Xi+a)U...U(X; +(m - l)a),
then

AY = AY,.
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Now, we can prove:

Theorem 3.1 Let X = {0 < a) < --: < a1} be a set and let AX be its difference
set. Let a be a number such that a > a,_,, and let m > 1 be an integer.
Furthermore, let

Y =XU(X+a)U...U(X +{m—1)a).

Then if the relazation (S]) solves the instance X of turnpike problem, it also solves

the instance Y.

Proof: First notice that the cardinality of Y is mn and that the multiplicity of the
difference @ in AY is {m — 1)n and the multiplicity of the difference (m — 1)a in AY
is n.

Let

A=VTy

be a feasible matrix for the relaxation (S]) of the instance AY of the turnpike problem.
For ease of presentation, let us assume that the matrix A is indexed by all numbers
between 0 and a,_, + {m — 1)a, and let v; be the column of V" indexed by i.

Now we can look at

an-1+(m—2)a an-1 a-1 (m—1)a-1
Z (v — visa)® + Z(Ui - vi+(m—l)a)2 + Z "? + Z ”.'2 =
i=0 i=0 i=ap-1+t i=ap-1+(m-2)a+1
an-1+(m—-2}a an-1+(m-1)a an-1+(m-2)a
= Z v+ Z v? -2 Z Uilitg +
i=0 i=a i=0
Qn-} dn-1+{m-1)a Gn-1
+) i+ Z v -2 Z Vilis(m—1)a +
i=0 i:(m-— l)a i=0
a-1 (m-1)a~1
+ v? + z vl =
i=ap-1+1 i=an-1+{m-2)a+1
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Ga-1+(m-1)a an—+{m~2)a Gn-1
=2 Z ’-’i2 -2 Z ViVitq — 2 Z Vilit(m-1)a =
i=0 i=0 1=0

=2mn-2m-1n-2n=
=0.
Note that the above calculations do not change if we know that some of the vectors

V; are zero vectors.
From (3.1), we have

Up=Ug =V =... = VYm-1)a

Vg, =Yg +a = Vaj+2a = -+ = Vay+{m~1)a

Va; = Vag+a = Vaz+2a = -+ = Var+(m-1)a (3.2)
Vag-y = Yag_14a = Yap 1420 = - -+ = Vgpo 1 +(m-1)a

Since @ > a,-, we have that in AY the multiplicity of a; + (m — 1)a is equal to
the multiplicity of a; in AX, fori € {1,... ,n - 1}.
This combined with the fact that

Yp = Yim-1l)a
Va; = Vg, 4(m-1)&: fori € {1,...,n -1}

which is a part of (3.2), enables us to conclude that the submatrix of A indexed by

the elements of X satisfies all the constraints of the relaxation (S]) of the instance
AX.

The vectors vy, ... ,v,,_, can be arranged as column vectors of a matrix U.

Since we assumed that the relaxation (S7) solves the instance AX, the matrix
UTU has the form

Trr — T
U U—Za;s,-s,-,

where o; > 0 and s; are characteristic vectors of the solutions of the instance AX.
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Therefore

vty .- UTU
viv=| P =Y wmd]
vty ... UTU

where for each solution X; whose characteristic vector is s;, 2; is the characteristic
vector of X; U (X; +a)U...(X; + (m —1)a). [}

Next we prove that, under certain conditions, the set Y from Theorem 3.1 can
be constructed by adding numbers that are not multiples of a single number to the
elements of X. Namely we look at the sets Y that have the form

Y=XU(X+e)U...U(X +a),

where

0123dM+1
a; >3a;_)+dy+1forie{2,...,k},

and show that the result analogous to Theorem 3.1 holds for these sets under some
condition on set X. The proof of that fact is substantially harder than the proof of
Theorem 3.1. First we prove three lemmas.

The first lemma shows us how to construct a matrix V from the solutions X,,...,
Xi of an instance AX of the turnpike problem, such that the matrix

Yy =vVvT

is feasible for the relaxation (S;), and therefore (S}), of the instance AX of the
turnpike problem.

Lemma 3.2 Let X be a set on n elements, 0 € X and let AX be the difference set of
X. Let Xy,..., X, be solution sets for the turnpike instance AX and let us assume
that 0 € X; fori€ {1,... ,k}.
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Furthermore, let {u,,... ,u;} be a set of mutually orthogonal vectors in R* and
let

k
v; = quu,-, Jorie AX'

i=l
where
1, if the difference i is in the solution set X ;
Xij =
0, otherunse.

Let V' be the matriz whose row vectors are the vectors v;, i € AX'. Then the

matriz
Y=VV?
is feasible for the relazation (S, ) of the instance AX.

Proof: Note that

k

2

Yoo = E U;
i=1

since 0 € X fori € {1,... ,k}.
Let us now look at the constraint for the difference 2 € AX. We have

Z W= Z Dol =

b,CE-‘lX' b,ce AX'
c-b=ga c-b=a

k k
Z ( xb,.-u.-) (Z xc.j"j) =
beeax’ Ni=l =l

c-b=a

k
Z Z Xb,ch,iU? =

b,l:e AX' =}

c-b=a

k
Zuf z XbiXc,i-

=l peceax’
c—-b=a
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But for every solution set X;

Z XbiXci = v(a)
bcedx’
c~b=a

because the difference a in the solution X; must appear v(a) times.

Therefore
k
2
Y we=v)) =
bc€ AX' i=1
ce—-b=a
= U(a)yo,o
Similarly
D W= ) =
bEAX’ bEAX!
k k
= 2 e | | Doxeqws | =
beaX’ \i=l j=1
k
- 2 _
= Z ZXb,ch.iui =
bEAX! i=1
k
— 2 —
= Z Uj Xe,i Z Xbi =
i=1 bEAX’
k
2
= Z Ui X, it =
i=1
= NYe,e-

The pyramid constraints hold because if two differences b and ¢ are not together
in any solution set Xj;, then

k
Z Xb,iXe,i = 0,

i=1

from which we can conclude that

Ybe = 01
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which completes the proof. [

Next we show that any matrix of the form Y = E:;l s;s7 where s; are the charac-
teristic vectors of solutions of the turnpike problem for instance AX, can be decom-
posed as VV7 such that the matrix V is of the form described in Lemma 3.2.

Lemma 3.3 Let X be a set, 0 € X and let AX be the difference set of X. LetY be a
matriz such that Y = 25:1 ,\.-sis,T where s; are the characteristic vectors of solutions
of the turnpike problem for instance AX, and A\; > 0, fori€ {1,... ,k}. Then there
erist @ matriz V such that

Y=VVT

and the row vectors v;, i € AX' satisfy

k
v = Z \/Ti(sl)i'ul-
=1

for some orthonormal set of vectors {u,, ... ,u;}.

Proof: Look at

k k

vy = 3 V() Y Vi (sm)jtim =

=1 m=1

-~
|

VAV A (81)i(8m) 0t =

H
™M~
M~

1

T
3
1]

I
M~

M(si)i(se)juf =
1

[y

I
M~

A(s1)i(s1);-

-
Il
—

But

k
Y Mls)ilst)s = vie
=t



CHAPTER 3. POLYNOMIAL TIME CLASSES 51

which completes the proof. a

In the next lemma we consider the instances AX that have the property that
every solution contains a point that is not in any other solution. For example, the
instances that have unique solutions satisfy this property. We prove that under certain
conditions a matrix feasible for the relaxation (S]) of such instance can be split into

two matrices feasible for the same relaxation.
We have:

Lemma 3.4 Let X be a set and let AX be the difference set of X and assume that
the instance AX has the property that every solution contains a point that is not in
any other solutions.

Let Y be a matriz such thatY = Zf=l XisisT where s; are the characteristic vectors
of solutions of the turnpike problem for instance AX, end \; >0, fori€ {1,... ,k}.
Furthermore, let

Y =vVT

and let v;, i € AX' be row vectors of V. If there ezist vectors a; and b;, for i € AX'
such that

vi=a;+b;, forie AX'
and

aib; =0, fori,j € AX'
and

aiaj 2 01
bibj 2 0, fOT l,] € AX'
Then the matrices Y} = AAT and Yo = BBY, where A is the matriz whose rows

are vectors a; and B is the matriz whose rows are vectors b;, for i € AX', are feasible
for the relazation (S;) of the instance AX.
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Proof: Because of Lemma 3.3 we can choose V' such that its row vectors are
k
Y= Z VAils)iu,
=1

for some orthonormal set of vectors {u,,... ,ux}.
First, notice that if the vectors v;, £ € AX' satisfy the equation

2 ot = 0 (33)

i€AXY

the vectors a; and vectors b; satisfy the same equation. i.e

E @ia; = 0 (34)
€A X’
and
Z Ctibi =10. (35)
iEAX!
To see this look at
0=( Z o)’ =
i€AX’
= ( Z a,—(a,- + bi))z =
i€AX’
= z a?a? + Z afb? +2 z aa;a;a; + 2 Z Qiajbibj =
i€AX! i€AX’ i,jeAXx' i,j € AX'
i<j i<j
=() e +( ) ab)?
i€EAX! i€eAX’

For each solution X;, let z,, be a number that is in X;, but not in any other
solution set. Let Z be the set of numbers z,, for: € {1,... ,k}.

Then the vectors T = {v;)i € Z} are mutually orthogonal and therefore the
vectors {a;|i € Z} are mutually orthogonal and the vectors {§;|i € Z} are mutually
orthogonal.

Also note that the set T is an orthogonal basis of the vector space spanned by the
vectors {v;|i € AX}.
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Therefore, the set {a;|¢ € Z} is an orthogonal generating set for {a;}i € AX} and
the set {b;|i € Z} is an orthogonal generating set for {b;|i € AX}.
Because of (3.3), (3.4) and (3.5), if

vi = Z \/’\_!(sl)i'vh

lez
then
& =Y vV(a)a
ez
and

b= Vh(si)ib,

ez
forany i € AX' - Z.

Now, we can use Lemma 3.2 to complete the proof. .

Before we prove the general theorem, let us first look at an example. The exposi-
tion of this example can be easily modified into a proof of the theorem.
Let X ={0,1,4,6} and let

Y=X+(X+19)+ (X +64),
i.e.
Y={ 0 1, 4, B8,
19, 20, 23, 25,
64, 65, 68, 70 }.

It can easily be seen that the number 64 appears in the multiset AY four times,
and so do numbers 45 and 19. The numbers 7,8, ..., 12, 26, 27, ..., 38, 52, 53,
... 37 are not elements of AY’, and therefore any feasible matrix A for (S]) has the
property that

arr=agg=...=anp =0,
Q626 = Qo727 = ... = Q338 = 0, (3.6)

G5252 = Q5353 = ... = Gs757 = 0.
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But if @; ; = 0 then also az—; 70-; = 0 and therefore

03,63 = Ge2,62 = - - = Gsg 58 = 0,
G441 = Q343 = ... = Q3232 =0, (3.9
dig18 = G17,17 = ... = a313 = 0.
Let
A=VTY

and let v;, i € AY” be the column vectors of V. Then because of (3.6) and (3.7}

'U7='Ug=...=vm=0.
‘!)25=‘U27=...=‘U44=0.
‘U5g=v53=...:vs3=0.

Next, we look at the equation in (S;) induced by the differences 64, 45 and 19.
We have

6
in.HM =4 (3.8)
i=0
and
6 25
Z Tiitas + Z Tiivas =4 (3.9)
i=0 i=19
and
6 51
Y ziine+ Y T =4, (3.10)
i=0 i=45

because of (3.2).
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Now, we use (3.8), (3.9) , (3.10), (3.6) and (3.7) to evaluate the following sum

6 6 6
Z(Ui ~ Uivea)” + Z(vms + Vigas ~ Ui + z(vmg + Vitas = Vitea)” =
i=0 i=0 i=0
6 70 6
=Zv?+ v?—2Zv,-v.-+64+
i=0 =64 i=0
25 51 6 6 6
+ va + Zuf + Zv? - 22”:‘”;419 - 2Zvivi+45 +
i=19 i=45 i=0 i=0 i=0
25 51 70 25 51
+ ZU? + Z‘Uf + Z 1).? - 22'0,"014.45 - 22'0;'0.‘.,.19 =
i=19 i=45 i=64 i=19 i=45
6 25 51 70
= QZa.v,,- +22a.-,.- + 22::.-,,- + 2201-‘.- -
i=0 i=19 i=45 i=64
6 51
-2 z Giiv1o — 2 Z Bii+19 —
=0 i=45
6 25
-2 2 Bijyas — 2 Z Biiya5 —
i=0 i=19
6
-2 E Gii+64 =
i=0
=24-2.-3-4=0

Since we started with a positive expression, we can conclude that

Ui = Vis6ds forie {0, ves ,6} (3.11)
Vitlo + Vieas = ¢, for i € {0,...,6} (3.12)

Next we prove that for any 4, j € {0,...6},

Vit19¥j445 = 0.

We need that

&
Z Vi = 41)0.

=0
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We see this by observing that

70 6 25 70
12 = 21},2 = Z‘U'z + Z(Ui + 'U,'+26)2 + Z 'Ul-z
i=0 i=0 i=19 i=64

[
— 2
53

=0

because of equalities (3.11) and (3.12). Therefore

6
zai,i =4.

=0

Next we prove that

]
z vy = 4'!)0.

i=0

Again, we have

6 ] 6 6
D vi-dw) =) vi+2 Y v -8) uve+16=
0

i=0 i=0 ij= =0
i<j
6 6 70
= —721)? +Z Zv,-v,— +16
i=0 i=0 j=65
=-7-4+12+16=

=0.

because of equalities (3.11).
From (3.13) and (3.11) we have

70
z Vi = 4”01
i=64

and therefore

25 51
ZU,"{"ZU; =4‘Uo.

=19 =45

a6

(3.13)
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0-6 19-25 45-51 64-70

- -
0-6 A, B
19-25 D A‘!
45-51
64-70
L d

Figure 3.1: The form of a matrix feasible for the relaxation (S;) of the instance AY.

Any feasible matrix for the relaxation (S)) of the instance AY has the form shown

in Figure 3.1
If
25
Z aii =« (3.14)
i=19
and
51
Y ai=4-a=4 (3.15)
i=45

then the entries of A in the submatrix A, sum to 453 and the entries in the submatrix
Az sum to 4a.
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This is because

i=0 j=45 i=0 j=45

51 6
=y ud us

j=I5 =0

51
= z 4vjvp =

j=45

6l
=4 Zvjvo =

j=15

51
=4Zaj’j=

j=45

= 48.
Similar equations can be written for 3o 2;0:&1 a; ;.
Also

6

70 6
PIPILIED I (3.16)

i=0 j=64 i.j=0

= 10.

Now, observe that in AY there are 26 numbers that are greater than or equal to
45. The variables associated with these differences are in the submatrices A,, Ay, B,

and D. But because of (3.14), (3.15) and (3.16) the entries in the submatrices A,
Ay, and C sum to

da + 48 +10 = 26.
Therefore, the entries of the submatrix D are 0 and we have proved that
Visr19Vj445 = 0, (3.17)

and the vectors {vo, ... ,vs}, {¥19,... ,v2s} and {vss,...,vs} satisfy the conditions
of Lemma 3.4.
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It is easy to check that any matrix Z feasible for the relaxation (S,) of the instance
AX is of the form

— T T
Z = a1818] + (2528,

where a;,a; > 0 and s,, ; are characteristic vectors of the solutions of the instance,
and that s, is the mirror image of s, i.e. that the instance AX has only one solution.
Therefore if V; is the matrix whose row vectors are {vy,... 25} and V3 is the

matrix whose row vectors are {vys,... ,us }, then
VlVlT = ﬂlsls'f + ,5289'33w
and
AR 71313{ + ‘)’2623;~

because of Lemma 3.4.
Because of (3.17) matrix A can be split into two matrices Y; and Y feasible for
(S1), such that

U9

Uas

e

V25
[vl9a ... Ugs, Utg, . - . 1”25107"' 101v191 s 1”25]

Ui9

Ugs
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and

Ugs
Us1
Y, = (s, .. vs1,0,... ,0, V45, ..., Vs1, Vg5, ... ,V51] =
Uss

Us)

Usgs

Usy |

Now, the vectors {v;g,. .. , v25} represent a combination of solutions X, and X for
the instance AX, and therefore the matrix Y; represents the combination of solutions
XiU (X, +19) U (X, +64) and X, U (X2 +19) U (X, + 64). Similar statement can
be written for the matrix Y5.

Now we state and prove the general theorem:

Theorem 3.5 Let X be the set of cardinality n and let 0 € X. Let a and be be such
that

a>3ddy+1
and
b>3a+dy+1,

where dys 1s the largest element of AX.
Furthermore, let

Y=XU(X+a)U(X+D).
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Then if the instance AX is solved by its relazation (S} ), and has the property that
ils every solution contains a point that is not contained in any other solution, then
the instance AY is solved by its relazation (S]).

Proof: Let A be a feasible matrix for the relaxation (S,)} of the instance AY and let
A=vvT,

and let v;, t € AY' be the row vectors of V.
Notice that the numbers

dy+1,dy+2,...,a—dpy — 1,
a+dy+l,a+dy+2,...,0-a—-dy -1,
dy+b—a+l,dy+b—-a+2,...,0-dy—1

do not appear in AY and hence

Vdp+1 = Vdpyg42 = - -+ = Ugmdpy-1 = 0,
Vatdp+1 = Vatdpy42 = - = Vp—a—dpyy—1 = 0
Vdyr+b-a+l = Vdpgtb—at2 =+ -+ = Up—dy—1 =0
and
Vbl = Up—2 = ... = Vadpyytb-a+1 = 0,
Up—g—1 = Up—a-2 = ... = V2dy;4a+1 =0
Vg—1 = VUg-2 = .. = Vadpy+1 = 0.

So, because of the conditions on a and b, the only non-zero vectors v; of V' are a

subset of
vg, V15 s Udpgs
Uay Ug+1y - -+ s Vat+dags
Ub—qas Ub—a+11 -+ s Ub—a+dass
Uby Ubt1y -+« s Ubtdp-

Also, the differences a, b — ¢ and b appear in the multiset AY exactly n times
each.
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Therefore
dym
Z Villiyp = N, (3.18)
=0
and
dpr+b—a das+b—a
Z ViViga = Z ViVigq + Z ViVirq = 7, (3.19)
i=0 i=0 i=b—a
and
dar+a dy+a
Z ViVitb—a = Z ViVitb—a + Z VilVitheq =M. (320)
i=0 =0 i=a

We now present two crucial parts of the proof which ensure that Lemma 3.4 can
be invoked and the matrix A split as in the above example. We prove that

Vi = Viq, fori € AX' (3.21)
Vita + Vigb—a = Vi, fori e AX' (322)
and
VitaVj4b—a = 0, for i,j € AzY'. (323)
To prove (3.21) and (3.22) let us look at
dat
Z(v‘l - 7-’1+b) + Z vl+ﬂ + Vitb—a — Ut ‘4 Z Vit+a + Vitb—q vi+b)2 =
:-0 i=0 i=0
dM+b
i=0 i=b i=0
dys+a das+b—a day das
+ Z v + Z v +Zv —2Zv,va+. 2Zv,v.+b_a+
i=a i=b—a i=0 i=0
dy+a dpr+b—a dpr+d dar+a dys+b—a
+ Z v+ Z v+ Z v} -2 Z Vilipbgq — 2 Z Vilite =
i=a i=b-a i=b i=a i=b-a
dag+b dyr+a dy+b—a
SOTE NS S N
i=0 i=b i=u i=b-a

dy
-2 E Vilitp —

1=0
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dag dy+d-a
- 22 ViVasi — 2 z ViVita —
i=0 i=b—a
das dy+a
-2 Z Vi¥itb—a — 2 Z ViVigb—a =
i=0 i=a
=2-3-n-2n-2n-2n

=0
because (3.18), (3.19), (3.20) and the fact that b — 2a is not in AY’, which completes

the proof of (3.21) and (3.22).
To prove (3.23) notice that in AY there are

()

numbers bigger than b — a, because there are n? numbers obtained as z; — z; where
z; € X +band z; € X and there are (’2‘) numbers in the range b...b+ dy.

Now, the matrix A looks like the matrix on Figure 3.1. Similarly as in the above
example, we can show that the entries of the submatrices 4,, A; and B sum to n?+ ('2')
and therefore the entries of D sum to 0. This proves (3.23). [ ]

The statement of the theorem also holds if a = 1, which can be shown in the same
way.

Next we prove that we can add more than two different numbers to the elements of
the set X in order to obtain a set similar to the set Y from Theorem 3.5 that satisfies
the claim of that theorem.

We have

Theorem 3.6 Let X be a set of cardinality n and let 0 € X. Leta;, i € {1,...,k}

be numbers such that
ay 2 3dM + 1
and

a; > 3a;, +dy+1 forie {2,... ,k},
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where dyg 1s the largest element of AX.
Furthermore, let

Y=XU(X+a)U...U(X +a).

Then if the instance AX is solved by its relazation (S]), and has the property that
its every solution contains @ point that is not contained in any other solution, then

the instance AY is solved by its relazation (S)).

Proof: The proof is by induction on &.

When & = 1 the statement follows from Theorem 3.1.

When k = 2 the statement follows from Theorem 3.5. Let us assume that the
statement of the theorem holds for any set Y that is a union of k sets

Y=XUX+a)U...U(X+ax)

and assume that a set Y is a union of k£ + 1 sets.
Let A be a feasible matrix for the relaxation (S;) of the instance AY and let
A=vvT,

and let v;, i € AY’ be the row vectors of V.
By careful examination of AY we can see that the only vectors v;, i € AY” that
can be different from the null vector are

Voy Uty -+ 1 Udyys

Vays Var 415+ -+ s Vay+dyys

Vagy Vagly «+ + 3 Vag+dyrs

Vapr Vag+1y -+ y Vagtrdyg s (324)
Vag—ap_11 Uag—ag_1+ls - - 1 Vag—ap_y+dars

Vag—ax—21 Vae—ag_a+1s - -+ r Yag—ap_g+dar

Vap—ays Yag—a1+13 - - s Vag—a;+dyy-
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Also, the differences a; — a;, i > j, appear in AY exactly n times and, because of
(3.24), in the relaxation (S;) for the instance AY the equation corresponding to the

difference a; — a; is

aj+dps o —aj+dy
Y. Utigaca + D Ulgg—q; =7 (3.25)
{=qa; I=a;—a;

Next we prove that
Ui = Vigags forie AX' (326)

and

Vita; = Vitays fOl‘iEAX’,tE {21'-- ak—'l} (3 27)

Vitap—a; = Vitay—a;-

If k is odd, we look at the following sum

da

Z((Ui - Ui+a.)2 + (Viga, — Ul'-!-az)z + .o+ (Vitap, — Ui+a,,..1)2 +

=0

+ (Ui+ak—a1 - Ui+uk—a:)2 +...+ (Ui+ak—a‘,_z - vi+ap,-ah_1)2) =
ag+day

= Z (v2 - 2(v(ae) + v(az — @) +... + v(ae) — ar))) =

i=0
=(k+1)n-2n+—n)=
=0

which proves (3.26) and (3.27).
If k is even, similarly we can calculate that the following sum is 0:

dar

2(2(1’1' - vi+ak)2 + (Ui+a1 = Vitay )2 + (Ui+ag - 'vi+a3)2 +..

=0

et (vi+ﬂk—2 - vi+ﬂb-l)2 + (Ui'('ﬂk-l - vl'+al)2 +
+ ('Ul'+ak—01 - 'vi+n;,—a:)2 + (vi+a,,—az - vi+a'.—a3)2 +...

-t (vi+ak -8g-2 vi-Hu—ﬂt-l)z + (”i+ak-ah-1 - vi+ak-ﬂx)2) =0.
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Similarly, we can prove that for [ € AX'and i € {1,... ,k -1}
Wpa; T Vitag—a; = Q. (3.28)
Now, we look at the submatrix B of A indexed by the differences i € AY’ such
that v; # 0 (as in (3.24)) other than
Vays Vay 415+ - - s Var+dagy

Ugp—ays Vag—a1+1r- - - » Vag~al+dyg-
Because of (3.26), (3.27) and (3.28) we can conclude that B satisfies all the con-
straints of the relaxation (S]) of the instance

XU(X+a)U...Uu(X +a).

Now, we can invoke the induction hypothesis to conclude that this instance is
solved properly by its relaxation (S}). Now, it follows directly that the instance AY
is solved by its relaxation (S}) because from (3.27) we have

Visa; = Vitay, fOri € AX'

which completes the proof. [ ]

3.3 Zhang’s instances

In [35] Zhang constructed a class of instances for which Skiena, Smith and Lemke's
backtracking procedure takes exponential time to find a solution. The instances have
unique solutions and are difference sets of the sets A defined in the following way.
Let0<e< ili" Let

A2 = {62,... n¢}

A3 = {(n+1)e,(n+2),...,2ne},
{(2n + 1)¢, (2n + 2)e, ... , 3ne},
As = {1-3n¢,...,1-(2n+2)¢,1 — (2n + 1)¢}.
Ay = {1-ne...,1-2¢,1—¢},

o S
-
I
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Let F and G be disjoint sets such that A3 = FUG", and let D = F UG, where
G'={1-glgeG}. Let A= A UA, UA,UAUDU{0,1}.
Zhang [35], proved the following proposition

Proposition 3.7 With the above notation, we can choose D such that, giving AA to
the Skiena at al. backtracking algorithm, it takes at least Q(2"~!) time to find A.

We prove that the relaxation (S}) solves these instances. We need the following
lemma:

Lemma 3.8 Leta;, i =1,...,4, and z be vectors in R" such that

4 +4az =1,
a3+ a4 =71,

a;a; =a;x fori=1,... ,4

If a1a3 + azaq = 12 then a, = a3 and a; = a4. If a;a3 = 0 and azaq =0 then a, = a4

and a; = a3.
Proof: From

I = aiez+ azaq = a3+ (1‘ - al)(I - 03) =

= - af - a§ + 2a,a,,

we have
(al - 113)2 = 07

and therefore a; = a3. Similarly we can show a2 = a4, which proves the first statement.
If aja3 = 0 and a;a4 = 0 then

2? = (a1 + a2)(83 + @4) = @104 + G203,
and we can use the first part of the lemma to conclude that ¢; = a4 and a; =a;. B
Now we are ready to prove the main result of this section, i.e. that the relaxation

S} defined in the previous section, of the instance A A solves the turnpike problem on
that instance.
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Theorem 3.9 For the above defined sets A, the instance AA of the turnpike problem
can be solved by its relazation (S]).

Proof: First we list some properties of AA:

(a) A — 42 C[1 - 2ne,1 - 2,
Ay - A3 C[1 = 3ne, 1 - (n + 2,
Ay — 44 C {1 —4ne, 1 — (2n + 2)¢],
Ay = 45 C[(n+1)e, (3n — 1)¢],
Az — A2 C[e,(2n - 1),
Ay — A C[(n+ )¢, (3n — 1)¢],
As — A2 C {1 —4ne, 1 — (2n + 2)€],
Ay — A3 Cle, (2n - 1)¢],
As — A3 C [1 ~ 5ne, 1 — (3n + 2)¢],
As — Ay C[1 —6ne, 1 — (4n + 2)€l,
AL — A3 C e, (2n — 1)¢],
A3 —A; C[1 - 3ne,1 - (n+2)d,
A3 — Ay C[1-5ne,1 - (3n+2),
A3 - 4 Cle, (2n— 1),

(b} The numbers in AA are of the form ke, where k is a non-negative integer less
or equal to 3n, or 1 — ke, where & is a nonnegative integer less or equal to 6n.
Therefore, in AA there are no numbers in the interval (3ne, 1 — 6ne).

(c) The k-th largest element of A,, 1 — ke, appears in AA k + 1 times.

Proof: The number 1 — ke is the difference of the following numbers:

1 —ke -0,
1-(k-1) —€,
l1-¢ —(k — 1)e,

1 —ke,
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where the first number of the difference is an element of A; or 1, and the second
is an element of A, or 0. [ ]

(d) The k-th smallest element of A4, (2n + k)¢, appears in AA 2(n — k + 1)-times.

Proof: The number (2n + k)e, is the difference of the following numbers:

(2n + k)e -0,

(2n+k +1)e —€,

(2n +k + 2)e —2¢,

3ne —(n — k)e,
1-(n—-ke —1-3ne

1 -2 —(1-(2n +k +2)¢),
1-¢ -(1-(2n+k +1)e),
1 —(1 = (2n + k)e).

The first number in the above differences is from A4 or 1, and the second is from
Aj or 0, or the first number is from A, and the second is from As. [ ]

(e) The k-th smallest element of A3, 1 — (2n — k + 1)e appears in AA n + 1-times.

Proof: The number 1 - (2n — k + 1)e is the difference of the following numbers:

1-ne —(n—k+1)e,
1-—(n-1)e ~(n ~k + 2,

1-(n—k+1)e —nE,
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where the first number is in A, and the second number is in A,. In this way, we
represented the number 1 — (2n — k + 1)¢ as a difference of & pairs of numbers.
To get the additional n — k + 1 pairs, depending on the partition of A3, we can
represent 1 — (2n — k + 1)e as a difference of

l1-(2n-k+1)e — 0 or 1 - (2n-k+1)e,
1-(2n-k)e - € or l-e¢ = (2n - ke,
1-(n+1)e — (n-k)e or 1-(n—-k)e - (n+1

(f) The number of differences in AA that are between € and 2¢ or between 1 and
1-(2n+3)e depends on the partition of A;. In particular the number of elements
of As, that are in AA depends on the partition of A3, with the exception of
number of the differences 1 — (2n + 1)e and 1 — (2n + 2)e. The difference
1 — (2n + 1)e appears in AA n + 2-times, as the difference of the following

numbers
1-2ne -0
1 - (2n+1)e
1-2ne - € or 1—-¢ — 2ne
1-(2n—1)e ~ 2 or 1-2 — (2n-—1)e
1-(n+1)e - mne or 1-ne — (n+1l)e

Similarly, we can see that the difference 1 —(2n+2)e appears in AA n+3 times.
[ |

Now, let X be a feasible matrix for the relaxation (S7) of the instance AA, and

X=vvT
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and let v; be the row vectors of V, for i € AA.

Because of (b), for the differences i in AA, that are in the range (3n¢, 1 — 6ne) or
(6ne, 1 — 3ne), we have v; = 0. Note that because of the condition that n < 1—12n, the
intervals (3ne, 1 — 6ne) and (6ne, 1 — 3ne) form a continuous interval (3ne, 1 — 3ne).

Because of (c), in the relaxation (S}) for the numbers in A, we have the following

constraints:
Tol-¢ + Tt = 2,
Tp,1-2 + Te1-¢ T T2 = 3,
Zo,1-ne + Te1-(n-1)e T T2e,1-(n—-2)e + " ** T T(n-1)e,1—e T Tney = N+ 1.

We can therefore conclude that
Ue = U1-¢ = Vo,

Ve = V1-2¢ = Vo,

(3.29)

VUne = VUi_pne = Yo-
Because of (d) for numbers in A, we get:

T0,3ne + T1-3ne) = 2:

Lo,(3n-1)e + Tegne + Tl-e¢,l-3ne + T11-(3n=-1) = 4a

To,(2n+1)e T Te,(2n+2)e T T2e(2n43) T + T1-@2n42)e,1-e T T11-(m+1)e = 2(n +1).

(3.30)
We can combine (3.29) and (3.30) to conclude that
Usne = U1-3ne = Vo,
Y(3n-1)e = "-({3n-1)e = Yo,
(3.31)

Yiont1)e = U1-{2n+1)e = Vo-
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Because of (e), (3.29) and (3.31) for the numbers in A} we get:

Zo,1~(n+1)e + T(n+l)e,l = 1,

Zo,1-(n+2)e T T(n+2)e,) = 1,
(3.32)

To,1-2ne + Toney = 1.

Now, let us look at the equations we have for the elements of As. Because of (f)

we have:
To,1-(2n+1)e T Te,l-2ne + T2e,2n—1)e + **  + Tone1-¢ + T2n+1)e,l = N+ 2,
To,1—(2n+2)e T Te,l~(2n+1)e + L2e2ne -+ + Tnt1)e1-¢ + T2nt2)e,l = N+ 3,

Zo,1-(2n+3)e + Te1-(2n+2)e T T2e,(2n+1)e T * ** + T(2n+2),1-¢ T T(2n+3)e,1 =
=v(1 - (2n + 3)¢),

To,1-3ne + Tel-(In~1)e + ZT2¢,(3n-2)¢ +-0+ T(3n-1)e,1—¢ + L3ne,1 = U(l - 37!6).

Using (3.29), (3.31) and (3.32), we have

T(n+1)e,i-(n+1)e = 0,
T(n+1)e,1-(n+2)e + T(n+2)e,1~(n+1)e = V(1 — (2n + 3)¢) — (n — 2) — 6,

T(n+1)e,1~(n+3)e T T(n+2)e,1-(n+2)e T T(n+3)e,1-(n+1)e = V(1 = (2n + 4)e) — (n — 3) - 8,

T(n+1)e,1=(2n-1)e T T(nt+2)e,1-@2n-2e T ' + T(2n-1)e,1-(n+1)e = V(3n€) —2n — 1,

(3.33)
Now, we can look at the equations

To1—(n+1)e + L(n+1)e,l = 1,

Z0,1-(n+2)e + T(n+2)e1 = 1

from (3.32) and the equation

I(n+l)t,1—-(n+2)c + T(n+2)e,l—(nt1)e = U(l - (2ﬂ + 3)5) - (n - 2) -6
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from (3.33). We can see that if the differences (n + 1)e and (n + 2)e¢ are either
both in F or both in G*, then v(1 — (2n + 3)e¢) — (n — 2) - 6 = 0 and otherwise
v1-(2n+3)e)-(n-2)-6=1.

We can now apply Lemma 3.8 to conclude that vny1)e = v(nt2)e and vi_(ni1)e =
U1_(n+2)e iD the first case and Un41)e = Vi—(n+2)e 30d V1_(n41)e = U(n+2)e iD the second
case.

Now, we can plug in the obtained values for the vectors v(ni1)e; Yn+2)er Vi-(n+1)es
Vi-(n+2)e iNto the third equation in (3.33) and apply the lemma again.

Working our way from top, using the Lemma 3.8 we can conclude that the vectors
assigned to each number of F are identical and that the vectors assigned to each
number of G are identical. [ ]

3.4 Examples that can be solved by the backtrack-

ing procedure in polynomial time

In this section we assume that the multiset AX is a set, i.e. that all the differences
are different, and the instance AX has a unique solution.

We say that the Skiena’s et al. algorithm, described in Chapter 1, has order &k on
an instance AX of the turnpike problem, if k is the maximum number of steps the
algorithm backtracks, i.e. if we assume that an element a is in a solution set X that
the algorithm is currently constructing, we need to put k£ — 1 more elements in the
set X before we can conclude that the assumption that ¢ € X was incorrect.

We say that the backtracking algorithm has order 0, if at any execution step we
can conclude that either a or djs — a is in the solution set X that is currently being
constructed, for a the largest difference that is in the difference set AX, but is not in
the difference set of the partial solution set X, and dj is the largest element of AX.

In this section we prove that if for an instance AX of the turnpike problem that
has a unique solution and all the numbers in AX are different, the backtracking
procedure has order k, then the instance AX is solved by the relaxation (Si41).
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This result is not surprising because the relaxation (Sg.,) operates with the (k+1)-
tuples of differences from AX' and therefore has the capability to see k steps ahead
in the backtracking procedure.

The following theorem is also important because for the above described instances,
if k is a constant that does not depend on the size of the instance, our relaxation has
polynomial size and therefore also runs in polynomial time.

First we prove the following lemma:

Lemma 3.10 Let Y be a feasible matriz for the relaration (Si) of the instance AX
of the turnpike problem. Let

Y =vvT,

and let vg, .. 4, be the row vectors of V, for any proper index {d;, ...d;,}. If for any
two differences d,,dp € AX'

V0..0ds = Y0..0dy1 (3.34)

then

V0...0dady = V0...0d,

and

Ud, ..di_ da = Vd;;..di,_ dy
for any proper indez {d;, ...d;,_,}.

Proof: The lemma follows from the mixing constraints for the relaxation (S;). Na-
mely, we have

2 _
(vo...Od..d,, - vo...oa,,) = Y0...0d,dy ,0...0dady — 2y0...04.,d5,0...0¢l, + Y0...0d, 0..0d, =

= 10...00dg,0..0dy — 2Y0..0d 0.0y + Y0...0dy,0..0dy =

= 10...00da 0..0dy — 2U0...0ds 0...0dy + ¥0..0d, 0..0dy =
=0
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because
Y0...0dy,0..0d, = V0...0dy V0..0d, =
= Vo...0dy Vo...0ds =
= Y0...0dy,0...0d, -
Similarly,

2
(Vaiy iy do = Vi, iy dy)" = Ydiy oy daiy iy da — 2Ydky .., da iy oty dp T
+ yd‘l"'d‘h—ldb'd‘l eollip_ b =
= Yd, .y, 00..0ds — 2Ydi..di,_,00..0dady T Ydiy..di, _,0,0..0,

= V4, .di,_, (V00..0d — 2V0..0dady + Vo...0ds) =
=0

because of the first part of the Lemma. [ |

The key part of the proof of the main result of this section is the following lemma:

Lemma 3.11 Let AX be an instance of the turnpike problem and let us assume that
all the differences in AX are different and that the instance AX has only one solution.
Let us assume that we know that the numbers z, > --- > 1, are in the solution
set X and let us assume that the backiracking procedure positioned the numbers b, >
--=> b in X, and the next to be positioned is c.
Let Y be a feasible matriz for the relazation (Sk.y) of the instance AX, and assume
that the row vectors of V satisfy

Yg...0z; = Vo..0x,-
Then, if u — v =c, u,v # 0, dpr, where djy is the largest number in AX,

Yur0..0,2,5,..5, = 0.

Proof: Since c is the largest unpositioned difference, in the equation

u—v=c,
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u and v can not both be in the set

{1.'1,... ,z,,bl,... ,bk}.

If w = dy — z; or u = dpy — b; then obviously

Yur0..0.z1;..b, = 0.

because of Lemma 3.10 and because the differences are unique, so the pyramid con-
straints can be written for the differences z; and dpy — z; or b; or dps — b;.

Similarly, the lemma holds if v =dp — z; or v = dp — b;.

If u = b; — bj or v = b; — b;, the lemma holds since the difference b; — b; appears
exactly once.

We have to examine three other possibilities:
lLLu=b-ziandv=0b; -z,

2. u=bj—z;and v =1,

3. u=band v =b; — ;.

For Case 1 we have

Yuv0...0,0;..0x 3 = 07 (335)

because b; —u = z; so the above equation is just a pyramid constraint in the relaxation
(Sk+1). Now because of Lemma 3.11 the claim follows from (3.35).

Case 2 can be shown in the same way.

For Case 3 notice that

Yuv0..0,61..0ez; = 0,

because b; — x; = v so we can conclude that the lemma holds in the same way as in
the Case 1. ]

Now, we are ready to prove the main theorem of this section:
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Theorem 3.12 Let AX be an instance of the turnpike problem and let us assume
that all the differences in AX are different and that the instance AX has only one
solution. If the Skiena’s et al. backtracking procedure has order k on the instance
AX, then the relezation (Sk.1) solves the instance AX.

Proof:

Let Y = VV7 be a feasible matrix for the relaxation (Si.,) of the instance AX
and let v;, 1 € AX be the row vectors of V.

Assume that the backtracking procedure has constructed a partial solution set
X = {z, > --- > z;}. We prove by induction on [, the number of elements in X, that
all the vectors assigned to the elements of the partial solution set X are equal, i.e.
that

V0.0 = Vzy0..0, fori € {1,...,1}

The above statement is obviously true when [ = 1.

So assume that the statement is true when there are ! elements in the partial
solution set X.

Assume that the backtracking procedure extended the partial solution set X by
the numbers B = {a > b, > - -+ > bi_,}, making c the largest unpositioned difference.
Also assume that the backtracking procedure can not extend the set X U B by c or
dyr — c. We prove that then y:,40..02,00..0 = 0 and Yy, —z,dps—a0..0,dy ~21dpr—a0..0 = 0
and therefore by using Lemma 3.8 we have that vz,0.0 = v4,,-q0..0. Similar argument
holds if the number of elements of the set B is less than k.

If the backtracking procedure can not put ¢ in X U B that means either that for
some element z € X U B, the difference z — ¢ does not exist or that there are two
identical differences 2, — ¢ = 2, — 23, for some z,,23,23 € X U B.

Then because of Lemma 3.10 for the elements of the matrix Y we have

Yeo..0,aby..by_yz1 = 0 (3.36)

and

ydM —CO...O,dbl ...b,,..;zl = 0' (3-37)
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If we now look at the equation for the difference ¢

Voco..0 + Z Vuv0...0 + Vdprdpg—c0..0 = V0.0
u—-v=c
u#0m
and multiply it by vz, 4,..5,_,, because of Lemma 3.11 and (3.36) and (3.37), we can
conclude that

Vzriaby..b; = 0. (3.38)
Next, we prove that
Uz, aby...be_2dpg ~bg—, = 0- (3.39)
This is obviously true if the set X can not be extended by the elements {a, by, ... ,dy—

be—1}. If this is not the case, we can prove (3.39) similarly as (3.38), using the equation
for some difference d, which is next to position if we put the difference dy; — bx_, in
the partial solution set.

Now, we can muitiply the equation for by._,

Vb 0.0 + E Vuv0..0 + Udprdpy—be-10..0 = V0.0
u—v="by_,
u#0,dy
by vz,as,..5,_;0 and use Lemma 3.11 and equations (3.38) and (3.39) to obtain that

Uzlab,...b,,_,o =0.

Now,

Vziaby...dps —bp_20 = 01

because otherwise we can put dps — b;5 in the partial solution set X and in the same
way as above conclude that

va:;nbl wdpr -bk_zbi_l = O!
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and from there that

v:labl.ndu—bk_go =0.
After repeating this process k — 1 times, we can conclude that
vIlﬂo...o = 0- (3.40)

If the procedure backtrack less than k steps, we also can conclude (3.40) by same
reasoning.

Similarly, by regarding the mirror image of the partial solution set X we can
conclude that

Vdpy—z,dp—-a0..0 = 0. (3.41)
Also, note that
Vz,0..0 + Vdpy—2,0..0 = Vp..0 (3.42)
and
Vao...0 + Vdyy—20..0 = Vp...0, (3.43)

s0 we can use Lemma 3.8 to conclude that

Vz210..0 = Ydy —a0...0

This proves that the vectors assigned to the numbers of a partial solution set of
size | + 1 are identical. [ ]



Chapter 4

Heuristics

4.1 Introduction

In this chapter we show how to develop heuristics for solving the turnpike problem,
based on the theoretical results of Chapter 2.

In the first section we describe a heuristic that is based on the relaxation (S;). It
also uses cuts from the relaxation (S,} and a rounding technique.

In the second section we show how the relaxation (S)) can be used to reduce the
number of backtracking steps of the backtracking procedure of Skiena et al.

4.2 Introducing cuts from (S,) into (S))

As we show in Chapter 5, the instances that are not solved by their relaxation (S,)
seem to be rare and we only need to add a couple of constraints from (S;) to the
relaxation (S5)) to solve these instances.

Also, for an instance AX of size m, a feasible point of its relaxation (S)) is an
(m + 1) x (m + 1) size matrix and there are O(m) constraints in the definition of
(S51). The relaxation (S;) of AX is much larger; a feasible matrix for (S;) is an

"'(1'2‘“) X '"("2”’” matrix and there are O(m3) constraints in the definition of (S>).

Therefore an implementation of (S;) is much more computationally demanding than
an implementation of (S;).

80
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Therefore, we develop heuristics that would be based on (S;) with additional cuts
from (S,) for solving the turnpike problem.

When developing the heuristics based on the relaxation (S;), we assume that the
variable 299 = 1. This makes feasible matrices belonging to the solution sets 0 — 1
matrices.

Semidefinite program solvers are based on interior point methods and although
a feasible region of a semidefinite program might be a convex combination of 0 — 1
matrices, the solver might output a matrix that is not a 0 — 1 matrix as the optimum.
Therefore, we have to choose an objective function for (S;) that guarantees that if
the feasible region for (S)) is a convex combination of 0 — 1 matrices, the optimum is
a 0 — 1 matrix. For a given instance AX, where

AX'={d, <dy < --- <dy}

one such objective function is

M
ZQ'I,‘i'd‘.. (41)
=0

To see this, assume that that the optimum is achieved for a vector (ay, ... ,a)T,

where 0 < ar < 1. Then since we assumed that the feasible region is a convex hull
of 0 — 1 matrices, we have that

a | [ 8 | [y ]
=y ) + (1 —am)
ap-1 Brr-1 YM-1
! Qg ] ] 1 ] i Q

Now we show that the value of the objective function (4.1) on the vector (fo,...,
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Bum-1,1)T is greater than the value on the vector (ay, ... ,ay)T. This is because
M-l M-1 _
2M + Z Bi2' > 2M + 2 apfBi2 =
1=0 i=0
M-l
= QM2M +(1- CIM)2M +ay Z Bi2' >
i=0

M=1 M
>ap(@Y+ Y B2)+(1-au) ) %2 =
=1

=0
M
= Z a; 2"
i=0
Now, we can see that the other coordinates of the optimal vector have to be 0 or
1 in the similar way.

If the optimal matrix of the relaxation (S)) is not a 0— 1 matrix, we can introduce
cuts from (S;) into the relaxation (S,). We can add four main kinds of constraints:

(i) For each pyramid constraint zog, 4,4, = 0, where d;,d;,dx € AX', in (S;), we
can add the following two constraints to the relaxation (5))

Tdid; + Td; d; + Tdpdy < 2,

Tdid; + Tdidy + Taj 0, < 1.
J ]

These constraints hold for a 0 — 1 matrix that is feasible for (S;), because if

Tod; d;4, = 0, at most two of the differences d;, d;, di can be in a solution set.

Also for a pyramid constraint of the type z,, d;dedy = 0, where d;, d;, di, dy € AX,
we can add the following constraint to the relaxation (S;)

T4, 4; + Zg;.d; + Zdp dy + T g, <3
Ta,d; + Tdidy T Tdidy + Tdj i + Tdj by + Tdpa, < 3.
These constraints hold for a 0 — 1 matrix that is feasible for (S;), because if

T4,d;d,d; = 0, at most three of the differences d;, d;, d, d; can be in a solution
set.
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(ii) Let X, be a feasible matrix for the relaxation (S;) and X, be a feasible matrix
for the relaxation (S;) of an instance AX. Since X, is positive semidefinite,
there exists a matrix V' such that

X, =vvT,

Let vyq;, for di,d; € AX', denote the row vectors of V. Then for every con-
straint in the relaxation (S,) of the type

Y Tas = vldi)Tog
dg,dy € AX!
do - dy = d;

there is a corresponding relation between the row vectors of V. Namely, we have
Y. Ve = v(di)voe (4.2)

da,dy € X'
do —dp = d;

This easily follows from the constraints of (S,), by looking at the expression
() vad — vidivw)

do,dy € &X'
dy ~dy =d;

and using the pyramid equalities to evaluate it to 0.

The equation (4.2) can be multiplied by any other row vector of V, to obtain a
constraint on the elements of the matrix X;. This constraint obviously already
holds for the elements of X;.

Assume that there exist a vector vy, d; € AX'’ such that for any vector vy, 4,
dy — dy = d;, dg,dy # 0, dg,dy # dy, we either have that vy, 4,004, = 0, or
dn = dj or db =dj.

We can multiply the equality (4.2) by the vector vqg; to obtain a constraint that
holds for the elements of X,

Zod; 0d; t Td; d; +d;,0d; + T0dps—di,0d; = T0d;,0d; 1
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when d) = d; or

Tod, 0d; + Idj d;—d;,0d; + Iy dag —d;,0d; = x0dj ,0dj
when d, = d;.
This constraint can easily be translated into a constraint for (S)):
Td; d; + Td; d;+d; + LTdpg~diyd; = Tdjd;s

or
Taid; + T di—di t Tdy-did; = Tdj ;-

For example if AX = {28,26,25,23,...} the constraint for the difference 23 in
the relaxation (S,) is

To2s + T225 + Tazs + Tsps = 1,

from which in the above described way we can obtain another constraint valid
for (5,):

To21 + T225 + Ia5 = I22.

because of the pyramid constraint 32692 = 0 in (S).
Also, if

2 Vd,dy = Voo, (4.3)

dg,dye D

for some subset D of AX’, we can multiply (4.3) by one of the summands vy, 4,
in (4.3), to obtain a pyramid constraint z4,4, 4,4, = 0, for ds,dy € D, d, # d,
and d, # d,. We can add these pyramid constraints to the relaxation (S;), as
described in (i).
If

Vo, + Z: Vd,dy, + Vod, = 2vgg, (44)
da,dy€D
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for some subset D of AX’, we can multiply (4.4) by v4, 4, to obtain a pyramid
constraint z, 4, 4.4, = 0, for d;,dy € D, d, # d,, and dy # d,. We can add these
pyramid constraints to the relaxation (S;) too, as described in (i).

Note that the last two types of constraints are just the regular pyramid con-
straints if (4.3) and (4.4) are of the type (4.2). We need these constraints because
a heuristic which we will construct maintains a list of constraints which hold for
AX and partial solution set that is being constructed. The list is updated at
each execution step.

(iii) If in (S,) for some row vectors of V' the following holds

{

2 Uodia = jUOOs

a=l

then for the variables of (S5;) we have

> tuan= () w9

a>b=1

This follows from
!
(> voa,, — juo0)? =0
a=l

by evaluating the right hand side of the above equation and using the pyramid
constraints from (Sz).

We can therefore add the constraint

! .
Z Id;“ iy = (;) .

a>b=1

to the definition of (S;).

(iv) In (S3) we have that

Tdid; dedy < Zod; dydy S T00.dpdy; < T00,0d; -
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These constraints can be used to obtain constraints on the variables of (S, ), from
any constraint from (S;) which represents a variable zg4; o4;, for d;,d; € AX',
as a sum of some other variables of (S,).

Now, we can use {i}-(iv), to construct a heuristic for solving the turnpike problem.
The heuristic first checks if the relaxation (.5;) solves the given instance. If not, it adds
the pyramid constraints as described in (i), and checks if the new relaxation solves
the instance. If it does not, the heuristic starts adding constraints described in (ii)
and (iii) until it obtains a 0 — 1 solution that corresponds to a solution of the instance
or concludes that it can not proceed, at which point it outputs the partial solution
set it constructed up to this step. The heuristics maintains a list of constraints and
a list of differences in a partial solution set that it is constructing. At each step it
constrains the variable corresponding to the largest unpositioned difference to be 1.
Then it recomputes the list of the positioned differences and the list of constraints
and applies (ii) and (iii) to obtain more constraints from the updated list.

Now, we give the heuristic:

Given an instance AX of the turnpike problem, where
AX' = {d]_ <dy < "'<dM}
and the size of AX = (}):

1. Write and solve the relaxation (S;) of the instance AX with the objective func-
tion (4.1).

(8]

. If the solution is a 0 — 1 matrix, output the solution and stop. Otherwise
initialize the set of differences S that are set to 1 or 0 to be the empty set.
Initialize the list of constraints to the equality constraints in (S;). Update the
list of constraints. If in the set S there are n elements whose indicator variables

are set to 1, output the sclution and stop. Otherwise continue with Step 3.

3. Add the pyramid constraints from (S), as described in (i) above, to the relax-
ation (S)) and to the list of constraints. Solve the new relaxation.
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4. If the solution is a 0 — 1 matrix output the solution and stop. Otherwise add the
constraints described in (ii) and (iii) to the relaxation and the list of constraints.
Update the list of constraints. Solve the new relaxation.

5. If the solution is a 0 — 1 matrix, output the solution and stop.
Otherwise
Set the indicator variable z4, 4, of the largest unset difference to 1.
Solve the new relaxation.
If the relaxation is feasible:
Add d; to the set S.
Update the list of constraints.
If in the set S there are less than n differences whose indicator
variables are set to 1, solve the new relaxation and go to step 4.
If the relaxation is not feasible
Set Tay—d; dpg~a; t0 1.
Solve the new relaxation.
If the relaxation is feasible:
Add dys ~ d; to the set S.
Update the list of constraints.
If in the set S there are less than n differences whose
indicator variables are set to 1, solve the new
relaxation and go to step step 4.
If the relaxation is infeasible, output the elements of
the set S and stop.

To update the constraints we repeat the following until no further changes to the
list of constraints are possible or inconsistency is found:

If z4,.4, is set to 1, for every constraint in the list, replace any occurrence of 24,4,
by z4,4; for d; € AX’. If in any constraint the value of one or more variables is 1,

subtract them from the value on the right side. If there is a new constraint of the
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type

k
sz"c iy = 0’
=1

put the differences d;,, for / = 1,... ,kin S and in any constraint erase the summands
of the form Td;, dy» forl=1,... ,kand j € AX".
If there is a new constraint of the type

k
Y Ta 4, =k,
=1

put d; in S and set x4, 4, to lforl=1,... k.

If an inconsistency is found, print out a message and stop.

This heuristic is used to solve some instances in Chapter 5. It was noticed that
only one iteration of step 4 was sufficient to solve instances that we examined.

4.3 Using the relaxation (5;) in conjunction with

the backtracking procedure

The backtracking procedure by Skiena et al. takes into account only a certain number
of differences at any given time during the execution, whereas the relaxation (S,)
treats all the differences simultaneously.

We could therefore solve the relaxation (S)) at each step of the backtracking
procedure. If the backtracking procedure is currently positioning a difference d; and
if it can position d; in the partial solution set without creating a conflict, the relaxation
(:51) can serve as another check for the validity of that positioning. We can constrain
the indicator variables of the elements of the partial solution set that the backtracking
procedure is constructing and the indicator variable z4, 4, of the relaxation (S)) to be
equal to 1, and solve the relaxation. If the relaxation is feasible we put the difference
d; in the partial solution set and continue the execution of the backtracking procedure.

If the relaxation is not feasible, we bypass the backtracking steps and immediately
assume that the difference dps —d; is in the partial solution set. Again we can establish
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the feasibility of the relaxation (S;) under this new assumption. If it is infeasible, we
immediately backtrack.

This heuristic can be quite powerful, especially since the instances of the class
constructed by Zhang, [35], on which the backtracking procedure takes exponential
time, are solved by the their relaxations (S)), as shown in Chapter 3.



Chapter 5

Computational Results

5.1 Introduction

In this chapter we enumerate the instances of the turnpike problem for which their
relaxations (S}), (Si) and (S;) were implemented. The computational results show
that most of the examined instances are solved by their relaxation (S]) and the ones

that are not, have a feasible point of the form

k
Y= Mz, (5.1)
i=1

where, A\; > 0 and z; are 0 — 1 vectors for ¢ € {1,..., k}, but not necessarily charac-
teristic vectors of the solutions of AX. When implementing the relaxation (5]) and
(S1) we constrained the element yq ¢ of any feasible matrix Y for these relaxations to

be 1. That means that the combination (5.1) is a convex combination, i.e.

In particular we give five instances that are not solvable by their relaxation (S7)
and show how to use them construct classes of instances that are not solvable by the
relaxation (57).

We do not have an instance of the turnpike problem which is not solved by its
relaxation (S;).

90



CHAPTER 5. COMPUTATIONAL RESULTS 91

5.2 Result Description

The instances AX of the turnpike problem for which the relaxation (S]) was imple-
mented are

1. all AX containing 10 numbers, all of which are different and the largest differ-
ence in AX is less or equal to 21,

2. all AX containing 15 numbers, all of which are different and the largest differ-
ence in AX is less or equal to 24,

3. all AX containing 21 numbers, all of which are different and the largest differ-
ence in AX is less or equal to 28,

4. all AX containing 28 numbers, all of which are different and the largest differ-
ence in AX is less or equal to 31,

5. all AX is a difference of a set X that contains at most 13 elements and if we
sort the elements of X, the difference of two consecutive elements is at most 2,

6. the numbers of AX are chose randomly with uniform distribution and the size
of AX is less or equal to (¥) (about 10 000 instances).

Semidefinite programs are solved using SDPSOL, developed by Wu and Boyd, [6].
Although we encountered problems with the stability of the code, this package was
chosen because of the nice modelling language.

The computational results show that the relaxation (S} solves most of the above
enumerated instances AX, i.e. the feasible matrices Y for the relaxation (S}) of AX
are of the form

k
Y= Z’\iyiy;‘r ,
=1

where Zle M=1landforie {1,...,k}, A\; > 0 and y; is a characteristic vector of
a solution set X; of the instance AX.
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If the relaxation (S}) does not solve an instance AX for the instances we examined,
any feasible matrix for the relaxation (S}) of AX has the form

t
Y= z/\.-ziz?,
=1

where ZL, A =1andforie{1,...,1} A\ > 0and z are 0 — 1 vectors, but not
necessarily characteristic vectors of the solutions of AX.

We now list all the instances of the above enumerated examples which are not
solved by their relaxation (S7).

1. The set
AX ={1,2,3,4,5,6,7,8,10,11}

is not a difference set of any set X, but there is a feasible point for the relaxation
(S7) of AX. To see this let 2, and z; be vectors indexed by the elements of
AX. Let z; be 0 everywhere except on the positions 0, 4, 8, 10, 11, and let
z3 be 0 everywhere except on the positions 0, 3, 5, 10, 11. Then the matrix
Y = 0.5(z27 + 227) is feasible for (S}). This is easily seen if we construct
difference sets associated with 2, and z; and organize them in pyramids as
described in Chapter 1 and shown in Figure 5.1.

Figure 5.1: Difference sets of {0,4, 8, 10,11} and {0, 3,5, 10, 11}.

Now, in the pyramid associated with z; we have two 4 entries and no 5 entries,
and in the pyramid associated with 2; we have no 4 entries and two 5 entries.

Therefore the convex combination of the two is exactly AX.
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2. The set
AX ={1,2,3,4,5,6,7,8,9,10,11,12, 13, 14, 16,17, 18,20, 22, 23, 25}

is also not a difference set of any set, but there is a feasible point for the
relaxation (S]) of the instance AX. In order to see that, we just write the
pyramids associated with the points z; and z; as above

25
23 20
22 18 16
17 17 14 8
9 12 13 6 3

2]

23 22
14 20 18
13 11 16 12
7 10 7 10 11
3 4 6 1 9 2

2

Now we look at the number of times the elements of AX appear in the dif-
ference sets of the sets Z, = {0,5,9,17,22,23,25} (labelled z; above} and
Zy = {0,3,7,13,14, 23,25} (labelled z, above). In Table 1, we have all the
elements of AX, that either appear in the multisets AZ, and AZ, more than

once or not at all.

AZ|2(0}2
AZ; |012(0] 2
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Now it is easy to see that if 2; is the characteristic vector of Z, indexed by
the elements of AX, and z; is the characteristic vector of Z, indexed by the
elements of AX, that the matrix

Y= 0.5(ZIZT + zzz{)
is feasible for the relaxation (S]) of the instance AX.

3. The set

AX ={1,2,3,4,5,6,7,8,10,11,13, 14, 16, 17, 19, 21, 24, 25, 26, 27}

is not a difference set, but a feasible point of the relaxation (S]) can be con-
structed similarly as above, if we consider the following pyramids

27
25 26
20 24 21
17 19 19 10
6 16 14 8 7

1 5 11 3 ) 2
27
25 26
21 24 13
22
17 20 11 10
14 16 7 8 6
1 13 3 4 4 2

The elements of AX that appear in AZ, and AZ; more than once or not at all
are given in Table 2.

41511319
AZ,j0]2| 0
AZ, 2|01 2|0
Table 2
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4. The relaxation (S]) of the instance AX, where AX is the difference set of
X ={0,2,3,5,7,9,10,11,12,13,15, 16}

is satisfied by a point that is obtained in the same way as above and determined
by the pyramids:

12 11 12 11
10 10 10 10 10
2 8 8 9 8 9 9

11 11 12 12

22 7 7 8 9 10 10
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In Table 3 we give the list of elements of AX that appear in AZ; and AZ,
different number of times than in AX. The number of times these elements
appear in AX, AZ, and AZ, is also given.

2]3({4(5(8(9(10(11

AX ||[8|7(6]|6(4]4 3

AZ, | 7|8(5|7]5(3 2

AZ, 1 9]16[T7|5|3]|5 4
Table 3

5. The relaxation (S}) of the instance AX, where AX is the difference set of
X ={0,3,5,7,10,11,12}

is satisfied by a point that is obtained in the same way as above and determined
by the pyramids:

12
11 10
9 9 8
2
7 7 7 )
4 5 ) 4 3
2 2 3 2 2 1
12
11 8
10 7 7
22
7 6 6 5
5 3 ) 4 2

In Table 4 we give the list of elements of AX that appear in AZ, and AZ;
different number of times than in AX. The number of times these elements
appear in AX, AZ; and AZ, is also given.
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1{2|6]9

AX 121311

AZ |1(4]0](2

AZ, 13|2(2]0
Table 4

Note that
X, =1{2,4,57,11,12}
is another solution of the instance AX.

The relaxation (S2) solves all of the above instances. The relaxation (S,) is too
large for computational purposes, so we added constraints from (S.) to the relaxation
(S1)-

In fact the instances 1, 2 and 3 are solved by the relaxation (S,).

Let us now look at the instance 4. Assume that Y] is a feasible matrix for the
relaxation (S]) and Y; is a feasible matrix for the relaxation (S;) of that instance. It
is easy to see that the constraint for the difference 11 in (S]) can be reduced to

Yo, 11 + Y121 + Yisa + Yos = 2.
If V is a matrix such that
Yo =VVT,

and vq4; are row vectors of V' for d;,d; € AX', then the constraint for the difference

11 in (S,) can be written in terms of vectors vg,q4; as
Vg1 + U2, + Vis 4 + Vo5 = 2Up0-

We can multiply the above constraint by vs;; and use the pyramid equalities from
the definition of (S,) to obtain that

2,151 + Ns451 = 0.
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Using this constraint we can introduce cuts on S| as described in Chapter 4. The

cuts are

Y+ Y2 + s Hysn Y52 + Y2 <3, (5.2)

Va5 + Yaur + Yaus +Ys,n + Yss + Yias < 3, (5.3)
If we add these constraints to the constraints of (S}), the newly obtained relaxation
solves the instance 4.

Similarly, let Y; be a feasible matrix for the relaxation (S}) and Y, is a feasible
matrix for the relaxation (S,) of the instance 5. Again, let V' be a matrix such that
Y, =VVT,
and vy,4, are row vectors of V for d;,d; € AX'. The constraint for the difference 9 in

(S1) is
Yoo+ o+ t+ysz=1,

and therefore we have the following constraint
Vg9 + Uy,10 + V2,11 + V3,12 = VU,

for the vectors vgg, vy10, V2,11, V3,12 and vg9. We can multiply the above constraint
by vg,1, ¥o,11, vo,2 and vg 10 and use the pyramid constraints from the definition of (S;)
to obtain the following cuts on S}, as described in Chapter 4:

Yo + Yo + Y31 = Y11
You1 + Y211 + Y31 =Yun (5.4)
Yo2 +yYn2+us2 =1y,
Yo,10 + Y10,1 + Y3,10 = Yro,10-
If we add the constraints (5.4) to the constraints of (5]) the newly obtained relaxation
solves the instance 5.
For all of the above instances, the feasible points in their relaxation (S]) are of
the form

l
Z AiZiZ,I,

=1
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where Zf-=1 Ai=1land forie€ {1,...k}, \; > 0 and z; are 0 — 1 vectors that are not
necessarily characteristic vectors of the solutions.

If Y; is a feasible matrix for a relaxation (S.) of an instance AX of the turnpike
problem, and if

m
Y, = Z Aiui],
i=1

where 3 X\, =1 and fori € {1,...,m}, A; > 0 and u; are 0 — 1 vectors, then the
submatrix Y3 of Y3, determined by the diagonal elements 0d;, for d; € AX’, is of the
form

Z /\,’Sis;fr,

where s; are 0—1 vectors that are characteristic vectors of the solutions of the instance
AX.

To see this, we first prove the well known inequality between the arithmetic and
quadratic mean:

Lemma 5.1 Let z;, ¢t = 1,...,n be non-negative numbers and let
Z /\i.'L',' = k, (5.5)
i=1
Jor X >0,i=1,...,k and "5 N =1. Then
n
3 it > k2
i=1

and equality holds if and only if all the numbers z; are equal.
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Proof: From (5.5) we have

= ZA%z +2 Z Xidjziz; =

I<J-l
—Zu +Z,\ (\ —1)z? +2Zuz,x,
x<]—
_sz +Z Z Aidjz? +22 ANTT; =
i=1 j=1 icj=1
J#i
_sz + Z,\A (zi - z;)?,
i=l i<j=1

from which the claim of the lemma follows directly because }°7 ;_, Aid;j(zi —z;)* 2 0.
|
Now, we can prove

Lemma 5.2 Let X, be a matriz feasible for the relazation (S2) of the instance AX
of the turnpike problem. Let X? be the submatriz of X, determined by the diagonal
elements (X2)og, 04, for d; € AX. If

Xz = zm: ,\.-uiuiT,

i=1

where ) * A =1and fori € {1,... ,m}, N\, >0 and u; are 0 — 1 vectors, then

m
= T
= Z Aisis;
i=1

where vectors s; are characteristic vectors of the solutions of the instance AX.

Proof: Because of the way X7 is constructed, it is obvious that it is of the form

m
X? = E/\:y:y.T,
i=1
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for some 0 — 1 vectors y;, i € {1,... ,m}. We only have to prove that y; are charac-
teristic vectors of the solutions of AX.

For a difference d; € AX, we can look at the submatrix A of X, determined by
the diagonal elements (X3)q,q, ¢,4,, Where d; — d = d;. Because of the constraints in
(S2), the diagonal of A sums to v(d;), the number of times the difference d; occurs in
AX, and all the entries of A sum to v(d;)>.

Let U; = wu! forl € {1,...,m} and let z; denote the sum of the diagonal entries
of U;. Then because of the form of Y, we have

Zm: /\,‘.’L‘,’ = 'U(d,')
=1

and
m
Z Miz? = v(d;)?.
i=1
Now from Lemma 5.1 we have that ; = v(d;) for ! € {1,... ,m} and therefore for

a 0 — 1 matrix of the form
iyl

all the equality constraints of (S;) hold, so we can conclude that the vectors y; are
characteristic vectors of the solutions of AX. |

Since, we have no instance for which a feasible matrix of its relaxation (S;) would
not be a convex combination of 0 — 1 matrices, it is reasonable to expect that any
feasible matrix of its relaxation (S;) would also be a convex combination of 0 ~ 1
vectors in which case, because of Lemma 5.2, the instance would be solved by that
relaxation.

A class of instances which are not solvable by their relaxation (S,) can be obtained
from any of the instances 1-5, in a similar way in which new instances were constructed
from smaller ones in Chapter 3.

For example, for the first instance, i.e.

AX ={1,2,3,4,5,6,7,8,10,11},
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Let Q(z) be the generating function for the multiset AX U (—AX), Pi(z) be the
generating polynomial for the set {0,4,8,10,11} (this is the set associated with the
vector z, from the instance 1), and P,(z) be the generating polynomial for the set
{0,3,5,10,11} (this is the set associated with the vector 2z, from the instance 1), Then

QX) +5 = 3(R(D)P(™) + Pa(a)oa™)). 69)

The equation (5.6) can be multiplied by R(z)R(z™!), where R(z) is a polynomial such
that the coefficients of the polynomial R(x)P,(z) are 0 or 1 and the coefficients of the
polynomial R(z)P:(z) are 0 or 1. This condition is needed because it ensures that
the exponents of R(z)P,(z), R(z)Ps(z) respectively, form a set so we can construct
their difference sets. We have

(@UX) +5RE@RE™) = (A RE@PE)RE™) + Piz)Rz) Pz~ )R(z™)

= %(T1 (@)Ti(z7") + Ta(z)Ta(z ™)

for some polynomials T} (z) and T3(z) whose coefficients are 0 or 1.
Then if

@) + DRERE) = 3l +27) +m,
i=1

let AY be the instance that contains a; copies of number ¢, fori =1,... ,n.

Then, it is easy to choose polynomials R(z) such that the instance AY is not
a difference set. For example, if R(z) = 1+ Y. a;z* are the polynomials from
Theorem 3.6, i.e. if

a) > 3dy +1 (5.7)

and

6 >3a;_;+dy+1forie{2,...,n}, (5.8)

where d); is the maximum element of the instance 1, then the instance AY is not a
difference set. We can see this in the same way as in the proof of Theorem 3.6, by
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recognizing that the instance AY contains the instance 1, as a subproblem, and also
that the feasibility of the relaxation (S}) of the instance AY depends on the feasibility
of the relaxation (S}) of the instance 1.

However, the instances obtained from the instances 1 by using polynomials R(zx)
that satisfy (5.7) and (5.8) are solved by their relaxation (S;). This can be shown by
closely following the reasoning behind the proof of Theorem 3.6.

The instances which are obtained from instance 1, in the way described above and
using the polynomials that do not satisfy (5.7) or (5.8) were tested computationally,
but not extensively, so they still might be good candidates for the instances that are
not solved by their relaxation (S,).

Similar construction can be done if we start with the instances 2-4 instead of
instance 1.



Chapter 6

Other relaxations

6.1 Introduction

The two relaxations of the turnpike problem presented in this chapter were proposed
by A. Schrijver [29].

First, the turnpike problem is formulated as a 0 — 1 quadratic program, whose
semidefinite relaxation is too large for practical purposes. We use association schemes
and some other methods, to reduce the size of the 0 — 1 quadratic program to obtain
a semidefinite relaxation which is smaller and practically possible to solve by today’s

computers.

6.2 Formulation of the Relaxations

In order to simplify the exposition, we will assume that the given multiset AX is
a set, i.e. that the numbers in AX do not repeat. So, let n € N, m = (3), and
AX ={d, <d; <--- < dp}. Furthermore let

D=AXU(-AX),

V={1,...,n}

104
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and
A = {{u,v}|u,v € V,u # v}.
If the given AX is a difference set, there exists a function
f: V2R
such that

{f(u) - F(u)l(u,v) € A} = D.

First, let us look at the directed complete graph on n vertices whose vertices are
labelled by the elements of X, which is a solution of the instance AX, and whose
edges are labelled by the elements of D, such that an edge (u,v) is labelled by v — u.
Obviously all the elements of AX appear as edge labels. Figure 6.1 shows the directed
graphs obtained in that way from the set X = {0, 1,3, 8, 14,18} and its mirror image,
i.e. the set dp, — X.

0 18 18

14 17

310 5 1]

Figure 6.1: K|, labelled by the elements of AX.

Note that a function f that satisfies the above conditions can be obtained by
assigning any permutation of V to vertices of the above graphs and defining f(%) to
be equal to the label of the vertex to which i is assigned. For our example f could be
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given by:
fy=0 f1)=8 f(1)=0
fQ)=1  f(2)=3 f(2)=4
f@)=30r f3)=1lor f(3)=10
fly=8 f4)=18 f(4)=15

fG) =14  fB)=0 [f(5)=17
j@)=18 f(6)=14 [f(6)=18

Then there also exists a bijection g : A = D, such that

g(u,v) = —g(v,u), forallu,ve V,u#v
g(u, v) + g(v,w) + g(w, u) = 0, for all distinct u,v,w € V.

One such bijection is obviously g(u, v) = f(v)~ f(u), for any of the above functions

Let
H = {(a,d) € A x D|g(a) = d}.

Let y = x be a characteristic vector of H in Ax D. So, Ya,q) = 1 if the difference d
is realized on the arc a, and 0 otherwise. Then the turnpike problem (P) is equivalent
to the question of non-emptiness of the following subset of R*’(n-1)?*;

Yad)¥adz) =0, foreverya€ Aand d) #d, € D
Yay &) Yoz ,d) = 0, foreveryd € D and a, # a; € 4,

Z Y(ad) = 1, forevery d € D (Q2)
a€A

Z Yaa) = 1, foreverya € A
deD
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Y(-a,-d) = Y(ad), fOreverya€ A,de D
forevery h<i<jeVandeveryde D
Y((hg)d) = Z Y((h,i)e)Y((i)N)
e+ f=d

Yaa) € {0,1} for every a € Aand d € D

We now show that (@Q.) is a good formulation of the turnpike problem, i.e. that
for an instance AX, the points in (Q,) correspond to the solutions of AX.

Let AX be an instance of the turnpike problem of size (}), and let y be a feasible
point in Q. This point induces a labelling of the edges of a complete graph K|, such
that if y,,4) = 1, the arc a is labelled by the difference d, for e € A and d € D. Now
we can label the vertices of K, in the following way. We assign label 0 to the starting
point s of the arc that is labelled with the maximum difference. If the arc (s,1) is
labelled by the difference d we label the vertex i by d. It is easy to check that the
labels of the vertices form a solution set for the instance AX.

Again we can look at the matrix Y = x#(x*)7 to get the following relaxation of

(Q2):

Y(a,di),(ady) =0, foreverya€ Aand d, #d, € D
Y(a1,d),(az,d) = 0, for every d € D and a; # a3 € A,

Zy(a.d),(a,d) =1, foreveryde€ D
a€A

Zy(a,d),(a,d) =1, foreverya € A
deD (R2)
Y(-a,~d)-a,~d) = Y(a,d) (a.d), fOr everya € A,d€ D
forevery h<i<je€V and every d € D
Y((hg)d)((hog)d)) = Z Y((h.3),e)((i-9).1))
et+f=d

Y is positive semidefinite

The relaxation (R») is too big for computational purposes. Also, all the solution
functions f described above are equivalent, in the sense that they represent the same
solution set X. Let us therefore look at the matrix T which is the average of all
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matrices
n{n - NPTV (x")TP

where P ranges over all permutation matrices of A x D such that there exist a permu-
tation 7 of A and a permutation p of D, such that p(d) = d foralld € D or p(d) = ~d
for all d € D and P permutes ({u,v), d) to ({z(u), 7(v)), p(d)).

For each a = (u,v) € A, let x® € RY, be defined by:

x"(v) =1
x"(u) = -1
x*(w} =0, for w # u,v
For two arcs a,b € A, let
(s, b) = (x*)Tx".

Thus, ¢{a,a) = 2 and ¢(a,—a) = —2. If two arcs a and b are different and have
common starting or ending points then ¢(a, ) = 1. If two arcs are different and the
endpoint of one is the start point of the other, ¢(a,b) = —1. And finally, if two arcs
have no point in common, ¢(a,b) = 0.

The matrix T arises from different labellings of the graphs on Figure 6.1. An
element t(; 4) 3.) of T will be 0 unless arcs a and b in some permutation P coincide
with the directed edges labelled d and e. Therefore, t(, 4)s,¢) depends only on ¢(a, b)
and d and e, and there exists a number y, 4. such that for ¢ = —2,... ,2andd,e€ D

tad)(be) = Yolab)de-
Now, for all d,e € D and all ¢ = -2,...,2 the following holds
L. Yode = Ypeds
2. Yode = Yp—e,—d

3. Yspde = Y-d.d—es
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4. Yr4e =1, if e = d and 0 otherwise;
(To see that y, 44 = 1, note that the number of permutations of A x D in which
a fixed arc is labelled d is 2(n — 2)!.)

5. Yy-24 = 1, if d = —e and 0 otherwise;

6. Ypae=0,if d=-1,0,1 and d = Le;

7.1fdec Dandd+e ¢ D, then y_14, =0. Ifd,e,f€ Dandd+e+ f =0,
then y_14e = Y-160 = Y-1.045

8. Foreveryde D

Z Yode = 1;

eeD

9. Foralla€ Aand d,e € D,

Zf(a.nn(b.e) =1L

beA

We can summarize the above if we introduce the following notation. For ¢ =
-2,...,2,let Y, be the D x D matrix defined by

(Y¢)d‘c = Yode

for d,e € D. Let 1,4 be the number of b such that ¢(a,b) = ¢, where a is a fixed
element of A. Note that this definition does not depend on the choice of A. Then
re =71_3 =1, r =2(n - 2) because for a fixed a, we can choose an arc b that has the
same starting point as a in (n —2) ways and we can choose an arc b that has the same
ending point as a in (n — 2) ways. Similarly, 7_; = 2(n—2). Also rq = (n-2)(n-3),
because we can choose the endpoints of an arc that is disjoint from a in (n —2)(n - 3)
ways.
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Let P be the D x D permutation matrix that permutes d to —d for every d € D.
Then because of the above
Y, is symmetric
=1
Y.=P
PY¢P= Y¢, fOl‘¢= —2,... ,2
YoP=Y_,, foro=-2,...,2
2
Y reYe=J.
=-2

where J is the all-one matrix.

For ¢ = —2,...,2, let Ry be the A x A, 0-1 matrix such that (Rg)sp» = 1 if and
only if ¢(a,b) = . Note that R, = I, R_, = P, (n — 2)(n — 3)Ry is a permutation of
Y3, 2(n — 2)R, is a permutation of ) and 2(n ~ 2)R_, is a permutation of Y_,.

The matrices R_s, ... , R2, form an association scheme. It is easy to check that
they satisfy the definition of an association scheme. i.e.

l. R =1,

2. Ri=RT forie {-2,...,2}

3. TieaRi=J

A RR;=%2_ ,ofR forije{-2,...,2}
The eigenspaces of this association scheme are:

So = {z|Va,b € A:z, =z},
={z|3p: V 5> R: (p(V) =0 and Va = (u,v) : z, = p(u) + p(v)},

Sy ={z|3p:V = R: (p(V) =0 and Ya = (u,v) : £, = p(u) — p(v)},

S3={z]Va € A: T, =T_o;Yv € V : (6™ (v) O},
= {z|Va € A: 2, = —T_q;Yv €V : 2(6™(v)) = 0}.
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The eigenvalues \;, of Ry corresponding to the eigenspace S; are given in the
following table:

Eigenspace || R Ry Ry R, R_, dim
So 1 [20-2)|(n-2)(n-3){2(n-2)| 1 1
S 1| n-4 -2(n - 3) n—4 1 n-1
S, 1| n-2 0 -n+2 | -1 n—1
S, 1 -2 2 -2 1 gn(n —3)
Sy 1 -2 0 2 -1 %(n -1)(n-2)

Note that Ay 4 =, for each 4.

For every i = 1,...,4 we choose a vector u € S; such that ||u|| = 1. Let U be the
(A x D) x D matrix defined by

Ulad)e = o if d = €,and 0 otherwise
Let Z be the D x D matrix defined by
Z=UTTU.
So, Z is positive semidefinite and for the elements of Z we have

Zse =Y UnaraTadeolse.e =

abdeA
= Z UaYs(abh)d,cUd =
a,bEA
2
=Y Ypaeus"Rou=
$=-2
2
= z Ys.dedigs
¢=-2
and therefore
2
Z=Y MY

¢=-2
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This gives us four positive semidefinite constraints for combinations of Y.
Note that if we know the matrix ¥Y_; we know all the matrices Y.
Alsoifi=1lori=3, Ajg = Aj - for each ¢ and

2 2 2
ZP=Y ANgYoP=Y Mo¥o= ) Nyg¥y=12 (6.1)
$=-2

h=—3 =—2
s0 Zje = Z-4. for all d,e and the condition on positive semidefinitness of Z is
equivalent to that of a 3}D| x 1|D| submatrix.
Similarly, if i =2 ort =4, A\ 4 = — i - and

2 2 2
ZP = Z higYoP ==Y oV o=- E AigYe = -2 (6.2)
¢=—2 $=-2 $=-2
50 Zg, = —Z_4, for all d,e and the condition on positive semidefinitness of Z is

equivalent to that of a §|D| x 1|D| submatrix.

6.3 Implementation

In this section we show how to implement the above relaxation.

First note that matrices Y, for ¢ = ~2,... ,2 are indexed by the set D.

Because of the properties 1, 2, and 3 of the entries y, 4. of the matrices Yj,
¢ = —1, 1, these matrices have the following form

Y, = A B
B A
and
Y., = B A
A B
for some AX x AX matrices 4 and B.
Also,
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and
0o 1]
Y.=
2 [10-
and
C-
%=|©
CC_

for some AX x AX matrix C.
Now, because of (6.1) and (6.2), we have that
I+2n-2) A+ (n-2)(n-3)C+2(n-2)B=J
I+(n-49)A-2n-3)C+(n-4)B >0

I+(n-2)A-(n-2)B>0 (6.3)
I-2A+2C-2B>0
I-24+2B>0.

Also, for the elements of the matrices A and B because of the property 8 from the
previous section, we have

Y (@i +by)=1forjeAX
i€aX

(6.4)
Z 20,'1' =1.
i€AX
From property 7, if d,e€ Dand d +e & D, then ifd > 0and e > 0,
bd,e = 0, (65)
andifd>0ande<Qord<0ande >0
am,M =0. (6.6)

Ifd,e, f € Dand d+e+ f =0 then if the sign of f is different than the sign of 4 and

€,

biaje; = ayarif) (6.7)

bid e} = Gjet1f1-
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If the sign of e is different than the sign of d and f,

b1 = Gjay el (62)
by gt = el g1-

If the sign of d is different than the sign of e and f,
biel 111 = By el (69)
bret, 111 = @ya,|1-

We can now combine (6.3), (6.4), (6.5), (6.6), (6.7), (6.8) and (6.9) into a semide-
finite program (Rj3).

Next, we need to see that the program (R;) on an instance AX of a turnpike
problem is a relaxation of the problem, in the sense that all 0 — 1 solutions of (R;3)
correspond to the solutions of AX.

Because, of (6.4) we see that matrices A, B and C are not 0 — 1 matrices and we
will instead look at the matrices

A'=2(n-2)A,
B'=2(n-2)B,
C'=(n-2)(n-3)C.
We look at these matrices because if Y_; corresponds to a solution of a turnpike

instance of size n, from the above construction we can see that the entries of Y_, are

1

Now we prove that if A’, B’ and C’ are 0 — 1 matrices, the matrices Y, for ¢ =
—1,0,1 correspond to a solution of a turnpike instance.
The positive-semidefinite constraint from (Rj)

I+(n-2)A-(n-2)B >0,
can be written in terms of A’ and B’ as

D=2I+A-B>0.
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Now, the row of B’ indexed by the largest element M of AX must sum to 0 because
of (6.7), (6.8) and (6.9). Therefore because of (6.4), the elements of the row of A’
indexed by the largest element sum to 2(n — 2).

If the size of a solution set, n is 3, it is easy to see that if the matrices A, B’ and
C' are 0 — | matrices, that they correspond to a solution of the instance.

If n > 4, there exists an element x such that a,; = 1 and a,, = 1 for some
u,v € AX. But thenalsoa,_,;=1,0;-yz =1, b,z =1 and by, =1.

Now we look at the submatrix of D indexed by z, u, v and £ —v. This matrix has

the form:
2 1 1 1
1 2 ~b -
E - 13} 1 @2 bZ (6-10)
1 a,-bH 2 -1

1 a5, -1 2

where a1, a5, 8,5, are either O or 1 and a; +b; < 1, because of I + A'+C'+ B' = J.
Therefore, for the numbers a;, a;, b1, b, we have the following possibilities:

1. a1=0, (12=0,bl=0,b2=0;
2.21=0,a,=0,6, =1, =0;
3. al=0,a2=0,b1=0,bg=l;

4. a,=0,a;,=0,b =1 ,bp=1;

o

.a1=1,a=0,b=0,0, =0;
6.ar=1a,=06=0500=1,
7.6q1=0,a=1,56=0,5=0
8. a1=0,a=1,56=1,b=0;

9. al=1,02=1,b1=0,62=0.
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The matrix E is positive-semidefinite only in cases 5 and 7 above, which we verify
using some computational tool, such as matlab.

If we look at the submatrix of F indexed by z, u, v, z — v and z — u, this matrix

has the form
[ 2 1 1 1]
1 2 a a -1
E=11a 2 -1 a |, (6.11)
1l a0 -1 2 a4
i 1 -1 a3 a4 2 ]
where a; fori=1,... ,4is 0 or 1 and a; +a; = 1 and similarly a3 +a4 = 1. Again, we

use matlab to see that positive-semidefinetness of D implies that a; = a4 and a; = a3.

Hence, we showed that if a, , = 1 and a, . = 1, for some u,v,z € D, then either
yp = 1, 8geyz—y = 1, Oyzy =0 and g,y =0 0r ayz—y = 1, and @y—y = 1,
ayy,=0and a;_y ;- =0.

Therefore, the entries of the row of A’ indexed by the largest element of AX are
split into two classes, and they determine all the other elements of A’ and B'. We
show that the elements of each class determine a solution of the turnpike instance.
The solution determined by one class is obviously a mirror image of the solution
determined by the other class.

To see that each class determines a solution of the turnpike instance, let us assume
that one of the classes is Y = {zy,... ,2,-1}. Then because of the above a;, ;,_.;, = 1
for i > j, and because of (6.6) z; — r; € AX. Therefore, AY C AX. Now, because
of (6.4) we can see that each difference z; — z; in AY appears at most once, and
therefore AX = AY, which proves that the scaled 0 — 1 solutions of the relaxation
(R3) of an instance AX of the turnpike problem, correspond to the solutions of the
instance.

It is easy to construct 0 — 1 matrices A, B' and C’ that satisfy constraints (6.4),
(6.5), (6.6), (6.7), (6.8) and (6.9) but not positive-semidefinite constraints (6.3), that
do not correspond to a solution of an instance of the turnpike problem.

We also implemented the relaxation (Rj3) using the semidefinite program solver
SDPSOL [6]. Finding an instance that can not be solved by this relaxation is not
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hard. For example, the instance
AX ={1,2,3,4,5,6,7,8,9,10,11,12,15, 16, 18}

is not a difference set, but its relaxation (R;) contains a feasible point. The matrices A
and B that are feasible for the relaxation (R3) of this instance are convex combination
of 0 — 1 matrices A;, i =1,... ,kand B;, i = 1,... ,k, respectively These matrices
correspond to the solutions of subinstances of AX. It is easy to see that the equality
constraints of (Rj3) hold for these 0 — 1 matrices, as do the constraints

I-2A,4+2C;-2B; >0
I-24A,+2B; 20,
forie{1,...,k}.
The constraints
I+(n—4)A+2(n-3)C+(n—-4)B>0
I+(n-2)A-(n-2)B>0
do not hold for each pair of 0 — 1 matrices separately, but they do hold for the convex

combination of sufficiently large number of 0 — 1 matrices.

In this respect, the relaxation (R;) does not seem to be very powerful.

6.4 A Connection Between (R;) and (S))

To finish, we mention one more property of the matrices A’ + B’ and A' - B'. If
X = {0,zy,... ,Zn_1} is a solution of a turnpike instance AX, we call the sets X,
X-z,, X =1y, ..., X — z,- the streaks of X.

If A’ and B’ correspond to the solution X, then

A+ B =ugul +...+ua_jul_ —nl, (6.12)

where u; is the characteristic vector of size z,_, of the set that contains absolute
values of the elements of the set X — z;.
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Also
A =B =] +...4+ v 07 —nl, (6.13)

where v; is a vector of size z,,_.,, whose entries are 0,1, —1, and v; has 1 on the position
indexed by the difference z, — x), a > b, if z, — T} is in the steak X — z;. The vector
v; has —1 on the position indexed by the difference z, — x4, a > b, if —(z, — 1)) is in
the steak X — z;

Notice that the matrices ugu} and v,_,vI_, are submatrices of a feasible matrix
for the relaxation (S;).

This fact can be used to strengthen the constraints of the relaxation (R3), i.e. we
can constrain A' + B’ and A’ — B’ to be of the form (6.12) and (6.13), respectively.



Chapter 7
Conclusions

In this thesis we considered the turnpike problem. Although the major open question,
whether the problem is in the class P of problems solvable in polynomial time, is
open, we have presented methods for solving some classes of instances in polynomial
time. These classes include the class of instances constructed by Zhang, [35] on which
Skiena’s et al. backtracking procedure takes exponential time. There is no other
known class of instances on which the backtracking procedure takes exponential time.

Our methods are based on representing the turnpike problem as a 0 — 1 quadratic
program which is then relaxed to a semidefinite program that can be solved in poly-
nomial time. We represent the turnpike problem as a 0 — 1 quadratic program in three
different ways. For one such representation, we consider a sequence of semidefinite
relaxations similar to the sequence of semidefinite relaxations proposed and used by
Lovisz and Schrijver in [19] to construct an algorithm for finding maximum stable
sets in perfect graphs. We do not have an instance which would not be solved by the
second semidefinite relaxation in the sequence. We prove that there exists a polyno-
mial time algorithm for solving the turnpike problem on classes of instances for which
there exist a constant c, such that the instances are solved by the c-th semidefinite
relaxation in the sequence.

Finding instances for which the constant c is greater than two would be interesting
because Lovasz and Schrijver do not have a class of graphs for which the maximum
stable sets could not be found by a semidefinite relaxation which corresponds to the

119
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second relaxation in our sequence.

We also performed extensive numerical testing of our methods. Since we approach
the turnpike problem from the theoretical computing science viewpoint, our numerical
results are obtained by examining all instances with some given properties. It would
be interesting to see how our methods behave on the instances that arise from partial
digest experiments.
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