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Abstract

We consider time-space tradeoffs for static data structure problems in the cell probe model with word size 1 (the bit probe
model). In this model, the goal is to represent n-bit data with s = n + r bits such that queries (of a certain type) about the data can
be answered by reading at most t bits of the representation. Ideally, we would like to keep both s and t small, but there are tradeoffs
between the values of s and t that limit the possibilities of keeping both parameters small.

In this paper, we consider the case of succinct representations, where s = n + r for some redundancy r � n. For a
Boolean version of the problem of polynomial evaluation with preprocessing of coefficients, we show a lower bound on the
redundancy–query time tradeoff of the form

(r + 1)t ≥ Ω(n/ log n).

In particular, for very small redundancies r , we get an almost optimal lower bound stating that the query algorithm has to inspect
almost the entire data structure (up to a logarithmic factor). We show similar lower bounds for problems satisfying a certain
combinatorial properties of a coding theoretic flavor, and obtain (r + 1)t ≥ Ω(n) for certain problems. Previously, no ω(m) lower
bounds were known on t in the general model for explicit Boolean problems, even for very small redundancies.

By restricting our attention to systematic or index structures φ satisfying φ(x) = x · φ∗(x) for some map φ∗ (where · denotes
concatenation), we show similar lower bounds on the redundancy–query time tradeoff for the natural data structuring problems of
Prefix Sum and Substring Search.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In the cell probe model (e.g. [1,4–6,8,9,11,23–26,31]), a static data structure problem is given by a map

f : {0, 1}
n

× {0, 1}
m

→ {0, 1}
q ,

I An early version of this paper [A. Gál, P.B. Miltersen, The cell probe complexity of succinct data structures, in: Proc. of 30th International
Colloquium on Automata, Languages and Programming, ICALP’03, pp. 332–344] appeared in the Proceedings of ICALP (2003).
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where {0, 1}
n is a set of possible data to be stored, {0, 1}

m is a set of possible queries and f (x, y) is the answer to
question y about data x . A case of particular interest to us is a Boolean problem where q = 1.

For natural problems, we have m � n: the question we pose to the database is much shorter than the database
itself. Examples of natural static data structure problems include:

• Substring Search: Given a string x in {0, 1}
n , we want to store it in a data structure so that given a query string y

of length m, we can tell whether y is a substring of x by inspecting the data structure. This problem is modeled by
the function f defined by f (x, y) = 1 iff y is a substring of x .

• Prefix Sum: Given a bit vector x ∈ {0, 1}
n , store it in a data structure so that queries “What is (

∑k
i=1 xi ) mod 2?”

can be answered. This problem is modeled by the function f defined by f (x, y) = (
∑vy

i=1 xi ) mod 2 where y is
the binary representation of the integer vy .

For Substring Search, the data to be stored, both the queries and the answers are bit strings, as our framework
requires. The only reason for this requirement of our framework is to make our discussion about current lower bound
techniques and their limitations clear. In particular, we want the parameter n to always refer to the number of bits of
the data to be stored and the parameter m to always refer to the number of bits of a query, and the output of the query
to be a single bit. In general, we don’t necessarily expect the data we want to store to be bit strings, but an arbitrary
encoding as bit strings may take care of this, as in the following example.

• Membership: Given a set S of k binary strings, each of length m, store S as a data structure so that given a query
y ∈ {0, 1}

m , we can tell whether y ∈ S. To make this problem fit into the framework above, the function f would
be defined by letting n = dlog2

(2m

k

)
e and fixing, in some arbitrary way, a compact encoding of k-sets as n-bit

strings and letting f (S, y) = 1 iff y ∈ S.

A point which is often overlooked but which we want to emphasize is that the framework captures not only the
classical “storage and retrieval” static data structure problems but also arbitrary problems of dealing with preprocessed
information, such as the classical algebraic problem of polynomial evaluation with preprocessing of coefficients
([20, pp. 470–479], see also [24]):

• Polynomial Evaluation: Let g be a univariate polynomial over F, where |F| = 2k and g is of degree ≤ d. Store g
as a memory image so that queries “What is g(x)?” can be answered for any x ∈ F.

Having specified the problems we want to consider, we now turn to their solutions.

Definition 1 (Elias and Flower). In the bit probe model (the cell probe model with word size 1), a solution with space
s and time t to a problem f is given by

1. a storage scheme φ : {0, 1}
n

→ {0, 1}
s , and

2. a query algorithm q so that q(φ(x), y) = f (x, y). The time t of the query algorithm is its bit probe complexity,
i.e., the worst case number of bits it reads in φ(x).

The quantity r = s − n is called the redundancy of the storage scheme.

When discussing what upper and lower bounds can be obtained, we want to restrict our attention to Boolean
problems. All problems above are Boolean, except for Polynomial Evaluation. We can make a “Boolean version” of
Polynomial Evaluation by letting n = (d +1)k, m = k +dlog ke, fixing an arbitrary compact encoding of polynomials
and field elements as bit strings and letting f (g, x · y) = vy th bit of g(x), where y is the binary representation of vy
and · denotes concatenation. A similar transformation can be made for any other non-Boolean problem. Note that
when we model a non-Boolean problem with q bits in the query output as a Boolean problem above, the upper and
lower bounds on the query times of the original problem and the Boolean version only agree up to a factor of q. That
is, if the Boolean problem can be solved with redundancy r and query time t , the non-Boolean can be solved with
redundancy r and query time qt . For the case of polynomial evaluation, q = log2 n. Our focus on Boolean problems
in the current discussion is due to the fact that when understanding the power of various lower bound techniques (see
below), it seems useful to first ensure that the lower bounds we consider cannot rely on the trivial information theoretic
lower bound: if a query must answer q bits and all 2q bit strings are possible such answers, one needs to read q bits in
the data structure in the worst case to get a correct answer.

Considering first upper bounds, every Boolean problem possesses two trivial solutions:
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1. The solution of explicitly storing the answer to every query. This solution has space s = 2m and time t = 1.
2, The solution of storing the data verbatim and reading the entire data when answering queries. This solution has

space s = n and time t = n (as we only charge for reading bits in φ(x), not for computation).

The study of cell probe complexity concerns itself with the tradeoff between s and t that may be obtained by solutions
somewhere between the two extremes defined by the trivial solutions. Such solutions may be quite non-trivial and
depend strongly on the problem considered. A polynomial solution satisfies s = nO(1) and t = mO(1). For instance,
perfect hashing schemes form solutions to Membership with s = O(n) and t = O(m) and even s = n + o(n) and
t = O(m) [13,7,30]. Substring Search also admits an s = O(n), t = O(m) solution [16] and recently a solution
with s = n + o(n) and t = mO(1) was constructed [17], but no solution with s = n + o(n) and t = O(m) is known.
For a problem such as the Boolean version of Polynomial Evaluation (and many natural data structure problems, such
as partial match type problems [4,6,9]), we know of no solution with s = nO(1), t = mO(1). Thus, a main concern
is to prove that no such solution exists. For s = O(n), lower bounds of the form t = Ω(m) may be obtained for
explicit and natural problems by simple counting arguments [8]. For s = nO(1), we can do almost equally well: Lower
bounds of the form t = Ω(m/ log n) can be obtained using communication complexity [25]. But no very good (i.e.,
ω(m)) lower bounds are known on t for any explicit Boolean problem f for the case of s = O(n) or s = nO(1),
even though counting arguments prove the existence of (non-explicit) problems f with lower bounds of the form
t = Ω(n), even for m ≈ (log n)2 [23]. Thus, it is consistent with our current knowledge that solutions with s = O(n)

and t = O(m) exist for all explicit (e.g., all exponential time computable) Boolean problems, though it is certainly
a generally believed conjecture that this is not the case! One should note that Demaine and Lopez-Ortiz [10] prove
ω(m) lower bounds on t for a non-Boolean problem (in their problem, q = Θ(m)) in the systematic model (see
the definition below). Since their bound holds for r = O(n), it also implies ω(m) lower bounds on t in the general
(non-systematic) model. However, their technique does not seem to imply ω(m) lower bounds for Boolean versions
of the problem.

Given our lack of tools strong enough to show statements such as s = O(n) ⇒ t = ω(m) for explicit Boolean
problems, it seems appropriate to lower our ambitions slightly and try to show such lower bounds for t for any non-
trivial value of s. Achieving such goals is well in line with the current trend in the theoretical as well as practical studies
of data structures (e.g., [22,7,30,17,32]) of focusing on succinct data structures where s = n + r for some redundancy
r � n, i.e., on structures whose space requirement is close to the information theoretic minimum. Restricting our
attention to such succinct structures by no means trivializes obtaining the lower bounds we want to show. For instance,
it is open (and remains open after this work) whether a solution with r = 0 and t = O(m) exists for the Membership
problem. However, in this paper, we show that for certain explicit (polynomial time computable) Boolean problems it
is possible to show lower bounds of the form t = ω(m) and even t = Ω(n) for structures with a sufficiently strong
upper bound on r .

We consider the polynomial evaluation problem described above, over the field F = GF(2k) (the unique finite field
with 2k elements).

Theorem 2. Let k, d be positive integers so that d < 2k/3. Let F = GF(2k) and let n = (d + 1)k. Let a storage
scheme φ : { f | f a univariate polynomial over F, degree( f ) ≤ d} → {0, 1}

n+r and associated query scheme for
“What is f (x)?”, x ∈ F with bit probe complexity t be given. Then,

(r + 1)t ≥ n/3.

In particular, for very small redundancies, we get an almost optimal lower bound stating that the query algorithm
has to inspect almost the entire data structure. The theorem concerns the (more natural) non-Boolean version of the
polynomial evaluation problem. A lower bound of (r + 1)t ≥ n/3k for the Boolean version of polynomial evaluation
we defined previously immediately follows. The bound stated in the abstract follows by letting d = 2Θ(k).

The proof of Theorem 2 (presented in Section 2.1) is based on the fact that the problem of polynomial evaluation
hides an error-correcting code: The strings of query answers for each possible set of data (i.e., each polynomial) form
the Reed–Solomon code. We can generalize Theorem 2 to any problem hiding an error-correcting code in a similar
way (see Theorems 5 and 6 in Section 2.1). However, not many natural data structuring problems contain an error-
correcting code in this way. In Section 2.2, we introduce a parameter of data structuring problems called balance and,
using the sunflower lemma of Erdős and Rado, show that for problems having constant balance, we get a lower bound
of the form t (r + 1)2

≥ Ω(n) (Theorem 10). A problem hiding a good error-correcting code in the way described
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above has constant balance, but the converse statement is not necessarily true. Hence Theorem 10 has the potential
to prove lower bounds on a wider range of problems than Theorems 5 and 6, though we do not have any natural data
structuring problems as examples of this at the moment.

The results above are based on combinatorial properties of a coding theoretic flavor of the problems f to be solved.
We don’t know how to prove similar lower bounds for natural storage and retrieval problems such as Substring Search.
However, we get a natural restriction of the cell probe model by looking at the case of systematic or index structures.
These are storage schemes φ satisfying φ(x) = x · φ∗(x) for some map φ∗ (where · denotes concatenation), i.e, we
require that the original data is kept “verbatim” in the data structure. We refer to φ∗(x) as the index part of φ(x). We
emphasize that such a restriction only makes sense relative to a particular fixed encoding of input data as a Boolean
string. However, for many problems there is a canonical such encoding. For instance, for Prefix Sum and Substring
Search, the data to be stored is explicitly given as a bit string in the first place. The restriction is practically motivated:
the original data may reside in read-only memory or belong to someone else, or it may be necessary to keep it around
for reasons unrelated to answering the queries defined by f . For more discussion, see, e.g. Manber and Wu [22]. In
the systematic model, we prove a tight lower bound for Prefix Sum (in fact, we show that the lower bound is implicit
in work of Nisan, Rudich and Saks [29]), and we prove a lower bound for Substring Search (no attempt was made to
optimize the constants in the statement concerning Substring Search).

Theorem 3. Consider Prefix Sum with a parameter n. For a systematic scheme with redundancy r, t = Θ(n/(r + 1))

bit probes are necessary and sufficient.

Theorem 4. Consider Substring Search with parameters n, m so that 2 log2 n +5 ≤ m ≤ 5 log2 n. For any systematic
scheme solving it with redundancy r and bit probe complexity t , we have (r + 1)t ≥

1
800 n/ log2 n.

Both proofs are presented in Section 3. We are aware of one paper previous to this one where lower bounds of
the form t = ω(m) were established for succinct, systematic data structures: Demaine and Lopez-Ortiz [10] show
such a lower bound for a variation of the Substring Search problem. In their variation, a query does not just return
a Boolean value, but an index of an occurrence of the substring if it does indeed occur in the string, i.e., for their
variation q ≈ log n. For this variation, they prove [10, Corollary 3.1] the following lower bound for a value of m
which is Θ(log n) as in our bound:

t = o(m2/ log m) ⇒ (r + 1)t = Ω(n log n).

Thus, they give a lower bound on the query time even with linear redundancy, which our method cannot. On the
other hand, their method cannot give lower bounds on the query time better than Ω(m2/ log m), even for very small
redundancies, which our method can. Furthermore, as discussed above, our lower bound applies to the Boolean version
of the problem.

2. Lower bounds for non-systematic structures

2.1. Polynomial evaluation and error-correcting codes

The general randomized construction described in the following will be useful in all proofs in this section. Let a
storage scheme φ with space s and an associated query scheme with bit probe complexity t be given. Let 1 ≤ ` < s.

We make a randomized construction of another storage scheme φ′ by randomly removing ` bits of the data
structures φ(x) of the storage scheme φ. That is, we pick S ⊂ {1, .., s} of size ` at random and let φ′(x) = φ(x)

with bits in positions i ∈ S removed. Thus, φ′(x) ∈ {0, 1}
s−`. We make an associated query scheme for φ′ by

simulating the query scheme for φ, but whenever a bit has to be read that is no longer there, we immediately answer
“Don’t know”. Clearly, if we use our new storage scheme φ′ and the associated query scheme, we will, on every query,
either get the right answer or the answer “Don’t know”.

Note that the query algorithm for φ′ depends on S, and S does not have to be stored.

Theorem 2. Let k, d be positive integers so that d < 2k/3. Let F = GF(2k) and let n = (d + 1)k. Let a storage
scheme φ : { f | f a univariate polynomial over F, degree( f ) ≤ d} → {0, 1}

n+r and associated query scheme for
“What is f (x)?”, x ∈ F with bit probe complexity t be given. Then,

(r + 1)t ≥ n/3.
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Proof. Let a storage scheme φ with redundancy r and an associated query scheme with bit probe complexity t be
given. Let s = n + r .

Assume to the contrary that the scheme satisfies (r + 1)t < n/3. As r ≥ 0 in any valid scheme, we have t < n/3.
Consider the randomized construction of a scheme φ′ described in the beginning of this section with ` = r + 1.

Now fix a polynomial f and a query x and let us look at the probability that the randomized construction gives us
the answer “Don’t know” on this particular data/query-pair. The probability is equal to the probability that the random
set S intersects the fixed set T of bits that are inspected on query x in structure φ( f ) according to the old scheme. As
|S| = r + 1 and |T | ≤ t , the probability of no intersection can be bounded as

Pr[S ∩ T = ∅] =

(
s − t

s

) (
s − 1 − t

s − 1

)
. . .

(
s − (r + 1) + 1 − t

s − (r + 1) + 1

)
≥

(
1 −

t
n

)r+1

≥ 1 −
(r + 1)t

n
> 2/3.

This means that if we fix f and count the number of answers that are not “Don’t know” among all answers to
“What is f (x)?”, x ∈ F, the expected number of such valid answers is greater than 2|F|/3, and the expected number
of “Don’t know” answers is smaller than |F|/3. Thus, for fixed f , the probability that the number of valid answers for
this f is smaller than |F|/3 is smaller than 1/2.

Define f to be “good” for a particular choice of S if the number of valid answers for f is at least |F|/3. Thus, for
random S, the probability that a particular fixed f is good is greater than 1/2, by the above calculation; so if we count
among all 2n possible f ’s the number of good f ’s, the expectation of this number is greater than 2n/2. Thus, we can
fix a value of S so that the number of good f ’s is greater than 2n/2. Let the set of good f ’s relative to this choice of
S be called G.

We now argue that the map φ′
: G → {0, 1}

n−1 is a 1-1 map: Given the value φ′( f ) for a particular f ∈ G, we can
run the query algorithm for f (x) for all x ∈ F and retrieve a valid answer in at least |F|/3 cases — in the other cases
we get the answer “Don’t know”. Since the degree of f is less than |F|/3, the information we retrieve is sufficient to
reconstruct f .

Thus, we have constructed a 1-1 map from G with |G| > 2n/2 to the set {0, 1}
n−1 which has size 2n/2. This

violates the pigeonhole principle, and we conclude that our assumption (r + 1)t < n/3 was in fact wrong. �

Theorem 2 can be generalized to any problem based on error-correcting codes. Consider an arbitrary Boolean static
data structure problem, given by a map f : {0, 1}

n
× {0, 1}

m
→ {0, 1}. Let N = 2n , and M = 2m . Then the problem

can be represented by an N × M Boolean matrix A f , where the entry at the row indexed by x and the column indexed
by y is equal to f (x, y).

Theorem 5. Let A f be the N by M (N = 2n , M = 2m) matrix of a data structure problem such that the rows
of A f have pairwise distance at least δM. If the problem can be solved with redundancy r and query time t, then
t (r + 1) ≥ δn/2.

Let αi1 , . . . , αiM−d be an arbitrary 0/1 assignment to the M − d coordinates i1, . . . , iM−d . The set S ⊆ {0, 1}
M of

size |S| = 2d formed by all possible vectors from {0, 1}
M agreeing with αi1 , . . . , αiM−d and arbitrary in the remaining

coordinates is called a subcube of dimension d.
The argument can also be extended to problems where the minimum distance may not be large, but instead we

require that within any ball of radius ρM , there are at most L codewords (i.e., codes with certain list decoding
properties). In fact, the even weaker property of having only few codewords in every subcube of dimension ρM is
sufficient for our purposes. Note that this property corresponds to the problem of list decoding from erasures, rather
than from errors.

Theorem 5 is a direct consequence of the next theorem.



410 A. Gál, P.B. Miltersen / Theoretical Computer Science 379 (2007) 405–417

Theorem 6. Let A f be the N by M (N = 2n , M = 2m) matrix of a data structure problems such that within any
subcube of dimension ρM, there are at most L row vectors from A f . If the problem can be solved with redundancy r
and query time t, then t (r + 1 + dlog2 Le) ≥ ρ(n − dlog2 Le)/2.

Proof. Let a storage scheme φ with redundancy r and an associated query scheme with bit probe complexity t be
given. Let s = n + r . Assume to the contrary that the scheme satisfies (r + 1 + dlog2 Le)t < ρ(n − dlog2 Le)/2. As
r ≥ 0 in any valid scheme, we have t < ρ(n − dlog2 Le)/2.

Consider the randomized construction of a scheme φ′ described in the beginning of this section with ` =

r + 1 + dlog2 Le.
Now fix a codeword x and a query y (asking for a given bit of the word) and let us look at the probability that the

randomized construction gives us the answer “Don’t know” on this particular data/query-pair. The probability is equal
to the probability that the random set S intersects the fixed set T of bits that are inspected on query y in the structure
φ(x) according to the old scheme. Recall that |S| = r + 1 + dlog2 Le and |T | ≤ t .

Pr[S ∩ T = ∅] =

(
s − t

s

) (
s − 1 − t

s − 1

)
. . .

(
s − (r + 1 + dlog2 Le) + 1 − t

s − (r + 1 + dlog2 Le) + 1

)
≥

(
1 −

t
n − dlog2 Le

)r+1+dlog2 Le

≥ 1 −
t (r + 1 + dlog2 Le)

n − dlog2 Le

> 1 − ρ/2,

if we assume that t (r + 1 + dlog2 Le) < ρ(n − dlog2 Le)/2.
Then for a fixed x , the expected number of valid answers is >(1 − ρ/2)M . For fixed x , the probability that the

number of valid answers is <(1 − ρ)M is less than 1/2.
Define x to be “good” for a particular choice of S if the number of valid answers for x is at least (1 − ρ)M , and fix

a value of S so that the number of good x’s is >2n/2. Let the set of good x’s relative to this choice of S be called G.
We now consider the map φ′

: G → {0, 1}
n−1−dlog2 Le. Given a string in the image of φ′, we run the query

algorithm for y for each question y, and get a valid answer in at least (1 − ρ)M cases — in the other cases we get the
answer “Don’t know”. Thus, we retrieve at least (1 − ρ)M of the M bits of the codeword x . This means that for any
string z that is equal to φ′(x) for some x ∈ G, there are at most L words in G that could possibly be mapped by φ′ to
the same string z. Thus, |G| ≤ L2n−1−dlog2 Le

= 2n−1 must hold, which leads to a contradiction. �

Known constructions of error-correcting codes yield examples of problems where we obtain bounds of the form
t (r +1) ≥ Ω(n) for n = Ω(2m). For example, using the codes of [2] we get t (r +1) ≥ (1/2−ε) n

2 with n = Ω(ε32m),
and using the erasure list-decodable code constructions of [18] we get t (r + 1 + log2(1/ε)) ≥ (1 − ε)

n−log2(1/ε)
2 with

n = Ω( ε2

log2(1/ε)
2m).

2.2. A general lower bound based on balance

We give a general lower bound on the product of the redundancy r and query time t for any problem whose matrix
satisfies certain conditions. Informally, we require that the submatrix formed by any small subset of rows contains a
balanced column.

Definition 7. Let A be a matrix with 0/1 entries. We say that A has balance at least λ for parameter k, if for any k
rows of the matrix A there exists a column that contains at least λk 0-s and at least λk 1-s among the entries of the
given k rows.

The property of having large balance for every k > 1 follows from the property of being a good error-correcting code.

Lemma 8. Given a code with N words in {0, 1}
l , let A be the N by l matrix formed by the words as rows. If the

minimum distance of the code is δl, then A has balance at least δ/2 for every 1 < k ≤ N.
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Proof. Look at the k by l table formed by k rows of A. The sum of the distances between all pairs of rows of this table
is at least

(k
2

)
δl. Assume that the largest balance achieved in this table is λ. Then each column contributes at most

λk(k − 1) to the sum of the distances between pairs of rows, and we get λ ≥ δ/2. �

The proof of Lemma 8 extends to codes where the minimum distance may not be large, but where instead it
holds that within any ball of certain radius there are not too many words, i.e., to problems satisfying the condition of
Theorem 6. More precisely, we get the following statement:

Lemma 9. Let A be the N by l matrix formed by the words of a code such that in any ball of radius δ/2 there are at
most L words. Then A has balance at least (1 −

L−1
k−1 )δ/2 for every L < k ≤ N.

Proof. In this case, the sum of the distances between pairs of any k > L rows is at least k(k − L)/2δl. As before,
the contribution of each column to the sum of the distances between pairs of rows is at most λk(k − 1), and we get
λ ≥ (1 −

L−1
k−1 )δ/2. �

Lemma 8 allows us to obtain constructions of matrices with large balance, based on known constructions of error-
correcting codes. This shows that there are matrices that have balance close to 1/4 for every k, and at the same time
have a large number of rows. (We can use for example the codes of [2] that achieve a relative minimum distance
1/2 − ε and rate Ω(ε3).)

We can, however, construct matrices that satisfy the property of having large balance for every k, without the
property of having few codewords in every Hamming ball of a given radius, and even without the weaker property of
having few codewords in every subcube of a given dimension.

Consider the following example of such a construction. Start with any N by M matrix A that has balance at least
λ for every 2 ≤ k ≤ N , for some 0 < λ ≤ 1/2. Add L rows to the matrix A as follows. Take a code of L words on
c log2 L coordinates for some constant c, with relative minimum distance 1/4. (Use for example the codes of [2] that
achieve relative minimum distance 1/2−ε and rate Ω(ε3), with ε = 1/2.) Let the first c log2 L coordinates of the extra
L words be words from this code of size L , and let the L words be identical in the remaining M −c log2 L coordinates.
Let 0 < ρ < 1 be any constant such that c log2 L < ρM . Then we have L words in a subcube of dimension ρM . On
the other hand, the corresponding matrix has balance at least λ/5 for any 2 ≤ k ≤ N + L . To see this, let α =

1
8λ+1 .

Since λ ≤ 1/2 we have α ≥ 1/5. Take any k rows of the matrix. Among these, either at least αk rows are from A, or
at least (1 − α)k rows are from the extra L rows. Since A has balance λ for every k, in the first case there is a column
with at least λαk ≥ λ/5k 0-s and 1-s among the given k rows. By Lemma 8, the submatrix consisting of the extra L
rows has balance at least 1/8, thus in the second case there is a column with at least 1/8(1 − α)k ≥ λ/5k 0-s and 1-s
among the given k rows.

Thus, the following theorem has potential of giving lower bounds for a wider range of problems than the theorems
of Section 2.1.

Theorem 10. Consider an arbitrary Boolean static data structure problem given by a map f : {0, 1}
n

× {0, 1}
m

→

{0, 1}. Let A f be the N by M (N = 2n , M = 2m) matrix of f . If A f has balance at least λ for every 1 < k ≤ log N,
and the problem defined by f can be solved with redundancy r and query time t, then t (r + 1)2

≥ λn.

We begin with some statements that we use in the proof.
A family of k sets S1, . . . , Sk is called a sunflower with k petals and core T , if Si ∩ S j = T for all i 6= j . We also

require that the sets Si \ T be nonempty.

Lemma 11 (Erdős and Rado, [12]). Let F be a family of sets each with cardinality w. If |F | > w!(k − 1)w, then F
contains a sunflower with k petals.

We also use the following standard observation.

Observation 12. Given a set C of N = 2s−r vectors in {0, 1}
s , for every 0 ≤ w ≤ s there is a vector v ∈ {0, 1}

s such
that there are at least

( s
w

)
/2r vectors in C at distance w from v.

Proof. Let χ(u, v) = 1 if u and v differ in w coordinates, and χ(u, v) = 0 otherwise. We have∑
u∈C

∑
v∈{0,1}s

χ(u, v) = |C|

(
s
w

)
.
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On the other hand,∑
v∈{0,1}s

∑
u∈C

χ(u, v) ≤ 2s max
v∈{0,1}s

|Cv,w|,

where Cv,w = {z ∈ C| z and v differ in w coordinates}. �

The following lemma holds for arbitrary data structure problems.

Lemma 13. Let φ : {0, 1}
n

→ {0, 1}
s be the storage scheme of a solution with redundancy r for an arbitrary data

structure problem. Let B be a matrix of size 2n
× s, such that the row of B indexed by x ∈ {0, 1}

n is the vector φ(x).
Then there exist some vector z ∈ {0, 1}

s and k = ds/(r + 1)2
e rows u1, . . . , uk of the matrix B, such that the sets of

coordinates where z differs from ui for i = 1, . . . , k are pairwise disjoint.

Proof. Let w = r + 1 (note that r + 1 ≥ 1), and let v ∈ {0, 1}
s , guaranteed to exist by the observation, be such that

there are at least
( s

r+1

)
/2r rows of B at distance r + 1 from v. Let Bv be the matrix obtained from B by adding v to

each row of B (taking bitwise XOR).
With each vector u ∈ {0, 1}

s , we associate a set U ⊆ [s] such that i ∈ [s] belongs to U if and only if the i-th entry
of u is 1. Then the matrix Bv specifies a family B of N sets such that at least

( s
r+1

)
/2r members of B have cardinality

r + 1.
Next we show that

( s
r+1

)
/2r

≥ (r + 1)!(s/(r + 1)2)r+1. We use
( s

r+1

)
≥ (s/(r + 1))(r+1). Then,

( s
r+1

)
/2r

≥

2( r+1
2 )(r+1)(s/(r + 1)2)r+1. Using 2((r + 1)/2)(r+1)

≥ (r + 1)!, we get the desired bound. Thus, Lemma 11 implies
that B contains a sunflower with k = ds/(r + 1)2

e petals. Let S1, . . . , Sk be the sets of the sunflower, and let T be its
core. Then, the sets Si4T are pairwise disjoint. (Si4T = Si \ T ∪ T \ Si denotes the symmetric difference of the sets
Si and T .) Let z and u1, . . . , uk be the vectors obtained by adding the vector v to the characteristic vectors of the set
T and S1, . . . , Sk , respectively. Then the vectors u1, . . . , uk are rows of the matrix B, and they have the property that
the vectors z ⊕ u1, . . . , z ⊕ uk have no common 1’s, since the set Si4T is exactly the set of coordinates where the
vectors z and ui differ from each other. �

Proof (of Theorem 10). A solution to the data structure problem is given by a representation φ : {0, 1}
n

→ {0, 1}
s

and a query algorithm. We consider a matrix B of size N × s such that the row of B indexed by x is the vector φ(x).
Let k = ds/(r + 1)2

e and let z ∈ {0, 1}
s be the vector and u1, . . . , uk be the rows of the matrix B guaranteed by

Lemma 13.
Let x1, . . . , xk be the data such that ui = φ(xi ), i = 1, . . . , k. Consider now the k rows of A f indexed by

x1, . . . , xk . Since k ≤ n = log2 N , by our assumption on A f , there is a question y, such that at least λk of the answers
f (xi , y) are 0, and at least λk of the answers f (xi , y) are 1.

We think of the query algorithm as a decision tree, and show that it has large depth. In particular, we show that the
path consistent with the vector z has to be at least λk long.

Note that the vector z may not be a row of the matrix B. Nevertheless, for every vector z, the decision tree has
exactly one path that is consistent with z. If none of the vectors that are consistent with the path reaching a given leaf
appears as a row of the matrix B, then the query algorithm will never actually reach this leaf, and the label of the leaf
will not affect the correctness of the algorithm. We can assume that the decision tree has been trimmed, so that there
are no paths that can be cut off without affecting the correctness of the algorithm. Then, proving that the depth of the
tree is at least λk implies that there is at least one path corresponding to a vector φ(x) that the algorithm may actually
have to follow, and it is at least λk long.

Assume that the query algorithm reads at most t < λk bits on any input when trying to answer the question y, and
assume that the bits read are consistent with the vector z. Since the sets of coordinates where z differs from ui for
i = 1, . . . , k are pairwise disjoint, after asking at most t questions, the algorithm can rule out at most t of the data
x1, . . . , xk , and the remaining k − t are still possible. If t < λk, then among the data that are still not ruled out, both
the answer 0 and the answer 1 is possible, and the algorithm cannot determine the answer to the given question y.
This completes the proof of Theorem 10. �

It is not hard to find examples of matrices with large balance for k ≤ log N , provided we are not worried about
the number of rows N being large enough compared to the number of columns M . We should mention that there are
well known constructions (e.g. [3,19,27,28,33]) for the much stronger property requiring that all possible 2k patterns
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appear in the submatrix formed by arbitrary k rows. However, in such examples, N ≤ M or 2k
≤ M must trivially

hold. Error-correcting codes provide examples where N can be very large compared to M .
Let n(k, λ, M) denote the largest possible number n such that 2n by M 0/1 matrices exist with balance at

least λ for k. Note that balance 1/k for k can always be achieved as long as there are no repeated rows; thus
n(k, 1/k, M) = 2M . Estimates on the largest achievable rate of error-correcting codes or list decodable codes provide
lower bounds on n(k, λ, M). For example, the Gilbert–Varshamov bound (see e.g. [21]) together with Lemma 8
implies n(k, λ, M) ≥ (1 − H(2λ))M , for every k > 1, where H(α) = α log2

1
α

+ (1 − α) log2
1

1−α
.

Note that while error-correcting codes give large balance for every k > 1, for our purposes matrices that have large
balance for only certain values of k may already be useful. In particular, any construction with nontrivial λ > 1/k
balance for a given k implies nontrivial lower bounds on t when (r + 1)2

≤ s/k. In the statement of Theorem 10, we
require balance λ for every 1 < k ≤ log2 N to obtain a tradeoff between t and r .

It would be interesting to know if n(k, λ, M) can be significantly larger (for certain values of k) than what is
achievable by error-correcting or list decodable codes.

3. Lower bounds for systematic structures

We first show the bounds for Prefix Sum. In fact, the lower bound is already implicit in Nisan, Rudich and Saks
[29], as is seen by the proof. Note that in the non-systematic model, Prefix Sum is trivial, as the number of queries
equals the number of bits in the input.

Theorem 3. Consider Prefix Sum with parameter n. For answering queries about it in a systematic scheme with
redundancy r, t = Θ(n/(r + 1)) bit probes are necessary and sufficient.

Proof. Upper bound: For r = 0, the upper bound is obvious. For r ≥ 1, divide the input vector into r equal sized
blocks and let yi be the parity of the i’th block. Now store for each j = 1, ...r , the parity of y1, y2, . . . , y j . Given a
prefix sum query, it can be answered by reading a non-systematic bit, that gives the parity of a collection of blocks and
XORing it with a number of individual input bits, all found in a single block of size n/r . The bit probe complexity is
O(n/r).

Lower bound: Let a scheme of redundancy r be given, and suppose the queries can be answered with t bit probes,
i.e., we can find x1 ⊕· · ·⊕ x j using a decision tree of depth t over the input bits and the index bits. Split the input into
r + 1 blocks of about equal length, each block containing at least b

n
r+1c bits. It is possible to determine the parity of

one of the blocks by a decision tree of depth 2t over the input bits and the index bits.
We now apply a theorem of Nisan, Rudich and Saks [29]: Given l + 1 instances of computing parity of k bits, with

l help bits (which can be arbitrary functions of the (l + 1)k input bits), given for free. At least one of the l + 1 parity
functions has decision tree complexity ≥k. We immediately get the desired bound. �

Theorem 4. Consider Substring Search with parameters n, m so that 2 log2 n +5 ≤ m ≤ 5 log2 n. For any systematic
scheme solving it with redundancy r and bit probe complexity t , we have (r + 1)t ≥

1
800 n/ log n.

Proof. Since we must have r ≥ 0 and t ≥ 1 in a valid scheme, we can assume that 1 ≤ t ≤
n

800 log n otherwise there
is nothing to prove.

We need to prove a claim about a certain two-player game. Let b ≥ a ≥ 40 be integers and assume b is even. The
game is played with b boxes labeled 0, . . . , b − 1 and a slips of papers, labeled 0, . . . , a − 1. Player I colors each slip
of paper either red or blue and puts each slip of paper in a box (with no two slips going into one box) without Player
II watching. Now Player II can open at most b/2 boxes using any adaptive strategy, and based on this, must make a
guess about the color of every slip of paper. Player II wins the game if he correctly announces the color of every slip
of paper.

Claim. Suppose Player I adopts the strategy of coloring each slip of paper uniformly and independently at random,
and putting them at random into a boxes chosen uniformly at random.1 Then no matter which strategy Player II
adopts, the probability that Player II wins the game is at most 2−a/20.

1 This is actually easily seen to be the optimal mixed strategy of Player I, but we shall not use this fact.
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Proof of Claim. When Player I is playing uniformly at random in the way described, then by symmetry the
adaptiveness of Player II is useless and the optimal strategy for Player II is to open boxes 1, 2, ..., b/2, announce
the colors of the slips of papers found, and then make an arbitrary guess for the rest. The probability that he finds
more than 9

10 a slips of papers is

a∑
j> 9

10 a

(b/2
j

)( b/2
a− j

)(b
a

) =

b
1

10 ac∑
i=0

(b/2
i

)(b/2
a−i

)(b
a

) .

Since a ≤ b, for i ≤
1

10 a, we have b
2(b−i) ≤ 5/9. Then,(b/2

i

)(b/2
a−i

)(b
a

) ≤

(
a
i

)
(1/2)i

(
b

2(b − i)

)a−i

≤

(
a
i

)
(5/9)a .

b
1
10 ac∑
i=0

(b/2
i

)(b/2
a−i

)(b
a

) ≤ (5/9)a
b

1
10 ac∑
i=0

(
a
i

)
≤ (5/9)a2H(1/10)a

≤ 2(H(1/10)−log2(3/2))a

≤ 2−0.115a .

The probability that he guesses the colors of all remaining slips correctly, given that at least a/10 were not found,
is at most 2−a/10. Thus, the probability that Player II correctly guesses the color of every slip of paper is bounded by

2−0.115a
+ 2−a/10

≤ 2−a/20,

as a ≥ 40. This completes the proof of the claim. �

We show that a good scheme for Substring Search leads to a good strategy for Player II in the game. So given a
scheme with parameters n, m, r, t , we let a = b

n
4tm c and b = 4ta. Since t ≤ n/(800 log n) and m ≤ 5 log n, we have

a ≥ 40.
We consider a string of length n as consisting of b concatenated chunks of length m, padded with 0’s to make the

total length n (note that bm = 4tam ≤ n). We can now let such a string encode a move of Player I (i.e. a coloring of
slips of paper and a distribution of them into boxes) as follows: the content of Box i is encoded in chunk number i . If
the box is empty, we make the chunk 000000...000. If the box contains paper slip number j , colored blue, we make the
chunk 001 j11 j21 j31...1 jk0, padded with zeros to make the total length m, where j1... jk is the binary representation
of j with dlog ae binary digits (note that 3 + 2dlog ae ≤ 2 log n + 5 ≤ m). Similarly, if the box contains paper slip
number j , colored red, we make the chunk 001 j11 j21 j31...1 jk1, padded with zeros in the same way.

Now consider the set X of strings encoding all legal moves of player I. Each element x of X has some systematic
data structure φ(x) = x · φ∗(x), where φ∗(x) ∈ {0, 1}

r . Pick the most likely setting z of φ∗(x) of these among
elements of X ; i.e., if we take a random element x of X , the probability that φ∗(x) = z is at least 2−r . We now make
a strategy for Player II in the game. Player II will pretend to have access to a Substring Search data structure which
he will hope encodes the move of Player I. The index part of this data structure will be the string z which is fixed and
independent of the move of Player I, and hence can be hardwired into the protocol of Player II.

Player II shall simulate certain query operations on the pretend data structure. However, he has only access to the
index part of the structure (i.e., z). Thus, whenever he needs to read a bit of the non-index bits, he shall open the box
corresponding to the chunk of the bit from which he can deduce the bit (assuming that the entire data structure really
does encode the move of Player I).

In this way, Player II simulates performing the query operations “Is 001 j11 j21 j31...1 jk0 a substring?” and “Is
001 j11 j21 j31...1 jk1 a substring?” with j = j1 j2 . . . jk being the binary representations of all y ∈ {0, . . . , a − 1}, i.e.,
2a query operations. From the answers to the queries, he gets a coloring of the slips of papers. Of course, the coloring
obtained may be unrelated to the correct coloring. But suppose the randomly chosen z happens to be equal to φ∗(x),
where x is an encoding of the move of Player I. Then, the coloring obtained is the correct coloring by the correctness
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of the Substring Search scheme. Since z is a randomly chosen bitstring of length r , it is equal to φ∗(x) with probability
2−r , so this is a lower bound on the probability of the strategy for Player II obtaining the correct coloring. Thus, since
the total number of boxes opened is at most t2a ≤ b/2, we have by the claim that r ≥ a/20, i.e., 20r ≥ bn/4tmc.
Since m ≤ 5 log n we have (r + 1)t ≥

1
400 n/ log n. �

We could potentially get a better lower bound by considering a more complicated game that takes into account the
fact that the different query operations do not communicate. Again we have b boxes labeled 0, . . . , b−1 and a slips of
paper, labeled 0, . . . , a−1. The modified game is played between Player I and a team consisting of Players II0, II1, . . . ,

IIa−1. Again, Player I colors each slip of paper either red or blue and puts each slip of paper in a box without Players
II0, II1, . . . , IIa−1 watching. Now Player IIi can look in at most b/2 boxes using any adaptive strategy, and based
on this must make a guess about the color of the slip labeled i . This is done by each player on the team individually,
without communication or observation between them. The team wins if every player in the team correctly announces
the color of “his” slip.

About this game, we stated the following hypothesis in the preliminary version [14] of this paper.
Hypothesis. Let b ≥ 2a. Suppose Player I adopts the strategy of coloring each slip of paper uniformly at random and
independently putting them at random into a boxes chosen uniformly at random. Then no matter which strategy the
team adopts, the probability that they win is at most 2−Ω(a).

Since then, Goyal and Saks [15] have shown that our hypothesis is not true exactly as stated: they proved that there
is a strategy for the team that succeeds with probability at least 2−c

√
a log a , for some constant c (independent of a and

b). However, it is still possible that a weaker version of the hypothesis holds. Is the probability that the team wins
always at most 2−aΩ(1)

? If this is the case, it would still imply stronger lower bounds for systematic structures.
The intuition for the validity of the weaker hypothesis (i.e. with revised parameters) is the fact that the players

of the team are unable to communicate, and each will find his own slip of paper with probability ≤
1
2 . However,

Sven Skyum (personal communication) has pointed out that if this hypothesis is true, the parameters under which
it is true are somewhat fragile: if b = a, the team can win the game with probability bounded from below by a
constant (roughly 0.31) for arbitrary large values of a. The catch is that even though each player will find his own
slip of paper with probability only 1

2 , one can make these events highly dependent (despite the fact that the players
do not communicate). Though the existence of this protocol is quite striking and has surprised many people since the
publication of the preliminary version of this paper, it is also very simple: If we let l(i) denote the number on the label
of the slip in Box i , the strategy prescribes for Player j to open first Box j , then Box l( j), then Box l(l( j)), etc. Then,
each member of the team will find his own slip and hence be able to announce its color correctly if the permutation
of slips into boxes does not have a cycle of length bigger than n/2. Asymptotically, as n → ∞, this is the case with
probability 1 − ln 2 ≈ 0.31.

4. Open problems

It is interesting that all our best bounds, both in the non-systematic and in the systematic case, are of the form
“(r + 1)t must be linear or almost linear in n.” We don’t see any inherent reason for this and in general do not
expect the lower bounds obtained to be tight. Thus, it would be nice to to prove a lower bound of, say, the form,
t < n/polylog n ⇒ r > n/polylog n for Polynomial Evaluation in the non-systematic case, or Substring Search in
the systematic case. To get a superlinear lower bound on (r + 1)t at least for some non-trivial values of r , it would be
sufficient to verify the revised hypothesis about the “slips in boxes” game defined above. It is also interesting to note
that our lower bound for Substring Search and the lower bound of Demaine and Lopez-Ortiz are incomparable. Can
the two techniques perhaps be combined to yield a better lower bound?

We have only been able to prove lower bounds in the non-systematic case for problems satisfying certain coding
theoretic properties. It would be very nice to extend the non-systematic lower bounds to more natural search and
retrieval problems, such as Substring Search.

A prime example of a problem for which we would like better bounds is Membership, as defined in the introduction.
As the data to be stored have no canonical representation as a bitstring, it only makes sense to consider this problem
in the non-systematic model. The lower bound r = O(n) ⇒ t = Ω(m) was shown by Buhrman et al [8]. On
the other hand, a variety of low-redundancy dictionaries with r = o(n) and t = O(m) have been constructed
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[7,30]. We conjecture that any solution for membership with t = O(m) must have some redundancy, i.e., that
t = O(m) ⇒ r ≥ 1. It would be very nice to establish this.

A question that may be interesting in its own right is that of whether n(k, λ, M) (defined at the end of Section 2.2)
can be significantly larger than what is implied by coding theory bounds on error-correcting or list decodable codes.
(See Section 2.2 for more details.)

In our view, the main open problem of cell probe complexity remains: show, for some explicit Boolean problem,
a tradeoff of the form r = O(n) ⇒ t = ω(m). Clearly, for such tradeoffs the distinction between systematic and
non-systematic structures is inconsequential.
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