
An Exponential Example for a Partial Digest
Mapping Algorithm

ZHENG ZHANG

ABSTRACT

The partial digest problem for small-scale DNA physical mapping is known in computer sci-
ence as the turnpike reconstruction problem. Although no polynomial algorithm for this prob-
lem is known, a simple backtracking algorithm of Skiena et al. works well in practice. Weiss
raises the question whether an exponential example exists for this algorithm. This paper pre-
sents such an exponential example for this backtracking algorithm.

Key words: DNA; physical mapping; partial digest algorithm

INTRODUCTION

The partial digest mapping problem (known in computer science as the turnpike problem) is to recon-

struct the positions of n restriction sites from the list of all the distances between every pair of these n re-
striction sites. Rosenblatt and Seymour (1982) give a pseudopolynomial algorithm for this problem using poly-
nomial factoring. The running time analysis for Rosenblatt and Seymour's algorithm is due to Lemke and
Werman (1988). In fact, Rosenblatt and Seymour's method can solve a more general problem when n points of
the set to be determined are in n-dimensional space (this problem is motivated by phase retrieval of spectro-
scopic analysis). In practice, one often uses a simple backtracking algorithm due to Skiena et al. (1990).
Experiments show the algorithm works well, and Skiena arid Sundaram (1994) generalized this algorithm to
deal with noisy data. No polynomial bound for the Skiena et al. backtracking algorithm is known. However, no

exponential counter-example has been found (Weiss, 1992). Moreover, Weiss raises the question if such an ex-

ponential example exists: "... if there is no backtracking, the running time is 0(n2 log n). Of course, back-
tracking happens, and if it happens repeatedly, then the performance of the algorithm is affected. No polyno-
mial bound on the amount of backtracking is known, but on the other hand, there are no pathological examples
that show that backtracking must occur more than 0(1) times. Thus, it is entirely possible that this algorithm is
0(n2 log n)." (quoted from Weiss 1992, p. 400). In this paper, I will construct an exponential example for the
backtracking algorithm of Skiena et al.

PARTIAL DIGEST PROBLEM

We first review the partial digest problem and the Skiena et al. backtracking algorithm.
Definition 1: Let X be a finite set ofpoints of R. A(X) is defined to be the list ofall distances between all

pairs ofpoints ofX.

Department of Computer Science and Engineering, The Pennsylvania State University, University Park, PA 16802.

D
ow

nl
oa

de
d

by
 G

en
t U

ni
ve

rs
ity

 f
ro

m
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 0
3/

07
/1

8.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

Definition 2: Let X and Y be two finite sets ofpoints of R. A(X,Y) is defined to be the list ofall distances
between a point ofX and a point of Y.

The turnpike problem is: Given a list L, find a point set X such that A(X) = L. The Skiena et al. backtracking
algorithm is outlined as follows (see Weiss, 1992 and Skiena et al, 1990 for details): First find the longest dis-
tance in L, which decides the two outermost points of the set, and then delete this distance from L. Then re-

peatedly position the longest remaining distance ofL. Because for each step the longest distance in L must be
realized from one of the outermost points, there are only two possible positions (left or right) to put the point.
At each step, for each of the two positions, we need to check if all the distances from the position to the points
already selected are in L. If it is true, delete all those distances before going to the next step. Backtrack if it is
false for both of the two positions. A solution has been found when L is empty.

For example, suppose L = {2,2,3,3,4,5,6,7,8,10}. Because L includes all the pairwise distances, then \L\ =

n(n -1)/2, where n is the number of points in the solution. Now \L\ = 10 so n = 5. First set xx = 0. Since 10 is the
largest distance in L, it is clear that x5 = 10. Removing distance x¡

-

xx
-

10, we obtain
X = {0,10} L = {2,2,3,3,4,5,6,7,8}.

The largest remaining distance is 8. Now we have two choices, either xA = 8 or x2 = 2. Because those two
cases are mirror images of each other, without loss of generality, we can assume x2 = 2. After removal of dis-
tances x5

-

x2 = 8 and x2
-

xx = 2 from L, we obtain

X = {0,2,10} L = {2,3,3,4,5,6,7}.
Since 7 is the largest remaining distance, we have either xA = 7 or x3 = 3. Ifx3 = 3, distance x3

-

x2 = 1 should
be in L, but it is not, so we can only set x4 = 7. After removing distances x5

-

x4 = 3, x4
-

x2 = 5, and x4
-

xx = 7
from L, we obtain

X= {0,2,7,10} ¿={2,3,4,6}.
Now 6 is the largest remaining distance. Once again we have two choices, either x3 -4otx3 = 6. lfx3 = 6, the

distance x4 ~x3 = 1 must be in L, but it is not. So it leaves usas the only choice x3 = 4, and provides a solution
{0,2,4,7,10} of the partial digest problem. Figure 1 gives the pseudocode for the algorithm. Here the function
DeleteJVlax(L) returns the maximum value of L and removes it from list L, and two global variables X and
width are used. Note that at each step the choice of putting a point at the left or right position is arbitrary.

This algorithm runs in 0(n2 log n) expected time ifL arises from real points in general positions, because in
this case at each step one of the two choices will be pruned with probability of 1 (Skiena et al., 1990). Is this al-
gorithm polynomial in the worst case? In the next section, we show the answer is no, by describing an expo-
nential example for this algorithm.

EXPONENTIAL EXAMPLE

Denote by © the merge (union) operation of two lists of distances. And for a set D, denote D* = {1
-

a\a e

D}.
Proposition I: Assume 0 < £ < 4n. Let D = {xx,x2,... ,xn), wherex¡ = (n + i)e orx, = 1

-

(n + i)e. Let
E= {x\,x'2,.. .,/„}, where x'=(n + i)e, or *';= 1

-

(n + ¡)£-IfD *£ and D*£*, then A(D)*A(E).

Proof Since A(P) = A(P*) for any point set P, without loss of generality, we can assume xx
-

x\ =

(n + l)e. Now suppose x¡ = x'¡ for all i <j and x¡ * x''•. By the definition of x¡ and x'¡, we can assume jc-
= 1 - (n + j)e and x'} = (n + j)e. Let X = {xx, x2,..., Xj_x}, Y = D

-

X - {xjt xj+i,..., xn] and Z-E-X
= {x'j,x'j+l,. ..,*'„}• Then

A(D) = A(X) 0 A(Y) © A(X,Y) and A(E) = A(X) © A(Z) © A(X,Z).
It is obvious that

max(A(Y) © A(X,Y)) > \x¡
-

^| = 1
-

(2n + ; + l)e.
Since max(Z) < 1

-

(n +j + l)e and min(Z) = (n +j)e, we have

max(A(Z)) < 1
-

(2n + 2; + l)e,

D
ow

nl
oa

de
d

by
 G

en
t U

ni
ve

rs
ity

 f
ro

m
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 0
3/

07
/1

8.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

set X;
int width;

procedure PaxtialJDigest(List L)
width — Delete_Max(£);
X = {0,width};
place(i);

end;

procedure place(List L)
if L = 0 then

output solution X;
exit;

endif
y = Delete_Max(i);
if A({y},X)c£then

X = Xu{y};
place(£-A({y},X));
X = X-{y);

endif
if A({width

-

y},X) C L then
X = X U {width

-

y};
place(i

—

A({width
—

y},X));
X

—

X
—

{width
—

y};
endif

end

/* place a point at right position */
/* Backtracking */

/* place a point at left position */
/* Backtracking */

FIG. 1. Pseudocode for the Skiena et al. backtracking algorithm.

and similarly, noticing that max(X) < 1
-

(n + 2)e and min(X) = (n + l)e, we have

max(A(X,Z)) = max{max(X)
-

min(Z), max(Z)
-

min(X)} < I
-

(2n + j + 2)8.

-nt},A2- {e, 2e,..., ne] A3- {(« +

(2n+l)e, l-(2n + 2)e,..., 1 -3ne},

So, A(Y) © A(X,Y) * A(Z) ® A(X,Y) and thus A(D) * A(£). D
Proposition 2: Assume 0 < £ < tj «. Let Aj = {1

-

8,1
-

2e,..., 1
l)e,(/t + 2)e,..., 2ne},A4={(2n +l)e,(2«+ 2)e,..., 3rc£},A5= {1-
and D = F u G where F and G are disjoint point sets satisfying F u G* = A3 (so D is just the same as that of
Proposition i). LefA = A, u A2 u A4 u A5 U {0,1} U D. We can choose D such that, giving A(A) to the Skiena
et al. backtracking algorithm, it will take it at least Q(2"-1) time tofindA. (Fig. 2 shows the arrangement ofA.)

Proof It is clear that there are 2" different choices of D. For the first 2n + 1 steps of the algorithm, we
will find all the points of set Ax and A2 correctly. For the z'th step of the next n steps, it is easy to see that
the largest distance we are positioning is 1

-

(n + /)£. This shows that for each of the next n steps, we

can place a point at two possible places. It is obvious that there are 2" different ways we can put these n

i_L
A4
l i ••

ne 2m

As
J_ J_L

Ai

3n£ V l-3ne l-2ne I-ne

FIG. 2. Arrangement of set A.

D
ow

nl
oa

de
d

by
 G

en
t U

ni
ve

rs
ity

 f
ro

m
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 0
3/

07
/1

8.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

points. Now we prove that none of the 2" cases conflicts with A(A).
Let E be the set of the n points we pick in the next n steps and let B = E n [(n + 1)8, 2ne] and C = E n [1

-

2ne, 1
-

(n + 1)e]. (Note E is also in the form of E of Proposition 1.) For any arbitrary choice of D and E, it is
clear that

A(A, uA2u {0,1},D) = A(A, u A2 u {0,1}, A3) = A(A, u A2 u {0,1}, E), (1)
Ai/iuA! uAjU {0,1}) = A(£)©A(A1 u A2 u {0,1})©A(AI uA2{0,l},£), (2)

and

A(A) = A(A, u A2 u £> u A4 u A5 u {0,1})
dA^! uA2u {0,1})©A(A4)©(A! uA2u {0,1}, D) © A(AltA4). (3)

It is also straightforward to check that A(ß) © A(Q = A(B) © A(C*) c A(B u C*) = A(A3) = A(A4), and A(B,Q
c A(A„A4). Therefore, A(£) c A(A4) u A(A„A4). This along with (l)-(3) proves that A(£u A, u A2 u {0,1})
c A(A). So we cannot exclude any of the 2" cases. If symmetric solutions do not count, we still have 2"'1 cases.

By the proof stated in the following paragraph, we know that for each example there is only one solution. Any
wrong choice of B and C in the algorithm will result in backtracking. So no matter what order we try to put a

point at each step, we can always find an example from the above group that makes the algorithm go through
all the 2"_1 wrong choices before finally getting to the right one, thus the algorithm needs at least £2(2"-1) time
to find the solution.

To see why there is only one solution for each example, first notice that in A(A) all the distances are in
(0,3ne] u [1

-

6ne,l]. So all the points must be in [0,3ne] u [1
-

3«£,1]. In particular, we observe that after
placing the first 3« + 2 points (after we find E), the largest remaining distance is 1

-

(2n + l)e, so the last 2n
points must be in [1

-

3tî8, 1
-

(2n + l)e] u [(2m + l)e, 3«e]. Because of the discreteness of the distances in
A(A), there are only 2n positions in the above intervals and no two points can have the same position, so the last
2n points must be chosen the same as A4 u A5. When the choice of B and C is wrong (i.e., E * D), suppose, by
the purpose of deriving a contradiction, that we have a solution. This solution must be S := Ax u A2 u A4 u

A5 u {0,1} u E, and by Proposition 1, we can easily check that A(S) * A(A), which is a contradiction. So there
is no solution when the choice of B and C is wrong. And when B and C are correct, there is only one solution
(since the last 2n positions are fixed). This shows there is a unique solution for each example. D

OPEN PROBLEMS

This example shows that the backtracking algorithm for the turnpike reconstruction problem is exponential.
The question remains whether the turnpike reconstruction problem is TV P-complete? Finding a strong polyno-
mial algorithm or proving it is NP-complete is still an open problem.

ACKNOWLEDGMENT

The author wishes to thank Pavel Pevzner and Webb Miller for suggesting the problem and for help in writ-
ing this paper.

REFERENCES

Lemke, P., and Werman, M. 1988. On the complexity of inverting the autocorrelation function of a finite integer sequence,
and the problem of locating n points on a line, given the unlabeled distances between them. (Unpublished manuscript).

Rosenblatt, J., and Seymour, P.D. 1982. The structure of homometric sets. SIAM J. Algebraic Discrete Methods 3,
343-350.

Skiena, S.S., and Sundaram, G. 1994. A partial digest approach to restriction site mapping. Bull. Mathemat. Biol. 56,
275-294.

D
ow

nl
oa

de
d

by
 G

en
t U

ni
ve

rs
ity

 f
ro

m
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 0
3/

07
/1

8.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

Skiena, S.S., Smith, W.D., and Lemke, P. 1990. Reconstructing sets from interpoint distances. Proc. Sixth ACM Symp.
Computat. Geom. 332-339, ACH Press, New York.

Weiss, M.A. 1992. Data Structures and Algorithm Analysis, Benjamin/Cummings Publishing Company, Inc., Redwood
City, California.

Address reprint requests to:
Dr. Zheng Zhang

Department of Computer Science and Engineering
The Pennsylvania State University

University Park, PA 16802

Received for publication August 25, 1993; accepted October 12, 1993.

D
ow

nl
oa

de
d

by
 G

en
t U

ni
ve

rs
ity

 f
ro

m
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 0
3/

07
/1

8.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

