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In this paper we present a polynomial-time algorithm to solve the following
problem grven a non-zero polynomial fe Q[X] 1n one variable with rational
coefficients, find the decomposition of f nto irreducible factors mn QX7 It 1s well
known that this 1s equivalent to factoring primutwe polynomials feZ[X] mto
irreducible factors in Z[X] Here we call fe Z[X] primitive if the greatest common
divisor of 1ts coefficients (the content of f)1s 1

Our algorithm performs well in practice, cf [8] Its running time, measured 1n
bit operations, 18 O(n*?>+4 n°(log|f))*) Here feZ[X] 1s the polynomial to be
factored, n=deg(f) 1s the degree of f, and

Fox|=(Ze"

for a polynomial ) aX* with real coefficients g,

An outhine of the algorithm 1s as follows First we find, for a suitable small
prime number p, a p-adic irreducible factor h of f, to a certamn precision This 1s
done with Berlekamy’s algorithm for factoring polynomuals over small finite fields,
combined with Heusel's lemma Next we lock for the irreducible factor h, of f 1
Z[X] that 1s divistble by & The condition that h, 1s divisible by & means that h,
belongs to a certain lattice, and the condition that h, divides f 1mplies that the
coefficients of i, are relatively small It follows that we must look for a “small”
element 1n that lattice, and this 1s done by means of a basis reduction algorithm It
turns out that this enables us to determine h, The algorithm 1s repeated until all
wrreductble factors of f have been found

The basis reduction algorithm that we employ 1s new, and 1t 1s described and
analysed 1 Sect 1 It improves the algortthm given 1n a prelimmary version of [9,
Sect 3] At the end of Sect 1 we briefly mention two applications of the new
algorithm to diophantine approximation

The connection between factors of f and reduced bases of a lattice 1s treated 1n
detail 1n Sect 2 The theory presented here extends a 1esult appearing m [8,
Theorem 2] It should be remarked that the latter result, which 1s simpler to prove,
would 1n principle have sufficed for our purpose
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Section 3, finally, contains the description and the analysis of our algorithm for
factormg polynomuals

It may be expected that other irreducibility tests and factoring methods that
depend on diophantine approximation (Cantor [3], Ferguson and Forcade [5],
Brentjes [2, Sect 4A], and Zassenhaus [16]) can also be made nto polynomial-
time algorithms with the help of the basis reduction algorithm presented 1n Sect 1

Splitting an arbitrary non-zero polynomial feZ[X] into 1ts content and 1ts
primitwe part, we deduce from our main result that the problem of factoring such a
polynonual 1s polynomial-time reducible to the problem of factoring positive
integers The same fact was proved by Adleman and Odlyzko [1] under the
assumption of several deep and unproved hypotheses from number theory

The generalization of our result to algebraic number fields and to polynomials
in several variables 1s the subject of future publications

1. Reduced Bases for Lattices

Let n be a positive integer A subset L of the n-dimensional real vector space IR” 1s
called a lattice if there exists a basis by, b,, ,b, of R" such that

L= ) Zb= {Z b, rlel(l_ﬁ_zgn)}
1=1 1=1

In this situation we say that by, b,, ,b, form a basis for L, or that they span L. We
call n the rank of L The determnant d(L) of L 1s defined by
(11) d(L)=l|det(by,b,, ,b,)l,
the b, being written as column vectors This 1s a positive real number that does not
depend on the choice of the basis [4, Sect 12]

Let by,b,, ,b,cR" be hnearly mndependent We recall the Gram-Schmidt
orthogonahzation process The vectors b (1 =1=n) and the real numbers (1<)

i} ==

<15 n) are inductively defined by
=1

(12) b¥=b— Y, b,
Jj=1

(13) p, = (b, )BT, D7),

where (,) denotes the ordmary mner product on IR" Notice that p* 1s the
1—1 t

projection of b, on the orthogonal complement of ) Rb, and that
=1

1—1
Rb,
=1

1— 1 J=
= 21 Rp*, for 1 £1=n It follows that bY, b3, b} 1s an orthogonal basis of IR”
P

In this paper, we call a basis by, b,, ,b, for a lattice L reduced 1f
(14) lw |=1/2 for 1=j<iZn
and

(15) Y +u,,— bR P Z3DE 1P for 1<ign
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where || denotes the ordmary Euclidean length. Notice that the vectors b¥
4+, b¥ | and b¥ | appearlng in (1.5) are the projections of b, and b,_, on the

orthogonal complement of Z Rb,. The constant 3 in (1.5) is arbitrarily chosen,
=1

and may be replaced by any fixed real number y with 2 <y<1.

(1.6) Proposition. Let by, b,,...,b, be a reduced basis for a lattice L in R”, and let

b%,b%, ..., b be defined as above. Then we have

(1.7) |b112<2"1-lb*|2 for 1<j<i<n,
(1.8) dL)< ﬂ b, < 200 Di4. (1),
(1.9) lb1|§2‘” 4. g(LyMn,

Remark. If 2 1n (1.5) 1s replaced by y, with <y <1, then the powers of 2 appearing
in (1.7), (1.8) and (1.9) must be replaced by the same powers of 4/(4y—1).

Remark. From (1.8) we see that a reduced basis is also reduced 1n the sense of [9,
(N1
Proof of (1.6). From (1.5) and (1.4) we see that
B> =G~ pl ) b P 25 1b |
for 1<i=n, so by induction
bHP<2 b for 1<j<i<n.
From (1.2) and (1.4) we now obtain

1—1

b2 =p¥?+ Y ullbr
J=1

1—1
SIF+ D, 42 7IbE?
Jj=1
=(1+2(2'=2)- b}
<2 b2,
It follows that
b |><277 b} <271 b
for 1=j<i<n. This proves (1.7).
From (1.1), (1.2) it follows that
d(L)=|det(b}, b3, ..., b7

and therefore, since the b¥ are pairwise orthogonal
d(L)= H bl

From |b}|£|b,| and |b| <2~ V2. |b¥| we now obtain (1.8). Putting j=1 in (1.7) and
taking the product over 1=1,2,...,n we find (1.9). This proves (1.6).
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Remark. Notice that the proof of the inequality
(1.10) AL 1]1b)

=1

did not require the basis to be reduced. This is Hadamard’s inequality.
(1.11) Proposition. Let LCIR" be a lattice with reduced basis b,,b,, ., b,. Then
by |2 =27 x|

for every xe L, x=+0.

n n

Proof. Write x= 121 rb,= ;Zl rbf with reZ, rieR (1<i<n). If i is the largest
mdex with r,+0 then ¥,=r, so

Ixl? =72 [bF? z|b¥>.
By (1.7), we have |b,|><2'7!-[b¥|> 2"~ '+ |b¥|. This proves (1.11).

(1.12) Proposition. Let LCR" be a lattice with reduced basis bi,by,....b,. Let x
X3, ... X, €L be linearly independent. Then we have v

b2 <2 max{)x, %, x,0% ..o 1x, |*)

for j=1,2,...,t
Proof. Write x,= ) r b, with r, €Z (1<i<n) for 1Sj<t. For fixed J. let i(y)

[7he?

=1
denote the largest i for which r, +0. Then we have, by the proof of (1.11)
(1.13) x>z bk, 1>

for 1=£j=t Renumber the x, such that (1)< i(2)<... <i(t). We claim that F=Zi())
for 1<j<t Ifnot, then xy,X,, ..., x, would all belong to Rb, +Rb, + ... + Rp jl’ a
contradiction with the linear independence of x,,x,, ..., x,. From J=i()) and (1.7
we obtain, using (1.13):

b, <20 L bk [F 2 b [ <27 2
for j=1,2,...,t. This proves (1.12).

Remark. Let 44, 4,, ..., 4, denote the successive minima of ||? on L, see [4, Chap.
VIIL], and let by, b,,...,b, be a reduced basis for L. Then (1.7) and (1.12) casily
imply that

2L b2 2", for 1£i<n,
so |b|?* is a reasonable approximation of 4.
(1.14) Remark. Notice that the number 2! may in (LI1) be replaced by
max{lbll2/lb;“|2; 1 élén} and in (112) by max{|b}l2/!bl*|2 1 §]§l§n}

(1.15) We shall now describe an algorithm that transforms a given basis
by,b,,...,b, for a lattice L into a reduced one. The algorithm mmproves the
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algorithm given in a preliminary version of [9, Sect. 3]. Our description
incorporates an additional improvement due to J. J. M. Cuppen, reducing our

running time estimates by a factor n.

To initialize the algorithm we compute b;* (1=i=<n) and g, (1 <j<i=<n) using
(1.2) and (1.3). In the course of the algorithm the vectors b,,b,,....b, will be
changed several times, but always in such a way that they form a basis for L. After
every change of the b, we shall update the b and p,, in such a way that (1.2) and

(1.3) remain valid.
At each step of the algorithm we shall have a current subscript

ke{1,2,...,n+1}. We begin with k=2.
We shall now iterate a sequence of steps that starts from, and returns to, a

situation in which the following conditions are satisfied:

(1.16) <t for 1<j<i<k,

(117) 'bz*_l_lult—lbt*—llzz%lb:k~1|2 fOf 1<l<k‘

These conditions are trivially satisfied if k=2.
In the above situation one proceeds as follows. If k=n+1 then the basis 1s

reduced, and the algorithm terminates. Suppose now that k<n. Then we first
achieve that

(1.18) o] S5 if k>1.

If this does not hold, let r be the integer nearest to y,,_,, and replace b, by b,
—rb,_. The numbers ,, with j<k—1 are then replaced by Moy =Tl ,, and
Hy -1 bY - —7- The other g, and all b} are unchanged. After this change (1.18)

holds.
Next we distinguish two cases.

Case 1. Suppose that k=2 and
(1.19) D3 + 1 se— 1 b 117 <3IbE_ 7.

Then we interchange b, _, and b,, and we leave the other b, unchanged. The
vectors by and b and the numbers p, , _, ¢ , By Bage— 15 Mo fOr j<k--1and
for i >k, have now to be replaced. This is done by formulae that we give below. The
most important one of these changes is that bi_, is replaced by b + p, , _ biF_ 1380
the new value of [bif_,|? is less than 3 times the old one. These changes being made,
we replace k by k— 1. Then we are m the situation described by (1.16) and (1.17),
and we proceed with the algorithm from there.

Case 2. Suppose that k=1 or

(1.20) lbf+ﬂkk—1bf~1l2§%‘bf~1|z~
In this case we first achieve that

(1.21) |Mk1|§% for 1=jgk—1.

[For j=k—1 this is already true, by (1.18).] If (1.21) does not hold, let ! be the
largest index <k with |py| >3, let r be the integer nearest to u,, and replace b, by
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b, —rb;. The numbers g, with y <l are then replaced by w, —ru, , and y, by p,, —r;
the other u,, and all b are unchanged. This 1s repeated until (1.21) holds.

Next we replace k by k+ 1. Then we are in the situation described by (1.16) and
(1.17), and we proceed with the algorithm from there.

Notice that in the case k=1 we have done no more than replacing k by 2.

This finishes the description of the algorithm. Below we shall prove that the
algorithm terminates.

(1.22) For the sake of completeness we now give the formulae that are needed in
case 1. Let by, b,, ..., b, be the current basis and b, y1,; as in (1.2) and (1.3). Let k be
the current subscript for which (1.16), (1.17), (1.18), and (1.19) hold. By ¢, ¢, and v,
we denote the vectors and numbers that will replace b, bf, and p,, respectively.
The new basis ¢, c,,...,¢, is given by

Co1=b,, ¢=b,_,, c¢=b lor ixk—1k.
k-2
Since ¢f_, is the projection of b, on the orthogonal complement of Y Rb , we
=1
have, as announced:
ey =bf -1 b
[cf. the remark after (1.5)]. To obtain ¢f we must project bf_, on the orthogonal
complement of R¢f_ . That leads to
View—1 =0, - -1 6-1)
= g - bR 112/|Cf# 1‘2 >
r=bf_ = Vo1t
For i#k—1, k we have ¢f=b¥. Let now 1>k. To find v,, _, and v, we substitute
bE 1 =Viko Gy e}
b=l = tysm 1 Vinm DGy — a1 CF
=(bEIP NG 1) i — i 1 CF

1~1

in b,=b¥+ 3 u,b* That yields
=1

— #12 N 2% 2
Ve 1= My 1 V-1 HadBE e
Ve =Hog—1~ Mo g—1 -

Finally, we have

Vi1, My V= H—ay,

for 1Zj<k—1,and v, =y, if 1Sj<ign, {,j}n{k—1, k} =0
We remark that after the initialization stage of the algorithm it is not necessary
to keep track of the vectors b*. It suffices to keep track of the numbers |b*|?, in
addition to p,, and the vectors b, Notice that [cif|*=[bj_ 1*-[b}|*/lc¥_,[*> 1 the
above, and that the left hand side of (1.19), (1.20) equals [bj* +uf, . ,[bi_ 1>
The entire algorithm is represented in Fig. 1, in which B, ={b*{2.
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@

(*)

b} =b,,

oy =B b¥YB

b:“J =b,*—;1,1b;‘1‘ for j=1,2, ,i—1,} for =12, ,n,
B, =(b}, b

k =2,

perform (%) for I=k—1,

i B,<(3—i-1)Bioy, g0t0(2),

perform (x) for I=k—2, k—3, ,1,

if  k=n, terminate,

k =k+1,

go to (1),

io=f-1s B =B+ 0By, oy =48 /B,
B, =B,_,B,/B, B,_, =B,

() =62)

(’"k-u) :( “’”) for j=1,2, k-2,
My He—1,

(#lk—l) =<1 H""‘l)(o 1)(‘““) for 1=k+1,k+2, ,n,
e 0 1 1 - Mk

if k>2, then k =k-—1,

go to (1)

If |45l >3, then

r =integer nearest to u,, b, =b,—1b,,
iy = My — iy, for j=1,2, ,I—-1,
g =l =T

Fig. 1. The reduction algorithm

(1.23) To prove that the algorithm terminates we mtroduce the quantities

(1.24)

dl =det((bjn bl))l =niza

for 0 <1< n. It 15 easily checked that

(1.25)

t

d,= [] b3|*

J=1

521

for 0<:=n. Hence the d, are positive real numbers Notice that dy=1 and d,

=d(L)%. Put

n—1
D= [] 4,

1=1

By (1 25), the number D only changes 1f some b 1s changed, which only occurs m
case 1 In case 1, the number d, _ | 1s reduced by a factor <2, by (1 25), whereas the
other d, are unchanged, by (1.24); hence D 1s reduced by a factor <2 Below we
prove that there 1s a positive lower bound for 4, that only depends on L. It follows
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that there 1s also a positive lower bound for D, and hence an upper bound for the
number of times that we pass through case 1

In case 1, the value of k 1s decreased by 1, and i case 2 1t 1s mcreased by 1
Initially we have k=2, and k=<n-+1 throughout the algorithm Therefore the
number of times that we pass through case 2 1s at most n— 1 more than the number
of tumes that we pass through case 1, and consequently 1t 1s bounded This implies
that the algorithm terminates

To prove that d, has a lower bound we put

m(L)=mn{|x|* xeL,x=+0}

This 1s a positive real number For 1>0, we can mterpret d, as the square of the
determinant of the lattice of rank 1 spanned by b,,b,, ,b, 1n the vector space

>, Rb, By [4, Chap I, Lemma 4 and Chap II, Theorem I7, this lattice contans a
jnoln—zero vector x with |x|2<(4/3)¢~ 24! Therefore d,=(3/4y" " 2m(Ly, as
required

We shall now analyse the runnmg time of the algorithm under the added
hypothesis that beZ" for 1<1=<n By an arithmetic operation we mean an
addition, subtraction, multiplication or division of two integers Let the binary
length of an integer a be the number of binary digits of [g|

(126) Proposition. Let LCZ" be a lattice with basis by,b,, ,b,, and let BeRR,
B=2, be such that {b|*< B for 1 <1<n Then the number of arithmetic operations
needed by the basis reduction algorithm described n (1 15) 1s O(n*logB), and the
integers on which these operations are performed each have binary length O(nlogB)

Remark Using the classical algorithms for the arithmetic operations we find that
the number of bit operations needed by the basis reduction algorithm is
O(n®(log B)*) This can be reduced to O(n® **(log B)* "), for every ¢ >0, 1f we employ
fast multiphcation techniques

Proof of (126) We first estimate the number of tumes that we pass through cases 1
and 2 In the beginning of the algorithm we have d, < B’, by (1 25), so D < B"»~ 1/2
Throughout the algorithm we have D=1, since d,e Z by (1 24) and d,>0 by (1 25)
So by the argument 1n (1 23) the number of times that we pass through case 1 1s
O(n”logB), and the same applies to case 2

The mitialization of the algorithm takes O(n®) arthmetic operations with
rational numbers, below we shall see how they can be replaced by operations with
mntegers

For (1 18) we need O(n) arithmetic operations, and this 1s also true for case 1 In
case 2 we have to deal with O(n) values of [, that each require O(n) arithmetic
operations Since we pass through these cases O(n” log B) times we arrive at a total
of O(n*logB) arithmetic operations

In order to represent all numbers that appear 1n the course of the algorithm by
means of mtegers we also keep track of the numbers d, defined by (1 24) In the
mitialization stage these can be calculated by (1 25) After that, they are only
changed 1 case 1 In that case, d,_, 1s replaced by dy_, lcf_ \*/Ibf_|*=d,_,

lci_ ,1* [1n the notation of (1 22)] whereas the other d, are unchanged By (1 24),
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the d, are integers, and we shall now see that they can be used as denominators for
all numbers that appear:

(1.27) b¥2=d/d,_, (1Zi<n),
(1.28) d,_b*eLcZ" (1Zisn),
(1.29) dpueZ (15j<i<n).

1—1
The first of these follows from (1.25). For the second, we write b*=b,— Z Ayb,
with 4, eR. Solving 45, ...,4,,_, from the system =t

(b,b)= Z Ab,b) (1=I=i—1)
J=1

and using (1.24) we find that d,_, 4, €Z, whence (1.28). Notice that the same
argument yields

1—1
—l(bk_ Zukjbj‘>el" for i<k;
=1

this is useful for the calculation of b} at the beginning of the algorithm. To prove
(1.29) we use (1.3), (1.27), and (1.28):

J,LtU d(bv J)/(b* b*) d_} 1(b17 1) (bt’d1~1b;k)ez‘

To finish the proof of (1.26) we estimate all integers that appear. Since no d, is
ever increased we have d,<B' throughout the algorithm. This estimates the
denominators. To estimate the numerators it suffices to find upper bounds for
[bF1%, b, and |, |.

At the beginning we have |b*|2<|b|2<B and max{|b*|*:1<i<n} is non-
increasing; to see this, use that |cf_,|><2[b¥_|* and |c}|> = |bf_,|? in (1.22), the
latter inequality because cf is a projection of bf_,. Hence we have [b*|?<B
throughout the algorithm.

To deal with [b|* and p,, we first prove that every time we arrive at the
situation described by (1.16) and (1.17) the following inequalities are satisfied :

(1.30) |b|*<nB for i=k,

(1.31) |b |2 <n*(4B)" if  k#+n+1,

(1.32) TS for 1<j<i, i<k,

(1.33) lu, | £ (nB)'? for 1<j<i, i>k,

(1.34) i | S2"HnB"~ Y2 for 1<j<k, if k#+n+1.

Here (1.30), for i<k, is trivial from (1.32), and (1.31) follows from (1.34). Using that
(1.35) HoSIb 0¥ =d,_ |bJ*/d, < B '|b,)?

we see that (1.33) follows from (1.30), and (1.32) is the same as (1 16). It remains to
prove (1.30) for i >k and to prove (1.34). At the beginning of the algorithm we even

have |b|><B and 1l £ B, by (1.35), so it suffices to consider the situation at the
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end of cases 1 and 2 Taking into account that k changes in these cases, we see that
i case 1 the set of vectors {b, 1k} 1s unchanged, and that in case 2 the set
{b, 1>k} 1s replaced by a subset Hence the nequalities (1 30) are preserved At
the end of case 2, the new values for y,, (f k+n-+1) are the old values of p, , , 5 SO
hete (1 34) follows from the inequality (1 33) at the previous stage To prove (1 34)
at the end of case 1 we assume that 1t 1s valid at the previous stage, and we follow
what happens to ,, To achieve (1 18) 1t 15, for j<k—1, replaced by p, —rp,_, ,
with r| <2{g;- | and |, | =3, s0

(136) ity = Pl ) S|+ 1ty -4
§2n-—k+ 1(an—1)1/2 by (1 34)

In the notation of (1 22) we therefore have
lvk_lJl.g?."‘““”(nB”‘1)”2 for j<k—1

and smnce k—1 1s the new value for k this 1s exactly the mequality (1 34) to be
proved

Finally, we have to estimate |b|? and g, at the other pomts in the algorithm
For this 1t suffices to remark that the maximum of {u; |, {ttals 5104 k— (| 18 at most
doubled when (1 18) 1s achieved, by (1 36), and that the same thing happens in
case 2 for at most k—2 values of I Combinmg this with (1 34) and (133} we
conclude that throughout the course of the algorithm we have

| S2" mB ™ )Y for 15j<iZn
and therefore
b <n*@B)" for 1Zi1<n

This finishes the proof of (1 26)

(137) Remark Let1Zn <n If k, m the situation described by (1 16) and (1 17), 1s
for the first time equal to n' + 1, then the first n’ vectors &,, b,, ,b, form a reduced
basis for the lattice of rank »’ spanned by the first ' vectors of the mitially given
basis This will be useful in Sect 3

(138) Remark It 1s easily verified that, apart from some minor changes, the
analysis of our algorithm remains valid if the condition L CZ" 1s replaced by the
condition that (x, y)e Z for all x, ye L, or, equivalently, that (b, b )e Zfor 1 £1,)<n
The weaker condition that (b, bJ)e Q, for 1 =<4, 7= n, 15 also sufficient, but 1n this
case we should clear denominators before applymg (1 26)

We close this section with two applications of our reduction algorithm The
first 1s to simultaneous diophantine approximation Let » be a positive integer,
0, ,0,real numbers, and eeIR, 0 <e <1 Itis a classical theorem [4, Sect V 10]
that there exist mtegers p,,p,, ,P,, ¢ satisfying

Ip,—qa]<e for 1=15n,
1Z£g<e™

We show that there exists a polynomual-time algorithm to find mtegers that satisfy
a shghtly weaker condition
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(1 39) Proposition. There exists a polynomial-time algorithm that, gwen a positive
integer n and rational numbers o, «,, ,a,, & satisfying 0<e<1, finds ntegers p,,

p27 apm q fOr Whlch
lp,—qu<e for 1=iZn,

1§Q§2n(n+ 1)/4-8—~n

Proof Let L be the lattice of rank n+1 spanned by the columns of the
(n+1) x (n-+1)-matrix

0 0 —o,
01 0 —a,
00 1 -0,

0 0 0 2—n(n+1)/4bn+1

The mner product of any two columns 1s rational, so by (138) there 1s a
polynomial-time algorithm to find a reduced basis by, b,, ,b,,, for L By (19)
we then have

lbll é 2n/4 d(L)l/(n+ 0 £
Since b, € L, we can write

n(n+ 1)/48n+ I)T

by=(p;—q%, P, —q%, Py—Qq%,q 2~
with p;,p, P, g€Z 1t follows that
p,—qa|Se for 1=1Zn,

ICI| ézn(n+ 1)/48—n

From e¢<1 and b, &0 we see that g#0 Replacing b, by — b, if necessary, we can
achieve that g>0

This proves (1 39)

Another application of our reduction algorithm 1s to the problem of finding
O-linear relations among given real numbers «,, o,, ,®, For this we take the
lattice L to he Z", embedded i R**?! by

n
(ml’ le, ” 711,‘)}—) <m17 ’n29 > mn? c Z ml(x:) 2
1—1
here ¢ 1s a large constant and o] 1s a good rational approximation to ¢, The first
basis vector of a reduced basis of L will give 11se to integers m,, m,, ,m, that are

n

not too laige such that ) my, 1s very small
1=1
Applying this to o, =o'~ ! we see that our algorithm can be used to test a given

real number o for algebraicity, and to determune 1ts irreductble polynomial Taking
for o a zero of a polynomial feZ[X], f+0, and generalizing the algorithm to
complex «, one finds m this way an wrreducible factor of f 1 Z[X7] It 1s likely that
this yields actually a polynomial-time algorithm to factor f in Q[X7], an algorithm
that 1s different from the p-adic method described in Sect 3

In a similar way we can test given real numbers o, f, y,  for algebraic
dependence, taking the o, to be the monomials in o, f, 9,  up to a given degree
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2. Factors and Lattices

In this section we denote by p a prime number and by k a positive integer
We write Z/p*Z for the ring of integers modulo p* and IF, for the field
Z/pZ For g=Y aX'e€Z[X] we denote by (gmodp*) the polynomial

Y (¢, mod )X (/P L)X ]

1

We fix a polynomual feZ[X] of degree n, with n>0, and a polynomial he Z[X ]
that has the following properties

21 h has leading coefficient 1,

(22) (hmodp" divides (f modp") m (Z/p*Z)[X],
(23) (hmodp) 1s irreducible in IF [X],

(2 4) (hmodp)* does not divide (f modp) mn IF,[X]

We put [=deg(h), so 0<iZn

(2 5) Proposition. The polynomial f has an wreducible factor hy m Z[X7) for which
(hmodp) dwides (homodp), and this factor 1s umquely determined up to sign
Further, if g dwides f i Z[X'], then the following three assertions are equivalent
(1) (hmodp) dwides (gmodp) in F [X],
(1) (hmodp*) dinrdes (g mod p¥) in (Z/p*Z)[ X7,
(m) h, dindes g in Z| X]
In particular (hmod p*) dwides (h, mod p*) in (Z/p*Z)[X]

Proof The existence of h, follows from (2 2) and (2 3), and the uniqueness, up to
+1, from (24) The mmphcations (u) = (1) and (u1) = (1) are obvious Now
assume (1), we prove (i1) and (1) From (1) and (2 4) 1t follows that (hmodp) does
not divide (f/gmodp) in F [X] Therefore h, does not divide f/g 1n Z[X], so 1t
must divide g This proves (11) By (2 3) the polynomials (h modp) and (f/g modp)
are relatively prime in IF [X7], so in F,[X] we have

(4; modp) (hmodp)+ (1, modp) (f/gmodp)=1

for certamn A, p€Z[X]} Therefore A,h+pu, flg=1—pv, for some v,eZ[X]
Multiplying this by 1+pv, +p*>vi+ +p* " 'vi~! and by g we obtam

Apht-, f= gmod pZ[X ]

for certain A,, u, € Z[X] Since the left hand side, when taken modulo p*,1s divisible
by (kmodp*), the same 1s true for the right hand side This proves (u)
The final assertion of (2 5) follows 1f we take g=h, This proves (2 5)

(2 6) In the remainder of this section we fix an mteger m with m= 1, and we let L be
the coliection of all polynomials in Z[X ] of degree <m that, when taken modulo p,
are divisible by (hmod p*) in (Z/p*Z)[X] This 15 a subset of the (m+ 1)-dimensional
real vector space R+R X+ 4R X™ This vector space 1s tdentified with R™*!

m

2, aX’

1~ 0

of a

by identifying Y a X' with (ag,a,, ,a,) Notice that the length

1=0
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polynomial, as defined 1n the mntroduction, 1s equal to the ordinary Euclidean
length of (ay,a,, ,a,) It1seasy to see that L 1s a lattice n R™* ! and, using (2 1),
that a basis of L 1s given by

{PX* 0si<fu{hX’ 05)Sm—1}

From (1 1) 1t follows that d(L)=p*
In the following proposition A, 1s as 1 (2 5)

(27) Proposition. Let be L satisfy
(28) P> bl
Then b 1s divisible by hy in Z[X'], and m particular ged(f,b)+1

Remark A weaker version of (27), which could also be used to obtamn a
polynomial-time factoring algorithm for polynomuials, asserts that ged(f,b)+1
under the same conditions The proof of this version 1s less complicated than the

proof given below, see [8, Theorem 2]

Proof of (27) We may assume that b0 Let g=gcd(f,b) By (25) 1t suffices to
show that (hmodp) divides (gmodp) Suppose that this 1s not the case Then by

(2 3) we have
29 Ash+psg=1-pv,
for certain 1, py, v,€Z[X] We shall derive a contradiction from this
Put e=deg(g) and m'=deg(b) Clearly 0=e<m'<m We define
M={lf+ub A ueZ[X], deg(d)<m —e,deg(p)<n—e}
CZ+Z X+ +Z X"~}

Let M’ be the projection of M on

ZXHZ X+ +Z X!
Suppose that 1f + pb projects to 0 m M’, with A, u as 1n the definition of M Then
deg(Af +pub)<e, bat g divides Af+ub, so Af+pub=0 From A (f/g)=—u (b/g)
and ged(f/g,b/g) =1 1t follows that f/g divides u But deg(u)<n—e=deg(f/g), so

1=0, and therefore also A=0
This proves that the projections of

{X'f 0z1<m —e}u{X’h 0<j<n—e}
on M’ are linearly independent Since these projections span M, 1t follows that M’

15 a lattice of rank n+m'—2e¢ From Hadamard’s mnequality (1 10) and (2 8) we
obtain

(2 10) d(M’)é'f[m e |b|n—e§[f|m Ib|n<pkl

Below we deduce from (2 9) that
(211) {veM deg(v)<e-+I}Cp'Z[X]
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Hence, 1f we choose a basis b, b, 1, b, —.—y Of M' with deg(b )=/, see [4,
Chap I, Theorem I A], then the leadmng coefficients of b,,b,,,, ,b,,,_, are
divisible by p* [Notice that e+!—1<n+m' —e—1 because g divides b and
(hmod p) divides {f/g mod p) ] Since d(M') equals the absolute value of the product
of the leading coefficients of b,,b,,;, b,4m -o—; we find that d(M)z=p“
Combined with (2 10) this s the desired contradiction

To prove (2 11), let ve M, deg(v)<e+! Then g divides v Multiplying (29) by
v/g and by 1+pv,+p*vi+ +p 157! we obtain

(212) A+ pyv=v/g mod p"Z[X)

with A, u,€Z[X] From ve M and be L it follows that (vmodp*) 1s divisible by
(hmodp*) So by (2 12) also (v/g mod p¥) 1s divisible by (Amodp¥) But (Amodp*) 1s
of degree | with leading coefficient 1, while (v/gmodp”) has degree <e+!—e=]
Therefore v/g=0modp*Z[X], so also v=0modp*Z[X] This proves (2 11)

This concludes the proof of (27)

(2 13) Proposition. Let p, k, f, n, h, | be as at the beqinming of this section, hy as in
(25), and m, L as w (26) Suppose that b,,b,, b, s a reduced basis for L (see
(14) and (15)), and that

2 n/2
(2 14) pkl > 2mn/2 ( r;") ,f‘m+n

Then we have deg(hy) Sm if and only if

(215) b, | <@ NS

Proof The “if”-part 1s immediate from (2 7), since deg(b,;)<m To prove the “only
if”-part, assume that deg(hy)<m Then hye L by (25), and hy] < (27::1)1/2 |f] by a
result of Mugnotte [10, cf 7, Exercise 4 6 220] Applyng (1 11) to x=h, we find
that |b,|S2™? |hy|<2m? (2:)1/2 [f] By (214) this mplies (2 15) This proves
(213)

(2 16) Proposition. Let the notation and the hypotheses be the same as in (2 13), and
assume n addition that there exists an wndex je{1,2, ,m~+1} for which

(217 b | <(p*/1f 1Mt
Let t be the largest such j Then we have
deg(hg)=m+1-t,
ho=gcd(b,,b,, ,b),
and (2 17) holds for all ; with 1 <<t

Proof Let J=1{je{1,2, ,m+1} (217) holds} From (27) we know that h,
divides b, for every jeJ Hence if we put

h,=ged({b, jeJ})
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then h, divides h; Each b ,jeJ,1s divisible by /1, and has degree <m, so belongs to
Z h+Z hX+ +Z h X" st

Since the b, are hnearly independent this implies that
(2 18) #J<m-+1—deg(h,)

By the result of Mignotte used in the proof of (213) we have |h,X'|=|h,|
~ 1/2
< (:Zl) |f] for all 1=0 For 1=0,1, ,m—deg(h,) we have h,X*eL, so from

(112) we obtain
2m\!/2
pisz () i

for 1 £7Em+1—deg(h,) By (2 14), this implies ihat
(219) {1,2, ,m+1—deg(hy)}CJ

From (2 18), (2 19) and the fact that h, divides h, we now see that equality must
hold 1n (2 18) and (2 19), and that
deg(hy)=deg(h)=m+1—t, J={1,2, .t}

It remains to prove that h, 1s equal to &, up to sign, and for thus 1t suffices to check
that &, 1s primitive Choose jeJ, and let d, be the content of b, Then b/d, 1s
divisible by hy, and hoe L, so b /d € L But b, belongs to a basis for L,sod,=1and
b, 1s primitive, and the same 1s true for the factor h, of b, This finishes the proof of

(216)
Remark If t=1 then we see from (2 16) that b, 1s an wrreducible factor of f, and
that no ged computation 18 necessary

Remark From the proofs of (2 13) and (2 16) we see that (2 14) may be replaced by
P> pmyfIm,

where ff=max {]b}[/]bl*[ 1g7=1=m+ 1} [cf (1 14)] and where y 18 such that [g| <y
for every factor g of f in Z[X] with deg(g)Sm

3. Description of the Algorithm

Denote by f a primitive polynomial in Z[X] of degree n, with » >0 In this section
we describe an algorithm that factors f mnto rreducible factors in Z[X] We begin
with two auxiliary algorithms

(3 1) Suppose that, in addition to f and n, a prime number p, a positive integer k
and a polynomual he Z[X] are given satisfying (2 1) (22), (2 3), and (24) Assume
that the coefficients of h are reduced modulo p*, so

2 < 1+1p2,
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where |=deg(h) Let further an integer m 2! be given, and assume that mequality
(2 14) 1s satisfied

2m\"?
pkl>2mn/2 < m) |f|m+n
m

We describe an algorithm that decides whether deg(h,) <m, with k, as 1n (2 5), and
determunes h, if indeed deg(hy)<m
Let L be the lattice defined 1n (2 6), with basis

{PX' O0zi<Biuf{hX’ 0Zj<m—1}

Applying algonthm (1 15) we find a reduced basis by,b,, ,b,,, for L If |b,|
=(p"/|fI™)*" then by (2 13) we have deg(h,)>m, and the algorithm stops If |b,|
<(p"/IfI™*" then by (2 13) and (2 16) we have deg(hy) <m and

ho=ng(b1>b2, 9b1)

with ¢ as m (216) This ged can be calculated by repeated application of the
subresultant algorithm described 1n [7, Sect 4 6 1] This finishes the description of
algorithm (3 1)

(3 2) Proposition. The number of arithmetic oper ations needed by algoiithm (3 1) 1s
O(m*klogp), and the wintegers on which these operations are performed each have
bwmary length O(mklogp)

Proof We apply (1 26) with m + 1 1 the role of n and with B=1+Ip* From [<n
and (2 14) we see that m=0(klogp), so logl<l<m mmples that logB=0(klogp)
This leads to the estimates 1in (32) It 1s straightforward to verify that the ged
computation at the end satisfies the same estimates This proves (3 2)

(33) Next suppose that, m additton to f and n, a prime number p and a
polynomual he Z[ X'] are given such that (2 1), (2 2), (2 3), and (2 4) are satisfied with
k replaced by 1 Assume that the coefficients of h are reduced modulo p We
describe an algorithm that determines h,, the wreducible factor of f for which
(hmodp) divides (h,modp), cf (25)

Write [=deg(h) If I=n then hy=f, and the algorithm stops Let now [<n We
first calculate the least positive integer k for which (2 14) holds with m replaced by

n—1 w2
2(n 1)) -t
n

pkl>2(n Dnf2 (
—1

Next we modify h, without changing (hmodp), 1n such a way that (2 2) holds for
the value of k just calculated, in addition to (21), (23), and (24) This can be
accomplished by the use of Hensel’s lemma, see [7, Exercise 46222, 14, 15, 13]
We may assume that the coefficients of k& are reduced modulo p*

Let u be the greatest integer for which [ = (n— 1)/2* We perform algorithm (3 1)
for each of the values m=[(n—1)/2*], [(h—1)/2* '], ,[(n—1)/2], n—1 m
succession, with [ x] denoting the greatest integer < x, but we stop as soon as for
one of these values of m algoritbm (3 1) succeeds n determinirg h,, If this does not
occur for any m 1n the sequence then deg(hy)>n—1, s0 hy=f and we stop This
finishes the description of algorithm (3 3)
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(3 4) Proposition. Denote by my=deg(h,) the degree of the wreducible Sactor hy of
f that 1s found by algorithm (33) Then the number of arithmetic operations
needed by algorithm (3 3) 15 O(my(n®+n* log|f|+n®logp)), and the mtegers on
which these operations are performed each have bwnary length O(n® +n?log| fl

+nlogp)

Proof From 2n— 112
- b n— n n—_ n—
pk 1 ép(k 1)l§2( 1} /2( ) ‘flz 1
n—1
1t follows that
klogp=(k—1)logp+logp=0(n*+nlog|f|+logp)

Let m, be the largest value of m for which algorithm (3 1) 1s performed From the
choice of values for m 1t follows that m, <2m,, and that every other value for m
that 1s tried 1s of the form [m /2], with 121 Therefore we have Y m*=0(mg)
Using (3 2) we conclude that the total number of arithmetic operations needed by
the applcations of algorithm (3 1) 1s O(miklogp), which 1s

O(mi(n® + nlog|f] +logp)),
and that the mtegers involved each have binary length O(m, klogp), which 1s

O(mo(n*+nlog|f|+logp))

With some care 1t can be shown that the same estunates are valid for a swmtable
version of Hensel’s lemma But 1t 1s sumpler, and sufficient for our purpose, to
replace the above estimates by the estimates stated in (3 4), using that m, <n, then
a very crude estimate for Hensel’s lemma will do The straightforward verification

1s left to the reader This proves (3 4)

(35) We now describe an algorithm that factors a given primitive polynomial
feZ[X] of degree n>0 rto wrreducible factors in Z[X]

The first step 1s to calculate the resultant R(f, f') of f and its derivative f7, using
the subresultant algorhm [7, Sect 461] If R(f, f)=0 then f and f" have a
greatest common divisor g 1n Z[X] of positive degree, and g 1s also calculated by
the subresultant algorithm This case will be discussed at the end of the algorithm
Assume now that Rif, f'}+0

In the second step we determine the smallest prime number p not dividing
R(f, /'), and we decompose (f mod p) into irreducible factors in IF,[X7] by means of
Berlekamp’s algorithm [7, Sect 4 6 2] Notice that R(f; f7) 1s, up to sign, equal to
the product of the leading coefficient of f and the discriminant of f So
R(f, f)E=0modp mmplies that (f modp) still has degree n, and that 1t has no
multiple factors mn IF [X] Therefore (24) 1s valid for every wrreducible factor
(hmodp) of (f modp) m IF,[X]

In the third step we assume that we know a decomposition f=f, f, m Z[X]
such that the complete factorizations of f; i Z[X] and (f, modp) mn IF S[X] are
known At the start we can take f,=1, f,=f ln this situation we proceed as
follows If f, = +1 then f =+ f, 1s completely factored in Z[X ], and the algorithm
stops Suppose now that f, has positive degree, and choose an irreducible factor
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(hmodp) of (f,modp) n F,[X] We may assume that the coefficients of h are
reduced modulo p and that & has leading coefficient 1 Then we are 1n the situation
described at the start of algorithm (3 3), with f, i the role of f, and we use that
algorithm to find the 1rreducible factor h, of f, 1n Z[.X] for which (h mod p) divides
(h, modp) We now replace f; and f, by fih, and f,/h,, respectively, and from the
list of irreducible factors of (f, modp) we delete those that divide (h, modp) After
this we return to the beginning of the third step

This finishes the description of the algorithm in the case that R(f, /)+0
Suppose now that R(f, /"}=0, let g be the gcd of f and f"1n Z[X], and put f,= f/g
Then f, has no multiple factors i1 Z[X ], so R(f,, f3) 0, and we can factor f; using
the man part of the algorithm Since each wrreducible factor of g in Z[X] divides f
we can now complete the factorization of f = f,g by a few trial divisions This
finishes the description of algorithm (3 5)

(3 6) Theorem. The above algorithm factors any primitwe polynomial feZ[X] of
positive degree n wto wreducible factors wm Z[X] The number of arithmetic
operations needed by the algorithm 1s O(n®+n’log|f]), and the wntegers on which
these operations are performed each have binary length O(n® +n*log|f]) Here |f] s
as defined n the mtroduction

Using the classical algorithms for the arithmetic operations we now arrive at
the bound O(n'?+n°(log|f))?) for the number of bit operations that was announ-
ced 1n the introduction This can be reduced to O(n®**+n” *(log|f1)**#), for every
&> 0, 1if we employ fast multiplication techniques

Proof of (36) The correctness of the algorithm 1s clear from 1ts description To
prove the estimates we first assume that R(f, /)0 We begin by deriving an upper
bound for p Since p 1s the least prime not dividing R(f, /') we have

37 IT  a=IR(E )

4<p,gprime
It 18 not difficult to prove that there 1s a positive constant A such that
(38) [T a=e*

q<p gprime

for all p>2, see [6, Sect 2227, by [12] we can take A=084 for p>101 From
Hadamard’s mequality (1 10) we eastly obtain

IR(L S Wm0
Combining this with (37) and (3 8) we conclude that
39 p<(nlogn+(2n—1)log|fl)/4

or p=2 Therefore the terms 1nvolving logp 1n proposition (3 4) are absorbed by
the other terms

The call of algorithm (3 3) m the third step requires O(mg (n° +n*log|f,))
arithmetic operations, by (3 4), where m,, 1s the degree of the factor hg that 1s found
Since f, divides f, Mignotte’s theorem [10, cf 7, Exercise 4 6 2 20] that was used m
the proof of (2 13) implies that log|f,|=O(n+log|f]) Further the sum Y m, of the
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degrees of the irreducible factors of f is clearly equal to n. We conclude that the
total number of arithmetic operations needed by the applications of (3.3) is O(n®
+nlog|f). By (3.4), the integers involved in (3.3) each have binary length O(n®
+n?log|fI).

We must now show that the other parts of the algorithm satisfy the same
estimates. For the subresultant algorithm in the first step and the remainder of the
third step this is entirely straightforward and left to the reader. We consider the
second step.

Write P for the right hand side of (3.9). Then p can be found with O(P)
arithmetic operations on integers of binary length O(P); here one can apply [11]
to generate a table of prime numbers < P, or alternatively use a table of squarefree
numbers, which is easier to generate. From p < P it also {ollows that Berlekamp’s
algorithm satisfies the estimates stated in the theorem, see [7, Sect. 4.6.2].

Finally, let R(f; /")=0, and f,= f/gcd(f, f') as in the algorithm. Since f, divides
f, Mignotte’s theorem again implies that log|f,|=0(n+log|f|). The theorem now
follows easily by applying the preceding case to f,.

This finishes the proof of (3.6).

(3.10) For the algorithms described in this section the precise choice of the basis
reduction algorithm is irrelevant, as long as it satisfies the estimates of proposition
(1.26). A few simplifications are possible if the algorithm explained in Sect. 1 is
used. Specifically, the ged computation at the end of algorithm (3.1) can be
avoided. To see this, assume that m,=deg(h,) is indeed <m. We claim that h,
occurs as b, in the course of the basis reduction algorithm. Namely, by (1.37) it will
happen at a certain moment that by, b,,...,b,, +, form a reduced basis for the
lattice of rank m,+1 spanned by {pX*:0=i<[JU{hX’:0sjsmy—I}. At that
moment, we have h,=b,, by (2.13) and (2.16), applied with m, in the role of m. A
similar argument shows that in algorithm (3.3) one can simply try the values m=1,
I+1,...,n—1 in succession, until h,is found.

Acknowledgements are due 10 J J M Cuppen for permission o include his improvement of our basis
reduction algorithm m Sect 1
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