For data science purposes, files can generally be classified into two categories: text files (also known as ASCII files) and binary files. You have already worked with text files. All your R scripts are text files and so are the R markdown files used to create this book. The csv tables you have read are also text files. One big advantage of these files is that we can easily “look” at them without having to purchase any kind of special software or follow complicated instructions. Any text editor can be used to examine a text file, including freely available editors such as RStudio, Notepad, textEdit, vi, emacs, nano, and pico. To see this, try opening a csv file using the “Open file” RStudio tool. You should be able to see the content right on your editor. However, if you try to open, say, an Excel xls file, jpg or png file, you will not be able to see anything immediately useful. These are binary files. Excel files are actually compressed folders with several text files inside. But the main distinction here is that text files can be easily examined.

Although R includes tools for reading widely used binary files, such as xls files, in general you will want to find data sets stored in text files. Similarly, when sharing data you want to make it available as text files as long as storage is not an issue (binary files are much more efficient at saving space on your disk). In general, plain-text formats make it easier to share data since commercial software is not required for working with the data.

Extracting data from a spreadsheet stored as a text file is perhaps the easiest way to bring data from a file to an R session. Unfortunately, spreadsheets are not always available and the fact that you can look at text files does not necessarily imply that extracting data from them will be straightforward.