In de praktijk vestigt men de interesse van een onderzoek op een bepaalde biologische populatie. Vervolgens zal men een geschikt type en grootte van monsters of stalen (of meer algemeen experimentele eenheden en/of subjecten genoemd doorheen deze cursus) definiëren waarvoor men metingen zal verzamelen. Bijvoorbeeld, indien men de grootte van de populatie salamanders van de species Plethodon jordani wenst te bestuderen, kan men de aandacht van het onderzoek vestigen op de bestaande populatie P. jordani in de Great Smoky Mountains (d.i. de populatie) en vervolgens het aantal salamanders tellen op oppervlakte-eenheden van 10 m\(^2\) (die eenheden zijn de stalen of “experimentele eenheden”; voor elke experimentele eenheid bekomt men aldus een meting). Indien men de impact van roofvissen op zeebodemhabitats wenst te evalueren, dan kan het onderzoek de aandacht vestigen op de zeebodem binnen een afstand van 500 m voor de Belgische Noordzeekust (d.i. de biologische populatie) en kunnen vervolgens metingen worden verzameld op stukjes zeebodem met een straal van 1 m (d.i. de “stalen” in de studie). Omdat het in de praktijk bijna nooit mogelijk is om de hele populatie te onderzoeken (alle salamanders in de Great Smoky Mountains, de ganse zeebodem binnen een afstand van 500 m voor de Belgische Noordzeekust), zal men zich beperken tot gegevens voor een zogenaamde steekproef, een beperkte verzameling stalen, experimentele eenheden of subjecten uit de populatie.
Welke subjecten uit de populatie men precies zal bestuderen, zal uiteraard zijn weerslag hebben op de resultaten van de uiteindelijke analyse van de gegevens. Opdat de resultaten die men observeert voor de steekproef veralgemeenbaar zouden zijn naar de ganse studiepopulatie, is het noodzakelijk dat men de subjecten uit de steekproef zodanig kiest dat ze representatief zijn voor de populatie. De basismethode om dat te realiseren, heet eenvoudige lukrake steekproeftrekking (in het Engels: simple random sampling). Ze bestaat erin te garanderen dat elk subject in de populatie een zelfde kans heeft om in de steekproef terecht te komen. Zo kan men bijvoorbeeld elke muis in een kooi een nummer geven en vervolgens lukraak een aantal \(n\) van die nummers trekken. In de praktijk, en in het bijzonder in de veldbiologie, is die methode echter vaak moeilijk toe te passen omdat de subjecten in de populatie bijvoorbeeld geen goed onderscheiden habitats vormen, niet op voorhand genummerd kunnen worden of omdat de populatie een te groot gebied bestrijkt. Zo is het bijvoorbeeld niet makkelijk om een eenvoudige lukrake steekproef van salamanders in de Great Smoky Mountains te bekomen omdat het bestudeerde gebied zeer groot is en de salamanders uiteraard niet genummerd kunnen worden. In die gevallen gaan biologen vaak over op haphazard sampling, waarbij men op een minder formele manier stalen verzamelt, maar er toch voor probeert te zorgen dat de resultaten niet vertekend worden doordat bepaalde subjecten meer kans hebben om in de steekproef terecht te komen. Bijvoorbeeld kan men een computer lukraak plaatsen laten aanduiden in de Great Smoky Mountains en kan men vervolgens metingen proberen te verzamelen voor de eerste salamander die telkens in de buurt van de aangeduide plaatsen voorbijkomt.
Sommige steekproefdesigns houden expliciet rekening met heterogeniteit in de populatie waaruit een steekproef wordt genomen. Bij gestratificeerde lukrake steekproeven (in het Engels: stratified random samples) wordt de populatie opgedeeld in verschillende strata, die goed onderscheiden subgroepen in de populatie identificeren, en worden vervolgens eenvoudige lukrake steekproeven uit elk stratum genomen. Stel bijvoorbeeld dat men karakteristieken van stenen in een rivier wenst te beschrijven en dat stenen in verschillende habitats voorkomen (rotsige, ondiepe waters, diepe waters, stille binnenwaters,…), dan kan het zinvol zijn om een gestratificeerde lukrake steekproef te nemen om ervoor te zorgen dat er binnen elk stratum (d.i. elke habitat) een voldoende aantal stenen verzameld worden.
Bij geclusterde steekproeftrekking (in het Engels: cluster sampling) worden clusters van meer verwante subjecten uit de populatie getrokken. Stel bijvoorbeeld dat we de impact van verschillende vormen van beschadiging aan bladeren van een boom wensen te meten, dan kunnen we in een eerste fase een eenvoudige lukrake steekproef van bomen bepalen. Vervolgens kunnen we in een tweede fase binnen elke boom een eenvoudige lukrake steekproef van bladeren bepalen en de verschillende gekozen bladeren aan verschillende vormen van beschadiging onderwerpen. Dit noemt men (two stage) cluster sampling omdat bladeren afkomstig van een zelfde boom meer verwant en bijgevolg geclusterd zijn. We zullen later zien dat men in de analyse van gegevens uit dergelijke studie met die clustering rekening moet houden.
Tenslotte steunt men in de biologische wetenschappen ook vaak op systematische steekproeven waarbij men bijvoorbeeld monsters neemt die op vaste afstand van elkaar bekomen worden of op voorafgekozen tijdstippen, en om die reden niet volledig lukraak genoemd kunnen worden. Dit wordt vaak gebruikt wanneer men een omgevings- of tijdsgradiënt wenst te beschrijven voor een bepaald proces, zoals de wijziging in rijkdom aan species naarmate men zich verwijdert van een vervuilingsbron. Dergelijke designs zijn nuttig en logistiek zeer praktisch, maar kunnen vertekende resultaten opleveren wanneer de monsters op specifieke plaatsen genomen worden die samenvallen met een ongekende omgevings- of tijdsgradiënt (d.i. indien de gekozen plaatsen selectief zijn en afwijkend van de globale omgevings- of tijdsgradiënt).