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Introduction

The advent of short-read sequencing machines gave rise to a new
generation of assembly algorithms and software. This survey reviews
algorithms for de novo whole-genome shotgun assembly from next-
generation sequencing data. It describes and compares algorithms
that have been presented in the scientific literature and implemented
in software. We use a narrow definition of de novo whole-genome
shotgun assembly. The shotgun process takes reads from random
positions along a target molecule [1]. Whole-genome shotgun (WGS)
sequencing samples the chromosomes that make up one genome.
WGS assembly is the reconstruction of sequence up to chromosome
length. The assembly task is relegated to computer software [2].
Assembly is possible when the target is over-sampled by the shotgun
reads, such that reads overlap. De novo WGS assembly refers to
reconstruction in its pure form, without consultation to previously
resolved sequence including from genomes, transcripts, and proteins.
De novoWGS assembly of next-generation sequencing (NGS) data is a

mailto:jmiller@jcvi.org
http://dx.doi.org/10.1016/j.ygeno.2010.03.001
http://www.sciencedirect.com/science/journal/08887543


316 J.R. Miller et al. / Genomics 95 (2010) 315–327
specialized problem due to the short read lengths and large volumes
of NGS data. Benchmarking the implementations is beyond the scope
of this review. Broader introductions can be found elsewhere, e.g. [3].

Next-generation Sequence Data

Today's commercial DNA sequencing platforms include the
Genome Sequencer from Roche 454 Life Sciences (www.454.com),
the Solexa Genome Analyzer from Illumina (www.illumina.com), the
SOLiD System from Applied Biosystems (www.appliedbiosystems.
com), the Heliscope from Helicos (www.helicos.com), and the
commercialized Polonator (www.polonator.org). These platforms
have been well reviewed, e.g. [4–7]. A distinguishing characteristic
of these platforms is that they do not rely on Sanger chemistry [8] as
did first-generation machines including the Applied Biosystems Prism
3730 and the Molecular Dynamics MegaBACE. The second-generation
machines are characterized by highly parallel operation, higher yield,
simpler operation, much lower cost per read, and (unfortunately)
shorter reads. Today's machines are commonly referred to as short-
read sequencers or next-generation sequencers (NGS) though their
successors may be on the horizon. Pacific Biosciences machines [9]
might produce reads longer than first-generation machines. First-
generation reads were commonly 500 bp to 1000 bp long. Today's
NGS reads are in the 400 bp range (from 454 machines), the 100 bp
range (from the Solexa and SOLID machines), or less. Shorter reads
deliver less information per read, confounding the computational
problem of assembling chromosome-size sequences. Assembly of
shorter reads requires higher coverage, in part to satisfy minimum
detectable overlap criteria. High coverage increases complexity and
intensifies computational issues related to large data sets.

All sequencers produce observations of the target DNAmolecule in
the form of reads: sequences of single-letter base calls plus a numeric
quality value (QV) for each base call [10]. Although QVs offer extra
information, their use generally increases a program's CPU and RAM
requirements. Only some of the NGS assembly software exploits QVs.

The NGS platforms have characteristic error profiles that change as
the technologies improve. Error profiles can include enrichment of
base call error toward the 3′ (terminal) ends of reads, compositional
bias for or against high-GC sequence, and inaccurate determination of
simple sequence repeats. There are published error profiles for the
454 GS 20 [11], the Illumina 1G Analyzer [12], and comparisons of
three platforms [13]. Some NGS software is tuned for platform-
specific error profiles. Others may have unintentional bias where
development targeted one data type.

Sanger platforms could deliver paired-end reads, that is, pairs of
reads with a constraint on their relative orientation and separation in
the target. Paired ends were essential to assembly of cellular genomes
small [14] and large [15] due to their ability to span repeats longer
than individual reads. Paired ends, also called mate pairs, have a
separation estimate that is usually provided to software as the
fragment size distribution measured on a so-called library of reads. A
sufficient variety of paired end separations should help resolve large
chromosomes to single scaffolds [16]. Early NGS sequencers offered
unpaired reads but late models support paired-end protocols. Early
NGS assembly software targeted unpaired reads but later programs
exploit paired ends as read placement constraints.

What is an Assembly?

An assembly is a hierarchical data structure that maps the
sequence data to a putative reconstruction of the target. It groups
reads into contigs and contigs into scaffolds. Contigs provide a
multiple sequence alignment of reads plus the consensus sequence.
The scaffolds, sometimes called supercontigs or metacontigs, define
the contig order and orientation and the sizes of the gaps between
contigs. Scaffold topology may be a simple path or a network. Most
assemblers output, in addition, a set of unassembled or partially
assembled reads. The most widely accepted data file format for an
assembly is FASTA, wherein contig consensus sequence can be
represented by strings of the characters A, C, G, T, plus possibly
other characters with special meaning. Dashes, for instance, can
represent extra bases omitted from the consensus but present in a
minority of the underlying reads. Scaffold consensus sequence may
have N's in the gaps between contigs. The number of consecutive N's
may indicate the gap length estimate based on spanning paired ends.

Assemblies are measured by the size and accuracy of their contigs
and scaffolds. Assembly size is usually given by statistics including
maximum length, average length, combined total length, and N50.
The contig N50 is the length of the smallest contig in the set that
contains the fewest (largest) contigs whose combined length
represents at least 50% of the assembly. The N50 statistics for different
assemblies are not comparable unless each is calculated using the
same combined length value. Assembly accuracy is difficult to
measure. Some inherent measure of accuracy is provided by the
degrees of mate-constraint satisfaction and violation [17]. Alignment
to reference sequences is useful whenever trusted references exist.
The Challenge of Assembly

DNA sequencing technologies share the fundamental limitation
that read lengths are much shorter than even the smallest genomes.
WGS overcomes this limitation by over-sampling the target genome
with short reads from random positions. Assembly software recon-
structs the target sequence.

Assembly software is challenged by repeat sequences in the target.
Genomic regions that share perfect repeats can be indistinguishable,
especially if the repeats are longer than the reads. For repeats that are
inexact, high-stringency alignment can separate the repeat copies.
Careful repeat separation involves correlating reads by patterns in the
different base calls they may have [18]. Repeat separation is assisted
by high coverage but confounded by high sequencing error. For
repeats whose fidelity exceeds that of the reads, repeat resolution
depends on “spanners,” that is, single reads that span a repeat
instance with sufficient unique sequence on either side of the repeat.
Repeats longer than the reads can be resolved by spanning paired
ends, but the analysis is more complicated. Complete resolution
usually requires two resources: pairs that straddle the repeat with
each end in unique sequence, and pairs with exactly one end in the
repeat. The limit of repeat resolution can be explored for finished
genomes under some strict assumptions. For instance, it was shown
that the theoretical best assembly of the E. coli genome from 20 bp
unpaired reads would put 10% of bases in contigs of 10 Kbp or longer
given infinite coverage and error-free reads [19]. The limit calculation
is not straightforward for reads with sequencing error, paired-end
reads, or unfinished genomes. Careful estimates of repeat resolution
involve the ratio of read length (or paired-end separation) to repeat
length, repeat fidelity, read accuracy, and read coverage. In regard to
NGS data, shorter reads have less power to resolve genomic repeats
but higher coverage increases the chance of spanning short repeats.

Repeat resolution is made more difficult by sequencing error.
Software must tolerate imperfect sequence alignments to avoid
missing true joins. Error tolerance leads to false positive joins. This
is a problem especially with reads from inexact (polymorphic)
repeats. False-positive joins can induce chimeric assemblies. In
practice, tolerance for sequencing error makes it difficult to resolve
a wide range of genomic phenomena: polymorphic repeats, poly-
morphic differences between non-clonal asexual individuals, poly-
morphic differences between non-inbred sexual individuals, and
polymorphic haplotypes from one non-inbred individual. If the
sequencing platforms ever generate error-free reads at high coverage,
assembly software might be able to operate at 100% stringency.
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Fig. 1. A read represented by K-mer graphs. (a) The read is represented by two types of
K-mer graph with K=4. Larger values of K are used for real data. (b) The graph has a
node for every K-mer in the read plus a directed edge for every pair of K-mers that
overlap by K-1 bases in the read. (c) An equivalent graph has an edge for every K-mer in
the read and the nodes implicitly represent overlaps of K-1 bases. In these examples,
the paths are simple because the value K=4 is larger than the 2 bp repeats in the read.
The read sequence is easily reconstructed from the path in either graph.
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WGS assembly is confounded by non-uniform coverage of the
target. Coverage variation is introduced by chance, by variation in
cellular copy number between source DNA molecules, and by
compositional bias of sequencing technologies. Very low coverage
induces gaps in assemblies. Coverage variability invalidates coverage-
based statistical tests, and undermines coverage-based diagnostics
designed to detect over-collapsed repeats.

WGS assembly is complicated by the computational complexity of
processing larger volumes of data. For efficiency, all assembly
software relies to some extent on the notion of a K-mer. This is a
sequence of K base calls, where K is any positive integer. In most
implementations, only consecutive bases are used. Intuitively, reads
with high sequence similarity must share K-mers in their overlapping
regions, and shared K-mers are generally easier to find than overlaps.
Fast detection of shared K-mer content vastly reduces the computa-
tional cost of assembly, especially compared to all-against-all pair-
wise sequence alignment. A tradeoff of K-mer based algorithms is
lower sensitivity, thus missing some true overlaps. The probability
that a true overlap spans shared K-mers depends on the value of K, the
length of the overlap, and the rate of error in the reads. An appropriate
value of K should be large enough that most false overlaps don't share
K-mers by chance, and small enough that most true overlaps do share
K-mers. The choice should be robust to variation in read coverage and
accuracy.

WGS assembly algorithms, and their implementations, are
typically complex. Assembly operation can require high-performance
computing platforms for large genomes. Algorithmic success can
depend on pragmatic engineering and heuristics, that is, empirically
derived rules of thumb. Heuristics help overcome convoluted repeat
patterns in real genomes, random and systematic error in real data,
and the physical limitations of real computers.

Metagenomics

Metagenomics is the sequencing of DNA in an environmental
sample. Whereas WGS targets one genome, metagenomics usually
targets several. The metagenomics assembly problem is confounded by
genomic diversity and variable abundance within populations. Assem-
bly reconstructs the most abundant sequences [20]. Simulations
indicate high rates of chimera, especially in short contigs assembled
from complex mixtures [21]. Studies that rely on characterization of
individual reads prefer long reads [22]. The role for de novo genomic
assembly from NGS metagenomics data should grow as NGS read
lengths and NGS paired-end options increase.

Graph Algorithms for Assembly

We organize the NGS assemblers into three categories, all based on
graphs. The Overlap/Layout/Consensus (OLC) methods rely on an
overlap graph. The de Bruijn Graph (DBG) methods use some form of
K-mer graph. The greedy graph algorithms may use OLC or DBG.

A graph is an abstraction used widely in computer science. It is a
set of nodes plus a set of edges between the nodes. Nodes and edges
may also be called vertices and arcs, respectively. If the edges may
only be traversed in one direction, the graph is known as a directed
graph. The graph can be conceptualized as balls in space with arrows
connecting them. Importantly, each directed edge represents a
connection from one source node to one sink node. Collections of
edges form paths that visit nodes in some order, such that the sink
node of one edge forms the source node for any subsequent nodes. A
special kind of path, called a simple path, is one that contains only
distinct nodes (each node is visited at most once). A simple path may
not intersect itself, by definition, and one may additionally require
that no other paths intersect it. The nodes and edges may be assigned
a variety of attributes and semantics.
An overlap graph represents the sequencing reads and their
overlaps [23]. The overlaps must be pre-computed by a series of
(computationally expensive) pair-wise sequence alignments. Con-
ceptually, the graph has nodes to represent the reads and edges to
represent overlaps. In practice, the graph might have distinct
elements or attributes to distinguish the 5′ and 3′ ends of reads, the
forward and reverse complement sequences of reads, the lengths of
reads, the lengths of overlaps, and the type of overlap (suffix-to-prefix
or containment). Paths through the graph are the potential contigs,
and paths can be converted to sequence. Paths may have mirror
images representing the reverse complement sequence. There are two
ways to force paths to obey the semantics of double-stranded DNA. If
the graph has separate nodes for read ends, then paths must exit the
opposite end of the read they enter. If the graph has separate edges for
the forward and reverse strands, then paths must exit a node on the
same strand they enter.

The de Bruijn graph was developed outside the realm of DNA
sequencing to represent strings from a finite alphabet. The nodes
represent all possible fixed-length strings. The edges represent suffix-
to-prefix perfect overlaps.

A K-mer graph is a form of de Bruijn graph. Its nodes represent all
the fixed-length subsequences drawn from a larger sequence. Its
edges represent all the fixed-length overlaps between subsequences
that were consecutive in the larger sequence. In one formulation [24],
there is one edge for the K-mer that starts at each base (excluding the
last K-1 bases). The nodes represent overlaps of K-1 bases. Alternately
[25], there is one node representing the K-mer that starts at each base.
The edges represent overlaps of K-1 bases. By construction, the graph
contains a path corresponding to the original sequence (Fig. 1). The
path converges on itself at graph elements representing K-mers in the
sequence whose multiplicity is greater than one.

A repeat graph is an application of the K-mer graph [26]. It
provides a succinct graph representation of the repetitiveness of a
genome. Nodes and edges are drawn from an assembled reference
sequence. Whereas non-repetitive genomic sequence would induce a
single path through the graph, repeats induce convergence and
divergence of paths, as well as cycles. Repeat graphs can be used to
identify and catalog repeats [27].

A K-mer graph may represent many sequences instead of one. In
its application to WGS assembly, the K-mer graph represents the
input reads. Each read induces a path. Reads with perfect overlaps
induce a common path. Thus, perfect overlaps are detected implicitly
without any pair-wise sequence alignment calculation (Fig. 2).
Compared to overlap graphs, K-mer graphs are more sensitive to
repeats and sequencing errors. Paths in overlap graphs converge at
repeats longer than a read, but paths in K-mer graphs converge at
perfect repeats of length K or more, and K must be less than the read



Fig. 2. A pair-wise overlap represented by a K-mer graph. (a) Two reads have an error-
free overlap of 4 bases. (b) One K-mer graph, with K=4, represents both reads. The
pair-wise alignment is a by-product of the graph construction. (c) The simple path
through the graph implies a contig whose consensus sequence is easily reconstructed
from the path.
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length. Each single-base sequencing error induces up to K false nodes
in the K-mer graph. Each false node has a chance of matching some
other node and thereby inducing a false convergence of paths.

Real-world WGS data induces problems in overlap graphs and
K-mer graphs.

• Spurs are short, dead-end divergences from the main path (Fig. 3a).
They are induced by sequencing error toward one end of a read.
They can be induced by coverage dropping to zero.

• Bubbles are paths that diverge then converge (Fig. 3b). They are
induced by sequencing error toward the middle of a read, and by
polymorphism in the target. Efficient bubble detection is non-trivial
[28].

• Paths that converge then diverge form the frayed rope pattern
(Fig. 3c). They are induced by repeats in the target genome.

• Cycles are paths that converge on themselves. They are induced by
repeats in the target. For instance, short tandem repeats induce
small cycles.

In general, branching and convergence increases graph complex-
ity, leading to tangles that are difficult to resolve. Much of the
complexity is due to repeats in the target and sequencing error in the
reads.

In the graph context, assembly is a graph reduction problem.
Most optimal graph reductions belong to a class of problems, called
NP-hard, for which no efficient solution is known [29]. Therefore,
Fig. 3. Complexity inK-mer graphs can bediagnosedwith readmultiplicity information. In
these graphs, edges represented in more reads are drawn with thicker arrows. (a) An
errant base call toward the end of a read causes a “spur” or short dead-end branch. The
same pattern could be induced by coincidence of zero coverage after polymorphismnear a
repeat. (b) An errant base call near a read middle causes a “bubble” or alternate path.
Polymorphisms between donor chromosomeswould be expected to induce a bubblewith
parity of readmultiplicity on the divergent paths. (c) Repeat sequences lead to the “frayed
rope” pattern of convergent and divergent paths.
assemblers rely on heuristic algorithms and approximation algo-
rithms to remove redundancy, repair errors, reduce complexity,
enlarge simple paths and otherwise simplify the graph.

Greedy Graph-based Assemblers

The first NGS assembly packages used greedy algorithms. These
have been reviewed well elsewhere [3,30].

The greedy algorithms apply one basic operation: given any read
or contig, add onemore read or contig. The basic operation is repeated
until no more operations are possible. Each operation uses the next
highest-scoring overlap to make the next join. The scoring function
measures, for instance, the number of matching bases in the overlap.
Thus the contigs grow by greedy extension, always taking on the read
that is found by following the highest-scoring overlap. The greedy
algorithms can get stuck at local maxima if the contig at hand takes on
reads that would have helped other contigs grow even larger.

The greedy algorithms are implicit graph algorithms. They
drastically simplify the graph by considering only the high-scoring
edges. As an optimization, they may actually instantiate just one
overlap for each read end they examine. They may also discard each
overlap immediately after contig extension.

Like all assemblers, the greedy algorithms need mechanisms to
avoid incorporating false-positive overlaps into contigs. Overlaps
induced by repetitive sequence may score higher than overlaps
induced by common position of origin. An assembler that builds on
false-positive overlaps will join unrelated sequences to either side of a
repeat to produce chimera.

SSAKE [31] was the first short-read assembler. It was designed for
unpaired short reads of uniform length. It was based on the notion
that high coverage would provide a tiling in error-free reads if the
erroneous reads could be avoided. SSAKE does not use a graph
explicitly. It does use a lookup table of reads indexed by their prefixes.
SSAKE iteratively searches for reads that overlap one contig end. Its
candidate reads must have a prefix-to-suffix identical overlap whose
length is above a threshold. SSAKE chooses carefully among multiple
reads with equally long overlaps. First, it prefers reads with end-to-
end confirmation in other reads. This favors error-free reads. Second,
the software detects when the set of candidates presents multiple
extensions. In particular, it detects when the candidate read suffixes
exhibit differences that are each confirmed in other reads. This is
equivalent to finding a branch in a graph. At this point, the software
terminates the contig extension. Users can elect to override the
“stringent” behavior, in which case SSAKE takes the higher-scoring
extension. When no reads satisfy the initial minimum threshold, the
program decrements the threshold until a secondminimum is reached.
Thus, user settings determine how aggressively SSAKE extends through
possible repeat boundaries and low-coverage regions. SSAKE has
been extended to exploit paired-end reads and imperfectly matching
reads [32].

SHARCGS [33] also operates on uniform-length, high-coverage,
unpaired short reads. It adds pre- and post-processor functionality to
the basic SSAKE algorithm. The pre-processor filters erroneous reads
by requiring a minimum number of full-length exact matches in other
reads. An even higher-stringency filter is optional, requiring that the
combined QVs of matching reads exceed a minimum threshold.
SHARCGS filters the raw read set three times, each at a different
stringency setting, to generate three filtered sets. It assembles each set
separately by iterative contig extension. Then, in a post-process, it
merges the three contig sets using sequence alignment. The merger
aims to extend contigs from highly confirmed reads by integrating
longer contigs from lower-stringency filters.

VCAKE [34] is another iterative extension algorithm. Unlike its
predecessors, it could incorporate imperfect matches during contig
extension. VCAKE was later combined with Newbler in a pipeline for
Solexa+454 hybrid data [35]. Another pipeline had combined
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Newbler and Celera Assembler for 454+Sanger hybrid data [36]. Both
pipelines “shred” contigs from the first assembler to produce pseudo-
reads suitable for the second assembler. The latter pipeline adjusts the
read coverage and base call quality values in the pseudo-reads it
generates. This helps the secondary assembler give appropriate
weight to high-coverage contigs from the primary assembly, for
instance during consensus base calling.

Overlap/Layout/Consensus Assemblers

The OLC approach was typical of the Sanger-data assemblers. It
was optimized for large genomes in software including Celera
Assembler [37], Arachne [38,39], and CAP and PCAP [40]. The OLC
approach has been reviewed elsewhere [41–43].

OLC assemblers use an overlap graph. Their operation has three
phases:

1. Overlap discovery involves all-against-all, pair-wise read compar-
ison. The seed & extend heuristic algorithm is used for efficiency.
The software pre-computes K-mer content across all reads, selects
overlap candidates that share K-mers, and computes alignments
using the K-mers as alignment seeds. Overlap discovery is sensitive
to settings of K-mer size, minimum overlap length, and minimum
percent identity required for an overlap. These three parameters
affect robustness in the face of base calling error and low-coverage
sequencing. Larger parameter values lead to more accurate but
shorter contigs. Overlap discovery can run in parallel with a matrix
partition.

2. Construction and manipulation of an overlap graph leads to an
approximate read layout. The overlap graph need not include the
sequence base calls, so large-genome graphs may fit into practical
amounts of computer memory.

3. Multiple sequence alignment (MSA) determines the precise layout
and then the consensus sequence. There is no known efficient
method to compute the optimal MSA [44]. Therefore, the
consensus phase uses progressive pair-wise alignments guided
by, for instance, the approximate read layout. The consensus phase
must load the sequence base calls into memory. It can run in
parallel, partitioned by contig.

Newbler [45] is widely used software distributed by 454 Life
Sciences. The first release, described in the published supplement,
targeted unpaired reads of approximately 100 bp as generated by the
GS 20 machine. Newbler has since been revised, in particular to build
scaffolds from paired-end constraints. As described in 2005, Newbler
implements OLC twice. The first-phase OLC generates unitigs from
reads. Unitigs are mini-assemblies that are, ideally, uncontested by
overlaps to reads in other unitigs [37]. The unitigs serve as
preliminary, high-confidence, conservative contigs that seed the rest
of the assembly pipeline. The second-phase OLC generates larger
contigs from the unitigs. This phase joins unitigs into a contig layout
based on pair-wise overlaps between unitigs. It may split unitigs
whose prefix and suffix align to different contigs. Unitig splitting may
split individual reads, leading to reads placed inmultiple contigs. Such
reads may have been chimera or derived from a repeat boundary.

Newbler exploits coverage, if possible, to overcome base calling
error. In particular, it uses instrument metrics to overcome inaccurate
calls of the number of bases in homopolymer repeats. Newbler cal-
culates unitig and contig consensus in “flow space” using the
platform-supplied signal strength associated with each flow of a
particular nucleotide. The normalized signal is proportionally corre-
lated to the number of direct repeats of that nucleotide at that position
in the read. Consensus calculation in “base space,” equivalent to
rounding the signals before averaging, would sacrifice precision. For
each column in the MSA, Newbler calculates the average signal and
rounds to an integer to form the consensus.
The Newbler package offers functionality beyond de novo
assembly, and it includes a comprehensive user guide. The Newbler
software is distributed with the 454 sequencing machines. Customers
receive frequent updates. Release descriptions indicate that recent
versions differ from the published algorithm. The source code is not
generally available.

The Celera Assembler [37] is a Sanger-era OLC assembler revised
for 454 data [46]. The revised pipeline, called CABOG, discovers
overlaps using compressed seeds. CABOG reduces homopolymer runs,
that is, repeats of single letters, to single bases to overcome
homopolymer run length uncertainty in data. CABOG builds initial
unitigs excluding reads that are substrings of other reads. Substrings
account for a large portion of the data in high-coverage 454 data due
to highly variable read lengths. CABOG avoids the substring-reads
initially because they are more susceptible to repeat-induced false
overlaps.

CABOG applies a base call correction scheme first described for
Arachne [38]. It compares each read to its set of overlapping reads. It
infers sequencing error at any base contradicted by a preponderance
of overlaps. It does not fix the read. Rather, it adjusts the tabulated
error rates in overlaps spanning the inferred error. Next, it applies a
user-supplied threshold for error rates. From the overlaps that survive
the error filter and a filter for minimum alignment length, CABOG
selects one “best” overlap per read end. Best is defined as aligning the
most bases. The best-overlap filter is presumed to eliminate many of
the same overlaps removed by the more time-costly transitive edge
removal algorithm [23], which was employed by the original Celera
Assembler. CABOG constructs an overlap graph from the reads and
“best” overlaps. Within the graph, it builds unitigs from maximal
simple paths that are free of branches and intersections. CABOG next
constructs a graph of unitigs plus paired-end constraints. Within that
graph, it joins unitigs into contigs and connects contigs into scaffolds.
It applies a series of graph reductions including removal of transitively
inferable edges. Finally, CABOG derives consensus sequences by
computing multiple sequence alignments from the scaffold layouts
plus the read sequences.

Two assemblers apply the OLC approach to the short reads from
the Solexa and SOLiD platforms. The Edena software [47] discards
duplicate reads and finds all perfect, error-free, overlaps. It removes
individual overlaps that are redundant with pairs of other overlaps, an
application of the transitive overlap reduction algorithm [23]. Edena
prunes spurs and bubbles. Edena was designed for unpaired reads of
uniform length. The Shorty software [48] attacks the special case
where a few long reads are available to act as seeds to recruit short
reads and their mate pairs. Proceeding in iterations, Shorty uses
contigs to seed larger contigs.

The de Bruijn Graph Approach

The third approach to assembly is most widely applied to the short
reads from the Solexa and SOLiD platforms. It relies on K-mer graphs,
whose attributes make it attractive for vast quantities of short reads.
The K-mer graph does not require all-against-all overlap discovery, it
does not (necessarily) store individual reads or their overlaps, and it
compresses redundant sequence. Conversely, the K-mer graph does
contain actual sequence and the graph can exhaust available memory
on large genomes. Distributed memory approaches may alleviate this
constraint.

The K-mer graph approach dates to an algorithm for Sanger read
assembly [24] based on a proposal [49] for an even older sequencing
technology; see [3] for review. The approach is commonly called a de
Bruijn graph (DBG) approach or an Eulerian approach [50] based on
an ideal scenario. Given perfect data – error-free K-mers providing full
coverage and spanning every repeat – the K-mer graph would be a de
Bruijn graph and it would contain an Eulerian path, that is, a path that
traverses each edge exactly once. The path would be trivial to find
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making the assembly problem trivial by extension. Of course, K-mer
graphs built from real sequencing data are more complicated.

To the extent that the data is ideal, assembly is a by-product of the
graph construction. The graph construction phase proceeds quickly
using a constant-time hash table lookup for the existence of each K-mer
in the data stream. Although the hash table consumes extra memory,
the K-mer graph itself stores each K-mer at most once, no matter how
many times the K-mer occurs in the reads. In terms of computer
memory, the graph is smaller than the input reads to the extent that
the reads share K-mers.

Pevzner [49] explored problems that genomic repeats introduce.
Repeats induce cycles in theK-mer graph. Thesewould allowmore than
one possible reconstruction of the target. Idury andWaterman [24] also
explored problems of real data. They added two extra types of
information to the K-mer graph and named the result a sequence
graph. Each edge was labeled with the reads, and positions within each
read, of the sequences that induced it. Where nodes had one inbound
and one outbound edge, the three elements could be compressed into
one edge. Thiswas called the elimination of singletons. Further research
led to the Euler software implementation [50] for Sanger data.
Impractical for large-scale Sanger sequencing projects, Euler and the
DBG approachwerewell positionedwhen the Illumina platform started
to produce data composed of very short unpaired reads of uniform size.

Three factors complicate the application of K-mer graphs to DNA
sequence assembly.

1. DNA is double stranded. The forward sequence of any given read
may overlap the forward or reverse complement sequence of other
reads. One K-mer graph implementation contains nodes and edges
for both strands, taking care to avoid output of the entire assembly
twice [24]. Another implementation stores forward and reverse
sequence together as cognate half-nodes with the constraint that
paths enter and exit the same half [25]. Yet another implementa-
tion represents alternate strands in a single node with two sides,
constraining paths to enter and exit opposite sides [51].

2. Real genomes present complex repeat structures including tandem
repeats, inverted repeats, imperfect repeats, and repeats inserted
within repeats. Repeats longer than K lead to tangled K-mer graphs
that complicate the assembly problem. Perfect repeats of length K
or greater collapse inside the graph, leaving a local graph structure
that resembles a ropewith frayed ends (Fig. 3c); paths converge for
the length of the repeat and then they diverge. Successful assembly
requires separation of the converged path, which represents a
collapsed repeat. The graph contains insufficient information to
disambiguate the repeat. Assemblers typically consult the reads,
and possibly the mate pairs, in attempts to resolve these regions.

3. A palindrome is a DNA sequence that is its own reverse com-
plement. Palindromes induce paths that fold back on themselves.
At least one assembler avoids these elegantly; Velvet [25] requires
K, the length of a K-mer, to be odd. An odd-size K-mer cannot
match its reverse complement.

4. Real data includes sequencing error. DBG assemblers use several
techniques to reduce sensitivity to this problem. First, they pre-
process the reads to remove error. Second, they weight the graph
edges by the number of reads that support them, and then “erode”
the lightly supported paths. Third, they convert paths to sequences
and use sequence alignment algorithms to collapse nearly identical
paths. Many of these techniques derive from the Euler family of
assemblers.

The de Bruijn Graph in Euler

The Euler software was developed for Sanger reads [26,50,52]. It
was subsequently modified for short 454 GS20 reads [53], even
shorter unpaired Illumina/Solexa reads [54], and paired-end Solexa
reads [55].
Euler applies a filter to the reads before it builds its graph. The filter
detects erroneous base calls by noting low-frequency K-mers. The
filter relies on redundancy of reads: most true K-mers should be
repeated in several reads. The filter also relies on randomness of
sequencing error: for any K where 4K exceeds twice the genome size,
most erroneous K-mers should be unique. The Euler filter is
implemented with a list of K-mers and their observed frequencies
in the reads. The filter excludes or corrects low-frequency K-mers.
Correction is especially important for short reads with high error and
high coverage. Correction reduces the total number of K-mers and
thus the node count in the graph. Correction risks masking true
polymorphism [50]. Correction can corrupt valid K-mers that had low
coverage by chance. Correction could leave a read incorrect by settling
on K-mers that each occur in several reads but never occur together in
any read. OLC assemblers have an analogous base call correction step
that uses overlaps rather than K-mers.

The Eulerfilter process is called spectral alignment [50]. The software
identifies sequencing error by comparing K-mer content between
individual reads and all reads. It distrusts individual-read K-mers
whose frequency in all reads is below a threshold. The threshold is
chosen after calculating the distribution of K-mer frequencies present in
the reads. The distribution is usually bi-modal. The first peak represents
the many K-mers that occur once or twice, due to sequencing error (or
low coverage). The second peak represents the redundant K-mers
induced by the read coverage (or genomic repeats). Euler selects the
threshold between the peaks and effectively labels all K-mers as bad or
good. Euler then examines each read. For each read with bad K-mers, it
executes a greedy exploration for base call substitutions that reduce the
bad K-mer count [55]. Finally, it either accepts a fully corrected read or
rejects the read. (Rejected reads can be re-introduced to patch low-
coverage regions after assembly.) Note Euler corrects substitution errors
but not insertions or deletions, i.e. indels. Substitutions are the most
common base call error type in Solexa data [12].

Euler builds a K-mer graph from the filtered and corrected reads.
Then it applies a series of graph manipulations designed to overcome
the effects of sequencing errors and genomic repeats.

By processing K-mers not reads, the K-mer graph construction
discards long-range continuity information in the reads. Euler repairs
this defect by threading the reads through the graph. Mapping a read
onto the graph is easy. At least initially, the K-mers in reads map to
unique nodes and reads are consistent with some path. Exploitation of
the mapping is more complex. Reads ending inside a repeat are
consistent with any path exiting the repeat, but reads spanning a
repeat are consistent with fewer paths. For the latter, read threading
pulls out one piece of string from a frayed rope pattern, thus resolving
one copy of the collapsed repeat (Fig. 4a). Thus read threading
constrains the set of valid paths through the graph. This allows
resolution of repeats whose length is between K and the read length.

A paired-end read is effectively a long read that is missing base
calls in themiddle. Euler treats paired ends this way to resolve repeats
longer than individual reads. The technique could be called mate
threading. Paired ends that span a repeat provide the evidence to join
one path that enters a repeat to one path that exits the repeat
(Fig. 4b). Paired ends can also resolve some complex tangles induced
by repeats. A complex graph may have multiple paths between two
nodes corresponding to opposite ends of a mate pair. Each path
implies a putative DNA sequence. In many cases, only one of the paths
implies a sequence whose length satisfies the paired-end constraint
(Fig. 4c). Between any mate pair, there could be too many paths for
exhaustive search to be feasible. Euler seems to restrict the search
space using the mate constraint as a bound on path length. (The
number of paths in a general graph scales with NE for N nodes and
E out-going edges per node. K-mer graphs of DNA sequence can be
constrained to E≤4 to represent the 4 possible one-letter extensions
to a sequence. The constraint is violated by some graph simplifica-
tions, and N4 is still not tractable.)



Fig. 4. Three methods to resolve graph complexity. (a) Read threading joins paths across collapsed repeats that are shorter than the read lengths. (b) Mate threading joins paths
across collapsed repeats that are shorter than the paired-end distances. (c) Path following chooses one path if its length fits the paired-end constraint. Reads andmates are shown as
patterned lines. Not all tangles can be resolved by reads and mates. The non-branching paths are illustrative; they could be simplified to single edges or nodes.
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After threading, Euler implements graph simplifications at regions
with low and high depth of coverage in reads. Euler's spur erosion
reduces branching in graph paths and thereby lengthens simple paths.
The spurs are presumed due to sequencing error that survived the
spectral alignment filter. Euler identifies remaining edges that appear
repetitive and removes them from the set of paths. This is equivalent
to breaking contigs at repeat boundaries in OLC assembly.

Reads from many platforms contain lower quality base calls at
their 3′ ends, and the problem can be exacerbated by long-read
protocols on short-read platforms. Euler addresses this problem by
trusting read prefixes more than their suffixes. It chooses trustable
prefixes during the error correction step. Prefix length varies per read.
During read threading, prefixes and suffixes can map to multiple
paths. By a heuristic, Euler trusts mappings that are significantly
better than their second-best choice. Just as the suffixes would add
coverage to a multiple sequence alignment, they add connectivity to
the graph. The extra sequence leads to greater contig size. Euler
chooses not to alter the assembly consensus sequence based on the
suffixes, so the mapped suffixes contribute connectivity only.

Overlap graphs are sensitive to the minimum overlap length
threshold, and K-mer graphs are sensitive to the parameter K. Larger
values of K resolve longer repeats but they also fracture assemblies in
regions of low read coverage. Euler addresses this with a heuristic.
Euler constructs and simplifies two K-mer graphs with different
values of K. It identifies edges present in the smaller-K graph that are
missing in the larger-K graph. It adds corresponding pseudo-edges to
the second graph. The borrowed edges extend paths in the second
graph and thus enlarge contigs in the assembly. This technique
effectively uses large K-mers to build reliable initial contigs, and then
fills gaps with more prolific small K-mers. This is analogous to gap
filling approaches in OLC assemblers [37].

Some of the Euler software incorporates another structure called
the A-Bruijn graph. It gets its name from being a combination of a de
Bruijn graph and an adjacency matrix or A-matrix. Nodes of the graph
represent consecutive columns in multiple sequence alignments.
Compared to nodes representing K-mers in individual reads, the
adjacency nodes can be less sensitive to sequencing error. The A-Bruijn
graphwasdeployed for converting a genomesequence to a repeat graph
and classifying repeats. It was proposed as a basis for assembly [26].

In summary, Euler compares de Bruijn graphs built from different
K-mer sizes. Euler applies heuristics to mitigate graph complexity
induced by sequencing error. It exploits low-quality read ends and
paired-end constraints to tease apart graph tangles induced by genomic
repeats. The software targets de novo assembly from short reads,
including paired-ends, from the Solexa platform.
The de Bruijn Graph in Velvet

Velvet [25,56] is a reliable and easy to use DBG assembler. Velvet
makes extensive use of graph simplification to reduce simple non-
intersecting paths to single nodes. Simplification compresses the
graph without loss of information. Velvet invokes the simplification
step during graph construction and again several times during the
assembly process. The technique, introduced as elimination of
singletons for K-mer graphs [24], is analogous to unitig formation in
overlap graphs [23] and OLC assemblers [37].

Velvet prunes the K-mer graph by removing spurs iteratively. Its
tip removal algorithm is similar to Euler's erosion procedure. The spur
removal drastically reduced the graph size on real data [25], possibly
because it was the pipeline's first attempt at filtering out base call
errors. Velvet does not implement Euler's spectral alignment filter.
Velvet has a parameter for theminimumnumber of occurrences in the
reads for a K-mer to qualify as a graph node. The Velvet publication
seems to discourage use of this naïve filter.

Velvet reduces graph complexity with a bounded search for
bubbles in the graph. Velvet's tour bus algorithm uses breadth-first-
search, fanning out as much as possible, starting at nodes with
multiple out-going edges. Since graphs of real data can have bubbles
within bubbles, an exhaustive search for all bubbles would be
impractical. The search is bounded to make it tractable; the candidate
paths are traversed in step, moving ahead one node on all paths per
iteration, until the path lengths exceed a threshold. Velvet narrows
the bubble candidates to those with a sequence similarity require-
ment on the alternate paths. Having found a bubble, Velvet removes
the path representing fewer reads and, working outside the graph, re-
aligns reads from the removed path to the remaining path. Because
higher read multiplicity determines the target path, the re-aligner
effectively calls the consensus bases by a column-wise voting
algorithm. The operation risks “papering over” genuine sequence
differences due to polymorphism in the donor DNA or over-collapse of
near-identical repeats. Velvet's algorithm is similar to bulge removal
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in Euler [26] and analogous to bubble detection and bubble smoothing
in OLC assemblers [28].

Velvet further reduces graph complexity by read threading. It
removes paths that represent fewer reads than a threshold. This
operation risks removing low-coverage sequence but it is thought
to remove mostly spurious connections induced by convergent se-
quencing errors. Velvet exploits long reads, if any were provided, by
an algorithm it calls Rock Band. This forms nodes out of paths that
are confirmed by two or more long reads provided no other two long
reads provide a consistent contradiction.

Velvet's final graph reduction involves mate pairs. Early versions
used an algorithm called breadcrumb [25] that is similar to mate pair
threading in DBG algorithms [52] and gap filling in OLC algorithms
[37]. It operated on pairs of long contigs (simple paths) connected by
paired-ends. Using the long contigs as anchors, it tried to fill the gap
between them with short contigs. It gathered short contigs linked to
the long contigs, and applied a breadth-first search through the DBG
for a single path linking the long contigs and by traversing the short
contigs. Later versions of Velvet use an algorithm called pebble [56]. In
this algorithm, unique and repeat contigs substitute for breadcrumb's
long and short contigs, respectively. The unique/repeat classifier is
based on read coverage per contig. Velvet uses a statistical test similar
to Celera Assembler's A-stat [37] and a given coverage expectation. It
exploits the given (per-library) insert length distribution to build an
approximate contig layout. It searches the DBG for a path that is
consistent with the layout.

Velvet may be run several times per data set to optimize selection
of three critical parameters. The length of the K-mers is constrained to
be odd to preclude nodes representing palindromic repeats. The
minimum frequency expected of K-mers in the reads determines
which K-mers are pruned a-priori. The expected coverage of the
genome in reads controls spurious connection breaking.

In summary, Velvet offers a full implementation of DBG assembly.
It does not use an error-correction pre-processor, though it does have
an error-avoidance read filter. It applies a series of heuristics that
reduce graph complexity. The heuristics exploit local graph topology,
read coverage, sequence identity, and paired-end constraints. The
software targets de novo assembly from short reads with paired ends
from the Solexa platform. An extension allows it to assemble data sets
composed solely of SOLiD reads (www.solidsoftwaretools.com).
Memory requirements currently preclude Velvet from assembling
very large genomes.

The de Bruijn Graph in ABySS

ABySS is a distributed implementation [51] designed to addresses
memory limitations of mammalian-size genome assembly by DBG.
ABySS distributes the K-mer graph, and the graph computations,
across a compute grid whose combined memory is quite large. This
scheme allowed it to assemble 3.5 billion Solexa reads from a human
donor.

Several problems confront any single-CPU algorithm that is ported
to a grid. It must be possible to partition the problem for parallel
computation, to distribute the partitions evenly across the grid, and to
marshal the results. ABySS partitions the assembly at the granularity
of the individual graph node. (Each graph node is processed
separately. For efficiency, many graph nodes are assigned to each
CPU.) The assignment of a graph node to CPU is accomplished by
converting the K-mer to an integer. The formula is strand-neutral such
that a K-mer and its reverse complementmap to the same integer. The
formula would be helpful if it somehow mapped neighbor K-mers to
the same CPU. It is not clear to what extent this was accomplished.

ABySS introduces parallel implementations of graph simplifica-
tions present in Euler and Velvet. ABySS iteratively removes spurs
shorter than a threshold. ABySS performs bubble smoothing by
bounded search and prefers the path supported by more reads. It also
transforms simple non-intersecting paths into contigs and performs
mate threading. ABySS uses a compact representation of the K-mer
graph. Each graph node represents a K-mer and its reverse
complement. Each graph node keeps 8 bits of extra information: the
existence or non-existence of each of the four possible one-letter
extensions at each end. The graph edges are implicit in this extra
information. ABySS follows paths in parallel starting at arbitrary graph
nodes per CPU. From any node, ABySS finds its successor elegantly:
the node's last K-1 bases, plus a one-base extension indicated by an
edge, is converted numerically to the address (including CPU
assignment) of the successor node. When a path traverses a node
on a different CPU, the process emits a request for information. Since
inter-CPU communication is typically slow, the process works on
other graph nodes while waiting for the response.

In a post-process, ABySS exploits paired-end reads to merge
contigs. ABySS does not build scaffolds. In summary, ABYSS is scalable
assembly software for Solexa short reads and paired end reads.
The de Bruijn Graph in AllPaths

AllPaths is a DBG assembler intended for application to large
genomes. It was published with results on simulated data [57] and
revised for real data [58].

AllPaths uses a read-correcting pre-processor related to spectral
alignment in Euler. It trusts K-mers that occur at high frequency in
reads and at high quality (where each base must be confirmed by a
minimum number of base calls with QV above a threshold). It retains
reads whose K-mers are trusted. The filter operates on K-mers for
three values of K. The filter is relaxed in two ways. Reads are restored
if up to two substitutions to low-QV base calls make its K-mers
trusted. K-mers are restored later if they are essential for building a
path between paired-end reads.

AllPaths invokes a second pre-processor that creates “unipaths.”
The process begins with the calculation of perfect read overlaps
seeded by K-mers. It assigns numerical identifiers to the K-mers such
that many K-mers seen consecutively in reads and overlaps receive
consecutive identifiers. It populates a database of identifier intervals
and the read links between them. It merges intervals to an extent that
is consistent with all the reads. The operation is equivalent to DBG
construction followed by elimination of singletons. The database
implementation probably reduces the RAM requirement for the graph
construction, which comes next.

AllPaths builds a DBG from the database. Its first graph operation is
spur erosion, which it calls unitig graph shaving. AllPaths partitions
the graph. Its goal is to resolve genomic repeats by assembling regions
that are locally non-repetitive. It applies heuristics to choose
partitions that form a tiling path across the genome. It seeds partitions
with nodes corresponding to long, moderately covered, widely
separated contigs. It populates partitions with nodes and reads linked
by alignments and mate pairs. It seeks to fill gaps between paired-end
reads by searching the K-mer graph for instances where exactly one
path satisfies the distance constraint. For tighter variance on
constraints, it uses short-range paired-ends first. AllPaths assembles
each partition separately and in parallel. Then, AllPaths “glues” the
local graphs where they have overlapping structure. This is analogous
to joining contigs based on sequence overlaps. In the global graph,
AllPaths heuristically removes spurs, small disconnected components,
and paths not spanned by paired-ends. It unrolls cycles to match
paired-end distance constraints; this decides copy number on tandem
repeats. It also uses paired-ends to tease apart collapsed repeats that
display the frayed rope pattern.

In summary, AllPaths targets large-genome assembly using
paired-end short reads from the Solexa platform. Its read filter uses
quality values to fix some substitution errors. It simplifies its K-mer
graph initially based on reads and overlaps. Going beyond read and

http://www.solidsoftwaretools.com
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mate threading, it applies the read and paired-end data outside the
graph in a divide-and-conquer approach.

The de Bruijn Graph in SOAPdenovo

The SOAPdenovo program [59] generated high-quality mamma-
lian genome sequences from billions of Solexa reads of length 75 bp
and less [60,61]. The program is freely available but without source
code.

SOAP filters and corrects reads using pre-set thresholds for K-mer
frequencies. It builds a de Bruijn graph and erodes the tips. SOAP
threads the reads and splits paths that display a symmetrical frayed
rope pattern. SOAP removes bubbles with an algorithm like Velvet's
tour bus, with higher read coverage determining the surviving path.
Though SOAP's DBG implementation borrows from Euler and Velvet,
its graph is more space-efficient. Devoid of read-tracking information,
the graph required only 120 GB RAM to store 5 billion nodes from 3.3
billion reads (after filtering). As described [59], the graph was
constructed without data from large-insert libraries because those
were suspected of generating many chimeric reads.

SOAP builds contigs from reads by the DBG method. Then it
discards the de Bruijn graph to build scaffolds. It maps all paired reads
to the contig consensus sequences, including reads not used in the
DBG. Then it builds a contig graph whose edges represent the inter-
contig mate pair constraints. SOAP reduces complexity in the contig
graph by removing edges that are transitively inferable from others. It
also isolates contigs traversed by multiple, incompatible paths, since
these appear to be collapsed repeats. Similar techniques are
implemented in CABOG and its predecessor, Celera Assembler. As
does AllPaths, SOAP processes the edges in order of insert size, from
small to large. SOAP does this to preclude construction of scaffolds
that interleave others. SOAP uses mate pairs to assign reads to gaps
between neighbor contigs within a scaffold. This is similar to CABOG's
“rocks and stones” technique [37,62] and to Velvet's breadcrumbs and
pebble techniques. SOAP uses de Bruijn graphs to assemble the reads
assigned to each gap. In summary, SOAP is a large-genome
implementation that amalgamates OLC and DBG techniques from its
NGS assembly predecessors.

Other Software

The PCAP long-read assembler also assembles 454 reads [40].
LOCAS targets low-coverage short-read data (www-ab.informatik.
uni-tuebingen.de/software/locas). The MIRA long-read assembler
also assembles short reads (chevreux.org/projects_mira.html), as
does Forge [63]. Similar to Edena, Taipan [64] implements greedy
contig extension and transitive overlap reduction for unpaired short
reads. Proprietary, commercial short-read assemblers include CLC
Workbench (www.clcbio.com) and SeqMan (www.dnastart.com).
Complete Genomics offers human genome sequencing serviceswithout
distributing its sequencing or assembly technology (www.completege-
nomics.com). SHRAP is a protocol for sequencing human-scale genomes
[65] with short reads by clone-based sequencing and a hierarchical
assembly strategy. The protocol was demonstrated with Euler on
simulated data. Network flowanalysis has been described for resolution
of repeat copy number during genome assembly [52,66]. It was
implemented with generic flow analysis software [67].

The SOLiD platform from ABI has an unusual characteristic that
requires special attention in software. The base calls are represented
using the four digits 0, 1, 2, 3. These are referred to as colors. Each
color is a di-base encoding of one base in relation to its preceding base.
The reads' first base is a constant per run. Software gains robustness to
error by forming alignments in color space and testing their validity
by conversion to base space. Software support for de novo assembly of
SOLiD reads is limited and has not been formally described. ABI
provided an update to Velvet (www.solidsoftwaretools.com) that
assembles homogeneous SOLiD data sets. There is de novo assembly
support in commercial software such as CLCWorkbench (www.clcbio.
com). Some packages that assemble SOLiD reads in the presence of
Sanger reads, 454 reads, or contigs include Shorty [48], SeqWrite
(www.seqwright.com) and NextGENe (www.softgenetics.com).

An alternative to de novo assembly is mapping. For some applica-
tions, sufficient information can be extracted from themapping of reads
to a reference sequence, such as a finished genome from a related
individual. Mapped reads can reveal small-scale population differences
such as substitutions and indels. (These are routinely referred to as
single-nucleotide substitutions, or SNPs, and deletion-insertion poly-
morphisms, or DIPs, respectively.) Mapped mate pairs can reveal larger
indels and structural re-arrangements. Using amapping, it is possible to
construct contigs and scaffolds, eachwith their consensus sequences, as
in de novo assembly.

Short-read mapping software is widely available. Published software
includes SOAP [68,69], MAQ [70], Bowtie [71], RMAP [72], CloudBurst
[73], SHRiMP [74], RazerS [75], PerM[76], segemehl [77], GenomeMapper
[78], and BOAT [79]. Platform-specific mappers are available from
platform vendors: Eland from Illumina (www.illumina.com), Corona
from ABI [80], and Reference Mapper from 454 (www.454.com). Other
commercial or unpublished solutions include ZOOM [81], CLC Work-
bench (www.clcbio.com), Novoalign (www.novocraft.com), Myrialign
(savannah.nongnu.org/projects/myrialign) and Mr. Fast (mrfast.sf.net).
Mapping-based variant discovery algorithms include MoDIL [82],
VariationHunter [83] and BreakDancer [84]. Somewhere between
de novo and mapping assembly there is reference-guided assembly.
Software implementations include AMOScmp [85] as revised for short
reads,MOSAIK as featured in a short-read, cross-species comparison [86],
and SeqMan which is commercial software (www.dnastar.com). A
related approach, called gene-boosted assembly, finishes an assembly
by comparison of related genomes and protein sequences [87]. Our
survey is no doubt incomplete and we apologize for omissions.

Summary and Outlook

We have compared a dozen algorithms for the de novo assembly of
whole-genome shotgun (WGS) data from next-generation sequencing
(NGS) platforms. Table 1 offers a summary feature comparison. Our
comparison is an interpretation of the primary literature. Few of the
publisheddescriptions includemeasures of the relative contributionsby
their various algorithmic features, and none include the unit tests and
controls that might verify that the implementations follow the
algorithms. No algorithm or implementation solves the WGS assembly
problem. Each of the various software packages was published with
claims about its own superiority. Each package seems to improve in
subsequent software releases. In our experience, the success of an
assembler depends largely on the sophistication of its heuristics for real
reads including error, real genomes including repeats, and the
limitations of modern computers.

Large genomes tend to present more complex repeat structures.
Most of the NGS assemblers discussed here were initially published
with assemblies of bacterial-length genomes (or larger genomes by
simulated reads). Four de novo assemblies of mammalian-scale
genomes from Solexa short reads have been described in the scientific
literature. The first assembly of the human genome from short reads
[51] represented a software engineering feat. Later assemblies of
panda [60] and two humans [61] used slightly larger reads and more
variety in pair insert sizes and generated larger contigs. Improved
mammalian assemblies are certain to become reality thanks to
decreases in sequencing cost, increasing read lengths by every
platform, more variety in paired-end protocols, continual improve-
ment to assembly software, and the application of more powerful
compute nodes and grids.

In the graph context, optimal path discovery is impractical because
there can be an exponential number of paths between any source and
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Table 1
Feature comparison between de novo assemblers for whole-genome shotgun data from next-generation sequencing platforms. OLC refers to the overlap/layout/consensus
architecture. DBG refers to the de Bruijn graph architecture. The table is based on the literature cited in the text. It may not reflect the current state of each software package.

Algorithm Feature Greedy Assemblers OLC Assemblers DBG Assemblers

Modeled features of reads

Base substitutions Euler, AllPaths, SOAP
Homopolymer miscount CABOG
Concentrated error in 3′ end Euler
Flow space Newbler
Color space Shorty Velvet

Removal of erroneous reads

Based on K-mer frequencies Euler, Velvet, AllPaths
Based on K-mer freq and QV AllPaths
For multiple values of K AllPaths
By alignment to other reads CABOG
By alignment and QV SHARCGS

Correction of erroneous base calls

Based on K-mer frequencies Euler, SOAP
Based on Kmer freq and QV AllPaths
Based on alignments CABOG

Approaches to graph construction

Implicit SSAKE, SHARCGS, VCAKE
Reads as graph nodes CABOG, Newbler, Edena
K-mers as graph nodes Euler, Velvet, ABySS, SOAP
Simple paths as graph nodes AllPaths
Multiple values of K Euler
Multiple overlap stringencies SHARCGS

Approaches to graph reduction

Filter overlaps CABOG
Greedy contig extension SSAKE, SHARCGS, VCAKE
Collapse simple paths CABOG, Newbler Euler, Velvet, SOAP
Erosion of spurs CABOG, Edena Euler, Velvet, AllPaths, SOAP
Transitive overlap reduction Edena
Bubble smoothing Edena Euler, Velvet, SOAP
Bubble detection AllPaths
Reads separate tangled paths Euler, SOAP
Break at low coverage Velvet, SOAP
Break at high coverage CABOG Euler
High coverage indicates repeat CABOG Velvet
Special use of long reads Shorty Velvet

Graph partitions

Partition by K-mers ABySS
Partition by scaffolds AllPaths

Uses for mate pairs

Constrain path searches Euler, Velvet, AllPaths
Guide path selection Euler, Allpaths
Detect misassembled contigs CABOG, Shorty
Merge contigs or fill gaps CABOG, Shorty Velvet, ABySS, SOAP
Transitive link reduction CABOG SOAP
Detect, avoid repeat contigs CABOG Velvet, SOAP
Create scaffolds CABOG, Shorty Euler, Velvet, AllPaths, SOAP
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sink node. Each assembler searches the graph but each constrains its
searches for reasons of scale. A search in CABOG's overlap graph
follows only one outward edge per node. Searches in AllPaths and
Velvet examine local regions of the K-mer graph that are anchored by
large contigs and populated by direct and transitive paired-end
linkage. Euler and ABySS seem to rely on branch-and-bound search
algorithms.

Common to most assemblers, a core set of features is apparent:

• Error detection and correction based on sequence composition of
the reads.

• Graph construction to represent reads and their shared sequence.
• Reduction of simple non-intersecting paths to single nodes in the
graph.
• Removal of error-induced paths. These are recognized as spurs or
bubbles.

• Collapse of polymorphism-induced complexity. This is recognized
as bubbles.

• Simplification of tangles using information outside the graph.
Individual reads or paired-end reads act as constraints on path
distance and outcome.

• Conversion of reduced paths to contigs and scaffolds.
• Reduction of alignments to a consensus sequence.

OLC and DBG are two robust approaches to assembly. Both rely to
some extent on a set of overlaps between the input reads. Both
represent the overlaps in a directed graph. Their different graph
representations are similar if not equivalent [66]. The OLC approach
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directly incorporates connections (overlaps) of varying length, as
expected in long-read, low-coverage data. K-mer graphs are limited
initially to short connections (shared K-mers) of uniform size, though
read threading mitigates this. The DBG approach is more appropriate
for the large volumes of reads associated with short-read sequencing.
DBG avoids the computationally expensive all-against-all pair-wise
read comparisons. DBG avoids loading all the replicate sequences
associated with high-coverage sequencing.

Both techniques must contend with noisy data. Sequencing error
induces false positive and false negative overlaps. Noise filtration is
inherent in overlap graphs constructed from non-identical align-
ments. K-mer graphs are more sensitive to sequencing error, as every
miscalled base introduces up to K erroneous nodes. The OLC and DBG
approaches both employ pre-processing steps to filter or correct
unconfirmed portions of reads, as well as post-processes to repair
graphs by erosion, smoothing, and threading.

The OLC assemblers grew up on long reads. The DBG assemblers
proliferated with the introduction of short reads. The OLC assemblers
target variable-length reads in the 100-800 bp range. The DBG
assemblers target uniformly sized reads in the 25-100 bp range. Reads
of thenear futuremaybe intermediate-sized,matchingmore closely the
expectations of OLC assemblers. Further ahead, very long reads may
become feasible while short reads may become even more affordable.

Reads of the future will challenge assembly software in many ways.
Sequencing platformsmay reveal inter-read associations richer than the
paired-end model allows. Future platforms may target error rates that
are higher or lower than today's standards. Almost certainly, data
volumewill continue to increasewhilemanufacturing cost declines. The
next-generation technology will surely be applied to larger genomes,
more repetitive sequences, and less homogeneous samples. Developers
of assembly algorithms will continue to be challenged by novel
applications and larger data sets. Simultaneously, assembly developers
will be challenged to extract more useful information from each
sequence to enable lower coverage per genome and thus higher yield.
The quest formore powerful andefficient assembly software remains an
area of critical research.
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