
Discrete Mathematics 27 (1979) 47-57.

@ North-Holland Publishing Comp~ny

r.

I
I' BOUNDS FOR SORTING BY PREFIX REVERSAL

William H. GATES

f: ! Christos H. PAP ADIMITRIOU*t

Departmentof ElectricalEngineering,Universityof California,Berkeley,CA 94720,U.S.A.

Microsoft, Albuquerque, New Mexico

~

Received 18danuary 1978
Revised 28 August 19(8

.,
For a permutation (J"of the integers from 1 to n, let f((J")be the smallest number of prefix

reversalsthal'will transform (J"to the identity permutation, and let f(n) be the largest such f(lr)
for all (J"in (the symmetric group) Sn' We show that f(n) "'"(5n + 5)/3, and that f(n) ~ 17n/16 for
n a multiple of 16. if, furthermore, each integer is required to participate in an even number of
reversed prefixes, the corresponding function g(n) is shown to obey 3n/2-1""'g(n)""'2n+3.

1. Introduction

We introduce OUEproblem by the following quotation from [1]

The chef in our place is sloppy, and when he prepares a stack of pancakes they come
out all different sizes. Therefore, when I qeliver them to a customer, on the way to the
table I rearrange them (so that the smallest winds up on top, and so on, down to the
largest"at the bottom) by grabbing several from the top and flipping them over, r~peating
this (varying the number I flip) as many times as necessary. If there are n pancakes, what
is the, maximum nUmber of flips (as a function f(n) of n) that I will ever.have to use to
rearrange them?

i

[

: I

In this paper we derive upper and~lower bounds for fen). Certain bounds were
already known. For example, consider any stack of pancakes. An adjacency in
this stack is a pair of pancakes that are adjacent in the stask, and such that no
other pancake has size intermediate~ between the two. If the largest pancake is on
the bottom, this also counts as one extra adjacency. Now, fOL;n ~4 there""'are
stacks of n pancakes that have no adjaceIJcies whatsoever. On the other hand, "a
sorted stack must have all n adjacencies and each move (flip) can create'at most
one adja~ency. Consequently, forn ~4, f(n)~ n.. By elaborating on this argu-
ment, M.R. Garey, D.S. Johnso-qand S. Lin [2] showed tl1at fen) ~ n+ 1dor n"F 6.

For upper bounds-algorithms, that is"it was knqwn that fen) ~ 2n. This can
be seen as follows. Given any stack we may start by bringing the largest pancake

. on top and then flip the whole stack: the largest pancake is now :;ttthe bottom,
* Research supported by NSF Grant MCS 77-01193.
t Current address: Laboratory for Computer Science, Massachusets, Institute of ?Technology,

Cambr.idge,Ma 02139, USA.

I
I

-0 ~

47
"

.;
Ie "'"

~

ill

III

;, ;1

~

1

'"

;II

..

ii!

11
..11
;II
:11
~

~
"~

48 W.R. Gates, c.R. Papadimitriou

after two moves. Inductively, bring to the top the largest pancak~ that. has not 1
been sorted yet, and then flip it to the ,bottom of the unsorted stack. By 2n moves)
we will have thus sorted the whole thing. In fact, 2n can be improved to 2n ~c, .
constant c, by sorting the last few pancakes by a more clever method.

The list of obvious upper and lower bounds ends here. We show in Table 1 the
known values of f. The. seven first values were known to M.R. Garey, D.S.
Johnson, and S. Lin in [2]. The last two are taken from [3].

Table 1

In Section 2, after introducing some notation and terminology, we prove that
>c t(n) ",;;(5n + 5)/3 by designing a sorting algorithm that always has at least as good

performance. In Section 3 we show that t(n):;:::.17n/16 infinitely often, by con-
structing, for each k:;:::1, a stack of 16k pancakes that requires 17k m°'ies in
order to be sorted. Finally, in Section 4 we derive bounds for ten) under the
additional restriction that the pancakes must come out not only sorted, but also
"right-side-up". In other words, each pancake must suffer an even number of
flippings. The motivation is, of course, that the two sides of a pancake may not be
the same, and the pancakes are required to come out of the sorting procedure
:hight side up". If g(n) denotes the corresponding function for this modified
problem, we can show that (3n/2)-1"';;g(n)"';;2n+3.

2. An algorithm

We will represent permutations in Sn as strings in I~, where In ={1, 2,..., n}.
We will define a binary relation ~ in Sn by writing 'TT~a whenever 'TT= xy,
a = x~y, where x,y E I~ and iR is the string x reversed (read backwards). If 'TTis a

permutation, t('TT)is the smallest k such that there exists a sequence of permuta-

tions 'TTk 'TT0 ~ 'TT1 ~ . . . ~ 'TTk;;; en, where 'en = 123 . . . n is the identity permvta-
tion. t(n) is the largest t('TT)over all 'TTE Sn-

Let"TT be a permutation in Sn- n(j) is the jth number in 'TT,where 1",;;j ",;;n. If

1'TT(j) ~ 'TT(j + 1)1 = 1, we say that th~ paii (j, j + 1) is an adjacency in 'TT. If 'TT"=xby,
~here x, b, y E I~ such that (j, j + 1) is an adjacency for j = Ix! + 1,. . . , [xl+ !bl- (
and b is maximal with respect to this property (i.e., (lxi, Ixl+ 1) and (lx[+ [bl, Ix!+"
Ibl+ 1) are not adjacencies), then b is called a block. If'TT(j) is not in a block; i.e.,
(j-l, j) and (j, j + 1) are not adjacencies in 'TT,then 'TT(j)is tree. For the purPoses
of this section we will consider (j, j + 1) to be an adjacency also if {'TT(j),'TT(j+ I)} =
{I, 'h}.

Our algorithm will sort the permutation 'TTso as to create a total of n-l
adjacencies, that is, a block b of size n such as the ones shown in Figs. l(a), l(b).
These permutations can then be transformed to en via at most four flippings (Figs.

1

1

.".1

,

Bounds for sorting by prefix reversal 49

He), l(d), respectively). In the description of the algorithm below we use 0 to

stand for one of {I, -1}. Addition is understood modulo n.

I k -1 . . . 1 In. .. k I
1 (a)

I k"'n 11...k-l!

1

In"'k 1...k-l!

1

Ik-l,,'llk"'n!

1

11...k-llk"'n[

(c)

Algorithm .s!l

I k . .. n 11 .. . k,~11

1 (b)

In...kll...k-l!

1

Ik-l...l!k...nl

1

11...k-ll k...nl

(d)

Fig. 1.

mpUt: a permutation 11'E Sn-
outpqt: a permutation (1"with n -1 adjacencies.

Set (1"= 11'.

Rypeat the following.
Let t be the first element of (1";i.e., (1"=t(1"'.(At least) one of the following
eight cases applies. In each case take the corresponding action.

1. t is free, and t + 0 is also free. Perform the flipping shown in Fig. 2(a).
:::. t is free, and t + 0 is the first element of a block. Perform the flipping shown in

Fig. 2(b).
3. t is free, but both t + 1 and t - 1 are the last elements of blocks. Perform the

sequence of flippings shown in Fig. 2(c).
4, t is in a block, and t+o is free. Perform the flipping shown in Fig. 2(d).
5. t is in a block, and t + 0 is the first element of a block. Perform the flipping

shown in Fig. 2(e).
6.. t is in a block with last element t + k . 0 (k > 0), t - 0 is the last element of

another block and t + (k + 1) . 0 is free. Perform the sequence of flippings
shown in Fig. 2(f) or 2(g) (depending on the relative position of the two blocks
and t+(k+l)' o. .

-, t is in a block with last element t+k. 0 (k>O), t-o is the last element of
another block and t + (k + 1) . 0 is in a block. Perform the sequence of flippings
in fig. 2(h) or 2(k) (depending on whether t + (k + 1) . 0 is at the beginning or
the end of its block).'

s.. None of the above. (1"has n -1 adjacencies; halt.

;~'~ji'Ji!c"",'ic~~", c-. -~,.~~~"~-,

50 W.H. Gates, C.H. Papadimitriou

~
1

~
(a)

1

It+o.. '!==rTI'" t-o[J
1

D... t+o[!I]... t-o[J
1

I t-o" .[]~] t+o" .[:=J
1

D... t-o~Jt+o" .CJ
(c)

It... t+koDt+(k+l)o~

1

It+(k+l)oDt+ko... tD... t-o[J

1

Ot+(k+l)olt+ko...tl~

1

~t... t+kolt+(k+l)oCJ

1

~t... t+ko!t+(k+1)°C]

(f)

It... t+ko[]t+(k+l)o.. .[J

1

It+ko", tDt+(k+l)o.. .0

1

elt... t+kol t+(k+l)o.. .[
(h)

~lt+o"'1

1

CEJ t+o" .[
(b)

~
1

~
(d)

~t+o"'1

1

~It+o"{

(e)

It... t+ko~t+(k+1)oD

1

It+(k+l)o~t+ko'" tD

. 1

~lt+(k+1)olt+ko...tD

1

It... t+ko!t+(k+l)oDt-o" .c=J

1

Dt+(k+1)ol t+ko." tlt-o... D
(g)

It... t+koD'" t+(k+l)oD

1

It+(k+1)o.. 'Ot+ko... tD

1

D'" t+(k+l)olt+ko", tD

(k)
Fig. 2.

Theorem 1. Algorithm .stlcreates a permutation with n - 1 adjacencies by at most
(5n -7)/3 moves.

Proof. First, it is clear that if we have a permutation (T with less than n-1
adjacencies, one of the cases 1 through 7 is applicable. Hence, the algorithm does
not halt unless n -1 adjacencies have been created. Obviously the algorithm will
eventua:1ly halt, since at each execution of the main l~op at least one new

Bounds for sorting by prefix reversal 51

adjacenc:;yis created and none are destroyed. It remains, however, to prove that it
does so in no more than (5n -7)/3 moves.

Call the action of case 1 action 1, the action in case 2 action 2, the action of
ases 3 and 6 action 3, the action of case 4 action 4, and the action of cases 5 and
- action 5, and action 7, respectively. Let Xidenote the number of actions of type

i performed by an execution of the algorithln. The totaf number of moves (i.e.,
iippings) is given by

Z = Xl+ x2+4x3 + X4+2xs+ X7

wDere Xj is multiplied by the number of flippings involved in the action of type j
see first row of Table 2). Action 3 can be divided into four special cases,

aa:nrrling to what happens in the flipping of Fig. 2(c) (or 2(f), or 2(g)) that comes
~ the last. The top of the stack before the flipping and the element next to
Z-0 may either .

1. be non-adjacent,
::. form a new block,

3. merge a block with a singleton,
4-. m~rge two blocks. .

\D:oTdingly, we distinguish among these subcases by writing X3=
X'i;+ ~2Et-X33+ X34'Now, since each action increases the number of adjacencies as
.-ficated in Table 2, the total number of adjacencies in the conclusion of the

~is

n-1 = a + Xl+ x2+2x3l +3X32+3x33 +3X34 + X4+ xs+ X7' (1)

FiD2By, if b is the number of blocks in 7Twe have

b + Xl- X3l - X33-2x34 - Xs- X7 = 1, (2)

IIrause each type of action increases or decreases the number of blocks as
illdlic:atedin Table 2, we start with b blocks and we end up with '1 block. Also,
..mre that b ~ a, whereby (1) becomes'

Xl + x2+2x3l +3X32+3x33+3x3~ + X4+ xs+ X7+ b~ n-1. (3)

~2
-=...

~of
IIip

~in
~

~in
~of
!!iiIxI;s

1 2 31 32 33 34 4 5 7

1 1 4 4 4 4 1 2 1

1 1 2 3 3 3 1 1 1

1 0 -1 0 -1 -2 0 -1 -1

r-

1
l'

,.

r 52 W.R. Gates, CR. Papadimitriou

Thus any possible application of the algorithm would, at worst, maximize

Z = Xl +x2+4x3+X4+2xs+X7

subject to (2) and (3) above. We claim that the maximum is achieved for the
values

Xl = (n + 1)/3, X2=0, X3= X3l = (n - 2)/3

X4 = Xs = X7 = b = 0,

yielding a value of z equal to (5n-7)/3. To show our claim, recall the duality
Theorem of Von Neuman, Kuhn and Tucker, Gale, and Dantzig [4] stating
essentially that this maximum value equals the minimum value of the dual linear
program: .

minimize (U = ~2+ (n -1)~3'

subject to the inequalities

~2+~3;;:1,

~3;;: 1,

- ~2 +2~3 ;;:4,

3~3;;: 4,

- ~2 + 3~3;;: 4,

- 2~2 + 3~3 ;;: 4,

~3;;: 1,

- ~2 + ~3;;: 1,

- ~2 + ~3 ;;: 2,

~2 + ~3;;: O.

Thus, in order to prove our claim, we just have to exhibit a pair (~2' ~3)satisfying
these inequalities and having (U=~2+(n-1)~3=(5n-7)/3. And such a pair is
~2= -2/3, ~3= 5/3.

The bound f(n)~(5n+5)/3 now follows directly, since it takes four more
moves to transform a permutation with n -1 adjacencies to e. In any event, the
constant term of the bound can be improved quite easily by stopping the
algorithm when n - k, for some k, adjacencies have been formed, and then
optimally putting together the k + 1 pieces.

3. A lower bound

. Let T = 17536428. For k a positive integer, Tk denotes T with each of the

integers increased by 8. (k -1). In other words, Tk is the sequence
1k7k5k3k6k4k2k8b where mk=m+(k-1)'8. Consider the permutation x=
TlT~T3T~' . . Tm-lT~, where m is an even integer, and n = Ixl = 8, m.

q'

r
~ -~- ---

Bounds for sorting by prefix reversal 53

~em 2. 19n/16~f(x)~17n/l6.

To show the upper bound, we first do the following sequences of moves

X ---?>727f73' . . ---?>7~7f73' . . ---?>717273' . .

3IIIIdso on, bringing the even-indexed 7'S in front and then back with the reversal
~ in three moves. Thus, in 3n/16 moves we obtain X' = 717273' . . 7m' Then,

.. each copy of 7 in X' we repeat the following sequence of eight moves (among a
81111Lberof possibilities)

X' = x17536428y ---?>571xR36428y ---?>63x175428y

---?>lxR3675428y ---?>45763x128y ---?>67543x128y

---?>76543x128y ---?>2lxR345678y ---?>x12345678y.

'"niss in a total of 19n/16 moves we can produce e starting from X, and the upper
~ is established.

fix the lower bound, let X = Xo---?> X1---?> X2---?> . . . ---?> Xfex) =en be an optimal

~oce of moves for x; each of Xj,j = 1,. . ., f(x) is called a move. Let us call a
~ /o,-.stableif it contains a substring of the form 1k7k(T2k8k (or its reverse),
.'iIere (T is a permutation of {3b4b5b6d. We say that Xj is an event if Xj-1 is
i.:-stable, for some k, but Xj,Xj+b . . . , Xfex)are not.

1. There are exactly m events.

To prove Claim 1, we notice that Xo is k-stable for k = 1, . . . , m, and Xfex)is not
I:~le for any k. Furthermore, no permutation can cease being k1-stable and
I:;::-slable, k1 i=k2, in only one move.

Lei us call Xj a waste if Xj has no more adjacencies than Xj-1. (Here, by an
~ in (T we mean any pair (i, i + 1) such that either i < nand 1(T(i)-
_. -i-HI==1, or i = nand (T(i)= n.) Let w denote the total number of wastes

.1Y{xj: j = 1,. . . , f(x)}.

CIIiiR 2. f(x) ~ n + w.

Tc see why this is true, one just has to notice that X has no adjacencies, e has n
id[""""ocies, and any move that is not a waste creates just one adjacency.

B1 our Claim /1 we conclude that in the optimal sequence that we are

~ring there are m events as shown below (~ is the transitive closure of ---?>)

* * * *
Xi, ---?>Xi2 ---?>Xi3 ---?>. . . ---?>Xi",.

,-:-

54 W.H. Gates, CH. Papadimitriou

Claim 3. For all j, 1~ j ~ m -1, there exists a waste Xl with ij ~ 1~ 4+1'

To prove Claim 3, suppose that it fails. In other words, suppose that there is an
event ij other than the last one, such that all moves Xb ij~ 1~ ij+1construct a new
adjacency without destroying an existing adjacency. Suppose that k is the
appropriate index for which X~-l is the last k-stable permutation in the sequence
considered. Then, X~-l= X1k7ka2k8ky, where x and Y are strings of integers and
a is a permutation of {3b 4b 5b 6k}' Notice that since our basic string T =
17536428 is symmetric (in that i + j = 9 if and only if T(i) + TV)=9) this is not a
loss of generality. For simplicity in our notation, we shall omit the subscript k in
the rest of this part of our argument; we shall also assume that a = 5364, since the
argument is identical for any a. Thus

X~-l =x17536428y.

We distinguish among two cases.
Case 1. x = 8, the empty string. Since X~ is neither a waste nor k-stable, we

must have

X~= 46357128y.

Now, we must not, according to our hypothesis, have a waste until after the next

event. This, however, is impossible, since the first move after X~ which flips more
than four elements is a waste.

Case 2. x1= 8. That is X~-l=x17536428y. Since Xi; is neither a waste nor
k-stable, it must be the case that x = 9z, and Xi; =2463571zR98y.Again, we must
not have a waste until after the next event. This means that the only moves
permitted are local rearrangements of the integers {1, 3, 4, 5, 6, 7}; thus

X~= 2463571zR98y ~ 7654321zR98y.

Again, the next move has to be a waste.

The theorem now follows directly from Claims 1, 2, and 3.

f(x)~n+w~n+ m = 17n2 16'

4. Bounds for a restricted version

Let us define a binary relation => on Sn x 2{1 n} as follows: (a, S)=> (a', S') if

and only if a = xy, a' = xRy, and S' = SEBX, ~here X is the set of integers

"I
=;, ~ ... -

Bounds for sorting by prefix reversal 55

iP.:.1red in x, and EB stands for symmetric difference. Let g(a) be the shortest
in ~ from (a, 0) to (e." 0), and let g(n) be the largest g(a) over all a E Sn-

~~ 3. g(n):S;2n+3.

IIII8IIf. First observe that g(a) is not greater than f(a') where a' E SZn is defined as

~ for each aESn:a'(2i-1)=2a(i)-1 and a'(2i)=2aU) for all i=

11.. . .n. The complexity of sorting a' without the restriction can now be bounded
iIIIIIu:above by the algorithm d of Section 2. The equations governing the
~:xity of d when applied to a' are (1), (2), and (3) of Section 2 with n
~ by 2n, b = a = n, and also noting that only Xs can be nonzero, since all
~ actions are possible only in the presence of free elements. The maximum is
dill:refore 2n - 2. Allowing five more moves to sort the resulting permutation, we
F dJe claimed bound.

"lite shall now derive a lower bound for g(n). The "hard" permutation in this
~ ic; e~ = n, n -1, . . . , 2, 1, a permutation which is next to trivial with our
~on removed. Consider an optimal sequence for e~

Ao==(e~, 0)~Al ==(Xl, Sl)~... ~Aj ==(Xj,Sj)~... Ag(e~)==(e",0).

.~~ (i, i + 1), i < n, is an adjacency in (X,S) if either xU + 1)= XCi)+ 1 and XCi),
.' ~l)fS or XU+1)=x(i)-1 and xCi), XU+1)ES. A pair (i,i+1) is an
~-adjacency in (X,S) if either xU + 1)= xU) -1 and XCi),xU+ 1)~ S or
8"'.~ 1):;=XCi)+ 1 and xU), xU + 1) E S. A move Aj is a waste if there are no more
at':2iirencies in Aj than there are in Aj-l. A set {xCi), xU + 1), . . . , xU)}, j> i, such
d!i;l:k, k + 1), i :s;k < j, is an anti-adjacency in (X, S) is called a clan. Notice that
~ is all non-adjacencies; in other words, it has one big clan, namely {I,. . . , n}.
~ each move we may "break" at most one clan C replacing it by two new clans
Co ~ with Cl U Cz = C. Thus, the process of sorting e~ can be thought of partly

.-'breaking up clans", since en has no clans. Interestingly enough, it is this aspect
IE sorting e~ whose complexity can be captured quite easily. ~

A move Aj is called an (a, b)-cut if a clan C in Aj-l is replaced by two clans
C Cz in Aj such that C = Cl U Cz and ICll = a, ICzl= b.

1- 1. Let Aj be an (a,b) cut.
..11 a, b> 1, then both Aj, Aj+1 are wastes,
,: If the only one of a, b> 1, then either Aj or Aj+l is a waste.

An easy case-by-case analysis.

~ 4. g(e~)~~n-1.

JI!

56 W.H. Gates, c.H. Papadimitriou

Proof. e:; has no adjacencies; so gee:;)~ n + w, where w is the number of wastes
in the sequence considered. In order to bound w from below, let Xl be the
number of cuts in (1) above, X2 (and X3) are the numbers of moves of case (2) of
Lemma 1 which are (resp. are not) wastes, '-and X4(XS)the number of (1, I)-cuts
that are (resp. are not) wastes. Finally, let y be the total number of moves that.
result each in the creation of a clan C from either another clan C' IC'I= leI-l
and a singleton, or from two singletons. It is easy to see that such a move is a
waste, and cannot be a cut. Obviously we have

W ~XI +X2+X4 +y, (4)

and

Xl +X2+X3+X4 +xs~y+n -1, (5)

because at least y + n - 1 cuts must be eventually produced.
We next observe that

~

n +2y -1 ~X2+ x3-1:2x4 +2xs, (6)

because we start with no singletons (elements not in a clan), we end up with n,
each move counted by y (a y-move for short) absorbs at most two singletons, each
x2-move or x3-move creates a singleton, and each X4 or xs-move creates two
singletons. Finally, we claim that

f
t

i

w-XI~X3-1. (7)

j
J
I

f
i
F

ITo prove this, we shall show how each x3-move, except for the last, can be
paired off with a waste that is not an xcmove. By Lemma 1, each x3-move is
followed by a waste. If this waste is an xl-move, it must be followed by another
waste, by Lemma 1. Thus every x3-moveexcept for the last is followed by a
sequence of xl-moves (possibly empty) followed by a waste that is not an
xcmove.

How small can w be? To find out, we minimize w subject to inequalities (4),
(5), (6), and (7). The minimum is nI2-1, achieved at

t
I
t

t

w = nl2 - 1 = x2, x3 = n12, Xl = X4= Xs = Y = O.

To show this, we just need to exhibit, as in the proof of Theorem 1, the dual
variables ~4= 1, ~s = ~6= ~7= 1/2, with the same value. We therefore conclude
that w~nI2-1, and hence g(e:;)~3nI2-1.

I
I

~ ...

Bounds for sorting by prefix reversal 57

5. Discussion

We presented an algorithm sorting any permutation of length n in about Sn/3
prefix reversals; improving the multiplicative constant seems to be quite challeng-
ing. We also described a technique for deriving lower bounds for fen), and
showed how it can be used to establish that fen) ~ 17n/16. Improving on this
particular lower bound does not appear too hard; in fact, we conjecture that for
our "hard" permutation X, f(x) = 19n/16. Also, slightly better lower bounds may
be conceivably proved by using different T's-of length 7, say. However, we do
not know how the upper and lower bounds can be narrowed significantly.
Naturally, it is not clear at all that f(n)/n converge~, and hence it may be that no
better bounds are attainable.

Acknowledgment

We wish to thank Mike Garey and Harry Lewis for suggesting this problem to
us. We acknowledge the comments and corrections of Jacob E. Goodman (the
"Harry Dweighter" of [lJ) and of an anonymous referee.

References

[1] Amer. Math. MontWy 82 (1) (1975) 1010.
[2] Amer. Math. MontWy 84 (4) (1977) 296.
[3] David P. Robbins, private communication, November 1977.
[4] G.B. Dantzig, Linear Programming and Extensions (Princeton University Press, Princeton, 1963).

Note added in proof

Ervin Gyoriof the Hungarian Academy of Sciences and Gy6rgy Tunln of J.
Atilla University have independently discovered a proof of Theorem 1. Their
algorithm and proof are essentially the same as ours.

