




This page intentionally left blank 



Persi Diaconis
and

Ron Graham
With a foreword by Martin Gardner

P R I N C E T O N  U N I V E R S I T Y  P R E S S

P R I N C E T O N  A N D  OX F O R D

the mathematical ideas that

animate Great magic Tricks



Copyright © 2012 by Princeton University Press

Published by Princeton University Press, 41 William Street, 

Princeton, New Jersey  08540

In the United Kingdom: Princeton University Press, 6 Oxford Street, 

Woodstock, Oxfordshire OX20 1TW

press.princeton.edu

All Rights Reserved

Library of Congress Cataloging-in-Publication Data

Diaconis, Persi.

 Magical mathematics : the mathematical ideas that animate great magic tricks / 

Persi Diaconis, Ron Graham ; with a foreword by Martin Gardner.

   p. cm.

 Includes bibliographical references and index.

 ISBN 978-0-691-15164-9 (hardback)

 1. Card tricks—Mathematics. I. Graham, Ron, 1950– II. Title.

 GV1549.D53 2011

 793.8'5—dc23

 2011014755

British Library Cataloging-in-Publication Data is available

 

This book has been composed in ITC New Baskerville

Printed on acid-free paper. ∞

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1



To our wives,

Susan and Fan



This page intentionally left blank 



 Foreword  ix
 
 Preface  xi

1 Mathematics in the Air  1

 Royal Hummer 8

 Back to Magic 15

2  in cycles  17

 The Magic of de Bruijn Sequences  18

 Going Further  25

3 Is This StuFF Actually Good For Anything? 30

 Robotic Vision  30

 Making Codes  34

 To the Core of Our Being  38

 This de Bruijn Stuff Is Cool but Can It Get You a Job?  42

4  universal cycles  47

 Order Matters 47

 A Mind-reading Effect 52

 Universal Cycles Again 55

5  From the Gilbreath Principle to the 
 Mandelbrot Set 61

 The Gilbreath Principle  61

 The Mandelbrot Set  72 

 

6  Neat Shuffles  84

 A Mind-reading Computer 85

 A Look Inside Perfect Shuffl es  92

Contents



 A Look Inside Monge and Milk Shuffl es  96

 A Look Inside Down-and-Under Shuffl es  98

 All the Shuffl es Are Related  99

7  The Oldest Mathematical Entertainment? 103

 The Miracle Divination 105

 How Many Magic Tricks Are There?  114

8  Magic in the Book of Changes  119

 Introduction to the Book of Changes  121

 Using the I Ching for Divination 122

 Probability and the Book of Changes  125

 Some Magic (Tricks) 127

 Probability and the I Ching 136

9  What Goes Up Must Come Down  137

 Writing It Down 138

 Getting Started in Juggling 145

10  Stars of Mathematical Magic (and 
 some of the best tricks in the book)  153

 Alex Elmsley 156

 Bob Neale 160

 Henry Christ 173

 Stewart James 181

 Charles Thornton Jordan 189

 Bob Hummer 201

 Martin Gardner 211

11  Going further  220

12  on secrets  225

 Notes  231

 Index  239

viii Contents



If you are not familiar with the strange, semisecret world of modern 

conjuring you may be surprised to know that there are thousands of 

entertaining tricks with cards, dice, coins, and other objects that re-

quire no sleight of hand. They work because they are based on math-

ematical principles. 

Consider, for example, what mathematicians call the Gilbreath 

Principle, named after Norman Gilbreath, its magician discoverer. Ar-

range a deck so the colors alternate, red, black, red, black, and so on. 

Deal the cards to form a pile about equal to half the deck, then riffl e 

shuffl e the piles together. You’ll be amazed to fi nd that every pair of 

cards, taken from the top of the shuffl ed deck, consists of a red card 

and a black card! Dozens of beautiful card tricks—the best are ex-

plained in this marvelous book—exploit the Gilbreath Principle and 

its generalizations.

Although you can astound friends with tricks based on this princi-

ple, they are in this book for another reason. The principle turned out 

to have applications far beyond trivial math. For example, it is closely 

related to the famous Mandelbrot set, an infi nite fractal pattern gener-

ated on a computer screen by a simple formula.

But that is not all. The Dutch mathematician N. G. de Bruijn dis-

covered that the Gilbreath principle applies to the theory of Penrose 

tiles (two shapes that tile the plane only in a nonperiodic way) as well 

as to the solid form of Penrose tiles, which underlies what are called 

quasicrystals. Still another application of the principle, carefully ex-

plained in this book, is to the design of computer algorithms for sort-

ing procedures. 

The authors are eminent mathematicians. Ron Graham, retired 

from Bell Labs and now a professor at the University of California, San 

Diego, is an expert on combinatorial math. Persi Diaconis is an equally 

foreword



famous statistician at Stanford University. Each man has a hobby. Ron 

is a top juggler. Persi is a skilled card magician. 

You will learn from their book the math properties of unusual shuf-

fl es: the faro, the milk shuffl e, the Monge shuffl e, and the Austra-

lian or down-and-under shuffl e. You will learn some tricks using the I 
 Ching, an ancient Chinese fortune-telling volume. You will learn how 

parity (odd or even) can play a roll in magic as well as provide power-

ful shortcut proofs.

Not only is this book a superb, informally written introduction to 

mathematical magic, but near the book’s end the authors supply pic-

tures and biographical sketches of magicians who have made the great-

est contributions to mathematical magic, from the reclusive Charles 

Jordan to the eccentric Bob Hummer.

Best of all, you will be introduced to many little-known theorems 

of advanced mathematics. The authors lead you from delightful self-

working magic tricks to serious math, then back again to magic. It 

will be a long time before another book so clearly and entertainingly 

surveys the vast fi eld of mathematical hocus-pocus.

Martin Gardner
Norman, OK
April, 2010
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Preface

The two of us have been mixing entertainment with mathematics for 

most of our lives. We started off on the entertainment side, one as a 

magician, the other as a juggler and trampolinist. We were seduced 

into studying mathematics by . . . well, the stories that are told in this 

book. Both of us now make a living doing mathematics; teaching, 

proving, and conjecturing.

The two fi elds have been shuffl ed together for us, with frequently 

performed talks on mathematics and magic tricks and the mathemat-

ics of juggling. The connections go deeper. Some magic tricks use 

“real mathematics” and lead to questions beyond the limits of mod-

ern mathematics (see our chapter on shuffl ing cards). Sometimes, 

we have been able to solve the math problems and create new magic 

tricks (see chapter 2).

Both of our worlds have a dense social structure; thousands of play-

ers turning ideas over and over. Some of this wisdom of the ages is 

woven through our book. In addition to hundreds of friends and col-

leagues, dozens of people have made sustained contributions to this 

book.

On the magic front, Steve Freeman, Ricky Jay, Bob Neale, and Ron-

ald Wohl have been coworkers, selfl essly contributing their brilliance 

and wisdom. The students in our Magic and Mathematics classes at 

Harvard and Stanford have all helped. We particularly thank Joe Fen-

del. We had the benefi t of amazing, insightful readings of our text by 

Art Benjamin, Steve Butler, Colm Mulcahy, and Barry Mazur. Their 

combined comments rivaled the length of our book. Laurie Beckett, 

Michael Christ, Jerry Ferrell, Albrecht Heeffer, Bill Kalush, Mitsunobu 

Matsuyama, and Sherry Wood went out of their way to help us out. 

Our editors at Princeton University Press, Ed Tenner, Vickie Kearn, 

and Mark Bellis have been crucial allies.



xii Preface

Our families, Fan Chung Graham, Ché Graham, and Susan Holmes, 

have helped in so many ways that we can’t fi nd a number system rich 

enough to list them. Fan’s mathematical work appears in chapters 2–4, 

and Ché and Susan shot (and reshot) numerous photos. Susan also 

contributed to the history and many other chapters.

We hope that our book will shine a friendly light on the corners of 

the world that are our homes.

Thanks and welcome.

Persi Diaconis and Ron Graham
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Most mathematical tricks make for poor magic and in fact have very 

little mathematics in them. The phrase “mathematical card trick” con-

jures up visions of endless dealing into piles and audience members 

wondering how long they will have to sit politely. Our charge is to 

present entertaining tricks that are easy to perform and yet have in-

teresting mathematics inside them. We cannot do this without your 

Chapter 1

Mathematics in the Air

Figure 2. Four cards in a packetFigure 1. Four cards 

Figure 3. Looking at bottom card

help. To get started, please go 

fi nd four playing cards. They can 

be any four cards, all different or 

the four aces. It doesn’t matter. 

Let us begin by performing the 

trick for you. Since we can do it 

without being present, you’ll be 

able to do it for a friend on the 

phone. After practicing, try call-

ing your kid brother or your mom 

and perform the following.

 

Have a look at the bottom card 

of the packet. That’s your card 

and you have to remember it. 
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Figure 5. Current top card turned face-upFigure 4. Top card placed on bottom

Figure 6. Cutting the deck 

Figure 8. Cutting again Figure 9. Turning over two again

Figure 10. Another cut Figure 11. Turning over two

Figure 7. Spreading off and turning 

over the top two

Next, the cards are going to 

be mixed by some simple in-

structions. Put the top card on 

the bottom of the packet. Turn 

the current top card face-up and 

place it back on top.

Now, give the packet a cut. It 

doesn’t matter how many cards 

you cut from top to bottom: one, 

two, three, or four (which is the 

same as none). Next, spread off 

the top two cards, keeping them 

together, and turn them over, 

placing them back on top. 

Cut the cards at random again 

and then turn the top two over. 

Give them another cut and turn 

two over. 

Give them a fi nal cut. This cut-

ting and turning has mixed the 

cards in a random fashion. There 

is no way anyone can know the 

order. Remember the name of 

your card! We’re going to fi nd it 

together. 
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Figure 12. Turning over the top card Figure 13. Putting it on the bottom

Figure 14. Putting the top card on the 

bottom

Figure 15. Turning over the top card

Figure 16. The “oddball” card Figure 17. The chosen card

When we perform this trick with a live audience in the same room, 

we try to work it on a man with a tie or a woman with a scarf. We give 

him or her the four cards with instructions to shuffl e, peek at the bot-

tom card, and follow the instructions above until he or she has cut and 

turned over two a few times. We then ask our subject to put the four 

cards behind his or her back. The rest of the instructions are carried 

out with the cards concealed this way. When the cutting and turning 

Now, we’re done. Name your 

card. Spread out the packet of 

four. You’ll fi nd three cards fac-

ing one way and your card facing 

the opposite way!

Turn the top card over (if it’s 

face-down, turn it face-up; if it’s 

face-up, turn it face-down). Put 

this card on the bottom of the 

packet.

Put the current top card on 

the bottom of the packet without 

turning it over. Finally, turn the 

top card over and place it back 

on top.
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phase is fi nished, we stare intently at the person’s midsection in giving 

the fi nal two steps of instructions as if we were looking through our 

subject. Before the fi nal line of instruction we reach over and move 

the tie or scarf as if it were blocking our view. We have him or her 

name the card before bringing out the packet.

We have used this trick for an audience of a hundred high school 

students—each student received a packet of four cards, and the trick 

was worked simultaneously for all of them. It’s a charming trick and 

really seems to surprise people.

Okay. How does it work? Let’s start by making that your problem: 

How does it work? You’ll fi nd it curiously diffi cult to give a clear expla-

nation. In twenty years of teaching, asking students to try to explain 

this trick, we have yet to have anyone give a truly clear story. The plan 

is to lead you through this in stages (it has some math in it). The solu-

tion comes later in this chapter. Before proceeding, let’s generalize.

The trick is known as Baby Hummer in magic circles. It was in-

vented by magician Charles Hudson as a variation on an original trick 

by a truly eccentric genius named Bob Hummer. We’ll learn a lot more 

about Hummer as we go along. Here is his original use of the prin-

ciple we’re trying to explain.

Take any ten cards. Have them all face-down and hold them as if 

you were about to deal in a card game. Go through the following pro-

cedure, which mixes the cards face-up and face-down: Spread the top 

two cards off and turn them over, placing them back on top. Give the 

cards a straight cut (see fi gure 6). Repeat this “turn two and cut at 

random” procedure as often as you like. The cards will be in an un-

predictable mess. To fi nd the order in the mess, proceed as follows: 

Go through the packet, reversing every second card (the cards in po-

sitions 2, 4, 6, 8, and 10). You will fi nd exactly fi ve cards face-up, no 

matter how many times the “turn two and cut at random” procedure 

was repeated.

Hummer marketed this trick in a privately printed manuscript 

called ‘‘Face- up/Face- down Mysteries” (1942).1 This ten-card trick 

does not play as well for audiences as the Baby Hummer we started 

with. Hummer introduced a kind of swindle as a second phase. After 

showing that fi ve cards are face-up and fi ve cards are face-down, casu-

ally rearrange the cards so that the face-up and face-down cards alter-

nate up, down, up, down, and so on. Hand the ten cards to a spectator 

who is instructed to put the cards under the table (or behind his or 
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her back). Have the spectator repeat the “turn two and cut at random” 

procedure a few times. Take the cards back without looking at them. 

Now, with the cards under the table (or behind your back), remove 

every second card as before and turn them over. You will fi nd that the 

cards all face the same way.

Again, one may ask, why does this work? Just what properties of the 
arrangement are preserved by Hummer’s “turn two and cut at random” proce-
dure? To think about Hummer’s “turn two and cut at random” mixing 

scheme, we fi nd it helpful to have a way of writing down all the possible 

arrangements that can occur. Instead of working with a deck of four or 

ten cards, one can just as easily work with a general deck of even size. 

We work with 2n cards (so, if n = 2 then 2n = 4, or if n = 5 then 2n = 

10). As will be seen in a while, decks of odd size are a different kettle 

of fi sh. We can indicate the exact arrangement of 2n cards, some face-

up and some face-down, by writing the numbers on the cards in order 

and identifying face-up with a bar on top of a number. Thus, a four-

card deck with a face-up 3 on top, a face-down 1 next, a face-down 4 

next, and a face-up 2 at the bottom is denoted 3, 1, 4, 2. For a deck of 

ten cards, a possible arrangement is 2, 1, 4, 8, 6, 5, 3, 10, 7, 9. 

Figure 18. Reversing every second card
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The symbols 1, 2, 3, . . . , 2n can be arranged in 1 × 2 × 3 × 4 × ∙ ∙ ∙ × 2n 

ways. This number is often denoted as (2n)! (read “2n factorial”). Each 

such arrangement can be decorated with bars in 2 × 2 × 2 × ∙ ∙ ∙ × 2 = 22n 

ways (each of the 2n symbols can be barred or not). In all, this makes 

for 22n × (2n)! distinct arrangements. This is a huge number even for 

a moderate n. For 2n = 4, it is 24 × 4! = 16 × 24 = 384. For 2n = 10, it is 

3,715,391,200 (close to four billion). This is the maximum possible 

number of arrangements. As we will see, not all of these are achievable 

if we start with a face-down deck using Hummer’s “turn two and cut at 

random” process.

Before we give the general answer, here is a starter result that shows 

that many of the 22n × (2n)! arrangements are not achievable. This re-

sult also clearly explains why Hummer’s ten-card trick works. We pres-

ent it as a simple theorem to show that theorems can grow anywhere.

Theorem. Let a deck of 2n cards start all face-down. After any 

number of “turn two and cut at random” operations, the follow-

ing regularity is forced: 

The number of face-up cards at even positions

equals

the number of face-up cards at odd positions.

Normally, we will put our proofs at the end of each chapter. How-

ever, we give the proof for this here. What we want to prove is cer-

tainly true when we start—there are no face-up cards in either even 

or odd positions at the start. Suppose the statement of the theorem 

holds after some fi xed number of shuffl es. Observe that it still holds 

after a single card is cut from top to bottom. Therefore, it holds if any 

number of cards is cut from top to bottom. So the result to be proved 

holds for any number of cuts. Finally, suppose that the result to be 

proved holds for the current deck. Note that the current deck may 

well have cards face-up and face-down. Let us argue that it continues 

to hold after the top two cards are turned over and put back on top. 

We see this by considering all possible arrangements of the top two 

cards. They may be:

down, down down, up up, down up, up. 
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After turning two, these four possibilities become:

up, up down, up up, down down, down.

In the middle two cases, the up- down pattern hasn’t changed, so the 

statement holds after turning two if it held at the start. In the fi rst case, 

the odd positions and the even positions each have one more up card. 

Since the numbers of face-ups in even and odd positions were equal 

before we turned two, they are equal after. The same argument works 

in the last case. This covers all cases and proves the theorem.

From the theorem, it is a short step to see why Hummer’s trick 

works. Start with 2n cards face-down (2n = 10 for Hummer). After 

any number of “turn two and cut at random” shuffl es, there will be 

some number of face-up cards. Let A be the number of face-up cards 

among the n cards at even positions. There must be n − A face-down 

cards among the even positions since there are n cards in even posi-

tions. By the theorem, the same holds for the n cards at odd posi-

tions—A face-up and n − A face-down. If you remove the cards at odd 

positions and turn them over, this gives n − A face-up cards to add 

to the A face-up cards at even positions. This makes (n − A) + A = n 

face-up cards in all. Of course, the other n cards are face-down. The 

conclusion is forced. 

Did the proof we just gave ruin the trick? For us, it is a beam of light 

illuminating a fuzzy mystery. It makes us just as happy to see clearly as 

to be fooled. 

To check your understanding, we mention that, in magic circles, 

Hummer’s principle is sometimes called CATO for “cut and turn over 

two.” This is in opposite order to the “turn over two and cut.” The 

theorem holds for CATO as well as “cut and turn over four” or “turn 

over an even number and cut.”

Later in this chapter we show that exactly 2  × (2n)! arrangements 

are achievable and just which ones these are. This more general result 

implies the theorem we just proved and, indeed, all possible theorems 

about Hummer’s mixing process.

In the meantime we turn to the question: How can a really good 

trick be twisted out of this math? We give as an answer a closely guarded 

secret of one of the great card men of the present era. Steve Free-

man has given us permission to explain what we think is an amazing 
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amplifi cation of Hummer’s shuffl es. We explain it by fi rst describing 

the effect and then the modus operandi. Those wishing to understand 

why it works will have to study the math at the end of the chapter.

Royal Hummer 

First, the effect as the audience sees it. The performer hands the spec-

tator about one- third of the deck, asking that the cards be thoroughly 

shuffl ed. Taking the cards back from the spectator, the performer ex-

plains that the cards will be further mixed, face-up and face-down, at 

the spectator’s discretion, to make a real mess. The cards are dealt off 

in pairs, the spectator deciding each time if they should be left as is 

or turned over. This is repeated with the cards in groups of four. At 

this point, there is a pile of face-up/face-down cards on the table. The 

performer says, “I think you must agree that the cards are truly ran-

domly distributed.” The spectator gets one more decision—after the 

performer deals the cards into two piles (left, right, left, right, and so 

on) the spectator chooses a pile, turns it over, and puts it on top of the 

other pile. For the denouement, the performer explains that the high-

est hand in poker, the perfect poker hand, is a royal fl ush—ace, king, 

queen, jack, and ten, all of the same suit. The cards are spread and 

there are exactly fi ve face-down cards. “Five cards—that just makes 

a poker hand.” The fi ve are turned over one at a time—they form a 

royal fl ush.

That’s the way the trick looks. Here is how it works. Before you be-

gin, look through the deck of cards, as if checking to see if the deck is 

complete, and place one of the royal fl ushes on top (they do not have 

to be in order). Remove the top twenty or so cards. The exact number 

doesn’t matter as long as it’s even and contains the royal fl ush. Have 

the spectator shuffl e these cards. Take the cards back, turn them all 

face-up, and start spreading through them as you explain the next 

phase. Look at the fi rst two cards.
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Figure 21. Second card is turned over Figure 22. Pair is placed on the table

Figure 19. Neither card is in the fl ush Figure 20. Turning the second card

1. If neither one is in the royal 

fl ush, leave the fi rst card face- 

up and fl ip the second card 

face-down, keeping both in 

their original position (you 

may use the fi rst card to fl ip 

over the second one). 

Figure 23. Only the fi rst card is in the 

fl ush
Figure 24. First card is turned over

Figure 25. Second card is also turned 

over, with the cards kept in order

Figure 26. Pair is placed on the table

2. If the fi rst one is in the royal 

fl ush and the second one is 

not, fl ip the fi rst one face-

down and then fl ip the second 

one face-down (they stay in 

their original positions).
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The pairs may be dropped onto the table in a pile after each is ad-

justed or passed into the other hand. Work through the packet a pair 

at a time, using the same procedure for each pair. If, by chance, you 

wind up with an odd number of cards, add an extra card from the rest 

of the deck.

Now, take off the cards in pairs, asking the spectator to decide, for 

each pair, whether to “leave them or turn them,” and put them into a 

Figure 29. Both cards are in the fl ush Figure 30. Turning the fi rst card over

4. If both are in the royal fl ush, 

fl ip the fi rst one face-down 

and leave the second one 

face-up.

Figure 31. Placing the pair on the table Figure 32. The completed arrangement 

Figure 27. Only the second card is in 

the fl ush

Figure 28. Placing the pair face-up in 

order on the table

3. If the second one is in the 

 royal fl ush and the fi rst one is 

not, leave both face-up.
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pile on the table as dictated. When done, you can pick up the pile and 

go through the “leave them or turn them” process for pairs as before 

(or in sets of four, if desired). To fi nish, deal the cards into two piles 

(left, right, left, right, . . . ). Have the spectator pick up either pile, 

turn it over, and place it on the other one. If the royal fl ush cards are 

not facing down, turn the whole packet over before spreading.

This is a wonderful trick. It really seems as if the mixing is hap-

hazard. The ending shocks people. It does take some practice but 

it’s worth it—a self- working trick done with a borrowed deck (which 

doesn’t have to be complete). 

Perhaps the most important lesson to be learned is how a simple 

mathematical principle, introduced via a fairly weak trick, can be 

built into something special. This is the result of fi fty years of sus-

tained development by the magic community. People from all walks 

of life spent time turning the trick over, suggesting variations, and 

being honest about their success or failure. At the beginning and end 

were two brilliant contributors—Bob Hummer and Steve Freeman. 

We are in their debt.

A word about practice. The fi rst times you run through, follow-

ing the procedures (1)–(4) above, will be awkward and slow. After a 

hundred or so practice runs, you should be able to do it almost sub-

consciously, without really looking at the cards. A skillful performer 

must be able to patter along (“We will be turning cards face-up and 

face-down as we go. You will decide which is which . . .”). The whole 

proceeding must have a casual, unstudied feel to it. All of this takes 

practice.

In the rest of this chapter, we explain some math. As a warmup, let 

us argue that the Baby Hummer trick that begins this chapter always 

works. To begin with, in the original setup we have three cards facing 

one way and one card (which we’ll call the “oddball”) facing the other 

way. We’ll say that cards in positions one and three (from the top) are 

“mates,” as are cards in positions two and four. The setup instructions 

then force the chosen card and the oddball to be mates. It is easy 

to check that any “turn two and cut randomly” shuffl e (or Hummer 

shuffl e, for short) will preserve this relationship (there are basically 

only two cases to check). Finally, the fi nishing instructions have the 

effect of turning over exactly one card and its mate. This has the ef-

fect of forcing the chosen card to be the oddball. Again, two cases to 

check. End of story.
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With all the variations, it is natural to ask just what can be achieved 

from a face-down packet, originally arranged in order 1, 2, 3, . . . , 2n, 

after an arbitrary number of Hummer shuffl es. The following theo-

rem delineates exactly what can happen. 

Theorem. After any number of Hummer shuffl es of 2n cards, 

any arrangement of values is possible. However, the face-up/face-

down pattern is constrained as follows: Consider the card at posi-

tion i. Add one to its value if face-up. Add this to i. This sum is 

simultaneously even (or odd) for all positions i. 

Example. Consider a four- card deck in the fi nal arrangement: 

4, 2, 1, 3. In position 1, the sum “position + value + (1 if face-up, 

and 0 if face-down)” is 1 + 4 + 0 = 5, which is odd. The other three 

positions give 

2 + 2 + 1 = 5, 3 + 1 + 1 = 5, 4 + 3 + 0 = 7,

all odd values.

Remarks. The constraint in the theorem is the only constraint. 

All arrangements arrived at by the Hummer shuffl ing are bound 

by it, and any pattern of cards that satisfi es the constraint is achiev-

able by Hummer shuffl es. An interesting unsolved problem is to 

fi gure out the minimum number of Hummer shuffl es it takes to 

achieve any particular pattern.

Any property of Hummer shuffl es is derivable from the theorem. 

We record some of these as corollaries.

Corollary 1. The number of achievable arrangements for a 

deck of 2n cards after Hummer shuffl ing is 2 × (2n)!. 

Remark. In mathematical language, the set of all achievable ar-

rangements of 2n cards after Hummer shuffl ing forms a group.

Corollary 2. (Explanation of Hummer’s original trick.) After 

any number of Hummer shuffl es, the number of face-up cards 

at even positions equals the number of face-up cards at odd 
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positions. Thus, if the even cards are removed and turned over, 

the total number of face-up cards is n.

Proof: Consider the cards at even positions. If there are j even 

values, all of these must face the same way. Similarly, the n − j odd 

values must face the other way. At the odd positions, there will be 

n − j even values all facing in the opposite way to the even values 

at even positions. When the cards at even positions are removed 

and turned over, there are j + (n − j ) = n facing the same way, with 

the remaining n facing the opposite way.

Corollary to Corollary 2. The argument underlying cor-

ollary 2 shows that in fact, after any number of Hummer shuffl es 

followed with every other card removed and reversed, the cards 

originally at even positions all face the same way (likewise, the cards 

originally at odd positions all face the opposite way). Let us make 

this into a trick: Take fi ve red cards and fi ve black cards and arrange 

them in alternate colors in a face-down pile. Hummer shuffl e any 

number of times, remove every other card, and reverse these. All 

the red cards face one way and all the black cards face the opposite 

way. This makes for quite a surprising trick. It may be endlessly var-

ied. For example, remove four aces and six other cards. Place the 

aces in every second position (i.e., in positions two, four, six, and 

eight). Turn the bottom card face-up. The cards may be Hummer 

shuffl ed any number of times. Follow this by reversing every other 

card. The four aces will face opposite the remaining cards. Charles 

Hudson derived a number of entertaining tricks built on this idea. 

His Baby Hummer trick is explained above. Steve Freeman’s Royal 

Hummer trick may be the ultimate version.

Final Notes. We are not done understanding Hummer shuffl es. 

The following two notes record a natural question (does it only work 

with even-sized decks?) and a new trick that comes from the analysis. 

There is a lot we still don’t know. (For example, what about turning 

up three?)

Note 1. It is natural to wonder if the trick will work with an odd 

number of cards. It would be nice to ask the spectator to remove a 
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random poker hand of fi ve cards and begin the trick from here. We 

assume below that “turn two and cut at random” is used throughout.

There is one regularity: There will always be an even number of 

cards face-up. Alas, this is the only regularity. All 2n −  1 × n! signed ar-

rangements of n cards (with n odd) are achievable with a deck of n 

cards.

Let us record one proof of this. First, any three cards can be ma-

nipulated so: 123 " 213 " 231 " 321, thus transposing positions 1 

and 3. By doing this, any permutation of the even positions and also 

any permutation of the odd positions is possible. Consider transposing 

positions 1 and 3, and then 3 and 5, and then 5 and 7, . . . , and then 

n −  2 and n. This results in 3, 2, 5, 4, 7, 6, . . . , n − 1, 1. For example, 

with seven cards we get 3, 2, 5, 4, 7, 6, 1. Now transpose consecutive 

pairs in the even positions, moving the card labeled 2 to the right. This 

results in 3, 4, 5, . . . , n − 1, 2, 1. Finally, cut the bottom two cards to 

the top. This all results in a simple transposition. As usual, this allows 

us to transpose any two consecutive cards and so fi nally to achieve any 

permutation of the labels.

Next, we show how to achieve any face-up/face-down pattern with 

an even number of face-up cards (where we use 0 to denote a face-

down card, and 1 to denote a face-up card). This is achieved “two at 

a time.” The following moves show how this can be done: 000 . . . 0 " 

110 . . . 0 " 11110 . . . 0 " 10010 . . . 0 " 1001110 . . . 0 " 1000010 . . . 

0 . . . . After cutting, this gives any possible separation of the 1’s (since 

n is odd). This shows that any pair can be turned face-up. Working one 

pair at a time shows that any pattern of an even number of cards can 

be turned face-up. Finally, combining our ability to create arbitrary 

arrangements of values with an arbitrary face-up/face-down pattern 

gives the fi nal result.

From the above we may conclude that there is no real extension of 

Hummer’s trick to an odd- sized packet. Of course, the two types of 

parity delineated above may form the basis for tricks.

Note 2. One reason for developing all this theory is the hope of 

inventing a new trick. Following is one that comes from our analysis. 

Here is the effect. Ask a spectator to remove the ace through ten 

of spades and arrange them in order (ace–ten or ten–ace—it doesn’t 

matter which). Then turn your back and have the spectator Hummer 
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shuffl e the ten-card packet any number of times. You can promise that 

you don’t know anything about the order of the cards. Ask a specta-

tor to name the values one at a time (from the top down) and you tell 

them if the cards are face-up or not.

From what was developed above, the only mystery is knowing the 

orientation (face-up or face-down) of the top card (all else follows). 

You simply guess! If correct, keep going. If wrong, rub your eyes and 

ask the spectator to concentrate. Try again! The trick as described may 

be done on the phone. Note you only need to know the odd/even 

values of consecutive cards to know their orientation.

Let us be the fi rst to admit that, as described, this is a pretty poor 

trick. We hope that someone someplace will turn it over and around and 

come up with something performable. Please let us know (we’ll shout it 

from the rooftops or, if you like, keep it as secret as secret can be).

Back to Magic

To conclude on a high note, here is Steve Freeman’s favorite method 

of getting set for his Royal Hummer trick. This is a replacement for 

procedures (1)–(4) above. To begin, you have a packet of twenty or 

so cards that contains a royal fl ush, with all cards facing the same way. 

The royal fl ush is scattered throughout the packet. The cards will be 

split into two, one face-up packet in each hand. The hands alternately 

deal into one pile on the table, turning some cards over. At the end, 

the indifferent cards at even positions will be face-up. Indifferent cards 

at odd positions will be face-down. The royal fl ush cards are opposite. 

When the cards are dealt into two piles and one pile is turned over on 

the others, all of the indifferent cards face the same way and all of the 

royal fl ush cards are opposite.

To get comfortable with this, try a simple exercise: Take two packets 

of face-up cards, hold one in each hand in dealing position, and deal 

alternately into one pile, face-up on the table, left, right, left, right, 

etc. Do this until you can do it easily. Now, with the same start, try turn-

ing the left hand’s cards face-down as they are dealt, so that the cards 

are placed down, up, down, up, and so forth. If this is awkward, try also 

turning the right hand’s cards down (with the left’s face-up) and then 

both hands’ cards face-down. It is useful to keep the left/right alterna-

tion standardized throughout.
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Now for the real thing. Begin with an even number of cards, less 

than half the deck, containing a royal fl ush, with all cards face-up. 

Split these into two roughly equal packets, held face-up in each hand. 

Each time, deal fi rst from the left then from the right into the pile on 

the table. Observe the following rules:

1. If two indifferent cards show, deal the left face-up followed by 

the right face-down.

2. If two royal fl ush cards show, deal the left face-down followed 

by the right face-up.

3. With a fl ush card left and an indifferent card right, deal the 

left face-down followed by the right face-down.

4. With an indifferent card left and a fl ush card right, deal the 

left face-up and the right face-up.

If one hand runs out of cards, just split the remaining cards into two 

packets and continue. The trick continues as described above. Again, 

this takes practice to do naturally, accurately, and casually. Several 

dozen run- throughs might suffi ce.



In this and the following two chapters, we explain a wonderful magic 

trick that leads to, and profi ts from, beautiful mathematics. The trick 

is one we have performed for drunks in seedy nightclubs, at Hubert’s 

Flea Museum, and at a banquet of the American Mathematical Soci-

ety. The trick really fools magicians, mathematicians, and “normal” 

people too. The mathematics involved begins with basic graph theory. 

Indeed, it uses ideas that started the subject of graph theory. It also 

needs tools of fi nite fi elds and combinatorics. At the heart of the trick 

are de Bruijn sequences. These are used in applications far beyond 

card tricks—for rhyming patterns in East Indian music, for robotic 

vision, and for making secret codes. The magical applications suggest 

variations that we call universal cycles. They need new mathematics, 

much of which doesn’t yet exist (or, at least, is currently unknown).

The story is long enough that we tell it in three chapters. This chap-

ter explains the trick and a bit about how it works. We explain what de 

Bruijn sequences are, show that they exist, and tell how to construct 

and count them. At the end, we give practical details on performing 

the trick.  

Chapter 3 tells some stories: real-world applications of breaking and 

entering, industrial espionage, and decoding DNA, in which de Bruijn 

sequences are used. Chapter 4 describes some new magic tricks that 

involve generalizations of de Bruijn sequences. Understanding, con-

structing, and counting these new universal cycles leads us to the edge 

of what we know in mathematics. The chapters are self- contained but 

it all starts with the following magic trick.

Chapter 2

 In Cycles   
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The magic of de Bruijn sequences 

The Effect 

Here is what the audience sees: The performer has a deck of cards in 

its case (a few rubber bands around the deck will help ensure no disas-

ter happens). The deck is tossed to an audience member who tosses 

it to another, and so on, until the deck is far at the back of the room. 

To actually perform this trick, you need at least fi ve people in the 

audience but it is effective with an audience of a thousand. The fi nal 

deck holder is asked to remove cards from the case, drop the case on 

the fl oor, and then give the deck a straight cut at a random position. 

The deck is passed to a second spectator who is asked to cut and pass 

it on. Finally, when a fi fth spectator cuts, ask that the top card be taken 

off. The deck is then passed back to the fourth spectator who removes 

the current top card. Each of the fi ve spectators in turn removes a 

card. The performer now asks, “This may sound strange but would 

each of you please look at your card, make a mental picture, and try 

to send it to me telepathically?” As this is done the performer con-

centrates and appears confused: “You’re doing a great job, but there 

is too much information coming in for me to make sense of. Would 

all of you who have a red card please stand up and concentrate?” Sup-

pose that the fi rst and third spectators stand. The performer appears 

relieved and says, “That’s perfect. I see a seven of hearts?” (One of the 

spectators shows that this is indeed the thought- of card.) “And a jack 

of diamonds? Yes.” Now, focusing on the other three spectators, the 

performer names all three black cards.

There is nothing left out of the above description; the cards are well 

out of the performer’s control and aren’t tricked or marked in any 

way. So how does it work?

The Secret 

The secret lies in the performer’s innocent question: “Would all of 

you who have a red card please stand up and concentrate?” This ques-

tion can be answered in thirty-two different ways: No one stands, only 

the fi rst person, only the second person, only the fi rst two, and so on, 

fi nishing with the possibility that all fi ve spectators stand. With fi ve 

spectators, each of whom stands or not, this makes 2 × 2 × 2 × 2 × 2 = 
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32 possible answers. It just so happens that the deck handed out has 

thirty-two cards. (Sorry for leaving out that detail; the spectators never 

complain about it!) Of course, the deck is carefully arranged so each 

consecutive set of fi ve cards has a unique color pattern.

To see the idea in simple form, suppose only three spectators were 

asked to remove cards. They can answer in 2 × 2 × 2 = 8 ways, so an 

eight-card deck can be used. The eight possible answers are:

RRR RRB RBR RBB BRR BRB BBR BBB.

We want to fi nd a sequence of eight R/B colors so that each consecu-

tive set of three occurs just once. The reader can check that the se-

quence RRRBBBRB does the job. The fi rst three use up RRR. The 

next three RRB. Further consecutive triples (going around the corner 

at the end) use up RBB, BBB, BBR, BRB, RBR, BRR. This is all eight 

used once and only once. Thus, this trick could be worked using the 

following eight cards: AH, 5D, 6H, 2S, 5S, KC, 7H, 8S, where H, D, C, S 

stand for hearts, diamonds, clubs, and spades, respectively. Of course, 

the values are irrelevant but the audience doesn’t know this. 

Before explaining the thirty-two-card version (and versions for 

larger decks), let us restate slightly. Replace the symbols R/B with 

the mathematicians’ favorite: 1 and 0. Then RRRBBBRB becomes 

11100010. A de Bruijn sequence with window length k is a zero/one 

sequence of length 2k (this is just 2 × 2 × ∙ ∙ ∙ × 2, k times) such that 

every k consecutive digits appears just once (going around the cor-

ner). Thus, 11100010 is a de Bruijn sequence of window length 3. If 

we have a de Bruijn sequence of window length k, we can perform 

the trick with 2k cards. As will emerge in the next chapter, de Bruijn 

sequences with large values of k are needed in applications. We need 

one with k = 5. The puzzle- inclined reader may want to sit down with 

pencil and paper (and eraser?) and try to construct one “by hand.” 

It’s not (so) easy. Indeed, it’s not a priori obvious that there are such 

sequences for arbitrary values of k. In chapter 4, on universal cycles, 

we give very similar-sounding problems, where the sequences do exist 

for some values of k, but not for others. 

We have thus arrived at a math problem: Given k, do there exist de 

Bruijn sequences of window length k? If so, how many are there, and 

how can we fi nd them? In the rest of the chapter, we will answer these 

questions and then show how they are applied to our card trick.
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 One way of answering the question “Are there de Bruijn sequences 

for every k?” uses graph theory. A directed graph can be represented 

as a bunch of dots (the vertices of the graph) and a bunch of arrows 

between some of these vertices (the edges of the graph). For example, 

fi gure 1 shows a graph with four vertices (A, B, C, D) and fi ve edges. 

The edge from D to itself is called a loop. When you fi rst meet graph 

theory, it is hard to imagine that there is much more to say. In fact, it’s 

a healthy fi eld of research with several speciality journals, a dozen or 

so yearly conferences, and hundreds of professional graph theorists. 

The following example should show you why.

Our current problem is to see if there is always at least one de Bruijn 

sequence of window length k. Form a graph with vertices being the 

strings of zero/one symbols of length k − 1 (so there are 2k − 1 of them) 

and an edge going from vertex x to vertex y if there is a zero/one 

string of length k that has x at its left and y at its right. As with many 

ideas, this is best understood by example. For k = 3, there are four 

zero/one strings of length k − 1: 00, 01, 10, 11. Figure 2 shows the de 

Bruijn graph on these vertices.

For example, there is an edge from 01 to 11 because there is zero/

one string of length three, namely, 011, that starts 01 and ends 11. 

Each of the edges is labeled by a zero/one triple. A de Bruijn graph 

can be contemplated for any k. However, they get harder to draw. 

An “Eulerian circuit” in a directed graph is a walk (following the ar-

rows) that uses each edge exactly once and winds up where it started. 

For example (trace with your fi nger), starting at the bottom (vertex 

11), visit 11 (again, by edge 111), then 10, 01, 10, 00, 00, 01, 11. If we 

write our steps down, separated by commas, the cycle is:

11, 10, 01, 10, 00, 00, 01, 11.

Since our walk follows the arrows, each vertex in the cycle has a 

common “center” with the following one. Collapsing our cycle by just 

indicating the new digit added gives a de Bruijn cycle:

1 1 1 0 1 0 0 0.

More generally, for any k, an Eulerian circuit in the de Bruijn graph 

gives a de Bruijn cycle with window length k.

This may not seem like much, trading a simple problem of zero/

one strings for a diffi cult-to-visualize problem on an abstract graph. 

However, following on the great mathematician Leonhard Euler, we 

Figure 1. A simple graph
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may easily see that a connected graph (i.e., you can get from any ver-

tex to any other vertex by following arrows) has an Eulerian circuit 

if and only if each vertex has an equal number of edges leading in 

as leading out. For the de Bruijn graph, there are exactly two edges 

leading out of each vertex—a zero/one (k − 1)- tuple can be fi nished 

off to a k- tuple in just two ways: add zero or add one. Similarly, there 

are exactly two ways of coming into a vertex. Furthermore, it is not 

hard to check (by changing one digit at a time) that we can go from 

any vertex to any other vertex along some path following the arrows. 

Since we have verifi ed the conditions for Euler’s theorem, we may use 

its conclusion: de Bruijn sequences exist for every k. The proof of the 

theorem even gives an algorithm of sorts for construction: Start at any 
vertex (say k − 1 0’s), choose any available arrow leading out, erase this 

arrow, and continue. The proof shows you can cover each edge just 

once without getting stuck. What’s more, the construction forces a 

cycle; the last step winds up at the original start. (Strictly speaking, you 

may end up with a number of smaller cycles that can then be stitched 

together to get one big [Eulerian] circuit.) 

A bit more is coming, but let us return to the trick. By actually draw-

ing the graph for k = 5 (it has 16 vertices and is a bit of a mess), we fi nd 

lots of de Bruijn sequences. One is:

00000100101100111110001101110101.

Let us use this to make a performable version of the trick. Get a 

deck of cards and remove all the aces through eights of all four suits 

(thirty-two cards in all). Arrange the cards in the following order:

8C,AC,2C,4C,AS,2D,5C,3S,6D,4S,AH,3D,7C,7S,7H,6H,

4H,8H,AD,3C,6C,5S,3H,7D,6S,5H,2H,5D,2S,4D,8S,8D.

This matches the zero/one string above—the colors start 

B,B,B,B,B,R,B,B, . . . The top card of the arranged stack is the eight 

of clubs (8C), the next card is the ace of clubs (AC), and the bottom 

card is the eight of diamonds (8D). The deck as arranged can be 

given any number of cuts. This does not change the cyclic pattern, 

only the starting point. To perform the trick, the performer must 

be able to “decode” the pattern prescribed by the fi ve spectators 

and convert it into the names of the fi ve cards. Here is a practical 

way of doing this. Table 1 lists the fi ve cards next to each possible 

pattern. 
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Table 1. Possible card patterns

00000 8 ♣, A ♣, 2 ♣, 4 ♣, A ♠

00001 A ♣, 2 ♣, 4 ♣, A ♠, 2 ♦

00010 2 ♣, 4 ♣, A ♠, 2 ♦, 5 ♣

00011 3 ♣, 6 ♣, 5 ♠, 3 ♥, 7 ♦

00100 4 ♣, A ♠, 2 ♦, 5 ♣, 3 ♠

00101 5 ♣, 3 ♠, 6 ♦, 4 ♠, A ♥

00110 6 ♣, 5 ♠, 3 ♥, 7 ♦, 6 ♠

00111 7 ♣, 7 ♠, 7 ♥, 6 ♥, 4 ♥

10000 8 ♦, 8 ♣, A ♣, 2 ♣, 4 ♣ 

10001 A ♦, 3 ♣, 6 ♣, 5 ♠, 3 ♥

10010 2 ♦, 5 ♣, 3 ♠, 6 ♦, 4 ♠

10011 3 ♦, 7 ♣, 7 ♠, 7 ♥, 6 ♥

10100 4 ♦, 8 ♠, 8 ♦, 8 ♣, A ♣ 

10101 5 ♦, 2 ♠, 4 ♦, 8 ♠, 8 ♦

10110 6 ♦, 4 ♠, A ♥, 3 ♦, 7 ♣ 

10111 7 ♦, 6 ♠, 5 ♥, 2 ♥, 5 ♦ 

01000 8 ♠, 8 ♦, 8 ♣, A ♣, 2 ♣

01001 A ♠, 2 ♦, 5 ♣, 3 ♠, 6 ♦

01010 2 ♠, 4 ♦, 8 ♠, 8 ♦, 8 ♣

01011 3 ♠, 6 ♦, 4 ♠, A ♥, 3 ♦

01100 4 ♠, A ♥, 3 ♦, 7 ♣, 7 ♠

01101 5 ♠, 3 ♥, 7 ♦, 6 ♠, 5 ♥

01110 6 ♠, 5 ♥, 2 ♥, 5 ♦, 2 ♠ 

01111 7 ♠, 7 ♥, 6 ♥, 4 ♥, 8 ♥

11000 8 ♥, A ♦, 3 ♣, 6 ♣, 5 ♠

11001 A ♥, 3 ♦, 7 ♣, 7 ♠, 7 ♥

11010 2 ♥, 5 ♦, 2 ♠, 4 ♦, 8 ♠

11011 3 ♥, 7 ♦, 6 ♠, 5 ♥, 2 ♥

11100 4 ♥, 8 ♥, A ♦, 3 ♣, 6 ♣

11101 5 ♥, 2 ♥, 5 ♦, 2 ♠, 4 ♦

11110 6 ♥, 4 ♥, 8 ♥ A ♦, 3 ♣

11111 7 ♥, 6 ♥, 4 ♥ 8 ♥ A ♦

One way to use the table is to pencil it lightly on the top portion 

of a pad of paper (you can also photocopy it). Take the deck out of 

its case (don’t forget the rubber bands). Have fi ve cards selected as 

described. Pick up the pad and a felt- tipped pen (ostensibly to aid 

your visualization process). Make some scribbles on the pad as you 

patter about the spectators’ powers of concentration. After admitting 

diffi culty, ask the spectators holding red cards to stand up. Mentally 

translate this into a binary pattern, say 01001 (zero for black, one for 

red). Find this pattern on the list. You now know all fi ve cards and can 

reveal them in a dramatic way, perhaps naming the red cards fi rst and 

then the blacks.

It is important to give no clue that you are consulting a list. This 

can be helped by thought and practice. To begin, note that the fi rst 

eight rows in the list contain patterns that start with 00, the next eight 

rows have patterns starting with 10, then 01, then 11. The upper half 

of each group of eight in the list contains patterns ending in 000, 

001, 010, 011. The lower half contains patterns ending in 100, 101, 

110, 111. When you see how the spectators stand up, your hands on 
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the pad can locate the correct group of eight and the correct upper 

or lower half. This should be done without looking. Then, a glance 

down determines the exact pattern. Put a fi nger or thumb there. Now 

begin doodling on the pad, looking at the exact card names. You can 

write a few of the correct cards in large letters to end the revelation. 

There is no substitute for practice. Plan what you will say, keep talk-

ing, pretend you actually are a mind reader in a bit of trouble. We 

suggest fi fty run- throughs as a minimum number required to per-

form this well.

One of our former students, now a professor himself, harnessed 

the computer to replace the list. He wrote a short program that takes 

fi ve binary inputs and outputs the fi ve chosen cards. He creates misdi-

rection by asking for and inputting seemingly irrelevant data (“What 

country were you born in?”, “Did you have orange juice for breakfast 

this morning?”, etc.). He uses the computer for his “cheat sheet.” The 

fi rst person to make this into an iPhone app wins a free glass of orange 

juice from us! 

At the end of this chapter, we give a way to completely eliminate any 

secret lists—the whole trick can be carried out mentally. This develop-

ment is possible only because of some very elegant mathematics.

Where are we in our understanding of de Bruijn sequences? The 

mathematics of the de Bruijn graph shows that, in principle, we can 

always fi nd a de Bruijn sequence. However, we don’t have any concrete 

method in hand and, as will emerge, there are lots of different con-

structions that are useful for different applications.

One systematic approach is the “greedy algorithm.” Begin by writing 

a sequence of k zeroes and then adding a one whenever you can (in 

other words, whenever you don’t form a pattern that you have already 

seen). Thus, for k = 4, begin 0000 and cross this pattern off of the list. 

Adding ones (and crossing off the list each time) gives 00001111 as the 

fi rst eight symbols. Adding another one would give a repeat, so a zero 

must be added instead. Continuing leads to the fi nal sequence:

0 0 0 0 1 1 1 1 0 1 1 0 0 1 0 0.

This rule works for k = 4, and M. A. Martin (1934) showed that the 

rule works for all k.1 A practical person may only need to construct 

a sequence for a fi xed value of k and wonder why a mathematician 

cares about all k. After all, no application will require a truly large 
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k (larger than one hundred, say) and, even for k = 40, for example, 

240 ≈ 1012 is not diffi cult to try on today’s computers. Why bother with 

a more careful analysis? While there is no explaining curiosity, we 

offer two questions that cry out for theory. In the card trick above, 

we are given k consecutive symbols and need to know where we are 

in the sequence. In applications in chapter 3, we have to do the op-

posite—given a position in a long de Bruijn sequence, what are the k 

following symbols? 

Consider the fi rst task. On the sequence generated from the greedy 

algorithm when k = 4, suppose we see 0110. Is the next symbol a one? 

It would be unless 1101 had been used up earlier. As it turns out, the 

next symbol is a zero. Thus, knowing the next symbol seems to require 

searching through a complete list of all the earlier occurring patterns. 

Of course, this is just a fi rst thought on the matter. Maybe a more care-

ful look at the greedy algorithm will reveal some useful structure. This 

is again a math problem. We can prove that, for large k, the storage list 

we require in order to look things up if the greedy algorithm is used 

must be exponentially long in k. Hal Fredricksen gives a clever varia-

tion of the greedy algorithm that requires only three times the window 

length k in storage. Below we discuss other constructions that make 

the “what is the next symbol” question easy.

Once one considers different methods of construction, it is natural 

to ask: “How many de Bruijn sequences with a fi xed window length are 

there?” We consider two de Bruijn sequences to be the same if they 

differ only by a cyclic shift. Thus, for k = 3, it is easy to check that there 

are just two:

00011101 and 11100010.

For k = 4 there are 16. For k = 5 there are 211 = 2,048. De Bruijn got 

his name on the sequences by giving an amazing formula:

For any k, the number of de Bruijn sequences is exactly 22k −  1−  k.

We will leave further developments to the next section. For now, 

we have met de Bruijn sequences, shown that they exist, have given 

methods of construction, and we have been able to count them. As 

later chapters show, there are useful, natural variations where any of 

the questions of existence, construction, and counting are still open 

problems.
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Going Further 

The magic trick In Cycles is our version of a trick of Charles T. Jor-

dan’s. Writing in 1919, Jordan described Coluria, a trick with thirty-two 

cards repeatedly cut with a pattern of colors revealing a selected card.2 

We will tell Jordan’s amazing story in chapter 10. He was a chicken 

farmer from Petaluma, California, who invented and sold card tricks. 

He made part of his living as a professional problem solver, enter-

ing newspaper contests of “impossible questions” in cities around the 

country. Despite these abilities, even Jordan couldn’t quite get it right. 

For a deck with thirty-two cards, he asked for the colors of six con-

secutive cards! In the 1930s, the magical inventors William Larson and 

T. Page Wright marketed a trick called Suitability. Here, a deck of fi fty-

two cards is repeatedly cut and three cards are removed. The specta-

tors announce the suits of their cards and the performer correctly 

names them. The number of possible answers is 4 × 4 × 4 = 64, so there 

is enough information to distinguish fi fty-two possibilities. The reader 

is invited to fi nd a suitable arrangement. In chapter 4, on universal 

cycles, we give a general solution.

In the 1960s, Karl Fulves and, separately, P. Diaconis working with 

the chemist Ronald Wohl, derived dozens of tricks based on variations 

and extensions of Jordan’s idea. Magicians have kept at it. They mis-

takenly call de Bruijn sequences “Gray codes.” Indeed, there are com-

binatorial Gray codes, which are sequences of k- tuples, each differing 

from the last by changing one digit. For example, 000, 001, 011, 010, 

110, 111, 101, 100 is a Gray code for k = 3. The difference is that Gray 

codes cannot be arranged into one sequence with consecutive k- tuples 

differing by a shift. The distinct blocks of k differ by one digit that may 

be changed in any place. Gray codes are extremely useful and interest-

ing objects. They are used in analog to digital conversion, to calculate 

correlations, and in Samuel Beckett plays. But as far as we know, there 

has never been a single use in magic. (Now there is a magic problem!)

 The reader wishing for a gentle introduction to graph theory and 

de Bruijn sequences can do no better than to consult Sherman K. 

Stein’s marvelous works.3 More advanced (but still friendly) treat-

ments are given by Hal Fredricksen and Anthony Ralston.4 A compre-

hensive treatment, with many topics not covered here, is in Donald 

Knuth’s long- awaited The Art of Computer Programming 4A, part 1.5 This 
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covers de Bruijn sequences, Gray codes, and much, much more. An 

on line encyclopedia on the subject is available from Frank Ruskey.6

An elegant solution to the magic trick

In this section, we describe a way of getting rid of any lists in perform-

ing the trick. We also describe the full performance details. The solu-

tion involves working with the binary number system to count from 

zero to seven.

The usual way we write numbers is in base ten. Thus, 11 is 1 × 10 + 

1, and 274 is 2 × 100 + 7 × 10 + 4 × 1. Binary numbers work with powers 

of two. Thus, 111 is 1 × 4 + 1 × 2 + 1 × 1 or 7, and 000 is 0 × 4 + 0 × 2 + 

0 × 1 = 0. Similarly, 

001 is 1,

010 is 2,

011 is 3,

100 is 4,

101 is 5,

110 is 6.

For instance, 110 is 1 × 4 + 1 × 2 + 0 × 1 = 6. Binary digits are bits (for 

BInary digiTs). The patterns of zeroes and ones we have been dealing 

with will be called “fi ve- bit words.” We will use the right- most three bits 

to denote one of the eight numbers zero to seven as in the list above. 

The left- most two bits will denote the suit. If the fi ve bits are called 

abcde, we have

 suit value
 678 678
 a b c d e.

The suit is coded according to the following rule.

 00  club

 01  spade

 10  diamond

 11  heart

Here, 0 in the left- most position denotes black, and 1 in the left- most 

position denotes red. We have used a standard bridge convention 

where hearts and spades are the major suits and diamonds and clubs 

are the minor suits, so that 1 in the second position denotes major and 
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0 denotes minor. Thus, 10 stands for the minor red suit diamonds. 

Most users will just memorize the four suit patterns.

This notation allows us to associate a card to each fi ve- bit word, 

using the right- most three bits to denote value and the left- most two 

bits to denote suit. Thus, 00101 is the fi ve of clubs. The stacked deck 

we introduce was derived from the sequence given on page 21 in just 

this way. Since there are no “zeroes” in a real deck of cards, we assign 

000 to the numerical value eight (this is correct, modulo eight). Thus, 

the sequence begins 000001 . . . . The fi rst fi ve bits become 8C. The 

second fi ve bits become AC, and so on. 

Using this arrangement then automatically tells the performer the 

value and suit of the left- most spectator’s card. The arrangement has 

been further designed so it is possible to tell the values of all fi ve cards. 

To explain this, we need to introduce the operation of adding modulo 

two. This is a version of the well-known rule “even plus even is even, 

odd plus odd is even, while even plus odd is odd,” familiar from add-

ing numbers. If even is replaced by zero, and odd by one, we get the 

rules for adding modulo two:

0 + 0 = 0,

1 + 1 = 0,

0 + 1 = 1,

1 + 0 = 1.

These rules allow a simple description to get the next pattern of fi ve 

from a starting pattern of fi ve. The rule is this: If abcde are fi ve bits, 

the next bit is a plus c modulo two. Thus, 01001 is followed by 010010. 

Translating to the language of cards, 01001 is AS. This is the left- most 

card. The card second from the left was determined from the fi ve- bit 

word 10010.

fi rst 
64748
0 1 0 0 1 0
14243
second.

The second card from the left is therefore 2D. 

From the original pattern, the name of the fi rst spectator’s card is 

known. Further, the next bit in the sequence can be computed and so 

the second spectator’s card is known. The process can be continued 
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to determine all of the bits. The rule is, to calculate the next bit in 

010010, add the bits fi ve back and three back from the end. For ex-

ample, from 010010 gives 1 + 0 = 1, the boldface bits shown are fi ve 

and three back. Adding gives 1 + 0 = 1, so the next block of fi ve is by 

00101, which corresponds to 5C. The fourth and fi fth cards are found 

to be 3S and 6D by following the same rules. 

A sequence formed in the way described is called a linear shift- register 
sequence. Such sequences are used extensively in the mathematics 

of computer science. While we won’t go into the theory of such se-

quences here, we point out a handy fact: Once you understand the 

rule, there is no real need to remember anything more.

Thus, suppose you are away from home and want to perform a card 

trick at a dinner party. The magically arranged list is not around. It’s 

easy to create it: Just start with any non- zero fi ve- tuple, say 00001. Us-

ing the rule, continue the sequence: 00001011 . . . , and then set the 

cards as the sequence demands. It is not even necessary to write out 

the sequence. Just get a deck of cards and remove the aces through 

eights. Start with any card, for example, the ace of clubs. Now use the 

rule: The next card is 00010, the two of clubs. Now it is easy to keep 

going, setting the cards in a few minutes. You will fi nd the pattern 

runs through all non- zero fi ve- tuples and so uses all cards except the 

eight of clubs. The pattern of thirty-one is just as before (see page 21), 

with the eight of clubs removed. This is the way we do the trick, using 

thirty-one cards. 

We conclude this section with a few further notes on the practical 

performance of the trick without lists. To begin with, we have found 

that a few hours’ practice enables rapid, sure calculation of the value 

of one card, given the next. Perhaps the best way to practice is simply 

to cut the deck, look at the top card, transform it into binary, use the 

rule to compute the next bit, and transform the last fi ve bits into a 

card name. This can be continued. 

Another approach uses the hands as a simple computing machine. 

In performing the trick, we observe the given pattern of reds and 

blacks among the fi ve spectators. The idea is to generate the red/

black pattern of the next four cards using the rule. To do this in an au-

tomatic way, use the fi rst and second fi ngers of the left hand to repre-

sent the colors of the next two cards, and the fi rst and second fi ngers 

of the right hand to represent the colors of the two following cards. 

This should be done without thinking. It requires assigning a defi nite 
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order to fi ngers. Let a curled- in fi nger stand for a zero and a straight-

ened fi nger stand for a one. Here is an example. The observed pattern 

is 01001. Using the rule, the next bit is zero. We curl in the second 

fi nger of the left hand. The next three bits are 1, 1, 0. These are suc-

cessively represented by keeping the left fi rst fi nger straight, the right 

fi rst fi nger straight, and curling in the second fi nger of the right hand.

At this stage we have recorded 010010110. The fi ve cards are thus 

AS, 2D, 5C, 3S, 6D. We have found this version straightforward to use 

in practice. There is some evident “computation” occurring in the 

mind of the performer, and this seems to enhance the effect of some-

thing genuinely spooky going on. This is a nice example of a trick 

where the method is as amazing as the effect. 

Magic performance offers opportunities not present in some of 

our other mathematical pursuits. For example, can we do Jordan’s 

trick with a full deck of fi fty-two cards where just fi ve spectators are 

involved? Now, 25 = 32 shows that the mathematical answer to the ques-

tion is no. Any arrangement of the colors must have some repeated 

fi ve- tuples. The magical answer is “Why not?” Find an arrangement 

of fi fty-two cards with thirty-two distinct fi ve- tuples and with twenty of 

these that repeat just once. Then, some of the time you know all the 

cards for sure and some of the time you know it is one of two fi xed sets 

of fi ve. A single further question will determine things. For example, 

“Spectator One, you have a red card. I think it is a heart.” If yes, you 

are home. If no, you are home as well. 

Throughout this book we go from magic to mathematics, and back. 

We have just posed a math problem arising from a magic trick: Is there 

a neat way to arrange a deck of fi fty-two cards that does what is needed? 

We leave this to the interested reader.



The sequence 0000100110101111 has the property that successive 

groups of four 0000, 0001, 0010, 0100, . . . , go through each of the 

successive sixteen zero/one strings of length four once (going around 

the corner). Such a sequence is called a de Bruijn sequence of window 

length four. In chapter 2 we showed how longer versions with window 

length fi ve are the basis of good card tricks. In this section we show 

how de Bruijn sequences and some variations are of use in robotic 

vision, in industrial cryptography, in putting together (and pulling 

apart) snippets of DNA, in philosophy, and in mathematics itself. The 

variations lead back to magic tricks, which in turn lead to new math 

problems, which we hope will lead to new applications.

Robotic Vision

Picture an industrial robot going up and back in a long corridor. The 

robot changes direction as it senses activity. One design problem: 

the robot needs to know where it is. Instead of trying to keep track 

(let’s see, 14 to the left, 77 to the right, 174 to the left, . . . ) through 

diffi cult- to- measure turns of its wheels, Frank Sinden, a Bell Labs re-

searcher, had the idea of labeling the path under the robot with a de 

Bruijn sequence. The robot can look down and report the zero/one 

string it sees (see fi gure 1).

Chapter 3

Is This StuFF Actually 

Good For Anything?
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This practical solution to a real problem calls for very long de Bruijn 

sequences and a way of constructing them with a simple rule to con-

vert back and forth between the zero/one patterns and positions in 

the corridor.

The real robotic vision problem is two- dimensional. Think of a ro-

bot tooling around the fl oor of a warehouse. To understand, consider 

the array:

1 1 0 1

0 0 0 1

1 0 0 0

1 0 1 1

If a 2 × 2 window is placed at the upper left-hand corner, it shows 
□1□1 □0□0 . Sliding the window around anywhere, including going around 

the edges (or even corners), you will always fi nd a different pattern. 

The 2 × 2 window □ □  □ □ 
 has four places, and each can be fi lled zero/

one. This leads to sixteen different patterns. Each occurs once and 

only once to give a unique signature. Hence, the 4 × 4 array is a two-

dimensional de Bruijn pattern.

A more recent application of these ideas has arisen in connec-

tion with so- called digital pens. By using special paper on which two- 

dimensional de Bruijn arrays have been invisibly imprinted, these 

electronic pens always know where they are on the page and can then 

be used in many amazing ways.1

Figure 1. A de Bruijn sequence for 

window length fi ve
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Suppose you had to design a larger version. With a 3 × 3 window, 

there are 29 = 512 confi gurations. With a 10 × 10 window, there are 

2100 confi gurations, which is enormous. These are too big to do fool-

ing around by hand. Some systematic scheme is needed. You might 

say, “I need a mathematician.” Alas, if you pick a mathematician at 

random, you’re likely to get “I don’t do stuff like that” as an answer. 

Most mathematicians work with calculus-type “smooth” problems, not 

discrete things like cleverly arranged arrays of zeros and ones. Hope-

fully, your mathematician would say, “You need a combinatorialist.” 

That’s us (your two authors) and our friends.

Over the last fi fty years, a number of people have gotten the “curi-

ous look” and had to think about these higher- dimensional de Bruijn 

arrays.2 Also called de Bruijn tori, or perfect maps, they come in many 

fl avors. Instead of a 2 × 2 window, we may need a 3 × 3 or 2 × 3 (or 

more generally, u × v). Instead of zeroes and ones fi lling our window, 

red/white/blue (or, more generally, c colors) may be used. A 2 × 3 win-

dow may be fi lled with red/white/blue in 36 = 729 ways. Is there a 27 × 

27 array with each cell painted red, white, or blue such that each 2 × 3 

window is distinct? As with de Bruijn sequences, there are a number of 

basic questions. Given an array size (say, s × t ), a window size (say, u × 

v ), and a number of colors (say, c), we may ask:

• Do de Bruijn arrays exist?

• If so, can an explicit construction be found?

• How many such de Bruijn arrays are there?

• Are there nice constructions (easy to construct, easy to fi nd 

where you are)?

Almost all of these questions are open research problems as of this 

writing. 

The two- dimensional de Bruijn arrays arose from practical prob-

lems. For us, it is natural to ask, “What’s the trick?” How can one 

of those arrays be used as the basis of a magic trick? We still don’t 

have a good answer but the story of the search opened up some new 

mathematics.

Let us begin with the problem of how to make a magic trick out of 

the two- dimensional de Bruijn array. In the spring of 1992, the authors 

taught a Mathematics and Magic course at Harvard University. Dur-

ing class discussion, the students came up with the idea of having a 

map with countries and pictures illustrating some of their properties 
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(such as ski slopes or beaches). They thought of eliminating the 2 × 2 

window using the following ruse: “This is a map of a secret land.” The 

performer lays the map out on the table; it has a compass showing 

north-south- east- west. The performer turns his back to the audience 

and continues: “Would you collectively choose any one of the coun-

tries on the map and Rebecca, put your fi nger on the chosen country. 

I don’t want to know the name of your country but just to get in the 

mood, tell me if the country to the north is hot or cold.” They look 

and if it has sand and sun they say hot; if it has snow they say cold. 

The performer continues: “What about your neighbor to the south? 

Is it hot or cold? Now look at your neighbor to the east, hot or cold?” 

Finally, they tell the performer “hot or cold” for the western neighbor. 

This is four zero/one answers and amounts to using a window of the 

shape depicted in fi gure 2. 

They report a zero/one answer for each of the four squares shown. 

In principle, this should be enough to tell where the shaded cross is 

centered. We were excited! After all, this was the fi rst and only trick 

ever with a two- dimensional de Bruijn array. We asked the students to 

rough out an actual layout of sixteen squares (with zeroes and ones 

now) that would work with the north- south- east- west window shown. 

At the next meeting, a glum group reported that they couldn’t fi nd a 

pattern that worked. After trying and trying, they fi nally found a proof 

that no such pattern was possible. Can the reader see why not? We 

pose a second problem to the reader: Is there a reasonable magic trick 

using a two- dimensional layout? It doesn’t have to be what we showed 

in fi gure 2, just some genuinely two- dimensional geometry.

The story has a happy ending in another direction. We found the 

idea of using other window shapes new and fascinating. It is interest-

ing even in one dimension. The de Bruijn sequence is defi ned via a 

sliding window of consecutive blocks. What about a “comb” in which 

the shaded blocks are opaque and the open blocks are transparent. 

For four open blocks, as shown in fi gure 3, one seeks a string of six-

teen zeroes and ones with the property that if the comb shown is laid 

on top and slid along the string of sixteen (going around the corner), 

the visible zeroes and ones go through each of the sixteen visible pat-

terns once and once only. We recommend the problem and remark 

that the theory of what can and cannot be done is in its infancy. We 

do not know useful conditions on the comb for the existence of solu-

tions. Counting solutions seems far in the future. What little is known 

Figure 2. Cross window

Figure 3.  A comb with spaces in 

positions 1, 2, 4, 8

1 2 4 8
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is found in a paper by Cooper and Graham.3 In fi gure 4 we show an 

example of a comb of size four and a corresponding de Bruijn cycle of 

length sixteen for this comb. A computation by Steve Butler showed 

that this de Bruijn cycle was unique up to cyclic permutations and 

interchanging zero and one. We have no idea how many there are for 

general combs.

The robotic vision story illustrates a practical use for de Bruijn se-

quences. This led to two- dimensional de Bruijn arrays. Our desire to 

invent a magic trick based on these led to the invention of combs or 

general shape windows. This leads to research problems that are very 

much unsolved. The whole gives a picture of the ebb and fl ow among 

applications, fun, and research, which we fi nd typical and thrilling.

Making codes

What can you do with math? The government knows. They employ 

thousands of mathematicians to make and break codes. Cryptography 

is big business in industry too. Our bank and credit card transactions 

are encrypted. Hackers work around the clock to break these codes. 

Cable channels and music fi les are often protected by codes so you 

can’t enjoy them until you’ve paid.

There are many fl avors and schemes of code. The requirements are 

different for a spy in the fi eld trying to send a few lines of instruction 

and for the designer of a code to protect televised sports transmis-

sions. Curiously, there is a common theme that appears in codes of 

both types: This is “add modulo two.”

Roughly, a text message (in English, say) is converted into a string 

of zeroes and ones using standard rules shown in table 1.

Table 1. Conversion table

A 000001 I 001001 Q 010001 Y 011001 6 110110

B 000010  J 001010  R 010010  Z 011010  7 110111

C 000011  K 001011  S 010011  0 110000  8 111000

D  000100  L 001100  T 010100  1 110001  9 111001

E 000101  M 001101  U 010101  2 110010  . 101110

F 000110  N 001110  V 010110  3 110011  , 101100

G 000111  O 001111  W 010111  4 110100  * 101010

H 001000  P 010000  X 011000  5 110101  : 111010

Figure 4. A de Bruijn cycle for the 

(1,2,4,8)-comb in fi gure 3

1 0 0 0 1 0 0 1 1 1 1 1 0 0 100 0 1 1

1 0 0 0 1 0 0 1 1 1 1 1 0 0 101 0 0 1

1 0 0 0 1 0 0 1 1 1 1 1 0 0 100 1 0 1

1 0 0 0 1 0 0 1 1 1 1 1 0 0 10

1 0 0 0 1 0 0 1 1 1 1 1 0 0 100 0 0 1

...
...

...
.
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Thus, HELP becomes 001000, 000101, 001100, 010000. This is usu-

ally strung together as 001000000101001100010000 to make a mes-

sage to be sent. Now, to encode this message, a corrupting string is 

added modulo two, one character at a time, with no carries. Thus, 

0 + 0 = 0 = 1 + 1, 0 + 1 = 1 + 0 = 1. For example, with the message above 

and the corrupting string 011010101110100110110101, we get:

Message   001000000101001100010000

Corrupting string  011010101110100110110101

Coded message  010010101011101010100101

This fi nal coded message is now transmitted (say, by Morse code or 

as a picture sent from an Internet café). It is easy for someone who 

knows the corrupting string to decode the message. He or she just 

writes the corrupting string under the coded message and adds mod-

ulo two. Since x + x = 0 modulo two for x = 0 or 1, the corrupting string 

cancels out:

Coded message  010010101010101010100101

Corrupting string  011010101110100110110101

Message   001000000100001100010000 = HELP

The point is, if you do not know the corrupting string, it is impos-

sible to break the code since each symbol in the coded message is zero 

or one depending only on what the corresponding symbol in the cor-

rupting string is.

Where do we get a good corrupting string? For routine applica-

tions, one standard string or perhaps a standard code book (or com-

puter fi le) of strings can be used. The gold standard of security is the 

“one- time pad.” This is a string generated by a truly random process 

such as radioactive noise from the blips of a Geiger counter. Both the 

sender and receiver have a copy of this corrupting string. This makes 

things completely secure. One problem with the one- time pad is that 

the sender must keep a copy of the corrupting string. If the sender is 

caught and searched, a long string of zeroes and ones is prima facie 

evidence. One of the most exciting, true spy books we have read is Leo 

Marks’s Between Silk and Cyanide: A Codemaker’s War, 1941–1945.4 Marks 

was a top codemaker (and breaker) for the British during World 

War II. He was the chief designer of codes used by agents behind en-

emy lines. He had the agents’ one-time pads printed on silk squares in 

invisible ink. When a line of corrupting string was used, it was cut off 
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and burned. The cyanide in the title refers to cyanide pills, supplied to 

agents in case they were caught and facing torture.

What does all this have to do with card tricks? One answer is de 

Bruijn sequences. Instead of a one- time pad, one may generate a long 

sequence of zeroes and ones using the ideas explained in chapter 2. 

Say the sequence starts 0000000000001. Form the next symbol by add-

ing modulo two to the last entry plus the entries two back and fi ve 

back. The resulting sequence continues 11010011 . . . without cycling 

for another 220 terms (which is more than a million). We started it at 

0000000000001. The sender and receiver can agree to start at the se-

quence spelled out by the fi rst few words of the lead article in the New 
York Times on some particular day. Essentially, this same scrambling 

scheme is used millions of times a day in cell phones as part of CDMA 

technology.

The ideas are used in many variations. Here is a small example. The 

window length three de Bruijn sequence 00011101 is formed from 001 

by fi rst appending the sum of the fi rst and last symbol and then deleting 

the fi rst symbol until this process leads back to 001. Thus, 001 " 011 " 

111 " 110 " 101 " 010 " 100 " 001. Here, we have added the eighth 

digit zero at the beginning. To use this as a code, proceed as in table 2.

The message column shows the eight possible zero/one triples in 

the order produced by the de Bruijn sequence. (We have added 000 to 

the top of each column.) The corruption column shows the following 

string (in the order produced by the de Bruijn sequence). The coded 

message column shows the sum of the message and corruption entries 

modulo two. Note that every zero/one triple appears just once as a 

Table 2. Encyrpting a three-bit message

 Message Corruption Coded message

 000 000  000

 001  011  010

 011  111  100

 111  110  001

 110  101  011

 101  010  111

 010  100  110

 100  001  101
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coded message. To decode the coded message, look it up and add the 

matching corruption term (modulo two) to recover the message. 

These codes (usually on slightly longer words, e.g., length fi ve) are 

often hardwired into computer chips into units called S- boxes. Several 

of these with different de Bruijn cycles in each are often hooked up 

together so that after a message passes through one S- box it is passed 

to a second—just which one depends on the message—then to a third, 

and so on, until a fi nal scrambled string is output. With careful choices 

of de Bruijn sequences and box- to- box rules, these schemes make up 

a practical algorithm—the Data Encryption Standard (see fi gure 5). It 

was invented by researchers at IBM and the National Security Agency. 

For many years it was used millions of times a day for every kind of 

practical activity. 

Here is a crypto story from the trenches. We were once employed 

by a Fortune 500 manufacturer to design a second- rate crypto scheme. 

The problem was export licenses. At the time, the U.S. govern-

ment would not allow truly secure crypto systems (such as the Data 

Figure 5. DES chip (courtesy of 

Wikipedia user Matt Crypto)
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Encryption Standard) to be used in products sold overseas. The manu-

facturer wanted a crypto chip to protect special-event TV shows. They 

just wanted protection against hackers, not security against a sophis-

ticated, high- level attack with all the computer power of the National 

Security Agency. We did our best, designing a complex scheme of six-

teen S- boxes with linear de Bruijn sequences in each. To get an export 

license, we had to let a division of the government’s spy service test 

our chip. We passed the test, which means our scheme wasn’t really 

any good. After that, manufacturing began. It’s a strange excitement 

seeing thousands of plug- in chips with a scheme you sketched out on 

a pad. The company made some sales and, after a while, the Data 

Encryption Standard was authorized for export and our system was 

retired.

Crypto is an important, big business now. Every U.S. corporation 

has its own experts, and crypto companies such as RSA (named after 

the computer scientists Ron Rivest, Adi Shamir, and Len Adleman) 

bill millions a year. It all goes back to zeroes and ones and the kind of 

schemes we have described above.

To the Core of Our Being

DNA is made up of sequences of four symbols (A, C, T, G) such as 

AACTCCAGTATGGC. . . . The patterns hidden in DNA strings are 

used to identify criminals, determine true parentage, understand dis-

eases, and create cures. It is important stuff. 

A sample of DNA is easy to get from a hair fragment, saliva, a semen 

stain, or a bone fragment. It is hard to read the associated strings. The 

story starts there. At the end, the mathematics behind our card trick 

underlies a promising technique for reading DNA.

Figure 6 shows a sequencing chip. This is an eight- by- eight array 

with a site for each of the 4 × 4 × 4 = 64 patterns, from AAA to TTT.

A strand of DNA to be sequenced interacts with the array and every 

consecutive triple present in the strand is highlighted in the array. 

This highlighting is shown for the example AACTCCAGTATGGC (see 

fi gure 7). The problem is, given the highlights, what string occurred?

While there are many caveats (some spelled out below), we can also 

attack this problem by using the shared triples to form a de Bruijn 

graph. The vertices are the sixteen pairs from AA to TT. An edge is 

Figure 6. DNA sequencing chip 

(courtesy of Berkeley Lab, 

www.lbl.gov)

www.lbl.gov
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drawn from one pair to another if there is a shaded triple that begins 

with the fi rst pair and ends with the second. Thus, because AAC is 

shaded, the graph for these data has an edge from AA to AC. The full 

graph is shown in fi gure 8.

This looks like a mess. To reconstruct the sequence, we need a 

tiny variation of Euler’s theorem; our previous version, discussed in 

chapter 2, gave a necessary and suffi cient condition for a circuit, a 

path crossing every edge just once and starting and ending at the 

same place. For sequencing problems, the start and end don’t have to 

be the same. The theorem says that a graph comes from a sequence 

starting at x and ending at y if and only if the in- degree of each ver-

tex equals the out- degree of each vertex for all vertices except that 

out(x) − in(x) = 1 and out(y) − in(y) = −1 (and, as before, it is always pos-

sible to go from any vertex to any other vertex along some path). Look-

ing at the graph, we see AA has in- degree one and out- degree two. So 

out(AA) − in(AA) = 1. Further, out(GC) − in(GC) = 0 − 1 = −1. All other 

vertices have out- degrees equal to in- degrees. From Euler’s theorem, 

there is a sequence that starts AA, ends GC, and makes all needed 

transitions. Further, we can fi nd the sequence by starting at the forced 

start AA and choosing any available arrow leading out. Each arrow is 

erased when used. If there are several arrows, use any available. The 

theorem says we never get stuck, and when fi nished we’ll have a path 

starting at AA and ending at GC, with matching transition arrows. 

Figure 7. Array of triples from AACTCCAGTATGGC

AAA ACA AGA ATA AAC ACC AGC ATC

AAG ACG AGG ATG AAT ACT AGT ATT

CAA CCA CGA CTA CAC CCC CGC CTC

CAG CCG CGG CTG CAT CCT CGT CTT

GAA GCA GGA GTA GAC GCC GGC GTC

GAG GCG GGG GTG GAT GCT GGT GTT

TAA TCA TGA TTA TAC TCC TGC TTC

TAG TCG TGG TTG TAT TCT TGT TTT

AAC

ATGAA ACT AGT

CTC

TCC

TATAA

GTATT

TGG

CCACAA

AAG

GGC

AT

AC

AG

AA

GT

CT

CG

CC

CA

GG
GC

GA

TT

TG

TC

TA

Figure 8. Full graph for

AACATTACAATCACCGA
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Strictly speaking, this process may also create cycles, but these can be 

easily merged into the fi nal path.

The example shown is simple. For longer sequences, there may be 

several different reconstructions that match the available data. We 

have also suppressed problems of errors in highlighting and some 

other problems in order to explain the idea. This idea is the basis 

of a sophisticated algorithm, called Euler, which is used with much 

more complicated “shotgun” data. Here, a single strand of DNA is fi rst 

replicated to make many exact copies. (This turns out to be easy to 

do with a chain reaction.) These copies are then snipped into pieces 

by a clever chemical process. For our example AACTCCAGTATGGC, 

this would yield pieces such as AACT, AA, AACTC, and so on, each 

repeated many times. Unfortunately, it also yields many copies of 

each of the “opposite” pieces where A ) T, C ) G, G ) C, T ) A are 

exchanged. For example, the opposite of AACT is TTGA. From this 

wealth of contiguous pieces and their opposites, the problem is to put 

together the original string. It is amazing this can be done at all. Do-

ing it effi ciently in a noisy environment is where the de Bruijn graph 

comes in. It would take us too far afi eld to give further details.5

We cannot leave this topic without talking about one of our inven-

tions: an application of de Bruijn sequences to understanding DNA 

that started as a solution to a philosophy problem. Let us start with 

the DNA application. We have all heard things like “98 percent of our 

DNA is the same sequence as the DNA of a mouse.” This leads to the 

notion of the distance between two DNA strings. If x = AACGCTT . . . 

and y = AATCTTG . . . are two DNA strings, a variety of distances d(x, y) 

are used to measure how similar x and y are. These distances are used 

to align sequences, to measure similarity (is a man more similar to a 

chimp than to an ape?), and for fi nding the closest match to a new 

strand of DNA in a large database of sequences. Distances are often 

based on the minimum number of “moves” required to bring x to y. 
The allowed moves involve inserting and deleting characters and re-

versing a portion of the sequence. Thus, 

distance(AAT, AAGT ) = 1 by just inserting G.

There are many more ideas involved in constructing useful distances. 

We will not give further details because they do not matter here. Thus, 

suppose we have picked a distance d and have two fi xed strings x, y. We 
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calculate d(x, y) = 137. The question is: “So what? Is this big or small?” 

One widely used answer involves “wiggling” x or y to get a comparison 

collection of related (but random) sequences. To fi x ideas, consider 

the sequence 

x = AACATTACAATCACCGA.

We construct a transition array for x, recording for each possible pair 

of letters how often it occurs as a block of two. For the sequence above, 

this gives:

  A C T G

 A 2 3 2 0

 C 3 1 0 1

 G 1 0 0 0

 T 1 1 1 0

The entry in the row A, column A is 2 because AA appears twice in the 

sequence.

There are many different strings with this same transition array, 

for example, AATTACACCGAATCACA. The problem is this: Choose 

(repeatedly) random strings with a matching transition array. These 

random strings are used to calibrate the original distance. It turns out 

this is easy to do if  you know about the de Bruijn graph. The idea is 

simple. Given the array, form the de Bruijn graph with four vertices A, 

C, T, G and an arrow from one vertex to another with weight equal to 

the entry of the array. For this example the de Bruijn graph is shown 

in fi gure 9. 

To generate a random string starting at A, just pick one of the arrows 

leading out of A and follow it, deleting one from the weight on the 

edge. Write down A followed by whatever symbol you land on. Keep 

going in the same way, recording the vertices you pass through. One 

fi ne point: not all sequences with the same transition array start with 

the same symbol. There are several other applications of de Bruijn 

sequences to DNA that we don’t have space to discuss.6

The example clearly connects DNA analysis to card tricks (via the 

de Bruijn graph). It is probably less clear what it has to do with phi-

losophy. The connection is through de Finetti’s theorem for Markov 

chains. Briefl y, in trying to interpret classical probability statements 

such as “tossing a coin with unknown bias” from the viewpoint of 

T G

C

A

2

1 3

1

2

1 1

1

3

1

Figure 9. Labeled de Bruijn graph for 

AACATTACAATCACCGA
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subjective probability, de Finetti invented the symmetry notion of ex-
changeability. This let him talk about symmetric events without having 

to mention unobservable things such as “coins with unknown bias.” 

He then proved that his symmetrical allocations can be represented 

as a mixture of classical coins with a known bias. The weights in the 

mixture were called an “a priori distribution” by Bayes and Laplace.7 

In extending de Finetti’s notions from exchangeability to partial ex-

changeability (required to give a subjective interpretation of Markov 

chains), we encountered the problem of having to understand a ran-

dom string with a given transition array. Familiarity with de Bruijn se-

quences made this a friendly problem and thus a complete solution 

can be given.

Our understanding of de Finetti’s theorem leads back to biology in 

another way. A group of chemists studying protein folding needed to 

discretize the physics of a huge dynamical system. They wanted their 

discretization to mirror the time reversibility of ordinary mechanics. 

The resulting “prior distribution on reversible Markov chains” was 

worked out in joint work with Silke Rolles.8 Extensions to higher-order 

reversible chains are needed for validation. The de Bruijn graph was 

crucial here.

From card tricks, to DNA, to philosophy, and back to protein fold-

ing is a wide sweep for an idea. However, we want to show how this 

mathematical idea has many other uses. Our last section has quite a 

different fl avor.

This de Bruijn stuFF is cool but 

can it get you a job?

Combinatorics sometimes seems to be about solving puzzles and ask-

ing riddles. It can be tricky but sometimes it doesn’t seem like “real 

math.” De Bruijn sequences are a perfect case in point. Can you really 

get paid to think about such stuff and, if you can, what kinds of things 

do you think about?

A snapshot of this kind of thinking occurred recently in an exotic 

location—a Banff resort in the Canadian Rockies. The Banff Interna-

tional Research Station is a mathematics institute that runs week- long 

conferences on focused topics.

Figure 10. The Banff International 

Research Station (photo by Scott 

Rowed, courtesy of The Banff 

International Research Station)



Is this stuff actually good for anything?    43

During the week of December 4–9, 2004, they ran “Generalizations 

of de Bruijn sequences and Gray codes.” This brought together twenty- 

fi ve or so researchers from all over the world. Brendan McKay came 

from Australia. He is a great combinatorialist who has achieved world-

wide fame outside mathematics for his defi nitive debunking of the 

so- called Bible codes (claiming that there are hidden patterns in the 

Old Testament that can be used to predict the future). This particular 

week he was doing de Bruijn sequences. Eduardo Moreno came from 

Chile. He teaches at an institute that develops and applies de Bruijn 

sequences as part of its main mission. Robert Johnson, a fresh Ph.D., 

came from England.

The world’s experts on our favorite subject were there—Hal Fred-

ricksen, who teaches at the Naval Postgraduate School, did his thesis 

work on de Bruijn sequences and has developed them over a thirty- 

fi ve-year period. Frank Ruskey from the University of Victoria has the 

world’s best programs for generating all kinds of de Bruijn sequences 

and Gray codes on his Web site.9 Carla Savage from North Carolina 

State University is an expert on complicated nonstandard construc-

tions of amazing elegance. Also present were all levels of students —

some were just starting and had taken a course that intrigued them. 

One hallmark of the subject: an outsider or newcomer can really 

make a contribution. Glenn Hurlbert from Arizona State University 

had recently fi nished a terrifi c Ph.D. thesis on generalized de Bruijn 

sequences.

What happens at such a conference? There were really friendly in-

troductory and expository talks aimed at bringing newcomers up to 

speed and making sure we were all on the same page. There were an-

nouncements of new results, big and small. We did our card trick and 

talked about some variations on universal cycles (described in the fol-

lowing chapter). People talked about open research problems (“I’m 

stuck on this” or “I’m sure this is true but I just can’t prove it”). Much 

time was spent in small groups where people go over special cases 

slowly and ask each other “silly questions” that might be embarrassing 

if asked in a large group.

One of the most spectacular new results was Robert Johnson’s solu-

tion of the notorious “middle-layer” problem.10 To explain, we have 

to augment our Eulerian circuits (paths in a graph that use each edge 
once and only once) with the notion of Hamiltonian cycles: paths in 

a graph that use each vertex once and only once. These Hamiltonian 
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cycles are much more complicated to work with than Eulerian cycles. 

Indeed, if you can fi nd a fast way to fi nd out if a general graph has even 

one Hamiltonian cycle, it would really change the world. As an imme-

diate consequence, thousands of other problems would be solved in 

one stroke. There is even a one million–dollar prize currently offered 

for a solution.11

Alas, we have often had to try to fi nd Hamiltonian cycles for our 

card tricks (see the next chapter). Fortunately, these are for “nice neat 

graphs” instead of “general messy graphs,” and we often succeed. Here 

is the problem that Johnson solved. Take an odd number n, say of the 

form 2r  + 1, such as 3, 5 or 1711584141. We will take n = 3 (so r = 1) 

for the moment. Consider the set of numbers {1, 2, . . . , n}, so {1, 2, 3} 

in our example. Form a graph with vertices being the subsets from {1, 

2, . . . , n} of sizes r and r  + 1. For n = 3, the subsets of size r = 1 are {1}, 

{2}, and {3}. The subsets of size r  + 1 = 2 are {1, 2}, {1, 3}, and {2, 3}. Al-

together, our graph looks like fi gure 12. In this fi gure, we have drawn 

an edge between a 2- element subset and a 1- element set if we can get 

the 1- element set by throwing out one number of the 2- element set.

Figure 11. Conference participants at 

the meeting in Banff (photo courtesy 

of The Banff International Research 

Station)

{1} {2} {3}

{1,2} {1,3} {2,3}

Figure 12. Graph of 1-sets and 2-sets 

of a 3-set
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The question/problem/conjecture is to decide if there is a Hamil-

tonian cycle in the graph of r- element and (r  + 1)- element subsets of 

{1, 2, . . . , n} with an edge between an (r  + 1)- element subset and an r- 
element subset if the r- element subset arises through the discarding of 

one number from the (r  + 1)- element subset. In the r = 1 case above, 

we can trace the cycle

{1} {1, 3} {3} {2, 3} {2} {1, 2} {1}.

This uses each nonstarting vertex just once (of course, the starting ver-

tex is the ending vertex). For n = 5 (r = 2), the graph is shown in fi g-

ure 13. Can you fi nd a Hamiltonian cycle in it? There is one (in fact, 

many). It has been checked by hand and computer that the conjecture 

is true for n up to twenty-nine. This middle-layer graph for n = 29 has 

155117520 vertices and 1163381400 edges. This makes it diffi cult to 

do much hand- checking of possible Hamiltonian cycles! However, to 

this day, no one can prove that there is always a Hamiltonian cycle for 

middle-layer graphs with parameter n, for all n. Of course, Johnson 

can’t prove that either (yet). What he did show is that the conjecture is 

almost true. He found a construction that works for all odd n and builds 

a path that meets all but a vanishingly small proportion of the vertices.

The problem is so simple to state that most of us at the conference 

had tried it. Moreover, the problem has been around for over fi fty 

years, so many famous combinatorialists had tried, with very limited 

success. That the “kid” could come along and beat the world record 

by a mile is really exciting. Johnson’s result introduces new ideas and 

techniques that will surely be of help in other graph-cycle problems. 

During his talk, we felt the wheels in our heads turn. As he spoke, 

people slowed him down as they formed their own mental picture of 

his new ideas. It must have been exciting for him too. He had an audi-

ence that really cared and wanted to follow. It was a wonderful hour. 

The conference generated a lot of excitement. Brad Jackson and 

Glenn Hurlbert made progress on an old conjecture of ours (reported 

{1,2}

{1,2,3} {1,2,4} {1,2,5} {1,3,4} {1,3,5} {1,4,5} {2,3,4} {2,3,5} {2,4,5} {3,4,5}

{1,3} {1,4} {1,5} {2,3} {2,4} {2,5} {3,4} {3,5} {4,5}

Figure 13. Graph of the 2-sets and 

3-sets of a 5-set
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in the next chapter). Many new conjectures were posed (and a few 

shot down in real time). Some conjectures posed were solved later. 

The main thing that happened is that we found a community; most 

of us are the only combinatorialist in our respective departments. To 

fi nd others who think this small world of problems is beautiful and im-

portant made a deep impression on all of us. As a record, and follow-

 up, the progress we made and a list of open problems were collected 

together in an issue of the journal Discrete Mathematics.12

Can you make a living doing combinatorics? You bet you can—and 

have a lot of fun along the way, as well.
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universal cycles

We have used de Bruijn sequences for magic tricks and shown how 

they can be applied to make and break codes for spies and for analyz-

ing DNA strings. The magic angle suggests wild new variations. Some 

of these lead to amazing new tricks. Some lead to math problems that 

will be challenges for the rest of this century. The following effect be-

gins like the ones in earlier chapters but the information source is 

different.

Order Matters

Our start in this direction was the following magic trick, invented 

jointly with the chemist- magician Ronald Wohl. It has never been ex-

plained before. Here is how it looks. The performer tosses a deck of 

fi fty-two cards, still in its case, out to an audience member. He or she 

tosses it to another, and so on, until everyone agrees it rests with a 

randomly chosen spectator. This person removes the deck and gives it 

a straight cut. The cards are passed to an adjacent spectator who gives 

it a cut. This is continued until a fi fth spectator cuts the cards and 

takes off the current top card. The deck is passed back to the fourth 

spectator who takes the top card, and so forth, until the fi rst spectator 

takes the top card. The performer points out that the deck is far out of 

his reach, and there isn’t any way anyone can know which cards were 

taken. The patter continues, “Please look at your card and try to pic-

ture it in your mind. Help! You’re doing a great job but I have a mess 

of images coming in. Would the person with the highest card please 

step forward (ace is high, two is low)?” One of the spectators steps 
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forward. The performer looks pleased and scribbles a note on a pad. 

“Would the person with the next-highest card please step forward, and 

then the person with the next-highest card?” Now the questions stop: 

The performer names the three cards of the people standing and then 

names the cards held by the last two spectators.

Again, this is a trick that we have performed in the trenches. It plays 

well and really seems to fool people—especially other magicians. Peo-

ple just don’t seem to think that the innocent patter and interaction 

provides enough information to give the names of all fi ve cards.

How much information is there? In how many ways can the questions 

be answered? There are fi ve spectators with consecutive cards from a ran-

domly cut deck of cards. Any one of them can have the highest card; 

that’s fi ve possible answers to the fi rst question. Any of the remaining 

spectators can have the next-highest card (four possible answers) and 

there are three possible answers for the third spectator. Together, this 

is 5 × 4 × 3 = 60 possible answers. This is a bit more than enough to de-

termine at which of the fi fty-two positions the deck was cut.

Of course, the deck is arranged so that the performer knows the 

order of the cards and that there will be no ties. The arrangement 

assures that each consecutive group of fi ve cards has a unique signa-

ture of “highest, next-highest, third-highest.” Is such an arrangement 

possible? When we teach our mathematics and magic course we ask 

students to try to fi nd an arrangement of an ordinary deck that does 

the job. While it is not easy, they can usually do it in an hour or less. 

We recommend it to the reader as a useful exercise. Recently, several 

students used a computer to solve the problem. We were startled when 

one of our students, Aaron Staple, told us, “It’s easy. I just tried a few 

thousand at random and found several.”

Let us try to explain (a) why this last fi nding surprised us and (b) 

how it leads into completely open waters. Consider fi rst the odds of 

fi nding a zero/one de Bruijn sequence as discussed in chapters 2 and 

3. Suppose we take a deck of thirty-two cards consisting of sixteen reds 

and sixteen blacks, shuffl e it at random, and look to see if the resulting 

arrangement is a de Bruijn sequence. What is the chance we succeed? 

The number of possible arrangements of thirty-two cards is 

32! = 32 × 31 × 30 × ∙ ∙ ∙ × 2 × 1 = 263130836933693530167218012160000000.

From our previous remarks, we know there are 32 × 225 − 1
 − 5 = 224

 = 216 

different de Bruijn sequences. We can label each of these with values 
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in 16! × 16! ways. In all, then, the chance that a randomly shuffl ed 

deck of thirty-two cards forms a de Bruijn sequence is

32!

16! 16! 2

9200

1
.

16# #
.

We thus expect to fi nd one in about every 9200 trials; a million trials 

should produce more than a hundred different de Bruijn sequences.

This is a splendid example of how the computer has changed the 

way we think. In former days, trying something a million or so times 

was unthinkable. Now it’s trivial and a skillful student can write a few 

lines of code and be done with it in half an hour or less. Doing the 

math (that is, discovering the structure of de Bruijn sequences) can 

take years. 

On the other hand, the “try at random” strategy breaks down for 

longer sequences. For a window width of k and a deck of 2k cards, the 

chances of a random shuffl e landing on a de Bruijn sequence is 

!

( !)
.

2

2 2
k

k2 1 2–k 1–

This is a diffi cult number to have a feel for. However, using Stirling’s 

approximation for n! it can be shown to be well-approximated by

π2
.

2

k

2

1–

k 1–

This tends to zero super- exponentially fast.1 As argued above, when 

k = 5 the chance of fi nding a de Bruijn sequence at random is about 1 

in 9200. This is not so unlikely and, indeed, one of our students wrote 

a program that searched for random de Bruijn sequences for k = 5 and 

found hundreds of them. However, the odds decrease very rapidly as k 

increases, so that for k = 6 they are about 1 in 400,000,000 (still barely 

possible) and for k = 7 they are less than 1 in 1018, which makes com-

putation quite infeasible. Of course, if the algorithm used some intel-

ligence rather than just a blind search, the odds could be increased 

substantially. However, with a random de Bruijn sequence, there is no 

simple coding as in our shift register method explained in the fi nal sec-

tion of chapter 2. Thus, there is still a healthy place for mathematics.

Let’s get back to our “highest, next-highest, third-highest” card 

trick. Since a random computer search produced some examples, 

there must be plenty of them. As of the present writing we have no 
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estimates, indeed no feeling at all, for how many (or how few) solu-

tions exist. Our experience with zero/one de Bruijn sequences shows 

it is nice to have some theory. 

Let us return to the effect that started this chapter and consider the 

neatest version of these ordered de Bruijn sequences. The problem is 

this: k distinct things can be arranged in k! = k(k −  1)(k −  2) . . . 2  ×  1 

ways. Thus, three distinct things can be arranged in 3! = 3 × 2 × 1 = 6 

ways. Here they are: 

123 132 213 231 312 321.

Is there an arrangement of the numbers 1, 2, 3, 4, 5, 6 so that, if con-

secutive groups of three are considered, the ordering of each group 

(high, medium, low) is distinct (we include going around the corner)? 

The following arrangement works: 

1 4 6 2 5 3.

The fi rst group of three, 146, is in the order low, medium, high (ab-

breviated LMH). The next group, 462, gives MHL. Then HLM, then 

LHM, then, going around the corner, HML, then MLH. Can the 

reader fi nd an arrangement of the numbers 1, 2, 3, . . . , 24, such that 

each consecutive group of four gives a distinct order? 

After experimentally fi nding sequences that work for groups of 

three, four, and fi ve (this last involved a deck of 5! = 5 × 4 × 3 × 2 × 

1 = 120 cards), we became convinced that such “ordered” sequences 

always exist. The problem then became a math problem. We enlisted 

the mathematician Fan Chung to our cause and eventually showed 

that indeed they did always exist. Our proof was diffi cult (we needed 

to solve a Hamiltonian cycle problem). Further, our proof wasn’t really 

constructive; we can’t give a simple recipe, we just know there is always 

at least one way to do it. This solves the fi rst problem on a list of prob-

lems. It leaves open the problem of fi nding a usable construction, an 

approximate or exact count of how many solutions there are, and the 

problem of fi nding an invertible construction (meaning two things—

fi rst, given a pattern of k, where does it lie within the long sequence 

and second, given a place in the long sequence, what pattern starts 

there?). Permutations of k things are such well-studied mathematical 

objects that there must be elegant answers to these questions. The ap-

plied successes of zero/one de Bruijn sequences offer hope that these 

new ordered sequences will fi nd uses far beyond magic.
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We continue our “order matters” study by describing three varia-

tions: real decks, repeated values, and products. Each offers similar 

challenges (and opportunities).

In a regular deck of cards, values are repeated. We have four aces, 

four twos, and so on. Any solution to the card trick that began this 

chapter has to deal with this problem. For example, consider a deck of 

twenty-four cards containing fi ve cards labeled one, fi ve cards labeled 

two, fi ve cards labeled three, fi ve cards labeled four, and only four 

cards labeled fi ve. If they are arranged in the following order, 

123412534153214532413254,

then every consecutive group of four has a distinct order. You can 

show that if the deck has six each of values one, two, three, and four, 

no such arrangement is possible.

For a given group size k, what is the smallest number of distinct values 

that can be assembled into a deck of k! cards so that the relative order of 

each group of k is distinct? An old conjecture of ours was that this small-

est number is k + 1, and we had offered a prize of one hundred dollars 

to anyone who could prove (or disprove) it. We are happy to report that 

this has now been proved in a very nice paper of Robert Johnson.2 The 

next challenge is to design a nice magic trick based on this result.

The above deals with repeated values by sidestepping them, making 

sure that each consecutive group has all distinct values. Another ap-

proach is to exploit repeated values. Picture our card trick again. The 

deck of cards has been cut, people have taken consecutive cards, and 

the performer asks, “Will everyone having the highest value stand up?” 

Thus, one or more people may stand. The same question is repeated 

for the next value and so on. This gets us to the subject of permuta-

tions with ties. Consider three symbols, 1, 2, and 3. While there are 

only six arrangements of distinct values, if ties are permitted this in-

creases to thirteen arrangements:

111, 112, 121, 211, 122, 212, 221, 123, 132, 213, 231, 312, 321.

Here, 111 is the same as 222 or 333 since all values are tied. If every-

body with the highest card stands up, all three will stand and nothing 

distinguishes them further. 

One may ask, can we arrange thirteen cards so that consecutive 

groups of three run through all possible permutations with ties per-

mitted? The answer is yes:
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5 5 5 4 5 1 3 2 2 3 2 1 4.

How many permutations of k things with ties are there? Call this num-

ber G(k). We have G(2) = 3, G(3) = 13, G(4) = 75, G(5) = 541. The 

numbers grow rapidly. Can we arrange the usual deck of fi fty-two cards 

so that each consecutive group of four runs over distinct permutations 

(ties permitted)? We don’t know for sure (but we suspect the answer 

is yes). All of the open questions for ordered sequences are also open 

for permutations when ties are permitted. We would also like help pic-

turing these things. We have tried to draw pictures of formally dressed 

permutations wearing ties or standing next to people from Thailand 

with limited success.

Our last development of “order matters” returns to practical card 

tricks. It also opens up many mathematical challenges. We call the 

topic Products but will explain it as a practical card trick. A deck is 

tossed out, cut many times, and three people take consecutive cards. 

The patter goes as follows: “You’re doing a wonderful job of concen-

trating on your cards but there are too many images coming in. Let’s 

see, would you rearrange yourselves so the person with the highest 

card is on the left and the person with the lowest card is on the right? 

Thanks. That’s better. Please concentrate. Hmmm. Still a mess. I see 

red much more clearly than black. Would everybody with a red card 

please step forward?” Now the performer sees clearly and names the 

three cards.

There are six possible rearrangements of the three participants, 

and the red/black pattern can be rearranged in eight ways. In theory, 

this is 6 × 8 = 48 answers. Suppose the four aces are removed from the 

deck. Can we arrange the remaining forty-eight cards so that every 

group of three gives a distinct answer? Similar questions arise for com-

bining any of the patterns above (or below). The theory of products is 

in its infancy but we can prove that products of any kind of de Bruijn 

sequence (e.g., zero/one or red/white/blue) can always be found.4 A 

solution of the forty-eight-card-trick problem, courtesy of two of our 

freshman students, appears in table 1.

A Mind-reading Effect

The easiest (and perhaps best) trick to perform based on the product 

idea was developed by Ronald Wohl. Here is a brief description. An 
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ordinary deck of fi fty-two cards is handed out as above. Three specta-

tors are enlisted, the deck is cut by each, and three consecutive cards 

are removed, one per spectator. The performer says to the fi rst specta-

tor, “As a warm- up, I want to try an easy test with you. Tell me the value 

of your card, but not the suit. It’s only one out of four possibilities, 

but we hardly know each other.” Say the spectator answers, “I have an 

eight.” The performer answers, “Hold on. I want to work with all three 

of you at once, like a chess expert.” To the second spectator, “Tell me 

the suit of your card only, not the value. That’s a one-in-thirteen prob-

lem.” Say the spectator answers, “I have a heart.” To the third specta-

tor, “I’ll save the hardest for last. I don’t want you to tell me anything, 

just concentrate on your card.”

Continuing, the performer says, “Spectator one, you chose an eight. 

Try not to react, it could have been any of the four eights—clubs, 

hearts, spades, or diamonds; you shifted a little when I said ‘clubs.’ I 

Table 1. Sequence for “cut repeatedly, order yourself, and all red cards step forward” 

(thanks to Matt Duhan and Rebecca Rapoport)

AH  000  123

6H  001  231

QH  010  312

3C  101 123

7D  011  231

8S  111 312

4C  110  123

6S  100  231

9D  000  312

2H  001 123

5H  010  231

JS  101  312

4D  011  123

TS  111 231

QS  110  312

2C  100 123

8D  000  231

JD  001 312

3H  010  123

9S  101 231

TD  011  312

AS 111  132

7C 110  213

5S 100  132

TH 000  321

9H 001  213

AD 010  132

TC 101  321

6D 011  213

AC 111  123

8C 110 231

JC  100  213

2D  000  132

QD  001  321

8H  010  213

3S  101  132

JH  011  321

4S  111  213

2S  110  132

6C  100  321

5D  000  213

4H  001  132

7H  010  321

5C  101  213

3D  011  132

QC  111  321

9C  110  321

7S  100  312

Note: The fi rst column shows the order of the deck. The middle and last columns show the color and order pattern if the 

corresponding card is cut to the top.
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think you have the eight of clubs.” The spectator holds the card up to 

show that the performer is correct. To the second spectator, “I know 

you have a heart (if you’ll pardon the expression!), but which one? 

High, medium, low? Face card or spot? Even or odd? Aha, I see; it is 

the king of hearts.” The spectator holds up the card to show the guess 

is correct. Finally, after similar banter, the performer correctly names 

the third spectator’s card without asking a single further question—“It 

is the three of spades.”

How It Works

The working of this trick is diabolically simple. First of all, the fi rst 

spectator can give any of thirteen answers, the second spectator can 

give any of four answers, and 13 × 4 = 52, so there is enough infor-

mation to know where the deck has been cut. We work with a deck 

arranged in the classical “Eight Kings” order, which follows the ditty, 

“Eight kings threatened to save ninety- fi ve queens for one sick knave.” 

That is, 8, K, 3, 10, 2, 7, 9, 5, Q, 4, 1, 6, J (eight [8] kings [K] threatened 

[3, 10] to [2]. . . .). The suits are arranged in “CHaSeD” order: clubs, 

hearts, spades, and diamonds, repeated cyclically. This determines an 

easy- to- remember order for the fi fty-two- card deck, beginning with the 

eight of clubs on top, the jack of clubs in position thirteen, the eight of 

hearts at fourteen, and so on, through to the jack of diamonds at the 

bottom of the deck.

This time, as opposed to our previous versions, the working is easy. 

The fi rst spectator tells you a value (here, an eight) and the second 

spectator tells you a suit (here, hearts). Since clubs always come before 

hearts (working backwards in the CHaSeD order) you know the fi rst 

person has the eight of clubs. Since eights are always followed by kings, 

the second spectator must have the king of hearts and the third specta-

tor must have the three of spades.

Any repeated cyclic order can be used. Another classic is known as 

the “Si Stebbins” order. Here, each value follows the last by adding 

three modulo thirteen. Thus, the values start 1, 4, 7, 10, K, 3, 6, 9, Q, 

2, 5, 8, J, and repeat cyclically. You can use any memorized order, cy-

clic or not. This trick was invented by Ronald Wohl in the 1960s when 

we were working on variations of Jordan’s Coluria. Since cyclic stacks 

were around well before 1600 and, in the end, no math is needed, it 
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could have been invented earlier. This shows the power of mathemati-

cal thinking. Bravo, Ronald!

Universal Cycles Again

We can fi nally explain the title of this chapter. Given any list of natural 

combinatorial objects, for example, zero/one strings or permutations, 

we can try to fi nd a long (cyclic) sequence and a group length k so that 

each consecutive group in the sequence codes a unique object on our 

list. The long sequence is called a universal cycle (or U- cycle, for short). 

The fi eld of combinatorics is fi lled with interesting objects. Finding 

U- cycles for any of them makes a sea of problems. Of course, the tricks 

involved may start out as pretty contrived efforts. With work, one can 

sometimes correct this and fi nd a performable version.

Following Jordan’s Coluria trick (described in chapter 2), the at-

torney William Larsen and the dilettante T. Page Wright introduced 

Suitability, in which a deck of fi fty-two cards is cut, three people take 

consecutive cards, and each announces his or her suit (e.g., clubs, 

hearts, spades, or diamonds). Thus, there are 4 × 4 × 4 = 64 possi-

ble answers, so it is possible for the performer to know the names 

of all three cards. This calls for a sequence of C, H, S, D of length 

fi fty-two such that three consecutive cards all have distinct patterns. 

The computer expert Alex Elmsley marketed a version called Animal- 

Vegetable- Mineral. Here, a deck of twenty-seven cards with pictures 

of various objects is freely cut, three people take consecutive cards, 

and the game of twenty questions is played. The performer asks each 

spectator in turn if his or her card’s object is “animal, vegetable, or 

mineral.” This information reveals all three. We will hear more about 

Elmsley in the fi nal chapter.

These variations are quite vanilla- fl avored by the standards of this 

chapter. Let us take the reader through a mystery that really pleases us. 

The objects involved are the Bell numbers B(n). This is the number of 

ways that n distinct things can be arranged into groups. For example, 

B(3) = 5 because three things, call them A, B, C, can be grouped as:

 {A, B, C } {A}{B, C } {B }{A, C } {C }{A, B } {A}{B } {C }
 All A  B C All

 together apart apart apart separate
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Here, order within a group or among groups doesn’t matter, so {A}{B, 

C } is the same as {A}{C, B } or {B, C }{A}. Just the groupings matter. The 

reader will understand better if he/she verifi es B(4) = 15.

For years, we have been intrigued by the numerical coincidence

B(5) = 52.

We looked at each other and asked: “What’s the trick?” After brood-

ing about this (on and off, to be sure) for years, we fi nally saw a trick. 

You may want to think of your own before reading what we came up 

with. If you like puzzles but don’t feel like waiting, don’t worry, there 

are plenty of similar problems coming for which we don’t know the 

answer.

The Effect

As befi ts a good magic trick, we fi rst thought of the effect and then wor-

ried about the method. Here is the effect. A deck of cards is handed 

out, cut many times, and then fi ve people take consecutive cards. The 

performer asks them all to concentrate and complains that they are 

doing so well that a jumble of images is coming in. The patter contin-

ues, “I think we can do this together but I need your help. To reinforce 

your thoughts, I’d like you to group together. Would all the hearts 

stand together, all the clubs, and so on; people with the same suits 

stand together. Don’t tell me your suits or anything else. Just concen-

trate.” With no further questions, the performer names all fi ve cards. 

The idea is, the spectators form into groups—this gives a partition of 

fi ve. The cards should be arranged so that each consecutive group of 

fi ve gives a different partition. For example, if the fi ve cards are:

 spectator 1 spectator 2 spectator 3 spectator 4 spectator 5

 8C 4D JD AH 10C

the spectators would form the grouping {1, 5}{2, 3}{4}. Having the idea 

is one thing. With keenest interest we began to study its feasibility. 

What is needed is an arrangement of the symbols C, H, S, D in a row of 

length fi fty-two so that each partition occurs just once. One problem: 

There is no way to have fi ve separate groups of size one if only four 

suits are used. There are two easy ways around this: Work with fi fty-one 

cards so one of the groupings isn’t needed, or exchange one card for 

a joker, which serves as a fi fth suit. Either way works. For the second 
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option, using Hamiltonian cycles and a lot of hard work done jointly 

with Fan Chung, we found: 

DDDDDCHHHCCDDCCCHCHCSHHSDSSDSSHSDDCHSSCHSHDHSCHSJCDC.

We can use this cycle with an ordinary deck with one of the spades 

replaced by a joker (= J). We will not give further details about practi-

cal performance; the interested reader will have to go forward alone. 

However, having worked through it ourselves, we can guarantee a su-

perb, exclusive, performable trick that will astound the audience and 

please you. We know very little about constructions or the number of 

such Bell cycles. We are happy to have found one and look forward to 

seeing someone perform our trick.

Here is a last example where we know both more and less. It is a 

basic combinatorial object where some math has been developed, but 

we just cannot frame a reasonable trick. The combinatorial objects 

are subsets of {1, 2, . . . , n} of a given fi xed size k (these are known as 

k- subsets of an n- set). For example, the 2- subsets of {1, 2, 3, 4, 5} are:

{1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 3}, {2, 4}, {2, 5}, {3, 4}, {3, 5}, {4, 5}.

Thus, there are ten of them. Here {1, 2} is the same as {2, 1}. Order 

doesn’t matter. Can the reader fi nd a sequence of length ten using the 

numbers 1, 2, 3, 4, 5 (each twice) so that each consecutive pair appears 

just once when order is ignored?

These k- subsets of an n- set are often called “combinations,” the 

number of ways of choosing a committee of size k from a group of n 

people. They are a mainstay of classical combinatorics. A poker hand 

of size fi ve is a 5- subset of fi fty-two, and computing the odds for all 

kinds of games requires a thorough familiarity with such things.

The number of k- subsets of an n- set is used often enough that a 

special notation is common: k
n
_ i, read “n choose k.’’ Thus, 2

5
_ i = 10 

from our list above. It is easy to see that !( )!
!

k
n

k n k
n
–=_ i  with n! = n(n − 1)

(n − 2) ∙ ∙ ∙ 1. Thus, 10! !
!

( )( )2
5

2 3
5

3 2 1 2 1
5 4 3 2 1= = =# # #
# # # #

_ i . Simple as all of this 

sounds, there are many mysteries hidden here: If you knew all about 

the primes dividing n
n2

_ i, then you would know a lot more than mathe-

maticians currently know. For example, if we look at the fi rst ten values 

of n
n2

_ i, we get the results shown in table 2. Notice, for example, that all 

the values are even numbers, that is, divisible by 2. In fact, this is true 

for all values of n. Can the reader see why this is true? However, there 

are values that are not divisible by 3, such as 20 and 70. Also, there are 

Table 2. First ten values of 2
n
n

_ i

n 2
n
n

_ i

1  2

2  6

3  20

4  70

5  252

6  924

7  3432

8  12870

9  48620

10  184756
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values that are not divisible by 5 (such as 6 and 252) and some not di-

visible by 7 (such as 6, 20, and 3432). It is much harder to fi nd values 

of n
n2

_ i that are not divisible by any of the primes 3, 5, or 7. The fi rst two 

are 2 and 
10
20_ i = 184756 = 22 × 11 × 13 × 17 × 19. Can the reader fi nd 

the next one? A well-known unsolved problem (for which the authors 

offer one thousand dollars to the fi rst solver) is whether there is an 

unlimited number of such n.3

Back to our project. The problem is this: Given n and k, fi nd a se-

quence of length k
n
_ i consisting of symbols from {1, 2, 3, . . . , n} such 

that each consecutive group of k contains a different k- subset. Some-

times it can be done. For example, if n = 8 and k = 3, then 3
8
_ i = 56, 

and we found: 

82456145712361246783671345834681258135672568234723578147.

Our fi rst surprise: You cannot always do it. It is impossible unless k exactly 

divides k
n

1
1

–
–

_ i. For example, if n = 4 and k = 2, then k
n

1
1

–
–

_ i = 1
3
_ i = 3 so the 

impossibility result says it cannot be done. Let’s see why. There are six 

2- element subsets of {1, 2, 3, 4}. These are 

{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}.

Suppose we had a valid sequence of length six, say, abcdef. Each of a, 

b, c, d, e, f stands for one or another of the symbols {1, 2, 3, 4}. Sym-

bol 1 occurs someplace. The adjacent positions to this one have to be 

two other numbers giving two of the pairs containing 1. Now, 1 must 

appear twice and the new 1 gives two more pairs containing 1. This 

forces four pairs containing 1 in our proposed sequence. But there 

can be only three such pairs, so one of the four must repeat, violating 

the rules. Thus, no such abcdef exists. 

The argument above shows that k dividing k
n

1
1

–
–

_ i is a necessary con-

dition. If k doesn’t divide k
n

1
1

–
–

_ i then there can be no solutions. The 

argument offers no help if k does divide k
n

1
1

–
–

_ i. It is not hard to see 

that these cycles exist when k = 2 and n is odd. It is easier to handle 

k = n − 1, since n − 1 always divides n
n

2
1

–
–

_ i = n − 1 and such sequences 

should (and do) always exist. The fi rst interesting case we found be-

yond this was when k = 3. We couldn’t fi gure it out. The problem 

became part of an academic talk we went around giving on math-

ematics and magic tricks. We gave it at Reed College and a visitor, 

Brad Jackson (now a professor at San Jose State University), became 

intrigued. He proved that the cycles exist for all n when k = 3 (and 3 
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divides n
2

1–
_ i). His argument also worked for k = 4. The matter rested 

there for a while until our Ph.D. student Glenn Hurlbert showed that 

the required cycles exist for k = 6. This left k = 5 (and all larger k’s) 

open. Recently, Hurlbert and Jackson combined forces and settled k 

= 5. The arguments are clever, long, and hard. They involve a lot of 

computer work.

With this effort in hand, what’s the trick? We don’t have a good an-

swer but offer two bad tricks in the hope that some reader will get mad 

at us (or the problem) and invent a better trick.

To fi x our ideas, consider the case k = 3 and n = 8 with 3
8
_ i = 56. 

Above, we gave a sequence of length fi fty-six made from the symbols 

{1, 2, 3, 4, 5, 6, 7, 8} containing each 3- element subset just once. Such a 

sequence repeats each symbol seven times (to make up a deck of 7 × 8 

= 56 cards). With any such arrangement, if a deck of cards is so set up, 

it can be cut any number of times, and the top k cards can be removed 

and shuffl ed randomly. Their unarranged values now determine the 

position of every card in the deck. One possible trick (remember, 

we’re just brainstorming): A deck of fi fty-six cards is made up contain-

ing eight strange symbols, with one symbol per card:

� ■ ◊   z  

Each symbol appears on seven cards. The deck is displayed and ex-

plained to the spectator. The performer brings out a personal com-

puter that will take over from here. The computer displays the 

following instructions:

Please put the deck on the table and cut it three times with your 

left hand. Remove the top three cards and shuffl e them thor-

oughly. Lay them face-up in a row on the table [let’s say they are 

■  ◊]. Key these in by touching the displayed symbols. 

The computer now asks the spectator to choose one of the three as a 

“key” (let’s say she chooses ◊). It then instructs the spectator to pick 

up the deck and follow a series of instructions: 

Deal into two piles alternately, put the top card of the left-hand 

pile aside. Pick up the right-hand pile and deal into two piles. Set 

aside the last card dealt.

The instructions continue in a seemingly “mad” pattern. At the end, 

six cards have been set aside face-down. The computer recalls the 
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spectator’s choice of ◊. When the six cards are turned up, they are the 

remaining ◊s.

This would take some work: For every cut position and choice of 

key, a dealing sequence would have to be entered into the computer’s 

memory. It would make a nice class project (in which each student 

would be assigned a handful of cases). It’s not the worst, but there 

must be a better trick.

A different thought: We can indicate a subset of three- out- of- eight 

whereby the red cards are in a row of eight. Does a sequence of fi fty-

six zero/one symbols exist such that each consecutive group of eight 

contains just three ones and their left- to- right positions run through 

each possible 3- subset just once? Well, a moment’s thought shows that 

this is not possible since the only way to have three ones in every pos-

sible position of the sliding window is for the sequence to be periodic, 

with every symbol the same as the one eight positions earlier. However, 

perhaps we can arrange to have all the 3- subsets and 4- subsets appear-

ing just once in a suitably arranged deck of 3
8
_ i + 4

8
_ i = 56 + 70 = 126? 

We have no idea!



One of the great new discoveries of modern card magic is called the Gilbreath 
Principle. It is a new invariant that lets the spectator shuffl e a normal deck of 
cards and still concludes in a grand display of structure.

One of the great new discoveries of modern mathematics is called the Man-
delbrot set. It’s a new invariant that takes a “shuffl e” of the plane and still 
concludes in a grand display of structure.

The above is wordplay; the connections between the invariants of 

a random riffl e shuffl e and the universal structure in the Mandelbrot 

set lie far below the surface. We’ll only get there at the end. This chap-

ter gives some very good card tricks and explains them using our new 

“ultimate” Gilbreath Principle. Later in this chapter, the Mandelbrot 

set is introduced. This involves pretty pictures and some even more 

dazzling universal properties that say that the pretty pictures are hid-

den in virtually every dynamical system. We’ll bet you can’t yet see any 

connection between the two parts of our story.

Right now, let’s begin with our tricks.

The Gilbreath Principle

To try the Gilbreath Principle, go and get a normal deck of cards. Turn 

them face-up and arrange them so that the colors alternate red, black, 

red, black, and so on, from top to bottom. The suits and values of the 

cards don’t matter, just the colors. With this preparation, you’re ready 

Chapter 5

From the Gilbreath Principle

to the Mandelbrot Set
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to fool yourself. Give the deck a complete cut, any place you like. Hold 

the deck face-down as if your are about to deal cards in a card game. 

Deal about half the deck face-down into a pile on the table. The ac-

tual number dealt doesn’t matter; it’s a free choice. You now have two 

piles, one on the table, one in your hands. Riffl e shuffl e these two piles 

together. Most people know how to shuffl e (see fi gure 1). Again, the 

shuffl e doesn’t have to be carefully done. Just shuffl e the cards as you 

normally do, and push the packets together.

Here comes the fi nale: Pick the deck up into dealing position, and 

deal off the top two cards. They will defi nitely be one red/one black. 

Of course, this isn’t so surprising since it happens half the time in a 

well- shuffl ed deck. Deal off the next two cards. Again, one red/one 

black. Keep going. You’ll fi nd each consecutive pair alternates in color. 

In a well- shuffl ed deck, one might naively expect that this would hap-

pen about 
/ / /1 2 1 2 1 2# # #g

26 terms
6 7 8444 444  of the time (which is less than two chances 

in a hundred million). In fact, the odds are actually somewhat better 

than that, namely, about one chance in seven million. We will explain 

how we arrive at this number at the end of this chapter.

Before proceeding, you might want to fi gure out how it works. It’s 

pretty easy to see that no matter how the cards are cut, dealt, and 

shuffl ed, it’s a sure thing that the top two cards are one of each color. 

When we try this out on our students, it’s quite rare for anyone to be 

able to see why the next pair is red/black. We don’t recall a single stu-

dent providing a full, clear argument for the whole story.

What is described above is called Gilbreath’s First Principle. It was 

discovered by Californian Norman Gilbreath, a mathematician and 

lifelong magician, in the early 1950s. We’ll have more to say about 

Figure 1. A riffl e shuffl e
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Gilbreath at the end of this chapter. The second and ultimate prin-

ciples are coming. 

The red/black trick can be performed as just described. Thus, set 

up a deck of cards alternating red/black and put them in the card 

case. Find a spectator and proceed as directed above. Take the cards 

out of the case. Ask the spectator to give the deck a few straight cuts, 

deal off any number of cards into a pile on the table, and then riffl e 

shuffl e the pile on the table with the pile still in hand. As this happens, 

you might appear to be carefully studying the spectator (you might 

even fake making a few notes on a pad). You can promise that “This 

is an ordinary deck, not prepared in any way.” Take the deck of cards 

and put them under the table. Say that you’re going to try to separate 

the cards by sense of touch: “I promise I won’t look at the cards in any 

way. You know, red ink and black ink are made up of quite different 

stuff. It used to be that red ink had nitroglycerine in it. Guys in prison 

used to scrape if off the cards. Anyway, I’ll try to feel the difference 

between red and black and pair them up.”

All you do is take the cards off the top in pairs. Pretend to feel care-

fully and perhaps occasionally say, “I’m not sure about these,” and so 

on. If, as you display the pairs, you order them so each has a red on top 

followed by a black (you’ll fi nd they appear to come out in random 

order), assemble the pairs in order and you’re ready to repeat the 

procedure instantly.

To be honest, the trick as just described is only “okay.” It’s a bit too 

close to the surface for our tastes. Over the years, magicians have in-

troduced many extensions and variations to build it up into something 

terrifi c. As an example, we’ll now describe a fairly elaborate presenta-

tion developed by the magician and insurance executive Paul Curry. 

The following unpublished creation has many lessons.

The performer gets a spectator to stand up and asks two quite per-

sonal questions: “Are you good at telling if someone else is lying? If 

you had to, do you think you could lie so that we couldn’t tell?” It’s a 

curious asymmetry of human nature that a large number of people an-

swer yes to both questions (we owe this observation to Amos Tversky).

The props for this effect are a deck of cards and a personal com-

puter (used as a score keeper). The performer asks the spectator to 

cut and shuffl e the cards. Then two piles of ten or so cards are dealt 

off. The performer takes one of them and calls out the colors for each 

card, red or black. The spectator’s job is to guess when the performer 
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lies. This is carried through, one card at a time. After each time, the 

performer shows the actual card and enters a score of correct or incor-

rect. This is continued for ten or so steps. At the end, the computer 

gives a tally of, say, “Seven correct out of ten, above average.”

Now the tone changes. It is the spectator’s turn to lie or tell the truth. 

What’s more, it won’t be the performer who guesses “lie or truth.” The 

computer will act as a lie detector. The spectator looks at the top card 

of the pack and decides (mentally) whether to lie or not. Depending 

on which decision he or she makes, the spectator taps the “R” or “B” 

key on the computer to indicate red or black. The computer responds, 

accurately determining if a lie is told. The messages vary from time to 

time but the computer is always right. This has an eerie effect, quite 

out of proportion to the trick’s humble means.

How does it work? The deck is set up initially with red/black alter-

nating throughout. The spectator cuts the deck several times and deals 

some cards into a single pile on the table. The performer might patter 

about poker and bluffi ng or lie detector machines. The two piles are 

riffl e shuffl ed together by the spectator, who then deals them into two 

piles, alternating left, right, left, right, and so on, until ten or so cards 

are in each pile. The spectator hands either pile to the performer. 

Here is the key to the trick. Because of the Gilbreath Principle, each 

consecutive pair of cards contains one red and one black after the riffl e 

shuffl e. Dealing alternately into two piles ensures that the cards are of 

opposite colors in the two piles as we work from top to bottom. Thus, 

if the top twenty cards of the deck after shuffl ing are RBBRBRRBRB-

BRRBBRRBBR, then after dealing into two alternate piles, we have

R B

B R

B R

R B

R B

B R

R B

B R

R B

B R

If the top of the left- hand pile is red, the top of the right- hand pile is 

black. The same holds for the second cards, and so on. The spectator 
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hands either packet to the performer who looks at the cards, calls out 

colors, and lies or not each time. There is no preset pattern. Just do 

as you please, using funny tones of voice and making faces if that’s 

your style. The spectator guesses “lie or truth,” the performer shows 

the card, and enters “C” or “W” each time, depending on whether the 

guess is correct or wrong. 

The second secret lies here. After each guess is entered on the com-

puter, the performer taps the space bar if the actual card in question 

is red, and does not tap if the actual card is black. This variation goes 

unnoticed amidst all the banter, and it tells the computer the actual 

colors of the cards in the performer’s pile. By taking opposites, the 

computer now knows the actual color of each card in the spectator’s 

pile. When the spectator goes through his or her pile (and whatever 

complex thought processes are required), he or she fi nally presses the 

“R” or “B” key. The computer compares each of the spectator’s entries 

with the known color and determines if a lie has been told.

It will help the presentation if a separate set of messages is prepro-

grammed for each card. Thus, the computer might announce, “You 

lie” or “Tsk-tsk—don’t try that again” for lies, or “You’re trying to trick 

me—you told the truth” when the spectator isn’t lying. This takes a 

modest amount of preparation but is worth the effort.

When Paul Curry fi rst performed this for us, personal computers 

and programmable calculators were far in the future. He hand- built 

a complicated gadget with displays, wires, and switches all over it to 

carry out this simple task. He later published a pencil and paper ver-

sion of the trick in his wonderful book Paul Curry Presents. Because this 

loses the wonderful effect of the computer as lie detector, it is not as 

good as the version above. 

We will not give programming details here. If you know a bit about 

programming, it’s an hour’s work (oh, all right, a few hours’ work). 

If you don’t, go fi nd a teenager. The Curry trick is a great example of 

how thought and presentation can turn a humble mathematical trick 

into great theater. Curry also invented perhaps the greatest red/black 

trick of all time: Out of This World. We can’t explain it here but it is 

defi nitely worth hunting down. 

So far we have explained Gilbreath’s First Principle. In 1966, Gil-

breath stunned the magical world by introducing a sweeping general-

ization, known as Gilbreath’s Second Principle. In the fi rst principle, 

alternating red/black patterns are used. Gilbreath discovered that any 
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repeated pattern can be used. For example (go get a deck of cards), 

arrange a normal deck so that the suits rotate: clubs, hearts, spades, 

diamonds, clubs, hearts, spades, diamonds, and so on. Give the deck 

a random cut, deal any number of cards onto the table face-down in 

a pile (reversing their order), and riffl e shuffl e the two piles together. 

The top four cards will consist of one of each suit, no repeats, the next 

four cards will have one of each suit, and so on through to the bottom 

four cards in the deck.

Here is a simple variation. Remove all four aces, twos, threes, fours, 

and fi ves from the deck (twenty cards in all). Arrange them in rotation:

1, 2, 3, 4, 5, 1, 2 , 3, 4, 5, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5.

Cut this packet randomly, deal any number of cards face-down into a 

pile on the table, and riffl e shuffl e this pile with the rest of the cards 

from the packet. The top fi ve cards will be {1, 2, 3, 4, 5} in some order, 

the same for the next fi ve, the next fi ve, and the last fi ve cards. Dozens 

of tricks have been invented using these ideas. Often this principle is 

combined with some sleight of hand, making the trick unsuitable for 

this book. We have cleaned up one of them to make quite a perform-

able trick. Those knowing a bit of sleight of hand will be able to dress 

it more handsomely (see chapter 11 if you want to learn more). 

The following has served us well. It uses Gilbreath’s Second Prin-

ciple together with ideas from Ronald Wohl and Herbert Zarrow.

The rough effect is this: The performer asks if someone would like 

a lesson in cheating at cards. “A key to making big money is that you 

must learn to deal someone a good hand but also deal a better hand 

to yourself (or your partner).” With these preliminaries, the spectator 

cuts, shuffl es, and deals the cards (with a little help and kidding from 

the performer). The spectator deals a pat poker hand—a high straight 

(ace, king, queen, jack, ten), to one player and a better hand, a fl ush 

(all fi ve cards of the same suit), to himself. At the end, the spectator 

is as mystifi ed as everyone else. The performer cautions that the new 

skills are to be used for entertainment purposes only.

To perform this trick, the top twenty- fi ve cards of the deck must be 

prearranged. Remove any ten spades and three each of aces, kings, 

queens, jacks, and tens (of any suits). These are arranged with fi ve 

spades on the top, fi ve spades on the bottom, and the middle fi fteen 

cards in the rotation ace, king, queen, jack, ten, and so on, that is, as:

S S S S S A K Q  J 10 A K Q  J 10 A K Q  J 10 S S S S S.
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Put these twenty- fi ve cards on top of the rest of the cards and put the 

cards in the card case.

Ask for a volunteer who wants to learn about cheating at cards. This 

may involve some funny interactions with the audience. Ask the vol-

unteer (let’s call her Susan) if she knows how to play poker—with all 

the poker on TV, many people do. But still, many people don’t. Take 

out the deck, turn it face-up and display a few poker hands, explaining 

one pair, two pairs, three of a kind, straight, and fl ush. Do this without 

disturbing the original top twenty- fi ve cards. Saying you’ll start easy, 

break the deck (it’s still face-up) at the run of fi ve middle spades, so 

you have only the original top twenty- fi ve in hand. Turn these face-

down and hand them to Susan. Say you’re going to get an idea of her 

dealing skills—ask her to deal any number of cards into a single pile 

on the table. The actual number doesn’t matter but it must be fi ve or 

more, and at most twenty. Now ask if she can shuffl e, and have her 

riffl e shuffl e the dealt pile with the rest of the twenty- fi ve cards. Tell 

her that poker is played by dealing around—have her deal fi ve hands 

as in a normal poker game. Comment on her technique. Have her 

look at one of the hands (turn it face-up, without changing the order, 

and comment on its value). Now have her assemble the fi ve hands in 

any order, keeping the packets of fi ve together.

Say, “That was practice; here comes the real thing. There is a high 

roller in second position and your partner is playing the fi rst hand. I’d 

like you to use your skills to deal a pat hand to the second player but 

make sure you give your partner a better hand.” Susan may look at you 

as if you are out of your mind. Anyway, have her deal fi ve hands in the 

normal fashion. Turn up the cards in second position one at a time. 

They will form an ace- high straight—shake her hand, and act as if the 

trick is over. “Susan, you’re really talented.” Then remember, “Wait. 

An ace- high straight is almost impossible to beat. The odds of getting 

an ace- high straight are about one in twenty-fi ve hundred. What about 

your partner?” Slowly turn over the cards in the fi rst player’s hand one 

at a time. They will form a fl ush in spades, handily beating the ace- 

high straight. Offer her your hand again with the comment, “Susan, 

you’re a poker genius.”

That’s a lot of dressing but it makes for a very entertaining few min-

utes. For you, our reader, understanding how it all comes together is 

a nice lesson in the beginnings of combinatorics. A fancier version of 

this trick involving some sleight of hand appears as U- shuffl e Poker in 

Zarrow, A Lifetime of Magic by David Ben.2
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The Ultimate Gilbreath Principle

Up to now, we have seen two grand applications of Gilbreath’s two 

principles, utilizing reds and blacks as well as rotating sequences. It is 

natural to ask what other properties or arrangements are preserved by 

our riffl e shuffl e. This is actually a hard, abstract math question. What 

do we mean by “property or arrangement” and “preserved”? After all, 

if a deck of cards labelled {1, 2, 3, . . . , 52} is shuffl ed in any way, it still 

contains all these numbers only once. Clearly, this doesn’t count. Is 

looking at every other card allowed? 

Let us start by carefully defi ning what we mean by “shuffl e.” Con-

sider a deck of N cards labeled 1, 2, 3, . . . , N. A normal deck has N = 

52. The deck starts out in order, with card 1 on top, card 2 next, and 

card N on the bottom. By a Gilbreath shuffl e we mean the following per-

mutation. Fix a number between 1 and N, call it j. Deal the top j cards 

into a pile face-down on the table, reversing their order. Now, riffl e 

shuffl e the j cards with the remaining N − j cards. For example, if N = 

10 and j = 4, the shuffl e might result in: 

 1      4

 2      5

 3   5    6

 4   6  4   3

 5  " 7  3 " 7

 6   8  2   2

 7   9  1   8

 8   10    9

 9      1

 10      10

What we want to understand is just what arrangements are possible 

after one Gilbreath shuffl e? Two answers will be given. First, we will 

count how many different arrangements are possible. Second, we will 

give a simple description of the possible arrangements, which we mod-

estly call the Ultimate Gilbreath Principle.

Counting. The number of different permutations of N cards is 

N × (N − 1) × (N − 2) × ∙ ∙ ∙ × 2 × 1 = N! (read “N factorial’’). These 

numbers grow very rapidly with N. For example, if N = 10 then N! 

= 3,628,800, more than three and a half million. When N = 60, N! is 
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larger than the number of atoms in the universe. Put another way, 

60! ≈ 8.32 × 1081, while the estimated number of atoms in the universe 

(according to the current theories) is less than 1081. 

Of course, after one Gilbreath shuffl e, not all arrangements are pos-

sible. At the end of this chapter we show that, with a deck of N cards, 

only 2N − 1 arrangements can occur. When N = 10, 2N − 1 = 512. When N = 

52, 251 ≈ 2.25 × 1015. This is still a large number (which makes the tricks 

confusing and interesting). As an example, the reader may check that, 

with four cards, the eight possible Gilbreath arrangements are:

1 2 2 2 3 3 3 4

2 1 3 3 2 2 4 3

3 3 1 4 1 4 2 2

4 4 4 1 4 1 1 1.

As an aside, we fi rst did the examples for decks of sizes N = 1, 2, 3, 4. 

By enumerating all possibilities by hand, we saw the answer 2N − 1. If 

this is the right answer, it is so neat that there must be an easy proof. 

Notice that having a neat count is different from having a neat descrip-

tion. We give our descriptions next, followed by an appeal for help in 

inventing a good trick. The proofs are given at the end of the chapter.

The Ultimate Invariant(s)

To describe the results, we need some way of writing things down. For 

a deck of cards originally in order 1, 2, 3, . . . , N, record a new order 

(we call it π) by letting π(1) be the card at position 1, π(2) be the card 

at position 2, . . . , and π(N ) be the card at position N. Thus, if the new 

order of a fi ve- card deck is 3, 5, 1, 2, and 4, then π(1) = 3, π(2) = 5, 

π(3) = 1, π(4) = 2 and π(5) = 4. This may seem like a complex way to 

talk about something simple, but we can’t proceed without it. Thus, 

we can now say that “π is a Gilbreath permutation” is shorthand for “A 

deck of N cards starting in order 1, 2, 3, . . . , N is in fi nal order π(1), 

π(2), . . . , π(N ) after one Gilbreath shuffl e.”

The fi nal thing we need is the notion of the remainder modulo j. If 
we take a fi xed number j (e.g., j = 3), then any number (e.g., 17) has 

some remainder when divided by j. For example, 17 has remainder 

2 when divided by 3. In this case, we say 17 is 2 modulo 3. A set of 

numbers are distinct modulo j if their remainders are distinct. Thus, 12 

and 17 have remainders 0 and 2 and so are distinct modulo 3, whereas 
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14 and 17 are not, since 14 and 17 both have the same remainder 2 

modulo 3. With all these prerequisites, here is our main result. The 

abstract- looking statement is followed by some very concrete exam-

ples. The proof is given below.

Theorem. The Ultimate Gilbreath Principle. For a permutation 

π of {1, 2, 3, . . . , N }, the following four properties are equivalent:

1. π is a Gilbreath permutation.

2.  For each j, the top j cards {π(1), π(2), π(3), . . . , π(j)} are 

distinct modulo j.
3.  For each j and k with kj < N, the j cards {π((k − 1)j + 1), 

π((k − 1)j + 2), . . . , π(kj)} are distinct modulo j.
4.  For each j, the top j cards are consecutive in 1, 2, 3, . . . , N.

Here is an example illustrating the theorem. For a ten-card deck, we 

can deal off four cards into a small pile on the table (one by one) and 

then riffl e shuffl e them to lead to the arrangement π below:

4

5

6

3

7

2

8

9

1

10.

Thus, π is a Gilbreath permutation, so it satisfi es (1) by defi nition. The 

theorem now says that π has many special properties. For example, 

consider property (2). For each choice of j, the remainders modulo j 
of the top j cards are distinct. When j = 2, the top two cards, 4 and 5, 

have distinct remainders 0 and 1 modulo 2. When j = 3, the top three 

cards, 4, 5, and 6, are 1, 2, 0 modulo 3. This works for all j up to N, no 

matter what Gilbreath shuffl e is performed. 

Property (3) is our refi nement of the original general Gilbreath 

Principle. For example, if j = 2, it says that, after any Gilbreath shuffl e, 

each consecutive pair of cards contains one even value and one odd 
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value. If the even cards are red and the odd cards are black in the 

original arrangement, we have Gilbreath’s First Principle. The small 

refi nement is that we do not need to assume that N is divisible by j; the 

last k cards still have distinct remainders when divided by j, provided 

k < j and the number of cards preceding these cards is a multiple of j.
The fi nal one, property (4), needs some explanation. Consider our 

Gilbreath permutation π (written sideways to conserve space):

4 5 6 3 7 2 8 9 1 10.

The top four cards (here 4 5 6 3) were consecutive in the original 

deck. (They are out of order, but the set of four started out as consecu-

tive). Similarly, for any j the top j cards were consecutive in the original 

deck for any j.
The point of all of this is that any one of these parts gives a complete 

characterization. For example, if π is a Gilbreath permutation then π 

satisfi es property (3) for all j. Conversely, if π is any permutation sat-

isfying property (3) for all j, then π arises from a Gilbreath shuffl e. In 

one sense, this is a negative result. It says that there are no new hidden 

invariants—Gilbreath discovered them all. On the other hand, now we 

know and can stop brooding about this.

Property (2) is our new Ultimate Gilbreath Principle. We haven’t 

seen it elsewhere and it is the key to proving the theorem. What we 

don’t see is any way of making a good trick. In the hope of angering 

some readers into making progress in this direction, here is an unsuc-

cessful attempt.

You, the performer, show ten cards, each with a unique number, 

1, 2, 3, . . . , 10. The patter goes as follows: “Did you ever have to help 

your kids with their math homework? It’s getting pretty complicated. 

Our kids are doing binary, ternary, and octal arithmetic. They came 

home with something they call ‘modulo j.’” Explain modulo j (as we 

did before) and then continue, “Their teacher says the following stunt 

always works.” The cards are arranged in order, say, 1, 2, . . . , 10. They 

can be ordinary playing cards or index cards with bold numbers writ-

ten on them. Have the spectator cut the packet, deal any number onto 

the table, and then shuffl e the two packets together. Explain: “The 

top two cards are a full set modulo 2, so one should be even and the 

other odd. Let’s take a look. Now, the top three cards form a complete 

set modulo 3. Turn over the next card.” Explain how it’s true: “Let’s 
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see—4, 5, 3, well 3 is 0 modulo 3, and 4 is 1 modulo 3 and 5 is 2 mod-

ulo 3, so it worked then. Let’s see the next card. . . .” This continues 

for as long as you have the nerve to keep talking. 

To be honest again, we haven’t had the courage to try this trick 

out on our friends. It just doesn’t seem very good. What’s worse, the 

pattern described in property (4) of the theorem might be obvious. 

Indeed, this is the way (4) was discovered. We had proved the equiva-

lence of (1), (2), and (3) without knowing (4). When we tried the 

trick out, we noticed (4). Its discovery makes the proof much easier. 

Take a look at the proof in the following section.

The Mandelbrot Set

The Mandelbrot set is one of the most amazing objects of mathemat-

ics. Figure 2 shows a picture of the Mandelbrot set. A close look reveals 

a “leafy” quality on the edge of everything. Consider the bottom re-

gion of fi gure 2. We blow this area up in fi gure 3. Now, new “leafy” fi x-

tures appear. The bottom region of fi gure 3 is expanded to reveal the 

dazzling structure in fi gure 4. Figures 5 and 6 take closer and closer 

looks. Each reveals a rich, detailed structure.

There are many computer programs on the Web that allow explo-

ration of the Mandelbrot set.3 The appearance of refi ned structure 

keeps going forever. It has engaged the best minds in mathematics, 

physics, and biology. Moreover, as explained below, the pattern is “uni-

versal.” It appears in many other seemingly unrelated systems.

This is a chapter on shuffl ing cards and the Gilbreath Principle. We 

hope the reader is as surprised as we were to learn that there is an 

intimate connection between shuffl ing cards and the Mandelbrot set. 

The story is hard to tell, so here is a roadmap to what’s coming. We 

begin with a simple procedure: squaring and adding. This is really all 

that is needed to defi ne the Mandelbrot set. Next, we determine when 

repeated squaring and adding leads to a periodic sequence. Card shuf-

fl ing and the Gilbreath Principle now enter to describe the way the 

points of this sequence are ordered. All of the activity up to now has 

taken place with one- dimensional, “ordinary” numbers. The Mandel-

brot set lives in two dimensions. Only then can the Mandelbrot set be 

properly defi ned. At the end, we give a whirlwind tour of the Mandel-

brot set, explain its universality, and enter a plea for help in fi nding 

two- dimensional shuffl es that will explain the last remaining mysteries.
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Squaring and Adding. Repeated squaring is a familiar proce-

dure. Starting with 2, we get 2, 4, 16, 256, 65536, . . . , off to infi nity. 

Starting with a number less than 1, say with 1/2, we get 1/2, 1/4, 

1/16, 1/256, 1/65536, . . . . This sequence tends to zero. We will have 

to deal with negative numbers. Starting at −1 and repeatedly squar-

ing gives −1, 1, 1, 1, 1, 1, . . . . Things become more interesting if a 

fi xed number is added each time after. Suppose 1 is added each time. 

Starting with 0, squaring and adding 1 gives 02 + 1 = 1, squaring and 

adding 1 repeatedly gives 12 + 1 = 2, 22 + 1 = 5, 52 + 1 = 26, . . . off to 

infi nity. If instead we add −1 each time, we get 0, 02 − 1 = −1, (−1)2 − 1 

= 0, 02 − 1 = −1, (−1)2 − 1 = 0, . . . . This sequence bounces back and 

Figure 5. A further enlargement 

(image created by Paul Neave, 

neave.com)

Figure 6. An even further enlargement

(image created by Paul Neave, 

neave.com)

Figure 3. Enlarging part of the Mandel-

brot set (image created by Paul 

Neave, neave.com)

Figure 4. A further enlargement of part 

of the Mandelbrot set (image created 

by Paul Neave, neave.com)

Figure 2. The Mandelbrot set 

(image created by Paul Neave, 

neave.com)
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forth between 0 and −1 forever. It’s the same if we add −2 each time. 

This time the sequence goes 0, −2, 2, 2, 2, 2, . . . . Adding any number 

smaller than −2 or larger than 0 leads to a sequence that tends to in-

fi nity. Starting points between −2 and 0 lead to bounded sequences. 

(They don’t get arbitrarily far from 0 as time goes on). They are in 

the Mandelbrot set.

Periodic Points. Adding certain special numbers leads to se-

quences that cycle in a fi xed pattern. Let c be the value added after 

each squaring. Thus, the sequences are: 

0, 02 + c = c, c 2 + c, (c 2 + c)2 + c = c 4 + 2c 3 + c 2 + c, . . .

If such a sequence is to return to 0, then eventually one of the iterated 

terms must vanish. Consider the term c 2 + c. When is this 0? If c 2 + c = 0 

then either c = 0 or c + 1 = 0, i.e., c = −1. We saw above that adding −1 

each time gives 0, −1, 0, −1, 0, −1, . . . , a pattern with “period 2.” Con-

sider the next term c 4 + 2c 3 + c 2 + c. Which values of c make this 0? The 

value c = 0 works but we have seen this before. If c ≠ 0, we can divide 

through and consider c 3 + 2c 2 + c + 1. This is a cubic equation and there 

is a rather complicated formula for the roots of a cubic polynomial 

that shows that in this case, the value

1.75487. . .c
6

100 12 69

100 12 69

2

3

2
– – – –

3

3
=

+

+
=

works. Using this value for c, we get

0, −1.75487 . . . , (−1.75487 . . . )2 − 1.75487 . . . = 1.32471 . . . , 0, . . .

This pattern continues, repeating every third step. We say that c = 

−1.75487 . . . is a “period three” point.

The same scheme works to get points of a higher period. For ex-

ample, squaring c 4 + 2c 3 + c 2 + c and adding c gives c 8 + 4c 7 + 6c 6 + 6c 5 + 5c 4 
+ 2c 3 + c 2 + c. This gives two new values of c, both of which lead to points 

of period four. These are c = −1.3107 . . . and c = −1.9407 . . . . These in 

turn lead to the repeated sequences

c = −1.3107 . . . :  0, −1.3107 . . . , 0.4072 . . . , −1.1448 . . . , 0, . . .

and

c = −1.9407 . . . :  0, −1.9407 . . . , 1.8259 . . . , 1.3931 . . . , 0, . . . .
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New periodic sequences occur for each possible period. These can be 

found by fi nding the values of c where the nth iterate of “squaring and 

adding c” vanishes. They turn out to be exactly described by Gilbreath 

permutations.

The Shuffling Connection. To make the connection with shuf-

fl ing cards, write down a periodic sequence starting at zero. Write 

a one above the smallest point, a two above the next smallest point 

and so on. For example, if c = −1.75487 . . . (a period three point), 

we have:

. . . . . . . . .0

2

1 75487

1

1 32471

3

–

For the two period four sequences, we get for c = –1.3107 . . . :

. . . . . . . . . . . . .0

3

1 3107

1

0 4072

4

1 1448

2

– –

and for c = –1.9407 . . . :

1.9407 . . . 1.8259 . . . . 1.3931 . . . .0

1 42 3

–

For a fi xed value of c, the numbers written on top code up a permu-

tation that is a Gilbreath shuffl e. Here is the decoding operation. For 

example, when c = −1.3107 . . . , the numbers on top are 3 1 4 2. Start 

with the 1 and go to the left (going around the corner if you have to). 

This gives (1324). This is “cycle notation’’ for a permutation. It is read 

as “1 goes to 3, 3 goes to 2, 2 goes to 4, and 4 goes back to 1.” Rewrite 

this by putting the numbers 1, 2, 3, 4 in a row, and under them put 

what they go to in the cycle, as:

1 2 3 4

 3 4 2 1.

The reader may practice by taking the example c = –1.9407. . . . As 

we have seen above, it is 2, 1, 4, 3. Starting with 1 and going to the left 

gives the cycle (1234), and fi nally the two- line arrangement

1 2 3 4

 2 3 4 1.

The point of all this decoding is that the arrangement on the bot-

tom line is always a Gilbreath permutation, and furthermore, every 
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cyclic Gilbreath permutation of length n appears exactly once from a 

period n value of c.
We were told this result by Dennis Sullivan, who attributes it to the 

great mathematicians John Milnor and William Thurston. These are 

three of the greatest mathematicians of the twentieth century—the 

latter two are winners of the Fields Medal (often called “the Nobel 

Prize of mathematics”). Whomever this result belongs to, it sets up 

a fascinating connection that is just beginning to be understood. We 

state it as a formal theorem below along with further comments.

The Full Mandelbrot Set at Last. All of the activity above has 

been confi ned to the one- dimensional line. The Mandelbrot set lives 

in two dimensions. There is a notion of “square and add c’’ in two di-

mensions. The values of c where repeated squaring and adding stays 

bounded are exactly the points of the Mandelbrot set. Working in the 

plane, the values of c are two- dimensional: c = (c
1
, c

2
).

Figure 1 shows the Mandelbrot set. The values on the x- axis be-

tween −2 and 0 are the points discussed above. The big central heart- 

shaped region is called the cardioid. It is surrounded by blobs, and 

each of these is in turn surrounded by smaller blobs (and so ad in-

fi nitum). One of the main open research problems concerning the 

Mandelbrot set has to do with the values of c (now (c
1
, c

2
)) that give 

periodic sequences from the squaring and adding process. It is con-

jectured that each blob (the big ones, the smaller ones, and so ad 

infi nitum) contains one of those periodic points. Proving this con-

jecture would lead to the resolution of the outstanding local connec-
tivity conjecture. Sullivan told us about the connection with shuffl ing 

because shuffl es parameterize the periodic points on the x- axis. Is 

there some kind of two- dimensional shuffl e that parameterizes the 

two- dimensional periodic points? We don’t know but we’re thinking 

hard about it. 

 Some Math with a Bit of Magic 

Squaring and adding makes perfect sense in two dimensions, taking a 

point z to z 2 + c. There is a simple geometric description: A point z in 

two dimensions is described by its coordinates (x, y). Figure 7 shows 

(x, y) plotted as a dot with the line connecting the dot to 0. Also shown 

is the angle θ that the point (x, y) makes with the x- axis. To square the Figure 7. Squaring a complex point

(x2 – y2, 2xy)

(x, y)
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point (x, y), we square the distance along the line connecting (x, y) to 

0, double the angle to 2θ, and plot the new point. The new point can 

be given in coordinates as (x 2 − y 2, 2xy). Call this (x ′, y′). Adding c = 

(c
1
, c

2
) gives (x′ + c

1
, y′ + c

2
). This is repeated using the same value of 

c each time. If this procedure, starting at 0, leads to points that stay 

inside a large enough circle around 0, we put c in the Mandelbrot set. 

Figure 2 shows all such values of c.
A comprehensive picture book about the Mandelbrot set is Chaos 

and Fractals: New Frontiers of Science, by H. O. Peitgen, H. Jürgens, and 

D. Saupe.4 A discussion of shuffl ing and the Mandelbrot set can be 

found in the paper “Bounds, Quadratic Differentials, and Renormal-

ization Conjectures” by D. Sullivan.5 To observe professionals talking 

among themselves about the Mandelbrot set, see T. Lei’s book The 
Mandelbrot Set: Theme and Variations.6

Let us state the basic connection between shuffl ing cards and real 

points in the Mandelbrot set more carefully. Defi ne a sequence of 

polynomials P
1
, P

2
, P

3
, . . . , iteratively as P

1
(x) = x, P

2
(x) = x 2 + x, P

3
(x) 

= P
2
(x)2 + x = (x 2 + x)2 + x = x 4 + 2x 3 + x 2 + x, . . . , Pn(x) = Pn –1 

(x)2 + x. 

Thus, the top degree of Pn is 2
n. Dennis Sullivan proved that the real 

zeroes of Pn are “simple.” Each real zero can be used as the additive 

constant in the “squaring and adding” iteration. 

Theorem. Defi ne P
1
(x) = x and Pk + 1

 = Pk
2  + x for k < n. The real 

zeroes c of Pn that lead to periodic sequences of period n are in 

one- to- one correspondence with Gilbreath permutations that are 

n- cycles. The correspondence goes as follows: From c, form the 

iteration 0, c, c 2 + c, c 4 + 2c 3 + c 2 + c, . . . . Label the smallest of those 

values 1, the next smallest 2, . . . , and the largest n. Read these 

in right- to- left order as a cyclic permutation. Transform this to 

two- rowed notation. The resulting bottom row is a Gilbreath per-

mutation (characterized at the beginning of this chapter). Each 

cyclic Gilbreath permutation occurs exactly once through this 

correspondence.

Note that not every Gilbreath permutation gives rise to an n- cycle. 

For example, removing the top card and inserting it into the middle 

of the deck is a Gilbreath permutation that is not an n- cycle. The num-

ber of n- cycles among Gilbreath permutations has been determined 

by Rogers and Weiss.7 They show that this number is exactly 
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Here, the sum is over the odd divisors d of n, and μ(d ) is the so- called 

Möbius function of elementary number theory. That is, μ(d ) is 0 if d 

is divisible by a perfect square, and μ(d ) = (−1)k if d is the product of 

k distinct prime factors. Thus, for n = 2, 3, 4, 5, 6, the formula gives 

4
1 (22) = 1, 1

6 (23 − 2) = 1, 1
8 (24) = 2, 10

1 (25 − 2) = 3, and 1
1
2 (26 − 22) = 5 cyclic Gil-

breath permutations. For example, the three values of c for n = 5 give:

.

1.9854 1.9564 1.8424 1.40900

1.8607 1.6017 0.7047 1.3640

1.6254 1.0165 0.5920 1.2749

0

1 4

0

1 5 4

0

1 5 2

2 5 3

3 2

4 3

–

– –

– – –

These lead, respectively, to the two- line arrays:

1 2 3 4 5

2 3 4 5 1

1 2 3 4 5

3 4 2 5 1

1 2 3 4 5

4 3 5 2 1

where the second rows are Gilbreath permutations.

Recall that there are exactly 2n – 1 Gilbreath shuffl es. The formula 

above shows that there are approximately 2
n

n 1–

 Gilbreath n- cycles. Jason 

Fulman gives a formula for the number of unimodal permutations 

with a given cycle structure.8

To conclude, let us try to explain in what sense the Mandelbrot 

set is universal. For fi xed c, the square and add operation changes x 

to x 2 + c. As c varies, we have a family of different iteration schemes. 

Curt McMullen showed that any family of functions of the plane to 

itself has all the complexity of the Mandelbrot set complete with its 

holes, fractal dimensions, and infi nite subtlety. Of course, this also 

means it contains all the Gilbreath permutations described above. A 

more careful version of McMullen’s theorem strains the confi nes of 

this page.9
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We know of two applications of Gilbreath’s principles outside of 

magic. The mathematician N. G. de Bruijn (whom we met in chapters 

2, 3, and 4) published “A Riffl e Shuffl e Card Trick and Its Relation 

to Quasicrystal Theory” in 1987.10 The quasicrystals referred to are 

Penrose tiles. These are two shapes of tiles that can be used to tile 

the plane but only in a nonperiodic way (see fi gures 8 and 9). They 

have a fascinating story, which is detailed in Marjorie Senechal’s book 

Quasicrystals and Geometry, or the more accessible Miles of Tiles, written 

by the mathematician Charles Radin. Most accessible of all is Martin 

Gardner’s treatment in Penrose Tiles to Trapdoor Ciphers.11

A Bit of Magic

De Bruijn shows that the Gilbreath Principle leads to understanding 

useful facts about the properties of Penrose tilings. Along the way, de 

Bruijn worked the following extension of Gilbreath’s First Principle. 

Before starting, separate the cards so you have all clubs together, hearts 

together, spades together, and diamonds together. Form one twenty-

six- card pile with spades and diamonds alternating (SDSD . . . ). Then 

form another twenty-six- card pile with hearts and clubs alternating 

(HCHC . . . ). If the two piles are riffl e shuffl ed together, we know 

from before that each consecutive pair will consist of one red and one 

black. However, if the two piles are put together and the deck of fi fty-

two is cut freely, this need not work out. De Bruijn’s “extension” allows 

a free cut. He proves that either each consecutive pair contains one red 

and one black throughout, or each consecutive pair contains one ma-

jor suit (i.e., a heart or spade) and one minor suit (i.e., a club or dia-

mond). With suitable arrangement, major/minor may be replaced by 

odd/even or high/low, which might be more suited to a magic trick.

De Bruijn’s extension goes beyond the original Gilbreath. In light 

of our theorem, how can this be? De Bruijn adds an extra restriction 

(the packet cut off is not of a freely chosen size), but he gets his free-

dom at the end—a free cut. We have tried to marry de Bruijn’s exten-

sion with our ultimate principle. The mix makes a nice example of 

how progress occurs.

The second application outside card magic comes in the world 

of designing sorting algorithms for computers. Huge memory fi les 

are often stored on external discs. Several discs can be read at once. 

Figure 8. The two Penrose tiles

Kite Dart

Figure 9. Tiling with Penrose tiles
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Stanford computer scientist Donald Knuth used the Gilbreath Prin-

ciple to give an “improved superblock striping” technique that allows 

two or more fi les, distributed on discs, to be merged without possible 

confl ict (in other words, the need to read two blocks from the same 

disc at the same time). This is explained in Knuth’s monumental book 

series The Art of Computer Programming. A videotape of Knuth’s talk on 

this super block striping technique is available from the Stanford Uni-

versity Computer Science Department. 

Some Proofs. We continue by providing the promised proofs for 

some of the theorems above. Why are there 2N − 1 Gilbreath shuffl es 

of N cards? Let us select some arbitrary subset S = {s
1
, s

2
, . . . , sj } of {2, 

3, . . . , N }. Now form the Gilbreath permutation by placing j in position 

1, then j − 1 in position s
1
, j − 2 in position s

2
, etc., and placing the num-

bers greater than j in increasing order in the positions not in S. It is clear 

that all Gilbreath permutations can be uniquely built this way. Since the 

number of ways of choosing S is just 2N − 1, then we have the desired result.

Here is a proof that the four properties (1), (2), (3), and (4) listed 

in our Ultimate Gilbreath theorem are all equivalent. The arguments 

are elementary but not so easy to discover. They make nice examples 

of how card tricks can lead to mathematics.

Proof. After a Gilbreath shuffl e, the top j cards form an interval 

{a, a + 1, . . . a + j − 1} or {a, a − 1, . . . , a − (j − 1)} for some value 

of a. As such, they consist of distinct values modulo j. Thus, (1) 

implies (2). If π satisfi es (2) for each j then π satisfi es (3). To 

see this, consider π satisfying (2). Clearly, the entries in the fi rst 

block are distinct. But the top 2j are also distinct modulo 2j and 

consist of exactly two of each value modulo j. Since the top j are 

one of each value modulo j, it must be that π( j + 1), π( j + 2), . . . , 

π(2j ) are distinct modulo j. This in turn implies that π(2j + 1), 

π(2j + 2), . . . , π(3j ) are distinct, and so on. Clearly, (3) implies 

(2), so (2) and (3) are equivalent.

To see that (2) implies (1), observe that (2) implies that the 

top j cards form an interval of values. Suppose the top card (π(1)) 

is k. The next card must then be k + 1 or k − 1, since if it is k ± d 

for some d > 1, then the top d cards would not be distinct modulo 

d. Suppose the top j + 1 cards were a, a + 1, . . . , a + j. If the next 
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was not a − 1 or a + j + 1, but a + j + d  for some d > 1, then, again, 

modulo d, things would repeat. 

Finally, this “interval” property of π implies it can be decom-

posed into two chains k + 1, k + 2, . . . , n and k, k − 1, . . . , 1. For 

this, proceed sequentially. If the top card is k, the next must be 

k + 1 or k − 1. Each value that increases the top of the interval is 

put in one chain, and each value that decreases the bottom is put 

in the second chain. Since, for such intervals, increasing values 

occur further down in π, the two chains formed do the job. This 

fi nishes the proof (whew!).

Further Remarks

1. The decomposition into two chains is not unique. If we deal off k 

cards and, in the shuffl e, k + 1 is left above k, it is impossible to distin-

guish this from k + 1 being dealt off.

2. Instead of dealing, we can cut off and turn a packet of k face-up, 

then shuffl e the two packets together.

3. As a last mathematical detail: At the start of this chapter we gave 

a heuristic calculation of the chance that a well-shuffl ed deck of 2N 

cards has one red and one black card in each consecutive pair. Naïve 

heuristics suggest that when N is large, the pair choices are roughly 

independent and each one has the 2
1  chance of coming up red/black 

in some order. This would result in a probability of 
2

1
N  of happening. 

However, the events we are considering are not independent. In par-

ticular, if we start with a shuffl ed deck of N red and N black cards, the 

chance that, after the fi rst card is selected, the next card selected has 

a different color from the fi rst card is slightly greater than 2
1 . After all, 

there are only N − 1 cards with the fi rst card’s color left in the deck, 

while there are still N cards with the opposite color. This imbalance 

happens for each of the pairs selected, and becomes greater as the 

number of cards gets smaller. For example, for a four- card deck (i.e., 

N = 2), the chance that the fi rst two cards form a red/black pair is .3
2  

The result of multiplying all these “imbalances” together is that the 

probability that our well-shuffl ed deck will have the desired property is 

exactly 2
2

N
N

N

a k
, which is approximately equal to 

2

N
N
r , using the Stirling ap-

proximation again. For N = 26, this is 1.353 . . . × 10−7, which amounts 

to less than one chance in seven million. 
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Some History

Gilbreath’s First Principle originally appeared as the trick Magnetic 

Colors in the magic magazine the Linking Ring  in July 1958. The Link-
ing Ring is the offi cial publication of one of the two largest American 

magic organizations, the International Brotherhood of Magicians, or 

IBM. (The other is the Society of American Magicians, or SAM.) The 

Linking Ring has been published monthly since 1923. A typical issue 

contains advertisements from magic dealers, historical articles, edito-

rials denouncing magical exposés, and a large section of tricks con-

tributed by IBM members. You cannot fi nd it in libraries. As with most 

magical information, it is for magicians only.

Back in 1958, young Norman Gilbreath introduced himself in the 

magazine as follows: “I have been interested in magic for 10 years. I am 

a math major at the University of California in Los Angeles (UCLA). 

Being a supporter of the art of magic, I have created over 150 good 

tricks and many others not so good. Here are a couple I hope you 

can use.” He then provided a brief description of what is now called 

Gilbreath’s First Principle, in which he dealt the deck into two piles, 

following the shuffl e, and revealed that the cards in each pair have 

opposite colors.

Gilbreath’s trick was picked up and varied almost immediately. In 

the January 1959 issue of the Linking Ring, card experts Charles Hud-

son and Edward Marlo wrote, “It is not often one runs across a new 

principle in card magic. . . . Norman Gilbreath’s ‘Magnetic Colors’ has 

proven the most popular card effect to appear in the parade for a long 

time.” Gilbreath weighed in eight years later by introducing his second 

principle in the June 1966 issue of the Linking Ring. By this time, Gil-

breath was a professional mathematician working for the Rand Corpo-

ration. He held this job for his entire career. The second principle was 

featured in this special issue of the magazine devoted to Gilbreath’s 

magic. It included new uses for the fi rst principle and many noncard 

tricks. Gilbreath published later variations that involved mixing red 

decks with blue decks and face-up cards with face-down cards (with 

some effort, you can fi nd these in the magic magazine Genii ).13

The nonmagical public heard about the Gilbreath Principle in Mar-

tin Gardner’s Scientifi c American column in August 1960. He expanded 

this into a chapter in his third book, New Mathematical Diversions from 
“Scientifi c American.” New presentations and applications have regularly 
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appeared in magic journals. A booklet titled “Gilbreath’s Principles,” 

written by mathematics teacher and magician Reinhard Muller, ap-

peared in 1979. Chapter 6 of Justin Branch’s Cards in Confi dence, vol. 1, 

is fi lled with many variations.14 While our Ultimate Gilbreath Princi-

ple shows there can be no really new principle, the variations make for 

good magic.



Chapter 6

Neat Shuffles

Some magicians, and some crooked gamblers, can shuffl e cards per-

fectly. This means cutting the deck exactly in half and riffl ing the two 

halves together so that they alternate perfectly (see fi gure 1). Eight 

perfect shuffl es bring a fi fty-two- card deck back to where it started. We 

have friends who can do this in under forty seconds, almost without 

glancing at the pack. To see why crooked gamblers are interested in 

such things, consider an ordinary pack of cards with the four aces on 

top. After one perfect shuffl e, the aces are every second card. After 

two perfect shuffl es, the aces are every fourth card. Thus, if four hands 

are dealt out, the dealer gets the four aces. It is natural to ask what can 

be done by combining shuffl es in various ways. Is there a way we can 

start with four aces on top and do some combination of shuffl es so 

that the dealer gets the aces when fi ve hands are dealt around? While 

eminently practical, this last question is a math problem. We’ll give the 

answer later when we have a few more tools.

To actually carry out a perfect shuffl e is well beyond most magi-

cians. We estimate that there are fewer than a hundred people in the 

world who can do eight perfect shuffl es in under a minute. We’re 

not going to try and teach this here (but see chapter 11). There is 

Figure 1. A perfect shuffl e 

of an eight-card deck
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an easy-to-perform alternative that is useful for performing good 

magic tricks and has all the mathematical juice of perfect shuffl es. 

A reverse perfect shuffl e is shown in fi gure 2. When actually carried out 

with cards, the procedure looks like what is shown in fi gure 3. To try 

things out, take eight cards with values 1 to 8 (suits do not matter) 

from top to bottom. Carry out three reverse perfect shuffl es, making 

sure to leave the original top card back on top each time. You will 

fi nd the cards back in order 1 to 8. The mathematics of these reverse 

perfect shuffl es turns out to be exactly the same as the mathematics 

of perfect shuffl es. 

Perfect shuffl es are neat shuffl es indeed. There are other neat shuf-

fl es that appear in card magic. Dealing cards into piles and picking 

up left- to- right (e.g., fi fteen cards into three piles of fi ve) is certainly 

neat. Dealing the top card down on the table, putting the next card 

under the packet, dealing the next down, the next under, and so on, 

is the down–and–under (or Australian) shuffl e. Dealing cards from 

one hand to the other, putting successive cards alternately above and 

below previously dealt cards is called the Monge shuffl e (see fi gure 4).

In the rest of this chapter we fi rst show how all of these neat shuffl es 

can be used for a solid magic trick. Following this we take a closer 

look at perfect shuffl es. The Monge and milk shuffl es are treated next. 

Finally, the down- and- under shuffl es are discussed. Throughout, we 

illustrate the theory with card tricks. By the end, the reader will have a 

graduate course in the basic shuffl es used in card magic. We will also 

see that the different shuffl es are all part of one picture, showing the 

power of mathematics. 

A Mind-Reading Computer

Make up a small deck of twelve cards as follows: Use the ace through 

six of spades and the ace through six of clubs. Arrange these as if 

Figure 2. Reverse perfect 

shuffl e of an eight-card deck
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Figure 3. Doing a reverse perfect shuffl e
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they were a new deck: The ace of spades on top followed by the two 

of spades, and so on, ending with the six of spades. Then the clubs, 

in reverse order—the six of clubs, followed by the fi ve of clubs, and 

so on, with the ace of clubs on the bottom. This puts the cards into a 

mirror- like arrangement of a new deck. This trick can be performed 

as you read—go get a deck of cards and arrange them! We authors will 

perform for you.

The packet is going to act as a computer. It needs some input from 

you. Think of a small number, say, two, three, or four; deal the packet 

of twelve cards into that number of piles, face-down on the table, from 

right to left. Reassemble the piles into a single packet by putting one 

on the next (left to right, or right to left). Repeat once more—think of 

a new small number, deal that many piles, and reassemble.

The next step of mixing involves a reverse perfect shuffl e as ex-

plained above. Hold the packet face-down as if you were about to deal 

them in a card game. Spread through the packet, pushing out alter-

nate cards as in fi gure 3.

When you are through, remove the forward cards as a group and 

place them on top. This method of mixing is the inverse of a perfect 

shuffl e. You have removed every other card and placed this half of the 

deck on top.

The packet of cards is tracking your input. Decide if you want to 

shuffl e again, and if so, how (as another reverse perfect shuffl e or 

again by dealing into two, three, or four piles and reassembling). 

Carry this out. When you are done shuffl ing, let the computer know 

by performing what we called a Monge shuffl e. To do this, hold the 

packet in dealing position. Deal the cards from one hand to the other 

as follows: Push the top card off and take it in the opposite hand. Push 

Figure 4. Monge shuffl e of a 

six-card deck
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the next card off on top of the fi rst card. Push the next card off and 

put it underneath the fi rst two. The next card is placed on top, the next 

underneath, and so on until you are done.

To review, the cards have been mixed in a way that couldn’t have 

been predicted. The next phase involves you choosing a card and hav-

ing the computer fi nd it. 

First, your choice. Hold the cards face-down in dealing position. 

Start moving cards one at a time from the top of the packet to the 

bottom. Stop whenever you want. The current top card is your choice. 

Deal it, face-down, off to one side. The computer will now fi nd out 

which card you picked by a process of elimination. 

This fi nal elimination phase uses the down- and- under shuffl e. This 

eliminates cards one at a time until only one remains. Proceed as fol-

lows: Hold the eleven- card packet face-down in dealing position. Deal 

the top card down onto the table (in a place apart from your selec-

tion). Put the next card under the packet (from top to bottom). Deal 

the next card onto the table, put the next under the packet and so on. 

This eliminates cards one at a time until one card is left in your hand.

You have selected a card freely from a mixed deck and the cards 

have determined a card from those remaining. The two cards should 

be a match in value—like the two of spades and the two of clubs. Take 

a look!

How It Works. In rough outline, the trick works as follows. The 

small deck was initially set so that matching pairs are symmetrically 

arranged about the center. Thus, the top and bottom cards match, 

the cards second from top and second from bottom match, and so 

on. The cards at the center (positions six and seven) form a match-

ing pair. This kind of symmetric arrangement is called “stay- stack” by 

magicians.

The fi rst idea is this—the various methods of shuffl ing preserve the 

central symmetry. To understand, reset the cards in the initial new 

deck order, turn them face-up, and deal into a small number of piles. 

Pick up the piles in order. The symmetry is preserved. This is also true 

for the reverse perfect shuffl e. Some further ways of shuffl ing that 

preserve symmetry are described below. 

When the shuffl ing is fi nished, unbeknownst to the audience, the 

cards are still in stay- stack. The next shuffl e, the Monge shuffl e, has 

the effect of transforming the cards so that matching pairs are six 
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apart. Now the deck has a different kind of symmetry. This arrange-

ment can be cut at random without changing the fact that matching 

pairs are six apart.

Up to now, the deck size (twelve cards) has not been crucial. All the 

properties used generalize to any size deck (of even size) set initially 

in stay- stack order. The fi nal down- and- under phase works as follows. 

Placing cards from top to bottom repeatedly is just the same as making 

a random cut. When the top card is placed aside as the selection, its 

matching mate is in the center of the remaining eleven cards. When 

eleven cards are processed by the down- and- under elimination deal, 

the central card winds up last. This fi nal phase also works with decks of 

sizes 4, 12, 44, 172, . . . where the kth term of this list is obtained by add-

ing 2k − 1 to the previous term, starting at four. Twelve cards were used 

as the smallest number that allows for a reasonable trick.

Magical Details

1. To begin with, the cards don’t have to be the ace through six. It is 

better to take six matching pairs at random, e.g., two red kings, two 

black aces, etc. These can be casually removed at the start as you ex-

plain about “programming the cards as a computer.”

2. To explain the trick to the reader, we had to make the reader do 

all the work. It seems better to have the performer handle the cards in 

the initial phases of mixing and the Monge shuffl e. This makes things 

go rapidly. Then, the packet can be handed to the spectator for the 

selection after a visible demonstration of how cards should be moved 

from top to bottom. We turn away during the selection, and then turn 

back, having the spectator perform the fi nal down- and- under phase. 

The ending needs to be explained and built up a bit, perhaps as fol-

lows: “You have freely chosen a card from a shuffl ed pack. Now the pack 

has retaliated. If we are lucky, the pack has chosen the closest possible 

card to your selection. Every card has a mate—the king of hearts and 

the king of diamonds, the two black tens, and so on. Please turn your 

selection over—ah, the nine of hearts. If we are lucky, the pack should 

produce the matching red nine—would you turn it over please?”

3. As explained initially, the cards had to be dealt into two, three, 

or four piles each time. In fact, they can be dealt into any number of 

piles, two through twelve, and picked up to preserve central symme-

try. This is a new insight, explained for the fi rst time in this book. To 
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explain, say you are asked to deal into fi ve piles. Do so, say, from right 

to left. Then pick up the piles in order, from left to right, with the 

single exception that the last pile is put underneath the fi rst four. 

For six cards, no special pickup is required (either left to right or 

right to left works). For 7, 8, 9, 10, or 11, a pickup sequence that pre-

serves stay- stack is possible. The details are left to the reader. With a 

bit of practice, one can perform these pickups rapidly to look like a 

further randomization. Instead of asking for a number, you can ask 

for the spectator’s name and deal one pile per letter. Thus, “Helga” 

would lead to fi ve piles dealt. This kind of personalization takes the 

mathematical curse off the dealing. 

4. An effective ploy that we have used from time to time allows the 

trick to be immediately repeated. At the fi nish of the trick, the two 

matching cards are face-up and the pile of ten “discarded cards” face-

down. Casually pick up the ten- card packet, remove the bottommost 

three cards, and place them on top, reversing their order. Then pick 

up the two matching cards, putting one on top and the other on the 

bottom. You are set to repeat, starting from the beginning.

5. The presentation has been given with playing cards. The trick 

can be presented in many other forms. One way adopts a suggestion 

by Alex Elmsley. It uses twelve blank cards (like index cards) inscribed 

with the names of famous lovers in history. Thus, Anthony and Cleopa-

tra, Romeo and Juliet, Liz Taylor and Richard Burton, etc. Each name 

is written on a separate card. At the start, the pairs are placed together. 

To set the trick, after showing the pairs, execute a Monge shuffl e (over, 

under, over, etc.) “to separate the pairs.” Then begin the trick as ex-

plained. One performer made up a packet of a dozen photographs 

and performed with these. 

A different line of presentation can be based on opposites attract-

ing. Phrases like heaven and hell, devil and angel, etc., can be in-

scribed on the cards.

6. For varied presentation, it may be natural to work with a differ-

ent number of cards. The place that twelve is used above is in the fi nal 

elimination, to wind up with the center card. There are many varia-

tions of down and under that may accommodate. For example, with 

a sixteen- card packet, one can begin the elimination by dealing two 

hands, picking up the dealer’s hand and dealing it into two, and so 

on. This results, fi nally, in a single card that will be the card originally 

eighth from the top.
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7. Dai Vernon (1894–1992), perhaps the greatest sleight-of-hand 

performer of the twentieth century, liked this trick and thought of a 

great ending. This lifts the trick out of the impromptu class but also 

elevates it to a very strong piece of magic. Vernon’s idea shows that the 

fi nal matching pair has been preordained. Since the fi nal pair can be 

any of six, this necessitates having six different endings. These are best 

left to the individual performer. What we have in mind is something 

like this: After the matching pair is revealed, the performer holds a 

sealed envelope that contains a prediction which clearly states that the 

two black nines will be chosen. Of course, it may be that the predic-

tion comes from another pocket, or the performer’s wallet, etc. If the 

predictions can be put into full view at all times, so much the better, 

e.g., “I had a premonition this might happen—would you get up and 

look at the bottom of your chair. I taped an envelope there before the 

start of the show. . . .”

8. In correspondence, the great Chicago card man Ed Marlo (1913–

1991) suggested a variation. This begins with the spectator cutting a 

twelve- card packet, then moving cards from top to bottom and stop-

ping at will. The top card (the selection) is put aside. The remaining 

cards are treated by the down- and- under deal as above, resulting in 

one card remaining. This card is put onto the original selection, leav-

ing ten cards. The performer now “does as the spectator did,” moving 

cards from top to bottom, stopping after fi ve cards have been moved. 

The next card is put aside. Finally, the nine- card packet is treated by 

the elimination procedure, starting by placing the top card under the 

packet, discarding the next, and so on. The one card remaining is 

placed aside. The four selected cards are now turned over—they prove 

to be four- of- a- kind.

The trick works as stated if the initial twelve cards are three sets of 

four- of- a- kind, say four aces, four twos, and four queens. These are 

 arranged as

A Q 2 A Q 2 A Q 2  A Q 2.

Aside from its double climax, this differs in that it eliminates the pre-

liminary shuffl ing. This may be regarded as good by some who have 

the ability to substitute some sleight of hand. It is possible to do cer-

tain shuffl es that retain the arrangement described above. For exam-

ple, the packet can be reverse perfect shuffl ed in groups of three, or it 

can be dealt into fi ve piles, which are assembled in order 1 3 5 2 4. This 
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last, a subtlety of the underground California card man Bob Page, is 

capable of broad generalization.

A Bit of History

The trick described above assumed its shape over a twenty-year period. 

It began with a problem posed by magician Bob Veeser to Ed Marlo. 

Marlo worked out a way to do the basic effect using sleight of hand 

and published a version in the American magic magazine Tops in No-

vember 1967. On reading this, we fi gured out the non–sleight-of-hand 

version described above and communicated it to Marlo in that same 

month. Magicians have an active network. Before the month was out, 

Marlo sent back the four- of- a- kind variation described above. From 

that day to this, we have enjoyed performing the trick and developing 

some of the variants detailed above.

Magic is a world that revolves around secrets. We showed this secret 

to a nameless cad who communicated it to a prolifi c writer, Karl Fulves. 

Fulves used Marlo’s version of the trick (without permission) in a book 

for the public called The Magic Book. Fulves has infuriated some magi-

cians by publishing cherished secrets without permission or credit. Of 

course, this also means his books have some good magic in them.

A Look Inside Perfect Shuffles

Our own introduction to the mathematics of perfect shuffl es came 

through cutting school and hanging around New York magic stores in 

1954. We met Alex Elmsley, a brilliant young inventor of magic tricks 

who was visiting America from England. He explained that there are 

two kinds of perfect shuffl es—the “out- shuffl e” and the “in- shuffl e.” 

The out- shuffl e leaves the original top card back on top. The in- 

shuffl e begins by splitting the deck into two equal piles and shuffl ing 

perfectly, leaving the original top card second from top. The two kinds 

of shuffl es are similar, but you will fi nd it takes six in- shuffl es to recy-

cle an eight- card deck (versus three out- shuffl es). It takes fi fty-two in- 

shuffl es to recycle a fi fty-two- card deck. We are embarrassed to report 

that we discovered this by actually shuffl ing the cards. Non- sleight of 

handers can easily follow along by noting that there are also two types 

of reverse perfect shuffl es (see fi gure 5) determined by the original 

top card either winding up on top or not.
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Alex Elmsley had discovered that by combining ins and outs, you 

can do amazing things. For example, it is useful for a magician to be 

able to bring the original top card to a given position (say, thirteen) 

by a sequence of shuffl es. Can this always be done? If so, how? Here 

is his method. Subtract one from the fi nal position (so 13 − 1 = 12). 

Express this last number in binary arithmetic, using zeros and ones 

(so 12 = 1100). Interpret the ones as in- shuffl es and the zeros as out- 

shuffl es, left to right. This sequence of shuffl es does the job (in, in, 

out, out brings the original top card to position thirteen). This was 

the thirteen- year- old member of your author team’s introduction to 

binary arithmetic. It seemed just as magical as the tricks themselves. 

It is natural to ask just what can (and can’t) be done with the two 

types of perfect shuffl es. Can any arrangement be realized? Can we 

shuffl e in a way that starts with the four aces on top and winds up with 

the aces at positions 5, 10, 20, 25 (so they come to the dealer’s hand if 

fi ve poker hands are dealt)? 

We solved this problem in joint work with William Kantor, a Uni-

versity of Oregon math professor. It turned out to be months of hard 

work for the three of us. To explain the results, we have to use the 

idea of a centrally symmetric arrangement (which we also described 

in the previous section). Consider the following arrangement of an 

eight-card deck: A B C D D C B A. The two As (top and bottom cards) 

are symmetric about the center. Similarly, the two Bs, the two Cs, and 

the two Ds. With a fi fty-two- card deck, the top and bottom, the sec-

ond from top and second from bottom, and the middle pair (26 and 

27) are centrally symmetric pairs. A Philadelphia policemen, J. Russell 

Duck (who published as Rusduck), discovered the following invariant 

of both in-  and out- shuffl es. He is the one who coined the term “stay- 

stack.” (Incidentally, he also started the fi rst magic journal, Cardiste, 
devoted exclusively to card magic.) Following either kind of shuffl e, 

Figure 5. Out-shuffl es and in-shuffl es of 

a deck of 2n cards
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centrally symmetrical pairs stay centrally symmetric. Thus, consider 

the original top and bottom cards. After any sequence of in-  and out- 

shuffl es, they must occupy centrally symmetric positions. The same 

holds for any starting symmetrical pair.

One reason for undertaking our study of just what is possible with 

in-  and out- shuffl es is to see if there are other useful invariants. What 

we have so far is that only rearrangements preserving central symme-

try are possible. It follows that there is no sequence of in- shuffl es and 

out- shuffl es that results in the top two cards being transposed and the 

rest of the deck remaining in order. (Actually, there is one exception 

to this statement. Can the reader see what it is?)

Our study showed that, in a rough sense, magicians had found 

all the hidden symmetries. Decks of size a power of two (for exam-

ple, eight or thirty-two) have extra symmetries (a lot of them!), but 

aside from these and a few exceptions for decks of size twenty-four 

or smaller, the only pattern preserved by both in-  and out- shuffl es is 

stay- stack and a simple parity condition that cuts things down by a fac-

tor of two (or four, when both the full permutation and the permuta-

tion of pairs contribute). For now, let us just say that for decks of size 

52, 60, 68, . . . , there is no parity consideration. Rusduck’s stay- stack 

is all that is preserved. Any arrangement consistent with stay- stack is 

achievable by a sequence of in-  and out- shuffl es. In particular, con-

sider again the four aces on top of a fi fty-two- card deck. Earlier, we 

asked if there were some sequence of shuffl es that stacks them for a 

fi ve- handed poker game. That is, puts the aces in positions 5, 10, 15, 

and 20. Since there are many ways of completing these positions con-

sistent with stay- stack, there is indeed some way to get there using in-  

and out- shuffl es. One can even make the aces come out in a known 

order. We hasten to add that we have no idea what such a sequence is, 

or even what the length of the shortest possible sequence achieving 

this is.

Those wishing to study perfect shuffl es in more depth are encour-

aged to get a copy of S. Brent Morris’ book Magic Tricks, Card Shuffl ing, 
and Dynamic Computer Memories.2 This treats the history, tries to teach 

perfect shuffl es, and has further tricks. It also contains further applica-

tions to computer hardware and software design. 

Just to show that the fi eld is still active, we record the latest break-

through. Consider the following inverse problem: What sequence of 
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shuffl es is required to bring a given card to the top? This problem, 

posed by Alex Elmsley in 1958, appeared to have no neat solution. It 

can always be done, but the actual sequence depends on the size of 

the deck in a seemingly unknowable way. Indeed, magicians can pur-

chase a book listing the required patterns for various deck sizes. One 

easy case for the inverse problem occurs for decks of size a power of 

two (e.g., eight- card decks or thirty-two- card decks). Paul Swinford, a 

Cincinnati card man, discovered that for such deck sizes, the pattern 

of shuffl es that brings the top card to a given position also brings the 

card in that position to the top.

However, computer scientists S. Ramnath and D. Scully recently 

discovered a solution.3 Here is our version of how they do it. The fol-

lowing may appear to be cryptic. More details are in our paper “The 

Solutions to Elmsley’s Problem.”4 Suppose we start with a deck of 2n 

cards, and we label their initial positions 0, 1, . . . , 2n − 1 (i.e., the 

top card is in position 0). To determine the shuffl e sequence that will 

bring the card in position p to the top, we do the following. First, let 

r be the integer that satisfi es 2r − 1 < 2n < 2r. Note that we can assume 

that 0 < p < 2n − 1, since if p = 0 then we don’t have to do anything, and 

if p = 2n − 1 then r consecutive in- shuffl es does the job. Next, let t be 

the largest integer not exceeding 2r(p + 1)/2n, and write t = t 
1
t 

2 
. . . tr 

in its base two expansion. For the next step, let = s
1
s

2
 . . . sr be the last 

r digits of the base two expansion of 2nt. Finally, form the binary se-

quence u 1u 2 . . . ur by defi ning ui = si + ti where the addition is done 

modulo two. Then the desired shuffl e sequence can be read off from 

left to right from the ui by interpreting 0 as an out- shuffl e and 1 as an 

in- shuffl e. 

As an example, suppose our deck has 2n = 52 cards, and we would 

like to bring the card in position 37 to the top. In this case, r = 6 since 

25 < 52 < 26 = 64. Thus, since 64 × 38/52 = 46 + 10/13, then t = 46 = 

101110 base two. Also, since 52 × 46 = 100101011000 in binary, then 

the last six digits of this are 011000. Thus, the ui sequence is the mod-

ulo two sum 110110, and so the desired shuffl e sequence is I I O I I O 

(i.e., in, in, out, in, in, out). Note that the last shuffl e is superfl uous. 

We admit that this computation might be diffi cult to perform in real 

time, so to speak. Perhaps the reader can fi nd a simpler way to explain 

it or, better yet, an even better way of producing the desired shuffl e 

sequence. 
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A Look Inside Monge and Milk Shuffles

The Monge (or over/under) shuffl e is carried out by successively put-

ting cards over and under (see fi gure 6). Thus, the top card is taken 

into the other hand, the next is placed above, the third below these 

two, and so on. For example, eight cards in order 1, 2, 3, 4, 5, 6, 7, 8 

from top down wind up in order 8, 6, 4, 2, 1, 3, 5, 7 after one Monge 

shuffl e. There is also a “down” Monge shuffl e. Here, the top card is 

taken into the other hand, the second card is placed under this, the 

third card above, and so on. Eight cards wind up in the order 7, 5, 3, 

1, 2, 4, 6, 8 after a down Monge shuffl e. The milk (also known as the 

Klondike) shuffl e involves successively sliding off the current top and 

bottom cards of the packet, dropping these pairs onto a single pile on 

the table as they are “milked” off. Eight cards milk shuffl ed end up in 

the order 4, 5, 3, 6, 2, 7, 1, 8.

The two shuffl es are inverses of one another. Thus, a milk followed 

by a down Monge (or vice versa) leaves the original order unaltered. 

This means that many properties of milk and Monge shuffl es coin-

cide, such as their cycles and orders.

Monge shuffl es are frequently used to reorder a pack. For example, 

if cards are initially arranged in matching pairs (e.g., two red queens 

on top, two black sevens next, etc.), after one Monge shuffl e they are 

in a refl ection (or centrally symmetric) arrangement Q, 7, . . . , 7, Q. 

After a second Monge shuffl e, they are in a parallel arrangement, 

with the matched pairs exactly half a deck apart. Our computer mind- 

reading trick gives a magical example of the utility of switching from 

refl ection to parallel.

Gaspard Monge (1746–1818) was an eighteenth-century geometer, 

mainly remembered today for Monge cones, which are geometrical 

objects associated with partial differential equations. He worked out 

the basic mathematical details of these shuffl es in 1773.

The milk, or Klondike, shuffl e can also be used for tricks. An early 

example of the combination of Monge and milk shuffl es for cheating 

at cards appeared in the anonymously authored Whole Art and Mystery 
of Modern Gaming in 1726.5 The author begins with a deck arranged 

ace through king four times over, with suits alternated. The top thir-

teen cards are over/under shuffl ed and placed on the table. Follow 

this by over/under shuffl ing the next thirteen cards, and so on. The 

four thirteen- card packets can be assembled in any order. Following 
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Figure 6. Doing a Monge shuffl e
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this, milk shuffl e the entire deck. Now the cards can be repeatedly cut. 

The resulting arrangement guarantees success at the game of faro. In 

this game, as popular in its day (circa 1750–1850) as casino blackjack 

is today, the player chooses some value and pairs of cards are dealt off; 

the fi rst card of the pair wins (if the value is matched), while the sec-

ond card of the pair loses (if the value is matched). If two equal values 

come up (a split), the house takes half of all bets on this value. Play-

ers can bet on any value to win (or lose). With the careful shuffl ing 

described above, each value alternates between winning and losing. 

Because of the cut, players cannot predict the fi rst appearance of a 

value but, following this, if the fi rst appearance wins, the next will lose, 

the next will win, and the last will lose. Since bets can be made at any 

time, a knowledgeable player in cahoots with the dealer can clean up. 

Formulas for the order (that is, how many times the deck must be 

shuffl ed to recycle) and position of the top card after a milk or Monge 

shuffl e are easy to work out. However, they also follow from what we 

know about perfect shuffl es as explained below.

A Look Inside Down- and- Under Shuffles

The down- and- under shuffl e is a familiar elimination procedure with 

ancient precursors going back to the Roman historian Flavius Jose-

phus. It affects all of us when we play “(S)he loves me, (s)he loves me 

not” with the petals of a daisy. In its simplest form, a packet of n cards 

has its top card placed down on the table, its next placed under on the 

bottom of the packet, the next down, the next under, and so on, until 

just one card remains (see fi gure 7).

Figure 7. A down-and-under 

shuffl e with a six-card deck
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The question, “What card winds up last?” has an easy answer: Sub-

tract from n the highest power of two that is less than n, and double 

this number. Thus, if n = 12, the highest power of two less than 12 is 8, 

so 12 − 8 = 4 and 2 × 4 = 8. So in this case, this last remaining card is 

the card that was originally in position 8.

There are many fi ne tricks that place a chosen card into the right 

position. Here is one of ours. Have the spectator shuffl e a packet of 

2n cards. Deal part of the packet alternately into two piles of equal 

size. The spectator may choose either of the tabled piles or the packet 

remaining in his or her hand. If a tabled pile is chosen, the spectator 

looks at (and remembers) the bottom card in the packet remaining 

in hand and drops this packet on top of the chosen tabled packet, 

discarding the remaining packet. A down- and- under deal on the com-

bined packet will reveal the chosen card as last (see fi gure 8). If the 

nontabled packet is chosen, the spectator looks at the bottom card 

and drops this packet on either of the tabled packets, and then does 

a down- and- under deal. Put this bland way, the trick is poor. Can the 

reader dress it up to make something performable? 

There is an extensive mathematical development and more careful 

history of down- and- under shuffl es in Herstein and Kaplansky’s fi ne 

book, Matters Mathematical.6 The connection to perfect shuffl es is de-

veloped in the following section.

All the Shuffles are Related

So far, we have introduced in-  and out- shuffl es, reverse in-  and out- 

shuffl es, the Monge shuffl e, the milk shuffl e, and the down- and- under 

shuffl e. Of course, there is a natural pairing between the out-  and 

reverse out- shuffl es. If you do a perfect out- shuffl e and follow it with 

a perfect reverse out- shuffl e, the cards return to their original order. 

The two shuffl es serve as each other’s inverse. This means that the 

properties of repeated out- shuffl es can be deduced directly from the 

properties of repeated reverse out- shuffl es. Indeed, if a deck of cards 

recycles after K out- shuffl es, then the actual arrangement after any 

number M of out- shuffl es is exactly the same as the arrangement after 

K − M reverse out- shuffl es. For fi fty-two cards, eight out- shuffl es re-

cycle the deck, so K is eight, and therefore two out- shuffl es leave the 

cards in exactly the same arrangement as six reverse out- shuffl es.
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Figure 8. Doing a down-and-under shuffl e
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The relation between in-  and out- shuffl es is simple too: After an 

out- shuffl e, the top and bottom cards stay at the top and bottom (of 

course). The rest of the deck’s cards move the same as an in- shuffl e 

of a deck with two fewer cards. Because of this, properties of repeated 

in- shuffl es are completely determined by properties of repeated out- 

shuffl es. For example, eight in- shuffl es recycle a deck of fi fty cards.

The relation between perfect shuffl es and Monge shuffl es (over, 

under, over, under, . . . ) and their inverses, milk shuffl es, explained 

above, is more subtle but still easy. The alert reader may have noticed 

there are two types of Monge shuffl es—after we deal off the top card,  

the next card can be put over (and then continuing under, over, etc.). 

Call this an “up” shuffl e. Alternatively, after we deal off the top card, 

the next card can be put under (then continuing over, under, over, 

under, etc.). Call this a “down” shuffl e. Can the reader give a simple 

description of an inverse down shuffl e? 

On the surface, Monge and milk shuffl es seem quite different from 

in-  and out- shuffl es. Here is the connection (pointed out to us by the 

Princeton mathematician John Conway): In an out- shuffl e the sym-

metrically located pairs (top and bottom, second from top and second 

from bottom, etc.) stay paired. However, these pairs move around rela-

tive to each other. For example, twelve cards arranged A B C D E F F 

E D C B A are out- shuffl ed to A F B E C D D C E B F A. Since the top 

half determines the bottom half, we may study how the pairs permute 

by just following the top half. This is:

A B C D E F " A F B E C D.

This is just a milk shuffl e with the cards face-up to start (so card F starts 

on top). All of this means that properties of Monge and milk shuffl es 

are equivalent to properties of out- shuffl es. It means that patterns and 

calculations found over two hundred years of study of Monge shuffl es 

apply to out- shuffl es and that our theorem, determining all possibili-

ties when in-  and out- shuffl es are combined, determines all possible 

arrangements when the two types of Monge shuffl es are combined.

The connection between perfect shuffl es and the down- and- under 

shuffl es lies further beneath the surface. It was discovered by Paul 

Lévy, the great French probabilist. He was confi ned to bed as a child 

for many weeks and found solace in fooling around with simple card 

tricks. Years later, when confi ned to bed as an older man, he again 
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began fooling around with simple shuffl es. He discovered that the 

structure of a down- and- under shuffl e of a deck of size n is the same as 

the structure of a milk shuffl e, provided that 2n − 1 divides a number 

of the form 2t + 1. The defi nition of structure (technically, cycle  struc-

ture) would take us too far afi eld, but “same structure” means that, 

after relabeling the cards, the two arrangements are the same. In par-

ticular, the number of repetitions required for the deck to return to 

its original order is the same. For example, a milk shuffl e of fi ve cards 

and a down- and- under shuffl e of fi ve cards each fi x two positions and 

cycle the other three. In particular, both recycle after three repeti-

tions. Here, 2n − 1 = 9, which divides 23 + 1. We do not know if there is 

a connection between down- and- under shuffl es and perfect shuffl es 

for decks of more general size.7

To conclude, we observe that there are many variations possible. As 

an example, an early conjuring book, John Gale’s Cabinet of Knowledge,8 

presents a bevy of tricks and gambling demonstrations based on shuf-

fl ing cards by pushing off two cards in a group, then the next three (in 

a group) on top, the next two underneath, and so on, alternating by 

twos and threes. Gale remarks that an n- card deck recycles after n − f 
shuffl es with f  being the number of fi xed points of the original shuf-

fl e.9 As far as we know, Gale’s shuffl es have not been studied further. 

With obvious variations, they suggest new territory to be explored.

Neat shuffl es are a real marriage of magic and mathematics. Discov-

eries have come from both sides. One has to be careful, as the tricks 

are close to the boring, dealing- into- piles tricks that everyone dreads. 

With work and luck we are sure there is more gold to be discovered. 

We hope the reader fi nds some good tricks and enjoys the mathemati-

cal mortar as well. 



A thirteen- year-old boy slowly opens the door to the world’s largest 

magic shop. It’s two in the afternoon and the boy has cut school, mak-

ing the trip on New York’s grimy subways. The shop is Louis Tannen’s 

Magic Emporium at Forty-second Street and Sixth Avenue in New 

York’s Times Square. Not the usual street-level shop with doggie doo 

and plastic vomit in the window, Tannen’s is on the twelfth fl oor of the 

Wurlitzer Building. You have to know about it to fi nd your way in. It’s 

a slow day, but some of the regulars look up and smile. There’s Manny 

Kraut, a huge man whose fat hands somehow make the most beautiful, 

delicate trick cards. There’s Harry Drillenger, a retiree who used to 

play the musical saw in vaudeville. He loves fl ourishes with cards and 

has taught a few to the boy. One time, when cards had accidentally 

been dropped on the fl oor, Harry picked them up, one by one, care-

fully wiping them clean with a silk scarf he always wore. “Cards don’t 

like to be dropped,” he admonished.

The owner of the shop came out to see who had walked in. He was 

Lou Tannen himself, a red- headed pixie whose eyes twinkled. When 

he demonstrated tricks, he whistled silently. “Hey, I’ve got something 

for you,” Tannen said to the boy. Happy to be recognized, the boy shyly 

approached the counter. “You’re our best young sleight of hander,” 

Tannen said. “We’re giving you a prize.” He pulled out a new fi ve-

dollar bill and said, “You can buy whatever you like.” Five dollars was a 

lot of money for the boy. The subway cost fi fteen cents each way then, 

Chapter 7

The Oldest Mathematical

Entertainment? 
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and some days the boy would run low on money and walk back from 

Forty-second Street to Two-hundredth Street.

The boy looked around the shop with very wide eyes. He saw crystal 

caskets, bright yellow tubes imprinted with stenciled Chinese charac-

ters, he saw really thousands of things. Behind the counter were the 

books. Magic books that carefully told the secrets. An amazing set of 

books had just been remaindered. John Northern Hilliard’s Greater 
Magic was by far the biggest and deepest tome ever. A publisher had 

put it out in fi ve volumes, hoping to have a best seller. It hadn’t worked 

out and Tannen’s had the set of fi ve for two dollars a volume. After a 

long time, the boy asked, “Could I buy Greater Magic?” Tannen  adopted 

his shrewd look. He knew the boy had no extra money and offered, 

“Well, I’ll knock it down to eight for you.” The boy’s face fell; he didn’t 

have the extra three dollars. “Oh, go ahead and take them,” Tannen 

said gruffl y, handing the boy the treasures and pocketing the fi ve. 

Harry and Manny smiled.

What treasures they were. Hilliard had been a newspaper man and 

then the advance man for America’s largest magic show, Howard Thur-

ston’s Magical Extravaganza, which travelled from city to city, week in 

and week out. Hilliard would arrive a week in advance, arrange public-

ity with the newspapers, set up interviews, and talk the show up with 

the local magicians. Despite it being his day job, he loved magic and 

the crazy magicians. He collected the best and the brightest, the most 

secret of secrets, and he wrote them up over a thirty- year period. This 

became Greater Magic.
Hilliard had a grand style and could invoke the mysteries of the ages 

without seeming too corny. One chapter was called “Old Wine in New 

Bottles.” It begins with the quotation, “When a new trick comes out, 

I do an old one.” It continues, “We that are old—the phrase is Rich-

ard Steele’s, not mine—have seen so many magical effects arise and 

then slowly sink down, fade out and pass into obscure interment, the 

limbo of forgotten things, that we are not going to pray your patience 

and forbearance for this chapter, which is, in a manner of speaking, 

an adventure in antiquity. The ‘recreations’ and ‘amusements’ in the 

quaint terminology of the old chroniclers—in the pages that follow 

are among the oldest effects in legerdemain.”

Hilliard goes on to sketch out his version of the history of magic 

and then to present some of the crown jewels of magic. Hilliard’s book 

is still in print. It has been gloriously republished with some missing 
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chapters and background. It you want to intrigue a youngster of any 

age, buy a copy of Greater Magic. 
One of the jewels that Hilliard described in his “Old Wine” 

chapter—“glazed with the patina of age”—he called the Miracle Divi-

nation. It was one of the boy’s fi rst mathematical tricks. It still makes 

for terrifi c magic. Here is the way we do it today.

The Miracle Divination

To perform this trick, you will need twenty- four pennies and a nickel, 

dime, and quarter. Sixty- four cents in all. You can keep them together 

in a small purse and then just dump them into a pile on the table. Ca-

sually pick up six of the pennies. If it is your style, proceed as follows: 

“You know, it takes money to make money. Who would like to help us 

think about making money?” Three spectators are brought up. “I’m 

going to start each of you off with some capital.’’ Hand the fi rst specta-

tor a penny, the second spectator two pennies, and the third spectator 

three pennies. This should be done casually, without comment—the 

spectators shouldn’t be aware that they have different amounts. Push 

the nickel, dime, and quarter forward on the table. Address the three 

spectators (call them John, Mary, and Susan) as follows: “First, a lesson 

in leveraged mortgages. I’ll turn my back and, while I promise not to 

peek, you should all keep your eyes on me. John, the three coins on 

the table represent three properties you can buy. I’d like you to pick 

up one of them. Mary, there are two options left. Please make a free 

choice, high or low. Susan, you get what’s left—what can I say, it’s better 

than nothing.’’ With your back still turned, continue the patter as fol-

lows: “There will be points on our loans. Whoever picked up the nickel, 

that’s our smallest property. Please take the same number of pennies 

from the pile as the number I gave you originally. Now, one of you has 

the dime. That’s a larger property. Please take twice as many pennies as 

I gave you. Finally, whoever took the quarter, please take four times as 

many pennies as I gave you, as a reward for having grand visions.”

The performer keeps talking, “Now, I’m bankrolling this operation, 

and one of the keys to being a successful banker is to know your cus-

tomer. John, you made the fi rst choice. Let’s see, are you a risk taker?” 

While talking, turn to face the audience, casually sweep the remaining 

pennies into your hand, and dump them in a pocket. Of course, you 

will have secretly counted them and (as explained below) this tells 



106 Chapter 7

you who took what. “John, were you watching me? Did I peek? Let’s 

see, I’ll have to use psychology—you couldn’t make up your mind be-

tween small and large—you took the dime. Mary, you played it big—

you picked up the quarter, is that right? Susan, you were left with the 

nickel. It’s only small change—better luck next time.’’

The Effect

Counting the Ways. The performer initially puts twenty-four pen-

nies in a pile on the table. From these, six are removed: One is given to 

the fi rst spectator, two are given to the second spectator, and three are 

given to the third spectator. No particular mention is made of these 

numbers. Proceeding as explained, at the end the performer fi nally 

turns around and counts how many pennies are left. The number will 

be 1, 2, 3, 5, 6, or 7, and this result uniquely codes all the spectators’ 

choices. If the three original objects are coded as N, D, and Q, the 

chart in table 1 tells each spectator’s choice. For example, the fi rst row 

codes the case in which Spectator 1 takes the nickel, Spectator 2 takes 

the dime, and Spectator 3 takes the quarter. Following the instruc-

tions, Spectator 1 removes one more penny, Spectator 2 removes four 

more (twice as many as originally given), and Spectator 3 removes 

twelve more (four times as many). Thus, 1 + 4 + 12 = 17 are removed 

from the eighteen left on the table, so one penny is left. As we see from 

the table, this codes 1 2 3

N D Q . The other rows can be similarly checked. 

Practical performance details are given below, but fi rst we give the his-

tory of this fi rst trick!

Some History. The history of magic contains its own mysteries. One 

remarkable coincidence that we do know: The fi rst two serious printed 

magic books came out in the same year—1584. The books appeared in 

France and England, respectively, and have completely different con-

tents. The fi rst, J. Prevost’s La Premiere Partie des Subtiles et Plaisantes In-
vention, published in Lyon, tries to teach magic in some detail—effects, 

methods, and what to say, all described in a leisurely fashion. Prevost 

describes two versions of the Miracle Divination.

The other 1584 magic book, Reginald Scot’s Discoverie of Witchcraft, 
was mainly written to protest the growing mistreatment of the old and 

frail as witches. Along the way, he includes a chapter describing magic 

tricks. Scot’s book contains a different set of sleight-of-hand tricks and 

Table 1. Coding the remainder for the 

spectators’ choices

 Spectators’ choices

 Number left 1  2  3

 1  N  D  Q

 2  D  N  Q

 3  N  Q  D

 5 D  Q  N

 6 Q  N  D

 7 Q  D  N
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no mathematical tricks. The French and English traditions evolved 

quite differently. In England, later magic books copied Scot’s book 

for one hundred fi fty years with but small variations and additions. In 

France, there was much greater variety and a defi nite attempt to im-

prove on the old, to look back and unify past achievements. 

One clear line of development can be seen by following the progress 

of the three-object divination. The second French magic book appears in 

1612. This is Gaspard Bachet’s Problemes Plaisants et Delectables Qui se sont 
par les Nombres (also published in Lyon). Bachet describes the three-ob-

ject divination and then goes on to prove what may be the fi rst theorem 

of mathematical magic: He shows that a straightforward generalization 

to four or more objects will not work. He gives a four-object version 

along with a fantastic early example of what we called generalized de 

Bruijn sequences in chapter 4. We pause to describe Bachet’s results.

The four-object trick involves four spectators initially given 1, 2, 3, 

and 4 counters, respectively. First, they each choose one of four ob-

jects while the performer’s back is turned. Then, whoever took object 

A takes as many more counters as originally given. Whoever took B 

takes four times as many as originally given. Whoever took C takes six-

teen times as many as originally given. (D gets nothing more.) 

The number of counters remaining in the pile on the table again 

uniquely codes the objects chosen. In addition to giving a table similar 

to table 1, Bachet presents a circular arrangement (see fi gure 1). An 

outer circle shows the twenty-four numbers that can arise as remain-

ders. The inner circle codes the objects chosen in a clever way: Under 

the remainder actually occurring is a 1, 2, 3, or 4, signifying what the 

fi rst person chose. The next number, going down around the circle, 

shows what the second spectator chose and the third number shows 

what the third spectator chose. This determines what the fourth spec-

tator chose. This arrangement is the earliest known occurrence of a 

generalized de Bruijn sequence.

Bachet’s second contribution gives counterexamples to the claims 

of earlier writers who believed that a straightforward extension of the 

three-object divination works out. Bachet shows by example that the 

obvious extension (fi ve people given 1, 2, 3, 4, and 5 counters, respec-

tively, and the person choosing the i th object takes 2i − 1 times what was 

originally given) does not give a unique coding. The permutations: 

a b c d e
1 2 3 4 5  and a c d b e

1 2 3 4 5  give the same number—121 removed—and 

so the same remainder. In fact, the four-object case with this coding 
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Figure 1. A page from Bachet’s book

fails as well. Can the reader see why? Bachet’s version is different and 

his four-object version works fi ne. Let us return to performance magic.

Ron’s $1.96 trick

Bachet’s four-object divination required a special table lookup. We 

next describe a performable four-object divination that can be done 

by “pure thought.”

The Trick. The performer dumps a pile of change onto the table 

and patters as follows. “The way we think about money in this society 
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is complex: We would all like more, yet most of us do not want to look 

greedy. I have turned my back and want four of you to assist me.  Allen, 

please pick up any single coin from the pile on the table. Betty, I want 

you to select a coin too, but choose one with a value different from 

Allen’s. Charlie, would you please pick up one of the coins, again of 

different value from what Allen and Betty chose. Finally, Diane, I hope 

you have been watching. I would like you to choose a coin different 

from what the others have chosen.”

The performer continues: “As further reinforcement for your 

thoughts, I want you to take some more money from the table. This 

time it does not have to be a single coin. Diane, you chose last. What-

ever you took before, now take four times that amount. You can take or 

give change if that will help—so if you took the dime, take forty cents 

more. Allen, you went fi rst. I’m not sure what you took, but probably 

you were greedy—take as much more from the table as you fi rst took. 

“Betty, please take double the amount you took. Charlie, you also 

chose late. Please take three times the amount you fi rst took—so if you 

took the nickel, take fi fteen cents more.”

At this stage, the performer turns back around and, without asking 

questions, reveals all four spectators’ choices. For each, this can be either 

the amount originally chosen, or the total amount in hand. The presen-

tation can be varied. One can analyze their personalities, as in, “ Allen, 

you are a subtle man—you did not want to choose a quarter, too greedy, 

but the opposite is too obvious too—you picked up a dime.” For other 

spectators you might patter as follows: “Charlie, I cannot picture what 

you did at the moment you chose, but do you have all your money in your 

fi st? Let me take your wrist and listen— that sounds like twenty cents.”

How It Works. To begin with, the performer dumps $1.96 on 

the table—six pennies, six nickels, six dimes, and four quarters. The 

trick has been designed so that the amount left on the table codes the 

spectators’ choices. Further, we have created this variation so that you 

can easily unravel the information in your head, without consulting a 

chart or memorizing anything.

First, fi gure out how much is left on the table. Call this total amount 

T for total. If the four spectators are called A, B, C, D (Allen is A, Betty 

is B, Charlie is C, and Diane is D in our example), then we will use the 

code A = 4, B = 3, C = 2, D = 1. 
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Step 1: Reduce T modulo 5. The remainder will be one of 1, 2, 3, 

4, which will tell you who took the penny.
Step 2: Reduce T modulo 4. The remainder r taken in 1, 2, 3,4 

codes who took the dime. Thus, remainder 4 means Spectator 

A took the dime, and so on.

Step 3: Divide T by 5, ignoring the remainder, and add this to 

3 × r. The result modulo 5 tells you who took the nickel.
Step 4: The remaining spectator took the quarter.

An Example. Suppose the choices initially made are

.
A

nickel
B

quarter
C

dime
D

penny

Following your instructions, A removes fi ve cents more, B removes 

fi fty cents more, C removes thirty cents more, and D removes four 

cents more. This makes an additional eighty-nine cents removed. 

When you turn back around you see sixty-six cents, which is what we 

call the total T.

Step 1: 66 modulo 5 is 1, so Spectator D took the penny.

Step 2: 66 modulo 4 is 2, so Spectator C took the dime.

Step 3: 5
66  rounded down is 13. Thus, 13 + 3 × 2 (from step 2) 

equals 4 modulo 5, so Spectator A took the nickel.

Step 4: The remaining spectator, Spectator B, took the quarter.

Why It Works. First, observe that if a spectator took x coins dur-

ing the second phase of the trick (x = 1, 2, 3, or 4), then the code 
for that spectator is 5 − x. After the fi rst phase, a total of 1 + 5 + 10 

+ 25 = 41 cents has been removed from the table, leaving $1.55, or 

155 cents. Suppose that for the second phase, p pennies, n nickels, 

d dimes, and q quarters have been removed. Hence, the amount left 

on the table is 

 T = 155 − (p + 5n + 10d + 25q). (7.1)

For step 1, we reduce T modulo 5 to get T ≡ −p (mod 5). Thus, p ≡ 

−T (mod 5), and so the code for the spectator who took the penny is 
5 − p ≡ T (mod 5).

For step 2, we reduce T modulo 4 to get T ≡ 3 − (p + n + 2d + q) 

(mod 4). However, we now use the fact that exactly ten coins have 
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been removed from the table during the second phase, so that p + n 

+ d + q = 10. Plugging this in, we get T ≡ 1 − d (mod 4), i.e., d ≡ 1 − T 

(mod 4). Hence, the code for the spectator who took the dime is 

r ≡ 5 − (1 − T ) ≡ T (mod 4).

For step 3, we divide equation (7.1) by 5 to get

 31 2 5 .
T p

n d q
5 5

– – ––=  (7.2)

Since p = 1, 2, 3, or 4, when we round down T
5  to the next whole num-

ber, which we denote by 5
T7 A, we have

30 2 5 .
T n d q
5

– ––=< F

Now, reducing this equation modulo 5, we get

5
2 ( 5),mod

T n d––/< F

i.e.,

5
2 ( 5).modn T d– –/ < F

So, the code for the spectator taking the nickel is 5 − (− 5
T7 A − 2d ) ≡ 5

T7 A + 

2d (mod 5) ≡ 5
T7 A + 3r (mod 5), as claimed. The remaining spectator 

took the quarter.
This version of the trick is eminently performable. It will take work 

to familiarize yourself with the rules and to get facility with the division 

steps involved. An easy way (in step 3) to calculate the remainder of T 

divided by 5 is just to double T and divide by 10. For example, 5
66  = 10

2 66#  

= 10
132 , which rounds down to 13. At fi rst this can be slow and painful, 

but with practice it will fl ow smoothly. In performance, we have found 

that a tiny bit of mnemonics helps. 

penny  copper-policeman  (copper penny)
nickel  nickelodeon  (nickelodeon)

dime  tin can  (one thin dime)
quarter stick  (quarter staff)

Using mnemonics, one creates vivid visual images that the mind is able 

to recall easily. The list above associates easy- to- picture objects with 

the four coins. As you go through the trick, you will deduce choices 
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sequentially. For example, you may deduce that Charlie took the 

penny. There are other computations to come and you want to keep 

this in mind. Picture Charlie in a battle with a policeman—fi sticuffs 

fl ying. It takes an instant and will stick with you. If Diane took the 

dime, picture her crushing the tin can. The more vivid and strange a 

picture you make, the easier it is to recall. 

Variations. Over the years, magicians have performed hundreds 

of variations of the basic three-object divination. Some performances 

are supported by elaborate plots. One such performance involves a 

murder mystery, the basic objects being a knife, a gun, and a noose. 

This kind of presentation allows for performance in theaters for huge 

audiences. At the other extreme, Californian Glenn Gravatt, a detec-

tive in real life, performs a version involving a single spectator and a 

one-, fi ve-, and ten-dollar bill. The spectator puts the bills into three 

separate pockets and, after following some simple instructions, Glenn 

determines the bills’ locations by the number of coins left on the table.1

One problem that intrigues us: What are some subtle ways of fi nd-

ing out the total? In our version, we have to count the remainder. 

Spectators may notice this, giving them a clue to the way the trick 

works. We have thought of having coins in a bag and weighing what is 

left. We have thought of dumping the handful of change remaining 

into a glass of black ink and using the displacement of the liquid to tell 

the total. We are sure there is a great simple variant to be found. We 

hope readers will tell us if they fi nd an elegant solution. 

Early Magic 

The history of the three-object divination really touched us when 

one of us acquired a copy of the fi rst serious French magic book—

J. Prevost’s aforementioned La Premiere Partie des Subtiles et Plaisantes 
Inventions. There are fewer than ten known copies of the book ex-

tant; holding the actual volume makes its tricks come to life in a way 

that microfi lms or reproductions can’t. Maybe the author handled our 
copy; it is over four hundred and twenty-fi ve years old as we write this.2 

In his book, Prevost gives complete performance details for the three-

object divination, including the advice to draw the relevant table of 

permutations upon the palm of your hand. He also gives a variation 

using thirty counters, which has disappeared from later literature.
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With the history made real, the search was on. Was Prevost’s descrip-

tion the earliest? For a long time, we didn’t know. One solid prem-

ise concerning history is this: Never accept a clear fi rst appearance. 

The history of magic is not a well- studied area. Magicians have done 

the best they can but magicians simply aren’t trained scholars. Never-

theless, a band of dedicated amateurs has begun to make progress in 

pushing back the date of the earliest known appearance. While Pre-

vost’s and Scot’s books are the two most important early “serious magic 

books,” a picture has emerged of extensive bits and pieces published 

earlier. The scholarly fi nding of magicians Bill Kalush and Vanni Bossi 

led to many other early discoveries.3 The best history of magic is the 

newly issued second edition of S. W. Clarke’s The Annals of Conjuring.4 

The appendices, particularly those authored by Hjalmar and Thierry 

dePaulis, identify numerous pre- 1584 items.

Our breakthrough in tracing the history of the three-object divina-

tion came only recently (we had been looking for more than twenty 

years). A true historian, Albrecht Heeffer, wrote a paper titled “Récrèa-
tions Mathèmatiques (1624): A Study on Its Authorship, Sources, and In-

fl uence.”5 Heeffer’s immediate object of study is the fi rst-known book 

to use the title Mathematical Recreations. This appeared anonymously in 

1624 and was reprinted in many subsequent editions. Scholars have ar-

gued vehemently over its authorship. We will not enter that labyrinth 

here but encourage the reader to read Heeffer’s wonderful overview. 

In the course of his work, Heeffer traces the lineage of many standard 

tricks. From Heeffer we found earlier appearances of the three-object 

divination and some later scholarship. The trick was a standard item 

in books teaching arithmetic.

After Heeffer opened our minds, we looked back at the standard 

“earliest source” for modern arithmetic. This is Fibonacci’s Liber Abaci, 
published in 1202. (Fibonacci was also known as Leonardo Pisano.) 

This is fi nally available in a modern English edition.6 In the eighth 

part of the twelfth chapter of this amazing manuscript we fi nd that 

Fibonacci has a version of the three-object divination. His version in-

volves three spectators; one of whom chooses gold, the next silver, the 

last tin. To determine their choices, Fibonacci assigns them the num-

bers one, two, and three. The trick now proceeds numerically (without 

coins or counters). The spectator who chose gold doubles his num-

ber, the spectator who chose silver multiplies by nine, and the specta-

tor who chose tin multiplies by ten. These three products are added 
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together and the sum is subtracted from sixty. The performer is told 

the answer to this last subtraction (call it T ). The T codes the three 

choices: Divide by 8 to write T = 8 × A + B. Then A gives the number of 

the gold chooser, and B gives the number of the silver chooser. This, 

of course, determines the tin chooser.

We don’t quite know what to make of Fibonacci’s version. As de-

scribed, it’s a typical, awful math trick, perhaps suitable for a class of 

school children but far from performable for modern audiences. All of 

the tricks that Fibonacci describes have this fl avor. While it is possible 

that medieval audiences might have enjoyed this, we doubt it. There 

is another possibility. Fibonacci was trying to teach people arithme-

tic, not magic. Maybe he took standard tricks, eliminated presentation 

and props such as counters, and made them into numerical exercises 

in a roughly uniform way. If this is the case, it is a worthwhile exercise 

to go over the other tricks in Fibonacci’s book with an eye toward cre-

ating performable versions. The three-object divination, the way we 

have presented it, eliminates any mental arithmetic for the spectators. 

The counters fade into the background and the effect remembered is 

one of simple reading. It is certain that some of the old wine will be 

exquisite if proper serving methods are devised. 

Fibonacci presents several technical variations: For instance, the 

numbers given to the three spectators can be any three consecutive 

numbers. He develops some theory and says that variations with four 

or fi ve objects can be devised. This pushed the start of mathematical 

magic back to 1202. Evidence suggests that, in fact, it may go back 

much further.

How many magic tricks are there?

We can use the remarkable coincidence that occurred in 1584 to esti-

mate the number of magic tricks. The coincidence is the appearance 

of the fi rst two serious magic books, Reginald Scot’s Discoverie of Witch-
craft, and J. Prevost’s La Premiere Partie des Subtiles et Plaisantes Inventions. 
As mentioned above, these are very different books. Scot’s book is a 

wide- ranging debunking of witchcraft. Along the way, he gives succinct 

but clear descriptions of about fi fty-two magic tricks. Prevost’s book is 

a “how to perform” manual with longer descriptions of approximately 

eighty-four tricks. 
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The two books present us with a natural experiment. We have long 

felt that the tricks in common usage then don’t differ all that much 

from the tricks in common usage now. At any rate, most of the tricks 

in Prevost’s and Scot’s books have a very modern ring—manipulation 

of coins, cards, and balls, simple mathematical tricks, the cut and re-

stored rope, torn thread, the paddle trick, and many others. Most of 

these tricks are still widely used today. 

Suppose that each author wrote his book by making a more or less 

random selection out of the common pool of tricks in general use at 

that time. Suppose there are n tricks in common use, of which Scot 

chooses s and Prevost chooses p. Then one can estimate n from a 

count of the number c of common tricks. This procedure is known as 

a “capture/recapture” estimate; it is commonly used to estimate the 

number of fi sh in a lake—take a sample of size s, tag them, then take 

another sample of size p, and count the number c of tagged fi sh in 

the second sample. The method was used to estimate the number of 

people not counted in the U. S. census in the year 2000.

The usual estimate of n is

( )

( )( )
.n

c
s p

1

1 1
=

+

+ +
t

In the magic books example, s = 52, p = 84, and c = 7. This gives the es-

timate n 8
53 85= $t  ≈ 563 for the number of tricks in common use in 1584.

This seems high at fi rst. To put it in perspective, consider that the 

two books together contain about 129 tricks between them. Scot’s 

book contains only a handful of card tricks: A brief description of card 

control with a fairly modern ring to it and the marvelous trick involv-

ing cutting to the aces and changing them to kings. Prevost’s book 

contains no card tricks at all. It doesn’t seem unreasonable to posit 

100–200 card tricks in the common domain. After all, Gerolamo Car-

dano (1501–1576), a celebrated writer, physician, and mathematician, 

describes modern- sounding card tricks much earlier, and books con-

taining dozens of card tricks appear soon thereafter.7

Conversely, Prevost’s book contains a handful of mathematical 

tricks, while Scot’s book contains none. The next French book to 

appear (Bachet’s) is fi lled with mathematical tricks. It doesn’t seem 

unreasonable to hypothesize 75–100 mathematical tricks then in com-

mon usage. Neither book explicitly describes the cups and balls or 
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several other tricks that are written up soon after. Even this rough 

estimate gives about 129 + 200 + 150 = 479 tricks. We hope this makes 

the estimate of 552 tricks more plausible.

The method of estimating  n ( )

( )( )

c
s p

1

1 1
= +

+ +t  comes along with a stan-

dard estimate of its accuracy. One shouldn’t hope for an accurate es-

timation based on two samples. The usual estimate of the standard 

error vt  for nt  is:

( ) ( )

( 1)( 1)( )( )
.

c c
s p s c p c

1 2

– –
2

v =
+ +

+ +t

In the Scot/Prevost example this gives vt  ≈ 163. A classical confi dence 

interval for n is nt   ±  1.645vt . This gives the interval [234, 820] centered 

at 552 as a 90 percent confi dence interval for the number of tricks in 

common usage.

For the above calculation to be valid, it is necessary to think of at 

least one of the two authors making a random selection of the tricks 

from a common pool. This is a bit far- fetched—one may imagine an 

author as more likely to include popular tricks or simpler, easy- to- 

perform or easy- to- describe tricks. Any such deviation from a random 

sample leads to an increase from the above method of estimating nt  

by n. If there were a strong deviation in one of these directions, it 

would lead to a large overlap. We fi nd the overlap of seven remarkably 

small. For the record, we counted the following seven tricks in the 

overlap: Grandmother’s Necklace, The Box of Grain Transposition, 

Burnt Thread, Blow Book, Eating a Knife, Knife through Tongue, and 

Cut-Off Nose. Of course, if the books were aimed at different audi-

ences, then the potential overlap is diminished.

Let us fi nish these caveats by recalling that later books did a huge 

amount of copying from these fi rst sources. It seems clear that Scot’s 

and Prevost’s books were independent efforts, while later books 

weren’t. Thus, these fi rst books present us with a unique opportu-

nity to do some educated detective work. Background on capture/ 

recapture methods may be found in a survey article by George Seber 

in the Encyclopedia of Statistics.8

We began this chapter by telling the story of how one of your authors 

became interested in mathematical magic and then in mathematics. 

Here is a similar “crucial moment” for your second author. A young boy 

of twelve sits quietly in the back of his seventh-grade algebra class, idly 

looking out the window. The teacher eventually notices that the boy 
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is not paying attention to the material, and after class asks him what’s 

wrong. The boy eventually admits that he already knows how to solve 

all the problems in the class book and frankly wonders if there are any 

math problems that he couldn’t solve. The teacher thinks for a minute 

and then says, “Here is a problem I don’t think you can do. Imagine 

that you start with a population of one hundred mice that then begin 

to breed. However, the rate at which they breed is proportional to the 

square root of the number of mice that are currently present. Thus, as 

the number of mice increases, the rate at which they multiply also 

increases. The question is then how many mice will there be at some 

fi xed time later.” Well, the teacher was right. The boy couldn’t solve a 

problem like this (in particular, because the solution involves solving a 

Figure 2. Richard Schwab and one of 

your authors (circa 1946, from the 

Richmond Independent)
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differential equation, something he had never even heard of before). 

The sympathetic teacher then handed the boy a book and said, “Read 

this book. By the time you come to the end, you will be able to solve 

problems like the ‘mice’ problem.”

The teacher was Richard Schwab at the Harry Ells Junior High 

School in Richmond, California, and the book was Elements of the Differ-
ential and Integral Calculus by Granville, Smith, and Longley, published 

in 1941. (Now available on Amazon for as little as twenty-fi ve cents!) 

To the boy at that time, the book was magical. Beautiful trigonomet-

ric formulas, mysterious derivatives, and amazing integrals, all linked 

together by these elusive, infi nitely tiny dx’s that went racing down to 

zero. It was simply an amazing eye- opener at a critical time in the boy’s 

development that had a profound effect on his life, even to this day.



Mathematicians are sometimes seen as the ultimate nerds. An old joke 

goes: “An outgoing mathematician is one who looks at your shoes dur-

ing conversation.” Your authors do not fall into this mode. Each of us 

has had show business careers and gives more than fi fty talks a year (in 

addition to our scheduled classes). By now, nothing makes us nervous 

in public presentations. Except for just one time!

In May 1990, John Solt invited us to give a talk at Harvard’s Depart-

ment of East Asian Languages and Civilizations colloquium. We are 

not sinologists but knew John through magician- historian Ricky Jay. 

We had been fi ddling with some probability and magic speculations 

around an ancient Chinese text, the I Ching, or Book of Changes. The 

idea of a talk emerged as a way of making contact with the community 

of Chinese historians who occupy the Harvard-Yenching Institute. We 

brazenly gave our talk the title:

Secrets of the I Ching Revealed.

We were surprised to fi nd an audience of fi fty or so, from blue- haired 

little old ladies who use the I Ching for fortune-telling to graduate stu-

dents who study the book as one of the fi ve canons of Chinese lit-

erature. It turns out that the I Ching is about three thousand years 

old and, in Chinese culture, is a rough equivalent of the Old Testa-

ment in Western culture. Some of our Chinese colleagues in Harvard’s 

Mathematics Department had to memorize sections of the I Ching in 

grade school. They were in the audience. Most intimidating was a 

group of professors who had just run a six- month seminar on the I 
Ching. Some of this appeared in the book Sung Dynasty Uses of the “I 

Chapter 8

Magic in the Book of Changes
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Figure 1. The I Ching poster

“Two people have had a profound influence on me.
One is Orville Stamm,  ‘The Strongest Boy in

 the World’.  He played 
 the violin with an

 enormous bulldog
 suspended from the

crook of his bowing arm. He pizzicatoed as the

pounded out the accompaniment as Orville sang

bulldog pirouetted.  For a finale, Orville lay on

 the stage and a piano 

 The other is Persi Diaconis.”       ---   Ricky Jay 

 was placed on his 
chest: a pianist stood 
on his thighs and 

Ireland Must Be Heaven ‘Cause my Mother Comes From There.

“SECRETS OF THE I CHING REVEALED”

A LECTURE BY PERSI DIACONIS

AT AMHERST COLLEGE

AT 4:30 THURS.

FEBRUARY 22, 1996

IN THE RED ROOM, CONVERSE HALL

Ching.”  This traces the appearance and infl uence of the I Ching in the 

work of four great fi gures of the Song Dynasty (ad 960–1279). These 

professors were very skeptical about the potential contributions of two 

mathematicians/magicians.

We had not expected any of this. We were nervous, and rightly so. 

There is a huge language gap between historians and mathematicians. 

Further, the idea of doing magic tricks using the I Ching was offensive 

to some. Nonetheless, it turned out that we did have some new things 

to say. As explained below, the standard method of using the Book of 
Changes for divination involves probability (randomization) developed 

thousands of years before probability was understood in the West. The 

talk wound up going well and has been repeated several times (see 

fi gure 1).
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Introduction to the Book of Changes

At the heart of the I Ching are sixty- four combinatorial patterns, called 

hexagrams. Each has six lines and each of the lines can be straight  or 

broken . For six lines, with each being one of two types, this makes 

2 × 2 × 2 × 2 × 2 × 2 = 64 patterns in all. All sixty-four combinations are 

shown in fi gure 2.

Each hexagram has a name (e.g., Hexagram 1 is “The Creative”) and 

a set of brief comments. These comments have been written by sages 

such as Confucius. The writing is nonlinear and fi lled with images. For 

example, under “The Creative” the text begins: “The creative works 

sublime success, furthering through perseverance. The movement of 

heaven is full of power. Thus the superior man makes himself strong 

Figure 2. The sixty-four I Ching symbols
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and untiring. . . .”1 The hexagrams and commentaries are arranged in 

separate small sections and make up the body of the Book of Changes. 
(See, for example, K. Smith et al., Sung Dynasty Uses of the “I Ching.” 2)

The patterns and commentaries have been studied as philosophy 

and literature for close to three thousand years. The I Ching is  woven 

into Taoist and Buddhist religions and its images appear refl ected 

again and again in so many ways that it is impossible to understand 

Chinese intellectual history without a thorough grounding in the I 
 Ching. This has spawned an enormous body of commentary.

Using the I Ching for divination

The I Ching is often used, in the West and the East, for divination, to 

ask about the future. Briefl y, one comes to the book with a question. 

Then, a hexagram is generated “at random.” The hexagram is looked 

up in the book and the commentary is interpreted as an answer. In 

our college years, fortune telling with the I Ching  was popular. We had 

friends who wouldn’t leave the house without its advice. 

The I Ching is sometimes used by artists, composers, and choreog-

raphers as a way of choosing the structure of a piece or to trigger 

creativity. One well-known adherent was the American composer John 

Cage. Cage’s music is challenging to most of us but it makes you think 

about how the ear and brain construct “music.” We knew Cage in the 

1960s and vividly recall him taking us on a “listening walk” through 

New York’s Greenwich Village. It was about 2:00 a.m., a heavy rain 

had stopped, and he grabbed an arm and said, “Come on outside and 

listen to the city.” New York has all kinds of sounds—dripping water, 

the clicking of traffi c lights, the hiss of steam coming up through man-

holes in the street, taxis, garbage trucks, people’s late-night laugh-

ter. . . . To this day, if we are stuck somewhere waiting, we can change 

our mindset and just sit there and listen. 

Cage’s music is still jarring to most people. One of your authors 

can offer a confl icting report. A sibling of his was a concert pianist. 

He had to perform Cage’s Sonata for Prepared Piano. This author 

heard the strange piece, with its fi ts and starts, erasers and pencils 

stuck between piano keys, and so on, practiced for weeks. In the end, 

it became music for the listener. If he hears it today, fi fty years later, 

he gets that happy “Aha” feeling, the same as he does when hearing a 

more classical piece.
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Cage used chance as a compositional device to determine the 

choice, strength, and duration of various notes. We had an oppor-

tunity to revisit these ideas as speakers on the program The John Cage 
Legacy: Chance in Music and Mathematics on November 12, 2008. This 

included a performance by the Music Committee of the Merce Cun-

ningham Dance Company. Merce Cunningham was there and dis-

cussed the use of the I Ching in choreography. He explained, “A 

dancer has two arms, two hands, two feet, and so on. You have to de-

cide where these go and how they change.” He said he often used the 

I Ching to trigger these decisions, and allowed that while “Cage took 

the output of the I Ching very seriously and stuck to its choices, I allow 

myself more fl uidity. It’s a suggestion. If it doesn’t fi t, I don’t use it.” 

Cunningham and Cage toured the world together performing their 

dance and music. They used strict rules: If a piece was twenty minutes, 

Cunningham and his dancers got ten, and Cage and his musicians 

got ten. The two halves didn’t particularly interact. One irate concert 

Figure 3. Poster of John Cage talk
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goer stormed up afterwards and asked why they didn’t integrate, hav-

ing the dancers dance to the music. Cage answered, “Look. He does 

his thing, and I do mine; for your convenience, we do them in the 

same block of time.”

Let us return to the Book of Changes. The classical way of generating 

a random hexagram uses forty-nine sticks (nowadays we use pickup 

sticks but, classically, yarrow stalks were used). These are divided into 

two piles “at random.” One stick is set aside from the right- hand heap. 

The sticks in the left- hand heap are counted off in groups of four, and 

the fi nal remainder (1, 2, 3, or 4) is added to the stick set aside. The 

sticks in the right- hand heap are counted in groups of four, and the 

remainder (1, 2, 3, or 4) is added to the left pile’s remainder. The total 

number of sticks set aside is

1 + remainder from left + remainder from right.

This will always be fi ve or nine (can the reader see why?). This total, 

fi ve or nine, constitutes the result of the fi rst step. The total is set aside, 

the remaining sticks (there will be forty or forty-four) are gathered to-

gether, and the procedure is repeated with these (divide into two, set 

one aside, cast out groups of four in each pile, add the remainders). 

This second step will result in a pile of four or eight sticks on the table. 

These are put off to one side, near the fi rst fi ve or nine. The remain-

ing sticks are gathered together and the procedure is repeated a third 

time (you will again have a remainder of four or eight).

After this, three small piles will have been set aside. Five or nine the 

fi rst time, four or eight the second and third times. These piles are 

used to determine a single line of the random hexagram as follows. 

Use the following rule: 5 and 4 are small, 9 and 8 are large, then set

small = 3, large = 2

for each pile, and, fi nally, add up the result. Thus, 5, 8, 4 or “small, 

large, small” yields 3 + 2 + 3 = 8. No matter how the piles are divided, 

the result of the fi nal sum will always be 6, 7, 8, or 9. These fi nal scores 

are converted to a single solid or broken line using the changing rules 

in table 1. Thus, 6 and 8 give a broken line  while 7 and 9 give a 

straight line .

We will explain the concept of changing and staying, and the dis-

played probabilities, in a moment. For now, disregard them; if the 

elaborate procedure above results in 6, write down . This gives the 

Table 1. Probabilities of staying and 

changing using sticks

Probability

6  changes to  1/16

7  stays as  5/16

8  stays as   7/16

9  changes to  3/16
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fi rst line of a hexagram. To get a complete hexagram, the whole pro-

cedure is repeated six times (starting with forty-nine sticks each time). 

The whole thing can take twenty to thirty minutes. It is part of the 

ritual of the I Ching. One is supposed to think about the question and 

enter into the ritual. A marvelous description of the effect of this ritual 

is in Hermann Hesse’s description of his hero Knecht’s use of the I Ch-
ing in his novel Magister Ludi (the Glass Bead Game).

To briefl y explain the idea of changing lines, begin by generating a 

random hexagram as explained. After looking it up, one may change 

all the lines that the table allows to be changed in order to get a new 

hexagram. This gives a second answer to the question. The commen-

taries following the hexagrams have a good deal to say about changing 

lines. The probability calculations that follow 6, 7, 8, and 9 in the table 

give new insight into changing lines. We turn to these next.

Probability and the Book of Changes

One of the mysteries in our lives is why the study of probability began 

so late in history. The earliest known systematic probability calcula-

tions appear around 1650 in the work of Pascal and Fermat. However, 

people have gambled in all sorts of ways for thousands of years. There 

were crooked dice and carefully made near-perfect dice. The ancients 

used strangely shaped dice made of sheeps’ knuckle bones. You would 

think somebody would have looked at these and said, “Maybe some 

sides come up more often than others.” We do fi nd ample informal 

discussion of uncertainty as it appears in everyday life. In law, people 

had to combine evidence from uncertain sources and develop rough 

rules (for example, two witnesses were better than one, but not if the 

two were relatives). There were similar developments in medicine and 

religion. However, we have no record of people calculating odds or 

having a way to think about randomness other than “the machinations 

of the gods as seen by mere mortals.” James Franklin’s magnifi cent 

book, The Science of Conjecture: Evidence and Probability before Pascal, is 
surely the best study of the prehistory of probability.3

The history of the study of probability in China is similar. In a care-

ful historical study, Mark Elvin of the Australian National University 

documents the same issues.4 Gambling was prevalent, and there are 

comments about uncertainty in law, medicine, and commerce, but no 

calculations or theoretical framework for thinking about uncertainty.
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The I Ching casts a new light on this mystery. The history of the I 
Ching is not without controversy. Knuth’s The Art of Computer Program-
ming gives a mathematician’s history of the book.5 We believe the stick 

method of generating a random hexagram at least goes back to Confu-

cius (551–497 bc). As described above, it uses a complex system of ran-

dom divisions followed by a summation of “big/small” scores to wind 

up at a single straight or broken line. The probability calculations sum-

marized in table 1 show that this procedure has been arranged so that 

the chance of a straight line is ( )2
1

16
5

16
3= + . 

Similarly, the chance of a broken line is ( )2
1

16
1

16
7= + . The sophisti-

cated procedure isn’t obviously symmetric. It takes some thinking for 

a modern reader to see the 50/50 chance. It took some sophistication 

to design it in the fi rst place.

We explain where the numbers come from at the end of this chap-

ter. One piece of the argument is worth mentioning now. To do any 

sort of probability calculations, some assumptions about what it means 

to “randomly divide a pile of sticks” is required. You can’t get prob-

ability out without putting probability in. Indeed, not everyone agrees 

that probability has anything to do with the I Ching. During a talk of 

ours on the I Ching at the New York Union Theological Seminary, one 

of the faculty members angrily protested our probability calculations: 

“What on earth does probability have to do with the I Ching? When I 

generate a random pattern to use the book by sticks or fl ipping coins, 

it is my hands that divide the pile or fl ip the sticks. I determine the 

outcome, not mathematics.”

Let us take a serious look at this last complaint. Surely, with practice 

a longtime user of the I Ching can learn to divide a pile with an even 

number of sticks exactly in two. Indeed, your authors can cut a deck 

of fi fty-two cards exactly in half. Such careful division could even hap-

pen subconsciously. If you look back at the full procedure, you will see 

that randomness in the division is amplifi ed to result in a close to even 

chance of straight or broken. We describe a mathematical proof of this 

at the end of this chapter. The ritual seems to have been devised by 

someone with a feel for probability and combinatorics, thousands of 

years before such things were clearly understood in the West.

There are other randomization rituals for generating a random 

hexagram. A fast, frequently used method uses three coins. The coins 

are shaken in the hands and then tossed on the table. Heads scores 

three, tails scores two. The sum of all three must be 6, 7, 8, or 9. This 
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is translated into a single I Ching line as before. Here, too, the odds 

are even between  and , and summing the fi rst and last entries 

shows that the chance of a changing line is one in four if either coins 

or sticks are used (see table 2). However, the distribution of hexagrams 

is quite distorted. For example, a hexagram changing from  to  is 

sixty-four times more likely to occur with coins than with sticks.

A variety of other randomization procedures are in active use, both 

physically and on the Internet. These can give far different distribu-

tions. The stick method has been used for thousands of years, and 

the coin method for at least a thousand years. Apparently, no one 

noticed that they were vastly different until the mathematician F. van 

der Blij carried out the relevant calculations in 1967.6 We are used 

to thinking that people learn from experience. Here is a case where 

they have not. 

The Book of Changes certainly has a large mystical component. We 

are complete skeptics about its magical uses. We have often been told 

of amazing predictions. Anyone who tries out the book will fi nd it 

answers questions with very, very rich, ill- posed answers. The reader 

is given a wealth of images and is free to pick, choose, and interpret 

at will. In addition to the generated hexagram with its commentary, 

there is the changing hexagram and the relation between the two. 

Furthermore, each hexagram is made up of two trigrams. For example, 

 is composed of  and . Each trigram has its own name and set 

of images. A list of some of these appear in fi gure 5. Thus, if the hexa-

gram “Di” is cast, one might think, “Grace—the mountain is above the 

sun.” What does that mean? In addition to these possibilities, there 

are several standard arrangements of all sixty- four hexagrams and 

one may consider one’s neighboring hexagrams to get a fuller answer. 

The arrangements of the sixty- four hexagrams is perhaps the earliest 

display of binary numbers (interpret  as zero and  as one). 

Gottfried Leibniz, Newton’s great contemporary, was apparently as-

tounded when someone pointed out that the Chinese had anticipated 

his discovery of binary numbers by thousands of years. Mysteries re-

main about these full arrangements.7 

Some Magic (Tricks)

With all of this preamble, we hope the reader now has some back-

ground on the Book of Changes. We next describe three magic tricks 

Table 2. Probabilities of staying and 

changing using coins

Probability

6  changes to  1/8

7  stays as  3/8

8  stays as  3/8

9  changes to  1/8

Figure 4. Circular I Ching chart 

(image from I Ching Meditations 

by Adele Aldridge, http://

www.ichingmeditations.com)

http://www.ichingmeditations.com
http://www.ichingmeditations.com
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based on its ingredients. The fi rst is a fairly old Chinese trick. The 

second is a modern variation. The third is an elaborate stage presenta-

tion. At the very least, from the material above, there is no shortage of 

surrounding patter themes for the following tricks.

A First Chinese Magic Trick. In effect the performer shows 

eight pictures or words and invites a spectator to think of any one. 

Figure 5. I Ching chart 2

Triagram  Name Images Traits Family Relations Parts of Body Animals

  Heaven Strong

 Ch’ien Cold Firm Father Head Horse

   Light

  Earth Weak

 K’un Heat Yielding Mother Belly Ox

   Dark

  Thunder Active First

 Chên Spring Moving Son Foot Dragon

   Arousing

  Water Dangerous Second

 K’an Moon Diffi cult Son Ear Pig

   Enveloping

   Resting Youngest

 Kên Mountain Stubborn Son Hand Dog

   Unmoving

  Wind Gentle First

 Sun Wood Penetrating Daughter Thigh Bird

   Flexible

  Fire Beautiful

 Li
 Sun Depending Second 

Eye Pheasant
  Lightning Clinging Daughter

  Summer

  Lake Joyful

 Tui
 Marsh Satisfi ed Youngest 

Mouth Sheep
  Rain Complacent Daughter

  Autumn
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The pictures are on cards that are dealt into two piles. The spectator 

reports if the thought- of picture is in the left- hand or right- hand pile. 

This is recorded by a straight  or broken  line. Repeat this deal-

ing two more times to get a trigram like .

The trick concludes with the resulting pattern actually forming the 

name (or character) the spectator thought of.

Some Details. The eight words are shown in fi gure 6, both as they 

might be drawn in script and in a more stylized form. The stylized 

form must be printed on eight cards. Initially, the cards are arranged 

in a pile in the order 4, 8, 3, 7, 2, 6, 1, 5 from top to bottom. 

A spectator is asked to think of any of the eight symbols as they are 

spread in a wide arc on the table. Put a piece of paper and a pen (or 

ink and a brush if you want to make a production of this) off to one 

side. Spread the top four cards, 4, 8, 3, and 7, off and ask if the specta-

tor’s thought is contained among these or in the next four, 2, 6, 1, and 

flat
1

pint
5

search
2

non-
6

king
3

half
7

formerly
4

rice
8

6 4

1 8

5 3

2 7 Figure 6. I Ching chart
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5. If the answer is yes for the fi rst four, draw a straight line in the center 

of the paper . If not, draw a broken line . 

Put the four cards back on top of the packet and deal into two piles, 

right, left, right, left, etc. Turn over both piles and ask if the specta-

tor’s thought is contained in the fi rst pile (1, 2, 3, 4) or in the second 

pile (5, 6, 7, 8). If it is in the fi rst, make a straight line above the fi rst 

line drawn. If it is in the second, make a broken line above. Put the 

fi rst pile on top of the second, deal into two piles, and again show the 

two piles. If the fi rst pile with cards 1, 3, 5, 7 contains the thought- of 

picture, make a straight line below the two lines drawn previously. If 

not, make a broken line.

This procedure results in a trigram of three straight or broken lines. 

The trick is concluded when the performer adds one fi nal stroke, 

which changes the trigram into the Chinese spectator’s thought-of 

character. 

Here is an example. Suppose the spectator thinks of the word 

“search” (card 2). At the fi rst stage, this word is not seen so the per-

former draws a broken line . At the second stage, this word is 

seen, so the performer draws a straight line above the initial line 

. At the third stage, card 2 is not seen, so the performer draws 

a broken line below the fi rst two . Now, the performer adds a 

single stroke, forming . This becomes the character for “search.” 

With practice, the fi nal pen stroke plus another pen stroke or two 

can make the completed picture quite a reasonable likeness of the 

thought- of character. 

We do not know how old this trick is. Our source is a recent Japa-

nese book that calls the trick Su Wu Tending Sheep.8 Su Wu lived in 

the Han Dynasty (140–60 bc). He was banished to a remote, poor part 

of China and spent nineteen years in poverty and near-starvation be-

fore being forgiven. There is a still-popular children’s song about his 

diffi culties, which also tells of his sheep-tending activities. 

The Japanese book says that the trick can be found in an old Chi-

nese book, romanized into pinyin as “Zhōng Wài Xì Fă Tú Shuō.”9

The eight trigrams introduced above form an integral part of the I 
Ching. The chart in fi gure 4 gives the names and basic images of the 

eight trigrams as used in the I Ching. The last column lists the im-

age used in the trick as explained above. Some of the classical images 

match the magic trick’s words.
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A Version in English. It is natural to attempt a version of this trick 

in English. We record two of our attempts here.

The First Variation. The performer shows eight pictures of com-

mon objects. A spectator thinks of one. While this is happening, the 

performer arranges a prediction on a small stand. The spectator re-

veals the thought to the audience so all can appreciate the denoue-

ment, in which the performer shows that the prediction spells out the 

name of the thought- of picture. Briefl y, we found eight different three-

letter words with the fi rst, second, and third letters each being one of 

two choices, e.g., rug, hug, rag, hag, rat, hat, rut, hut. The prediction 

consists of three pairs of cards lined up on a stand. The fi rst pair has 

an R and an H, the second pair has an A and a U, the third pair has a 

G and a T. The pairs are lined up so that they appear as three single 

cards. The performer can turn over one or both each time and reveal 

a correct prediction. We have kept the description minimal as it’s a 

poor trick. Let us know if you fi nd a good variation. Incidentally, we 

were unable to fi nd a good set of sixteen four-letter words with a paral-

lel structure. The best we could fi nd is:

dice, link, dick, line, dine, lick, dink, lice,

duce, lunk, duck, lune, dune, luck, dunk, luce.

This isn’t wonderful but at least all these words are in most common 

dictionaries.

The Second Variation. This is close to the original Chinese ver-

sion, but Western images are used for the picture of the thought- of 

object shown at the end. Here, the sixteen words shown below are 

displayed on a set of cards, one word per card:

coffee, goldfi sh, cowboy, clown, swan, tulip, horse, bunny

sheep, cake, school bus, house, glasses, trolley, ice cream, mermaid.

A spectator thinks of a word. The cards are dealt into two piles and 

the spectator indicates in which pile the thought lies. The performer 

makes a large circle on a pad if the thought lies in the left- hand pile 

and a large square on the pad otherwise. One pile is put on top of the 

other and the procedure is repeated three more times. Each time, 

the performer adds a few lines or squiggles. After the fi nal deal, the 



132 Chapter 8

performer has fi nished drawing a picture of the thought- of object. The 

charming designs shown in fi gure 7 were created by Laurie Beckett. 

How It Works. The sixteen words in fi gure 7 are associated to the 

binary numbers. Thus, coffee is associated to 0 0 0 0, goldfi sh to 0 0 0 1, 

Figure 7. Western images for 

the I Ching trick (courtesy of 

Laurie Beckett)



magic in the book of changes    133

and so on, with mermaid assigned to 1 1 1 1. Put the words on sixteen 

cards and arrange these cards in order, with coffee on top and mermaid 

on the bottom.

Spread the top eight cards in one pile and the bottom eight cards 

in a second pile, so the spectator can see all the words. The cards are 

spread so that the order is not lost. The spectator thinks of a word and 

indicates which pile. If it is the original top pile, draw an egg- shaped 

circle; otherwise, draw a square. 

Pick up the piles. Deal the cards into two piles and ask again. A sec-

ond line is added to your original drawing. The sixteen sequences in 

fi gure 7 show which lines are added. After the fi nal deal, add the few 

relevant details to make the picture appear. This fi nal detailing is just 

as required with the original Chinese trick.

A Performance Piece. Our third trick using the images of the Book of 
Changes is a performance piece. After giving a little of the background of 

the I Ching, the performer asks for the help of three spectators. A fourth 

spectator is given an elaborate prediction. Now, the performer asks each 

spectator to ask a simple personal question that can be answered yes or 

no. In one recent performance (by P. D. for R. L. G.’s retirement party 

at Bell Laboratories), one spectator (a Rutgers graduate student) asked, 

“Will I pass my qualifying exam?” A second spectator (today the most 

famous computer scientist in China) asked, “Is Fermat’s theorem actu-

ally proved?” The third spectator (a well- known Hong Kong investor) 

asked, “Will I make a million dollars this week?” The three questions are 

recorded at the corners of a large triangle with single-word summaries 

(see fi gure 8). For home performances, a large piece of paper is used. 

In our performance, on a stage before hundreds of spectators, the three 

helpers were up on stage and the performer drew the triangle on a trans-

parency projector that projected the image on a large screen.

The performer now involves the spectators in a simple randomiza-

tion ritual that leads to a random trigram. In our example, it was , 

Ch’ien. Explaining that each line of the trigram answers a question, 

with  meaning yes and  meaning no, the performer asks the 

fourth spectator holding the prediction to remove it from the enve-

lope. On one side, the prediction says

The creative, strong, heaven, father, three times yes good omen.

Figure 8. Bell Labs version of 

I Ching trick

Exam

Fermat $1,000,000
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On the other side, are three brief commentaries with a more focused 

prediction for each. These are:

• Yes at the beginning means hidden dragon. Do not act. A low 

card and the queen reinforce.

• Yes at the second place means dragon appearing in the fi eld. It 

furthers one to see the great man. The men of the pack await.

• Yes in the third place means all day long the superior man is 

creatively active. At nightfall, his mind is still beset with cares. 

Danger no blame. Wild deuce and joker release you.

As each line is read, the performer relates it briefl y to the question 

asked. Part of the randomization ritual (explained below) involves 

playing cards. Each of the three spectators winds up with two cards. 

The prediction not only answers their questions but tells exactly what 

cards they have. 

We have called this a performance piece since it mixes the history 

and mysticism of the I Ching with a magic trick. Depending on the cir-

cumstances and audience, we may show the actual book and do a trial 

hexagram, or talk a bit about probability as explained above. The run-

ning time can range from less than ten minutes to nearly a full hour’s 

lecture. It seems to play well for the right kind of audience. It would 

be a disaster at a noisy party.

The actual randomization ritual involves a packet of fourteen play-

ing cards. In our performance for a large audience, we used extra large 

giant cards. To follow along, remove the thirteen hearts and the joker 

from the deck, and arrange them in the order A, 5, 3, 6, 4, J, 2, 8, 9, 10, 

7, Q, K, Joker, from top down. These cards will be repeatedly mixed 

face-up and face-down according to the spectators’ directions. The ba-

sic mixing step is this: Hold the packet of cards face-down as if you were 

about to deal them in a card game. Deal four cards into a pile on the 

table as follows: Deal the top card down, the second face-down on the 

fi rst, turn the third card over (face-up) and deal it on the fi rst two. Deal 

the fourth face-down on the fi rst three to make a packet of four on the 

table. Pick this packet up and turn it over as a block, fi nally replacing 

all on top of the big group in your hands. This results in three face-up 

and one face-down. This basic deal will be repeated many times. We call 

it a “G- scam” deal. It may seem a bit like the Hummer deals in our fi rst 

chapter but is actually quite different. Let us fi nish the I Ching trick.
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You have three spectators in front of the audience with their ques-

tions recorded at the corners of a large triangle. Say that you will har-

ness their input along with some randomization to generate a random 

pattern. Remove the fourteen playing cards, arranged in order. Carry 

out a G- scam deal and ask the fi rst spectator to cut the packet at ran-

dom. Carry out a second G- scam deal and ask the second spectator 

to cut the packet. Follow a third G- scam deal with a cut by the third 

spectator. In fact, any number of G- scam deals can be carried out. We 

fi nd that three is enough.

Explain that an I Ching trigram will be formed by using the face- up/

face- down pattern in the following manner: an even count becomes 

, an odd count becomes . Deal the packet of fourteen cards 

around the large triangle in the following manner. Deal the fi rst three 

cards at the corners of the triangle in order 1, 2, 3 (see fi gure 9). 

Then, place card 4 on the edge of the triangle between card 1 and 

card 2, place card 5 between cards 2 and 3, card 6 in the center of the 

triangle, and, fi nally, card 7 between cards 1 and 3 (see fi gure 10).

The next seven cards are dealt in exactly the same way: The current 

top card is put on card 1, the next on card 2, the next on card 3, and 

so on. All of this results in seven piles, each containing two cards.

Explain that the corners give the answers to each spectator’s ques-

tion, written at the corners. For question one, the two- card packets at 

position 1, its two touching sides, 4 and 7, and the center, 6, are used. 

Spread these packets out and total up the number of face- up cards 

showing. If this total is an even number, write . If it is an odd num-

ber, write . For the second question, use the two- card packets at 

positions 2, its adjacent sides, 4 and 5, and the center, 6. For the third 

question, use the two- card packets at positions 3, 5, 6, and 7.

The outcome, no matter how many G- scam deals and random cuts 

are done, will always be . To make the predictions come out right, 

you must add one additional move. Before the actual dealing into piles 

starts, the queen or four must be on top. To facilitate this, both should 

be marked with a dot on their backs. If, in handling the cards, you see 

the queen or four at the bottom, all cards may be turned over. If not, 

carry out a few extra G- scam deals, and stop when the queen or four 

are in position. Failing this, make an open cut. This last piece of han-

dling fi ts right in as the audience doesn’t know quite what is coming. 

This long description has had many pieces. It will take dedication 

to make your own performance piece believable. We predict that our 

Figure 9. Basic Triangle

1

23

Figure 10. Completed Triangle

1

23

4

5

6

7
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G- scam deals and their generalizations will have a life of their own. We 

promise the reader that the mathematics involved is just as interesting 

as the trick.

Probability and the I Ching

What are the chances of the various fi nal outcomes (5, 6, 7, 8) if the I 
Ching ritual is performed with a bundle of sticks? To compute these, 

we need to know the answer to the following question: If a bundle of n 

sticks is divided into two piles at random, what are the chances that the 

left- hand pile has j sticks? Here, j can run through anything from zero to 

n, although we expect the sizes of the two piles to be roughly the same. 

We thus arrive at the question: What is the appropriate mathemati-

cal model for the random division of a pile of n sticks? The famous 

French mathematician Laplace considered the uniform distribution 

as basic. Here, all divisions are equally likely. With forty-nine sticks, the 

chance of j on the left is 50
1  for j between zero and forty-nine. A natural 

alternative model is the binomial distribution. This results in much 

more even piles: The chance of j on the left is given by the formula

/2j
n n
a k . When n = 49, the chances are shown in table 3. We see that the 

chance of an even split (24, 25) is 0.1123, much larger than 50
1  = 0.02 

in the uniform model. 

Which model is correct, and does it matter? These are empirical 

questions, amenable to experiment. While this would be instructive, 

it can be proved that the exact distribution is irrelevant to a good ap-

proximation. The point is, the exact chance of j doesn’t matter, but 

rather just the chance that j has a given remainder (0, 1, 2, 3) when 

divided by 4, and these chances are very close to 4
1  for a wide variety of 

probability distributions. For example, for the uniform and binomial 

distributions, the chances are shown in table 4. A much more general 

result can be proved.10

Table 3. Probability that j sticks end up 

on the left

  Probability that j

 j sticks end up on the left

 20  0.0502

 21  0.0694

 22  0.0883

 23  0.1036

 24  0.1123

 25  0.1123

 26 0.1036

 27  0.0883

 28  0.0694

 29  0.0502

Table 4. Probability of j mod four for different distributions 

 j mod 4 Binomial Uniform

 0  0.2600000000 0.2500000149

 1  0.2600000000 0.2500000149

 2  0.2400000000 0.2499999851

 3  0.2400000000 0.2499999851



Juggling, like magic, has a long history, both dating back at least four 

thousand years. Indeed, magic and juggling are often associated with 

each other. Certainly, some of the top jugglers seem to have super-

natural abilities, while a number of magic tricks (such as perfect shuf-

fl es) require highly developed physical skills. In fact, many talented 

magicians are also skilled jugglers, e.g., Ricky Jay and Penn Jillette. 

Moreover, there is also a strong connection between juggling and 

mathematics. Mathematics is often described as the science of pat-

terns. Juggling can be thought of as the art of controlling patterns in 

time and space. Both activities offer unbounded challenges. In math-

ematics, you can never solve all of the problems. In juggling, you can 

never master all the tricks (just add one more ball!). In this chapter 

we explain one real connection between mathematics and juggling. 

Keeping with our tradition of encouraging performance, at the end 

we teach the basic “three- ball cascade.”

Chapter 9

What Goes Up Must Come Down

Figure 1. An image from the fi fteenth Beni Hassan tomb 

of an unknown prince, from 1994 BC
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Writing it Down

During the past two decades a remarkable connection between math-

ematics and juggling has come to light. This commonly goes under 

the name “siteswaps.” A siteswap juggling sequence (or pattern) is 

just a (fi nite) sequence of numbers that specify the amount of time 

the thrown objects are in the air. For example, 534, 4413, and 55514 

are siteswap patterns. We’ll explain how these represent juggling pat-

terns in what follows. We will use balls as our objects to juggle (al-

though more challenging objects can be juggled, such as fi re torches 

or chain saws, the theory is the same). We imagine that time moves 

along in time steps 1, 2, 3, . . . (which we can think of as seconds; see 

fi gure 2). 

time t

1 42 73 65 8 9 10

Now, suppose at time 1 we throw a ball with time value 3. This means 

that this ball will come down at time 4 = 1 + 3 (see fi gure 3). If we were 

to represent this as a siteswap sequence, it would be 3000. . . . Ordinar-

ily, siteswap notation is designed to represent repeating patterns, so 

this particular representation of a single throw is not so useful. 

time t

1 4

3

2 73 65 8 9 10

Of course, a single throw is not a very impressive trick. More in-

teresting is the siteswap juggling sequence 333333 . . . , which we will 

abbreviate as 3. For this pattern, as each ball lands, it is immediately 

thrown back up into the air with a time value 3. We can diagram this 

pattern as shown in fi gure 4.

3 3 3 3 3 3 3

time t

Figure 2. Time steps

Figure 3. An easy trick

Figure 4. The siteswap 

3333333 . . . = 3
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In general, a siteswap pattern consists of a sequence of numbers t
1
 

t 
2
 . . . t

n
, which are all greater than (or equal to) zero. The interpreta-

tion is that at time i a ball is to be thrown so that it lands at time i + 

ti. The usual interpretation for siteswap patterns is that they are per-

formed by a two- handed juggler with the left and right hands throwing 

alternately. Thus, if we put R and L in the diagram to denote which 

hand is throwing the ball at that time, we have the picture in fi gure 

5. This is the siteswap notation for the basic three- ball cascade (which 

some readers may already be able to do). Notice that if a throw value 

is odd (such as for the siteswap 3 = 3333333 . . . ) then one hand throws 

the ball and the other hand catches it. In contrast to this, for an even 

throw, the same hand throws and catches the ball (see fi gure 5). 

3 3 3 3 3 3 3

time t
R RRR LL L L

This is an example of parity in juggling, i.e., a fancy way of distinguish-

ing between even and odd numbers. We point out that from a physi-

ological perspective, somewhat different feedback circuits through the 

brain are used for these different types of throws. Some jugglers are 

better at the “crossing” patterns (where the balls change hands), and 

some are better with patterns in which the balls don’t change hands.

One of the fi rst siteswap patterns that people learn is the pattern 

441441441 . . . , which we shorten to 441 (see fi gure 6). It has a very 

nice rhythm to it, but is a bit harder to do than it looks, since the “1” 

throws in the pattern involve throwing balls straight across both from 

the right hand to the left hand, and from the left hand to the right 

hand, something that takes a little practice to do consistently. 

4 4 1 4 4 1 4
R RRR LL L L

4 1 4
R

Another interesting pattern is 534534534 . . . = 534 (see fi gure 7). 

The pattern 534 is defi nitely more challenging to juggle than 441. 

Notice that in this pattern, no two balls come down at the same time. 

Figure 5. Parity considerations

Figure 6. The siteswap 441
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In general, all our patterns will be repeating. The number of throws 

before it begins repeating is called the period of the pattern. We usually 

just write down one cycle of the pattern.

One could start writing all kinds of potential siteswap sequences 

(and try to juggle them). For example, what about 543 (see fi gure 

Figure 7. The siteswap 534
45 4 34 55 53 3 34

Figure 8. The potential siteswap 543
5 3 54 4 3

3 64
Figure 9. The pattern 346

8)? Well, you see we have a problem, namely, several (in this case, 

three!) balls come down at the same time to the same hand (jug-

glers hate when this happens). How can we tell ahead of time if this 

is going to happen? If (t
1
, t 

2
, . . . , tn ) is our juggling sequence then 

this means that the ball thrown at time 1 lands at time 1 + t
1
, the ball 

thrown at time 2 lands at time 2 + t 
2
, and, in general, the ball thrown 

at time i lands at time i + ti. Thus, after one pass through the period, 

the balls land at times 1 + t
1
, 2 + t 

2
, . . . , n + tn. So, in particular, all 

the quantities i + ti for i = 1, 2, . . . , n better be different. However, 

this isn’t quite enough to guarantee that we won’t have a collision 

problem. For instance, consider the pattern 346 (see fi gure 9). We 

can check that 1 + 3 = 4, 2 + 4 = 6, 3 + 6 = 9 are all different, so are we 

okay? Well, remember 346 stands for the periodic repeating pattern 

346346346. . . . The period of this pattern, of course, is 3. Thus, at 

times 2, 5, 8, . . . , we throw a 4, and they come down at times 2 + 4 = 

6, 5 + 4 = 9, 8 + 4 = 12, etc. Similarly, at times 3, 6, 9, . . . , we throw a 

6, and these come down at times 3 + 6 = 9, 6 + 6 = 12, 9 + 6 = 15, etc. 

So, in particular, we have a collision at time 12 (and also at times 15, 

18, . . . ). We can see this if we draw in a few more of the throws, as 

shown in fi gure 10.
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In a general juggling sequence, what we need to avoid this is for all 

the quantities i + ti, i = 1, 2, . . . , n to be different modulo n. In other 

words, we need all the remainders of the i + ti after subtracting off the 

largest multiple of n to be different. For example, for 441, the period 

is 3 and the remainders of 1 + 4, 2 + 4, and 3 + 4 are 2, 0, and 1, respec-

tively, so this pattern is “juggleable,” i.e., a valid siteswap.

Similarly, for 534, the period is also 3 and the remainders of 1 + 5, 2 

+ 3, and 3 + 4 are 0, 2, and 1, respectively. However, for 543, the sums 

and remainders are 1 + 5 , 2 + 4, 3 + 3, and 0, 0, 0, respectively, which 

explains why three balls came crashing down together as we saw ear-

lier (which is a catastrophe!).

This is the fi rst theorem for siteswap patterns:

theorem. A sequence (t
1
, t 

2
, . . . , tn ) with all ti > 0 is a valid 

siteswap pattern (or, is juggleable) if and only if all the quantities 

i + ti , i = 1, 2, . . . , n are distinct modulo n. This theorem reminds 

us of our Ultimate Gilbreath Principle in chapter 5. Is there any 

connection?

We remark that the value ti = 0 just means that no ball is thrown (or 

caught) at time i. If one has a siteswap pattern = (t
1
, t 

2
, . . . , tn ), it is im-

portant (for a juggler, anyway) to know just how many balls are needed 

to juggle it. For example, how many balls are used in the pattern 534? 

(Follow the bouncing balls in fi gure 7.) For this pattern, the answer 

is four. On the other hand, for the pattern 441, the answer is three. It 

turns out there is a very neat expression for the number b of balls there 

are in the pattern (t
1
, t 

2
, . . . , tn ). It is just the average of the ti , i.e.,

( . . . ).b
n

t t t1
n1 2= + + +

(Check the patterns 534 and 441.)

One way to see this is to imagine that, at each time step, one ball 

goes up and one comes down. The average amount of time a ball is in 

the air is ( )t t tnn 1 2

1 $ $ $+ + +  time steps. Hence, there needs to be exactly 

Figure 10. A collision in the pattern 

346346 . . .3 64 3 4 6



142 Chapter 9

this many balls! (Note: This is not exactly a mathematical proof; in 

fact, it is more of a hand- waving proof!)

Ah, you might say, this is nice but what if this quantity turned out 

not to be a whole number (such as 4
9 )? That would put a bit of a crimp 

into this theory, would it not? Indeed it would, but don’t worry, it can 

never happen. Here’s why.

By hypothesis, for a valid siteswap (t
1
, t 

2
, ∙ ∙ ∙ , tn ) all the quantities 

i + ti , i = 1, 2, ∙ ∙ ∙ , n must be distinct modulo n. Since all the remain-

ders after dividing by n are between 0 and n − 1, and there are n of 

them, then, in fact, they must be exactly all the quantities 0, 1, 2, . . . , 

n − 1 in some order. Hence, if we add them all up, we just get the sum 

(0 + 1 + 2 + ∙ ∙ ∙ n − 1) modulo n. That is, 

(1 + t
1
) + (2 + t 

2 
) + ∙ ∙ ∙ + (n + tn ) = (0 + 1 + 2 + ∙ ∙ ∙ + n − 1) modulo n.

However,

(1 + t
1
) + (2 + t 

2 
) + ∙ ∙ ∙ + (n + tn ) = (0 + 1 + 2 + ∙ ∙ ∙ + n − 1) 

+ (t
1 
+ t 

2
 + ∙ ∙ ∙ tn ) modulo n.

Consequently, subtracting we get

t
1 
+ t 

2
 + ∙ ∙ ∙ tn  = 0 modulo n,

i.e., t
1 
+ t 

2
 + ∙ ∙ ∙ tn  is divisible by n. This implies that the number b = n

1

(t
1 
+ t 

2
 + ∙ ∙ ∙ + tn ) is a whole number (whew!). However, this average can 

also be a whole number for some invalid sequences as well, such as the 

sequence 543 we saw earlier.

The next question a mathematical juggler might ask is just how many 
different siteswap juggling patterns there are with period n and b balls. 

It turns out that there are a lot of them. The exact number is given by 

the slick expression

(b + 1)n − b n.

Thus, for b = 4 and n = 3, there are 53 − 43 = 61 different possible four- 

ball siteswaps with period 3. (The sequence 534 is one of them. Can you 

list the other sixty? Can you juggle some of them?) Strictly speaking, 

this is an overcount, since we include in this number any pattern with a 

period dividing n. For example, for b = 4 and n = 3 we are also counting 

444, which has period 1 and can be written more succinctly as 4.1

Once the connection has been made between juggling (sequences) 

and mathematics, all kinds of doors, both mathematical as well as 
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juggling, are thrown wide open. Many jugglers have been working hard 

to master the almost unlimited number of new patterns suggested by 

siteswaps. This includes the generalizations to doing siteswap passing 

patterns between two or more jugglers, as well as multiplex juggling 

patterns, where more than one ball may be caught and thrown from 

an individual hand. Many of the siteswap patterns are diffi cult. For ex-

ample, contrast a standard juggling pattern of a fi ve- ball cascade (de-

scribed as 5 = 5555 . . . in siteswap notation) with a fi ve- ball siteswap 

such as 4637. In the fi rst pattern, each ball gets thrown at the same 

height and to the opposite hand, whereas, in the second, the balls go 

to all different heights, some change hands, and some don’t. (We have 

never actually seen anyone juggle this pattern.)

On the mathematical side, there still remain many interesting chal-

lenges. For example, as we have seen, it is necessary for a valid siteswap 

pattern (t
1
, t 

2
, . . . , tn ) that the average n

1 (t
1 
+ t 

2
 + ∙ ∙ ∙ + tn ) must be a 

whole number (although this is not suffi cient, as 543 shows). However, 

it can be shown that, for any sequence u 
1
, u 

2
, . . . , un of n numbers for 

which the average is a whole number, it is always possible to rearrange 
them to get a valid siteswap pattern. For example, 534 is a valid rear-

rangement of 543. The pattern 252505467 has period 9 and a sum of 

36 (and an average of 4) so there must be at least one rearrangement 

of these numbers that is a valid siteswap. (Can the reader fi nd one?) 

The proof that this can always be done in general is very tricky. If any 

reader can fi nd a nice way to show this please let us know! Incidentally, 

no one knows which sequences have the largest number of rearrange-

ments that are siteswap sequences.

The whole approach to juggling patterns through siteswaps can be 

extended to multiplex juggling patterns as well. In this case more than 

one ball can be thrown and caught at any particular time. Naturally, 

this is harder for a juggler to do (but many jugglers are quite good at 

it by now). These same concepts can also be applied to groups of jug-

glers who exchange balls (or, more commonly, juggling clubs) while 

they are juggling. In these cases, the mathematics and the juggling 

both get more sophisticated. In fact, a number of new mathematical 

ideas have come out of these considerations, such as new ways for com-

puting the so- called Poincaré series for the affi ne Weyl group, q- nomial 

Stirling number identities, new Eulerian number identities, and enu-

merating certain rook polynomial confi gurations.2 Going in the other 

direction, (expert) jugglers are now trying to master some of the more 
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mathematically interesting siteswap patterns, such as 123456789. In 

fact, if you make the associations a ) 10, b ) 11, etc., then one might 

ask which (English) words can be juggled. It turns out that the words 

“theorem” and “proof” are both juggleable patterns, the fi rst being 

a twenty-one-ball pattern, while the second is a twenty-three-ball pat-

tern. Well, we always knew that proofs were harder than theorems!

There are a number of siteswap simulators for computers available 

on the Web, which allow you to input a potential siteswap pattern and 

watch it being performed on your computer screen. This is an espe-

cially good way to learn some of the more complex patterns. The most 

popular one is probably Jongl.3

One of the problems in juggling is that gravity is inconveniently strong 

on the Earth. It has been estimated that a seven- ball juggler on the Earth 

could juggle forty-one balls on the moon (which has gravity one-sixth 

as strong as the Earth), except for certain practical diffi culties, such as 

being in a spacesuit and the fact that the pattern doesn’t “scale,” i.e., if 

you throw a forty-one- ball pattern forty feet up, you have to be very ac-

curate since the spread between your two hands is still only (at most) six 

feet. One way to slow gravity down is to roll balls on a (slightly) inclined 

table, or bounce them off the cushions of a billiard table (in which case, 

the paths made by a single throw become very “pointy” at the top). You 

can also bounce silicone balls on a smooth surface, such as down to 

the fl oor, horizontally off a wall, or, in the case of the famous American 

juggler Michael Moschen, on the three sides of a large triangular enclo-

sure, all of which gives the juggler more time between throws.

One of your authors got seduced into the world of juggling as a 

teenager, fascinated by the permutations and combinations that 

seemed possible. He even managed to create some new “entangled” 

patterns based on combinatorial ideas (like the Mills Mess, perfected 

and popularized by his student Steve Mills of the highly successful Daz-

zling Mills Family juggling act). He subsequently served as President 

of the International Jugglers’ Association, a group of some three thou-

sand active jugglers around the world (with quite a few having day 

jobs in computing, mathematics, and the sciences generally). Most 

large cities and college campuses have active juggling clubs. A listing 

of these, including when and where they meet, as well as almost any 

other juggling need, such as props, videos, books, newsletters, meet-

ings, competitions, performer itineraries, etc., can be found on the 

Juggling Information Service Web site.4
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As they say, “Old jugglers never die, they just lose their . . . props”!

Getting started in juggling

It is not as hard as you might think to learn some of the basic three- ball 

juggling patterns. In the next few paragraphs we will present a brief 

tutorial on how to do it. 

To begin, it is necessary to have some reasonable objects to juggle! 

Typically, some kind of ball works best, say about the size of a tennis 

ball, but heavier, if possible. Many beginning jugglers use lacrosse balls 

or “dog” balls from the local pet shop. Tennis balls can work but they 

are too light to be optimal. Some jugglers fi ll tennis balls with sand or 

some kind of grain to make them heavier, but then they don’t bounce 

much (which, at the beginning, is a good thing!). Golf balls are too 

small, volleyballs are too big, and footballs are wrong for a variety of 

reasons. Recently, the most popular objects for juggling are beanbags, 

which are available from a number of sources.5

Step One. There are basically three steps in learning what is called 

the three- ball cascade, the fi rst pattern most jugglers learn. Step one 

involves just a single ball. You start with a ball in one hand, with both 

hands held at about waist level. You will then throw the ball up into 

the air and across to the other hand. The ball should go up to about 

six to twelve inches above head height, and you should follow the ball 

with your eyes for most of the time it is in the air (see fi gures 11–14).

You should resist the temptation to reach up and grab the ball while 

it is still head high. It will defi nitely come down by itself! You should 

concentrate on trying to throw the ball so that it stays roughly the 

same distance from your body, and doesn’t shoot out away from you 

in front or come back and hit your chest. A helpful technique is to 

stand about a foot from a wall and try to keep the path of the ball 

the same distance from the wall. In general, it is helpful to practice 

with a nondistracting background, such as a solid wall, in front of you. 

This practice should be done with each hand as the starting hand. By 

all means, resist the impulse to hand the ball from one hand to the 

other without throwing it up in the air. Many people instinctively want 

to throw the ball with their dominant hand (typically the right hand) 

and then, after catching it in the other hand, handing the ball back to 

the starting hand without throwing it. For this reason, it is useful to 
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practice the left-hand to right-hand throw (for right- handed people) 

somewhat more than the other direction until both directions feel 

comfortable. This process usually takes from three to fi ve minutes.

Step Two, which is the most important, involves only two balls. For 

this step, you start with a ball in each hand. We’ll assume for the mo-

ment that you are right- handed. (If not, you should reverse the in-

structions.) This is what you will try to do. You will throw the ball in the 

left hand up and across to the right hand, as you were doing in step 

one. However, as this ball reaches its peak, you will then throw the ball 

in the right hand, up and across to the left, making sure that it passes 

under the fi rst ball (see fi gures 15–22).

At fi rst, it may seem that there isn’t enough time to throw the sec-

ond ball, but in a minute or two you’ll fi nd that this isn’t a problem. 

There are several things you should try to do for this step. First, make 

sure you wait until the fi rst ball has reached its peak before you throw 

the second ball (see fi gures 18 and 19).

They should defi nitely not be thrown at the same time! Also, it is 

important that you watch the fi rst ball until it is almost caught, and 

Figure 13. Ball is at the top of its arc

Figure 14. Watching the ball on the way 

down

Figure 11. One ball starting position Figure 12. Throwing one ball
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Figure 15. Two balls starting position Figure 16. Throwing the fi rst ball Figure 17. Watching the fi rst ball

Figure 18. Preparing to throw the 

second ball
Figure 19. Second ball thrown and fi rst 

ball caught

Figure 20. Watching the second ball
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Figure 21. Still watching the second ball Figure 22. Second ball caught

then switch your focus to the second ball. After all, you are going to 

have to catch the fi rst thrown ball fi rst, so you better be sure that you 

can catch it before worrying about the second ball. If you fi nd that you 

are always dropping the fi rst thrown ball, it is a sure sign that you are 

looking away from it too soon. Also, make sure that the second ball 

goes up just as high as the fi rst ball. There is a common tendency to 

throw the second ball signifi cantly lower than the fi rst ball, which will 

cause problems for step three. Finally, as in step one, try to keep the 

balls in the same plane, so you don’t have to reach way out in front or 

back to catch them. Remember, this step only has two throws. We do 

not continue throwing more balls at this point. 

Once this two-ball exercise can be done reliably (say nine out of ten 

times), try to do the same thing starting with the other hand fi rst. You 

will probably fi nd that this is more awkward than you expect but you 

should go through the same steps as you did before. Fairly soon, you 

will be able to do either of the two- throw patterns with relative ease. 

This whole process typically takes fi fteen to thirty minutes, with very 

talented people taking under ten minutes and those less talented tak-

ing up to an hour. You will fi nd that you are using more energy than 
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you realize during this step, so you might want to take a break for a few 

minutes after twenty minutes and grab a drink (of water!).

Step Two- and- a- Half (okay, we lied) really is only a half step. 

What you do here is execute step two but hold a third ball in your right 
hand. The ball should be held in the back part of the hand, with the 

thrown ball coming from the front of the hand (see fi gure 23). In this 

step, we don’t throw this third ball. We only throw two balls—fi rst one 

from the right hand and then one from the left hand (as in step two) 

but then, as the second thrown ball is coming down to the right hand, 

think about the possibility of throwing the third ball under the landing 

second ball. At fi rst you probably won’t have quite enough time to ac-

tually throw the third ball, but thinking about it will make you aware of 

the possibility. As before, during this half step, keep the thrown balls at 

the same height (because if the second ball is thrown a lot lower than 

the fi rst ball then you defi nitely won’t have enough time to throw the 

third ball!), wait until the fi rst ball reaches its peak before throwing 

the second ball, and keep the balls in a plane in front of you. 

Step Three. As you are executing step two- and- a- half, you will see 

that it is possible to throw the third ball under the second ball from 

the right hand to the left hand—just do it! This will (soon) happen 

naturally since in step two you have already practiced throwing the 

left hand fi rst, and that is all that the second and third balls are doing. 

Don’t rush. Count to yourself: right, left, right, waiting for each ball to 

reach its apex before throwing the next ball. Give each ball enough at-

tention while you are throwing it in a proper trajectory (good height, 

plane, and timing) and when you are catching it. If you have mastered 

step two (and step two- and- a- half) you should fi nd that within fi ve min-

utes you will be able to perform step three, catching all three balls. At 

this point, you should congratulate yourself. You have achieved what 

jugglers call a “fl ash” of a three- ball cascade.

Step Four and Beyond. Once you can do step three and, with 

some confi dence, fl ash the three- ball cascade, it is a simple matter to 

imagine when the third ball is about to land in the left hand, that it 

might just be possible to throw the ball already in that hand over to the 

right hand before the third ball lands. Again, this is just one more oc-

currence of step two. Think about it a few times, and then do it. Once 
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Figure 27. Watching the second ball and 

starting to throw the third ball

Figure 28. Second ball caught and third 

ball thrown

Figure 23. Three balls starting position

Figure 26. Second ball thrown and fi rst 

ball caught.

Figure 24. Throwing the fi rst ball Figure 25. Preparing to throw the 

second ball
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Figure 29. Watching the third ball Figure 30. Third ball caught—a three-

ball cascade fl ash

that is accomplished, you will begin to see the pattern. In mathemat-

ics, this is called “induction,” namely, if you know how to go from step 

n to step n + 1 then you can keep going indefi nitely. You see, there is 

mathematics in juggling.

Your fi rst goal at this point might be to achieve ten throws in a three- 

ball cascade. If you manage this after one hour, you are a great student. 

If you are more ambitious, try for twenty-fi ve. If you fi nd that you are 

having problems of some sort that prevent you from doing this (and 

almost everyone does), go back to the earlier steps and work your way 

up to step three and beyond again. For example, a common (if not 

universal) problem is that the balls start going more and more forward, 

so that within a few throws you are running forward to catch the next 

throws. The reason this happens is that as soon as one hand throws a 

ball slightly forward, the other hand has to reach forward to catch it. But 

that hand is also in the process of throwing a ball, so that, in reaching 

for the ball it has to catch, it inadvertently throws the next ball even 

more forward. This process is unstable and you end up racing across the 

room in trying to continue the pattern. The cure is to go back to step 
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two and make sure that the balls don’t go forward, sometimes even by 

forcing them to come back toward your body a bit. Make sure you try 

this with either hand throwing fi rst. Another helpful hint: Think of 

throwing the balls more “up” than “across.” It they are thrown with too 

much horizontal motion, the pattern gets so wide that it becomes very 

hard to even watch the balls, much less control them! In any case, you 

will fi nd at some point that the three- ball cascade pattern will “click” 

and you will then wonder why it took you any time at all to learn it.

Of course, this is the most fundamental three- ball pattern. There 

are literally hundreds of other patterns that can be mastered with 

three balls, and if you start adding more balls the possibilities multiply 

exponentially. An excellent book for taking the next steps is The Art 
of Juggling by Ken Benge.6 A good test to see how well you understand 

the process of learning this pattern is to teach this process to someone 

else. In this way, the art of juggling is passed on from one generation 

of jugglers to the next, in much the same way that magical knowledge 

has been communicated down through the centuries.
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Stars of Mathematical Magic 

(and some of the best tricks in the book) 

People have been inventing self- working magic tricks based on simple 

mathematical ideas for at least a thousand years. In the past hundred 

years, a revolution has taken place. This comes from the emergence 

of serious hobbyists. They support magic dealers (many sizable towns 

have one), hundreds of magic clubs, and about a hundred yearly 

conventions. Out of this comes progress. There is a constant call for 

something new. Old tricks are varied, improved, and classifi ed. They 

are recorded in journals. There are quarterlies, monthlies, and even 

a weekly journal, Abracadabra, which ran for over fi fty years. The large 

magic journals have circulations of fi ve thousand or so. There are 

many books (and, nowadays, videos), in fact, hundreds of magic books 

are published each year. Finally, there are e- books, blogs, and magic 

Web sites of every variety—YouTube has thousands of magic snippets. 

It is a very active whirlpool.

Of course, most of this is chaff: Simple variations, tiny steps forward 

(and sometimes backwards). Every once in a while, a brilliant new idea 

surfaces, a good effect whose method is as amazing as the trick itself. 

There are a handful of inventors who are repeatedly brilliant—we 

have chosen to discuss seven of them.

Our seven are a varied lot. There is a chicken farmer from Petaluma, 

a rural free-delivery mailman, a computer wizard (or two), and a priest. 
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Some led normal lives (a transit engineer) and some were weird (a 

hobo who lived out of Dumpsters) or even institutionalized. All have 

created brilliant tricks with deeply original roots, tricks that live on.

Our stars invent mathematical tricks. To put things in perspective, 

it is useful to ask why the two greatest twentieth-century inventors of 

card tricks aren’t on our list. These two are Dai Vernon and Edward 

Marlo. Both dedicated long lives to developing esoteric magic. Both 

were amazingly talented sleight-of-hand performers who could carry 

out secret maneuvers “in such a manner that the most critical observer 

would not even suspect, let alone detect, the action.” In addition to 

esoterics, both Marlo and Vernon invented wonderful, performable 

magic. If you see a street performer do the linking rings or cups and 

balls, it’s likely to be essentially Vernon’s routine, move for move. If 

you see a close- up worker doing card tricks on television, it’s likely 

you’ll see some of Marlo’s inventions.

Both Marlo and Vernon had “tin ears” when it came to the math-

ematical end of the world. Vernon told us he was awful at mathemat-

ics in high school. In desperation, he tried memorizing the sine and 

cosine tables! This is a crazy, sure road to failure. Vernon was captain 

of his schools’s hockey team. On graduation, his teammates gave him 

a ring inscribed with sin 2 θ + cos 2 θ = 1 to poke fun at his mathematical 

failings. He just didn’t have a feel for math. His self- working tricks, 

when they lean on math, are some of his most pedestrian efforts.

Ed Marlo was a machine shop foreman who developed many as-

pects of modern card magic. He took extensive notes as he worked, 

writing his tricks on the back of IBM punch cards. We have thousands 

of these cards as part of Marlo’s correspondence.

This correspondence is a remarkable record of card magic in the sec-

ond half of the twentieth century. Everyone seriously interested in card 

magic wrote to Marlo and he answered back, usually keeping carbon 

copies of his answers. We started writing to Marlo at age thirteen —he 

answered, often with long letters, sometimes with postcards. One of his 

letters began, “Four years ago 5/2/71 I sent you a postcard with. . . .” 

A man who answers thirteen- year- old youngsters is saintly. A man who 

keeps copies of their postcards is a little bit crazy. Marlo too had a “tin 

ear” for the mathematical end of card magic. He could exploit others’ 

discoveries in brilliant ways—his methods for using perfect shuffl es 

and stay- stack are still in our active repertoire. As far as we know, he 

never discovered any interesting new mathematical principle.
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So, good magic and good mathematical magic are different things. 

The stars we discuss below created great mathematical magic. There 

aren’t many of them, and they seem to be dying off (and we haven’t 

been feeling so well ourselves, lately!). We hope our focus starts a fi re 

someplace.

Figure 1. Marlo’s notes describing Signo-Transpo Figure 2. More of Marlo’s notes
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Alex Elmsley 

Alex Elmsley was a soft-spoken, kind man with a twinkle in his eye. 

We fi rst met him in 1958 on a quiet weekday at Lou Tannen’s magic 

store in New York City.1 Alex had taken a year off after university and 

the army. He was touring the United States, giving magic lectures, at-

tending magic conventions, seeking to meet the legendary American 

sleight-of-hand performers. He had invented a simple new sleight called 

the Ghost Count (now called the Elmsley count), which had taken the 

magic world by storm. It is one of the few really new techniques to 

come along and has become a mainstay of modern sleight of hand. 

We had our own way of doing the Ghost Count that was less stud-

ied and more natural. A long session ensued, and we began swapping 

stories and tricks. Alex was then twenty-nine, we were thirteen. It is a 

distinctive feature of magic that an accomplished star can open up to 

a youngster, with both having a wonderful time. In addition to sleight 

of hand, Alex loved mathematical magic. He had mastered the perfect 

shuffl e and invented a host of magical applications. Alex taught us the 

shuffl e and some of its basic principles. This was our introduction to 

binary numbers. On the subway ride home, we wrote out the fi rst eight 

numbers:

000 001 010 011 100 101 110 111.

Alex had explained that if a perfect out-shuffl e was carried out for a 

zero, and a perfect in-shuffl e was carried out for a one, the top card 

could be brought to any position. Alex asked us to think if there was 

a way to shuffl e to bring a card at any position x to any other position 

y. We have been thinking about it for close to fi fty years now. A brief 

description is in chapter 6. Shuffl ing cards on a moving train is not 

the easiest way to start. When people ask how long it takes to do reli-

able perfect shuffl es, we think back to Alex. It might be a few hundred 

hours, certainly thousands of repetitions, but when you’re a thirteen-

year-old, the time just fl ies. 

We went back to Tannen’s day after day, cutting school to discover 

some higher truths. Tannen’s salesmen, Jimmy Herpick, Frank Garcia, 

and Lou himself, knew they weren’t making any money from us. They 

loved magic, each in his own way, and let us be.

We next met Alex ten years later in London in 1969. He was teach-

ing advanced programming for one of the big English computer 

Figure 3. Alex Elmsley and aspiring 

magician, circa 1975
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companies. He gave us a tour of the workplace that had a display of old 

calculators and punched-card readers. We stopped at one of these and 

he said, “I wonder if they still work? Let’s try.” He picked up a pile of 

about fi fty or so punched cards and said, “I see, these have names and 

phrases typed on them. Can you shuffl e these?” He handed us the deck 

of punched cards. We shuffl ed them thoroughly. “Let’s see if the card 

reader will take them.’’ He dropped them into a table- sized gadget and 

pushed a button. The gadget chattered along and “ate” the punched 

cards, spitting them out into a tray. “It seems to work,” he said. “Let’s 

try this—cut the cards a few times. Look at the top card. Does it have 

something written on it that makes any sense?” It said “God save me,” 

a seeming plea from an unfortunate programmer. “Okay, put that card 

in the middle of the deck, give them a riffl e shuffl e, a cut, another 

shuffl e and a few more cuts, and drop them into the card reader.” He 

pushed the same button and the aging machine again ate the cards. At 

the same time, a television screen in the room lit up with a message: 

Attention, attention, subliminal message detected—stay tuned.

The screen went blank and, in a few seconds, the message

God save me

appeared. We looked over at Alex—the twinkle was more of a smile 

than usual. “Care to see it again?” he asked. Of course, it was a setup. 

This museum was part of Alex’s digs and he had prepared several of 

the gadgets to perform magic tricks. This particular trick is Charles 

Jordan’s riffl e shuffl e trick (see chapter 5). The idea of doing it with 

punched cards is brilliant. They can be thoroughly shuffl ed to start. 

During the fi rst read through (“Let’s see if this works” indeed!) the 

computer reads the order. Repeated cuts and up to three riffl e shuf-

fl es don’t destroy enough of the cards’ order and the selected card 

can be located. A nice feature—on the second read through, the com-

puter records the current arrangement. Not only is it set to reveal the 

chosen card but it is also set for an instant repetition. Alex’s smile was 

a knowing one. 

Alex had thought of lots of computer tricks. A simple one is to ask 

someone to name a card out loud and then have him or her type 

“What is the name of my card?” into a computer. After some byplay, 

the computer displays the card. The method here is that you have fi fty-

two different ways of asking the question (with or without a question 
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mark, with the phrase “card please,” instead of “my card,” etc.). He 

marketed an amazing extension of this that has to be seen to be be-

lieved. When performing for a group of programmers, he has been 

known to have a secret assistant type in some extra information in an-

other room. An equally devious ploy is to have the computer perform 

a “psychological force” on the spectator. Such forces are usually car-

ried out by a forceful performer who infl uences the spectator to think 

of a predetermined card while seemingly offering a free choice (Alex 

used Vernon’s Five Card Mental Force, for those who know what the 

words mean). This combination of mathematical, psychological, and 

external methods can create a truly spooky, unsettling effect.

We saw Alex about once a year on visits to London. For most of his 

life he lived at 6 Smith Terrace, the family home. Alex stayed on, look-

ing after his mother. We caught a glimpse of her when we tiptoed into 

the living room after midnight. “Alex, who is your friend?” she asked. 

“Oh, this is Persi Diaconis. He was kind to me on my trip to America.” 

Alex’s mother smiled politely and left us to our own devices.

Alex’s mother died at age 103. In the ensuing mess the house had to 

be sold, Alex moved, and then was truly alone for the fi rst time. This 

was clearly a tough period. One aspect came out during a trick. We 

were performing the trick based on the I Ching described in chapter 

8. At one point, the spectator (Alex) had to ask the book a question. 

He asked, “Should I get a dog?” in a way that made it clear it was a 

deadly serious question for him. We don’t remember what the Book of 
Changes said but, on further inquiry, Alex said he had lost his keys and 

been locked out two nights before. Not daring to roust one of his new 

neighbors at 11:00 p.m., he slept in the foyer, calling a locksmith the 

next morning. The image of the greatest inventor of our kind of magic 

seemingly without a friend to call really hit home.

There were wonderful up times too. Once, we met Alex with our 

friend Ricky Jay in the cafeteria of the British Museum. After doing 

card tricks for an hour or so, we settled into conversation. Alex asked 

if we still had his letters to Dai Vernon (the ones we saved from the 

fi re, but that is another story). We certainly did. Alex reached into his 

pocket and pulled out a thick packet. “I thought you should have the 

rest of the conversation.” With that, he handed over Vernon’s letters 

to him, a treasure trove on both sides.

Alex went up and down about magic. When up, he bubbled over 

with new ideas and enthusiasm for new tricks he had seen. When down, 
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we found other things to talk about. Once he asked if irrational num-

bers (such as 2 ) were really needed. He had no doubt they existed 

but had become intrigued by the following question: No quantities in 

the real world can be measured with infi nite precision. Take a bunch 

of points in the plane and put a tiny, tiny circle about each of them. 

The circles represent measurement error; we only know each point 

up to some tiny error. Could it be, he asked, that we can always fi nd a 

point within each circle so that all the distances involve only rational 

numbers? This seemingly innocent question turns out to be beyond 

modern mathematics to answer. Indeed, it is unknown if one can fi nd 

eight points with no three on a line, and no four on a circle, so that all 

the distances involved are rational numbers.2 On the other hand, it 

cannot be ruled out that there could exist a dense subset of points in 

the plane so that all the distances between them are all rational.3

We have not discussed many of Alex’s tricks above. Most of these 

are lovingly described by Stephen Minch in the two- volume Collected 
Works of Alex Elmsley.4 These volumes contain personal history, wonder-

ful nonmathematical tricks, and dozens of new mathematical tricks. 

Most of these have yet to be abstracted. One of the joys of the modern 

era is that great magicians are being videotaped. A four- volume DVD 

set of Alex performing is also available.

We close this section on Alex by describing just one of his discover-

ies, what he called Penelope’s Principle. To set the stage, we recall a 

spirited discussion between your authors, a great sleight-of-hand ex-

pert (Charlie Miller), and the publisher of a magic magazine. The 

publisher asked: “What’s the big deal about the perfect shuffl e? The 

only way it is actually used is as a kind of glorifi ed false shuffl e. Then, 

its kind of studied and more classical methods are better.” We re-

sponded by explaining Penelope’s Principle. This shut the publisher 

up and had Charlie Miller wanting to try it out. We will not explain it 

in its perfect version.5 Instead, we explain a less sleight- intensive ver-

sion discovered by Dai Vernon. This was in Vernon’s correspondence 

with Elmsley (October 25, 1955). It is explained here for the fi rst time.

In essence, the performer writes down a prediction, with a deck 

placed face-down before the trick begins. The spectator cuts off more 

than half the deck, leaving the small packet on the table and handing 

the larger packet to the performer. The larger packet is milk shuffl ed 

onto the table, a pair at a time (see chapter 6). Well before this is fi n-

ished, the spectator is invited to say stop at any time. The remaining 
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cards are dropped back on top of the larger packet. The prediction 

is now turned over. Suppose it says “jack of hearts.” The performer 

removes cards simultaneously, one at a time, from the tops of both the 

large and small packets until the small packet is exhausted. The fi nal 

card dealt from the larger packet is turned up. It is the predicted jack 

of hearts.

The trick works itself. All that is required is for you to spot the card 

originally twenty-sixth from the top and write this down as a predic-

tion. In working, roughly estimate how many cards the spectator cut 

off. As you milk through the larger packet, offer to stop as directed 

and drop the remainder on top only when you have fewer than the 

estimated number remaining.

Here is a fi rst illustration of how this may be built up. Have any 

even number of cards set in correspondence, e.g., cards half a pack 

away match in color and value. Thus, with a ten- card pack, the cards 

might be arranged as AS, 5D, QC, 4H, 7H, AC, 5H, QS, 4D, 7D. Have 

the cards repeatedly cut by the spectator, who then hands you a ran-

dom amount, more than half. These are milk shuffl ed as described 

above and the big packet is tabled. The spectator’s small packet and 

the  tabled packet are turned up simultaneously. The very last cards 

match. Any of the perfect shuffl e tricks involving Penelope’s Principle 

can be adapted to the much easier to execute milk shuffl e.

Bob Neale 

Bob Neale spent much of his life as a professor of psychiatry and re-

ligion at New York’s Union Theological Seminary. He is also an or-

dained minister who worked for several years in England at a hospital 

for terminal patients. If you (or a friend) are trying to think about 

death and dying, we recommend The Art of Dying, which Bob wrote as 

a workbook for his patients. (Incidentally, for thoughts about death, 

written thirty years ago by one of your authors, you can check out 

Death and the Creative Life: Conversations with Prominent Artists and Scien-
tists, by Lisa Marburg Goodman.)6

Turning a corner, Bob is one of the world’s great creators of paper 

folding and origami. We don’t know about you, but our reaction when 

someone says they do origami as a hobby is, “Oh no, we’re about to be 

shown little crumpled lumps of paper with ‘legs’ sticking out, followed 

by ‘It’s a dog.’” Bob’s creations are different, however; a few deft folds Figure 4. Bob Neale



stars of mathematical magic    161

and an abstract form that is clearly a “nun” shows up. Other folds are 

impossible objects, often made from a single sheet of paper with no 

cuts or gluing allowed. Origami is an art form in Japan and Bob is 

one of the very few Westerners whose paper folds are taken seriously 

there. We are not paper-folding afi cionados, but recently Bob showed 

up at one of our haunts to visit a small puzzle party. Word somehow 

got out and folders from hundreds of miles around showed up. They 

are mostly a gentle, nondemonstrative sort but even an outsider was 

inspired by the respect Bob commands from this audience.

Turning the next corner, Bob has a professional knowledge of an-

thropology, folklore, philosophy, psychology, and psychiatry. He sees 

themes and depths in magic and can bring these alive to workaday 

pros and serious amateurs. He thinks and writes about what makes 

magic tick, what makes good magic move people, and the tensions 

between a magical experience and being fooled.

Bob’s theatrical bent illuminates his teaching. One of these interac-

tions is worth recording. Two groups of graduate students made class 

presentations for their fi nal projects. They took place in Bob’s spacious 

apartment on New York City’s Riverside Drive. The theme of both proj-

ects was evil and the fi rst group wasted no time getting into it. They 

had built a small but real guillotine and had captured a stray cat. They 

argued that the life of an alley cat was not much and unless the rest of 

the group had arguments to the contrary, they were going to actually 

behead the cat. They skillfully defl ected the few arguments offered and 

then boom—they did it. The shock of this happening for real touched 

all in the room. In their debriefi ng, they owned up; the cat had terrible 

cancer and was to have been euthanized the next morning. Heavy seda-

tion ensured it had no pain. They wanted to bring the awful feeling of 

evil alive in a way that transcended conversation. They succeeded.

The second group of students proceeded as follows. They broke into 

small groups with the audience members and spread out into several 

rooms for quiet, personal conversations. After about half an hour of 

this, they started to reassemble the groups. The conversations stopped 

and the students began to report personal, embarrassing things they 

had learned from the audience during their “friendly bonding.” Peo-

ple’s failings, strong negative statements privately uttered about others 

in the group, and worse were brought out into the open. It was mean 

and maddening. It turns out that their aspect of evil was “betrayal.” 

They brought out its evil nature in a way that no one present will forget.
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If Bob can do that in an ethics and religion class, just imagine what 

he can do in the freer space of a magical performance. It’s hard to 

imagine but fortunately he has written a lot of it down.

Before we launch into tricks, here is a story that contains a wonder-

ful piece of performing material. One of us was stuck with Bob in an 

airport delay. A six-year- old girl, looking very sad, was sitting near us. 

Out of the blue, Bob turned to her and said, “Would you say hello to 

my friend?” With this he took out a sheet of 8½" by 11" paper. The 

girl was shy but curious too. She kept looking. Bob folded the sheet 

a few times, made a tiny tear (heaven forbid), and drew some circles. 

He folded a few more times and bingo, a cute little beak puppet ap-

peared. “Hello,” the puppet said. The little girl said “Hello” and her 

face lit up into a big smile. It was not only the girl’s smile that remains 

in mind twenty years later. Seeing Bob fold a sheet of paper is like 

seeing an expert card handler shuffl e a deck of cards. It’s simply beau-

tiful. All these years later, we’ve asked Bob to teach this magical mo-

ment. We asked him not to hate us for being so fond of this trivial fold 

that breaks all the rules. He knows it’s magical too. A sequence of pho-

tos teaching this fold is shown in fi gure 5. A clear description of the 

classical “snapper” beak puppet is in Robert Harbin’s Paper Magic.7 It’s 

not hard, but practice makes the folds fold smoothly. Bob allows that 

his other “performance fold” is his version of the jumping frog, shown 

in fi gures 6 and 7 (see “Bullfrog” in his book Paper Money Folding).8

Bob’s magic often uses topology, the mathematics of deformed 

shapes where a coffee cup and a doughnut are considered indistin-

guishable. He has ways of tying a knot in a string without letting go of 

the ends and making short squat tubes of paper that turn into long 

skinny tubes with a shake of your hand. He also has a wonderful pre-

sentation piece in which a spectator, behind bars, gets out of jail while 

holding onto the bars at all times. These tricks are expertly described 

in Bob’s books. His most recent, This Is Not a Book, contains many 

mathematical gems that also make for good performances, along with 

pointers to the rest of Bob’s publications.9 We describe his Rock,  Paper, 

Scissors trick in the section on Bob Hummer, later in this chapter.

Turning the corner to magic, we offer a topological trick of our 

own devising that Bob likes and contributed to. We have kept it secret 

for fi fty years, performing it only for “real people.” It is our version 

of the endless chain, a gambling swindle still in use on the streets of 

large cities.
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Figure 5. Folding sequence for the beak puppet



164 Chapter 10

Inside — Outside 

The performer shows a closed chain loop and opens it up into a circle 

on the table. A participating spectator is asked to put a fi nger inside 

the loop, touching the table (fi gure 9).

The performer picks up the chain and moves it about, explaining, 

“No matter how this is wiggled around, it stays hooked on your fi nger 

(unless it’s run up your arm and over your head). Similarly, if your 

fi nger is outside the loop” [the spectator complies], “fi ddling with the 

chain won’t get it hooked on your fi nger.”

The performer continues: “Suppose we drop the chain into a ran-

dom mess on the table. If you put your fi nger into the mess, it’s hard 

to say if it’s inside or outside.” The spectator again complies (fi gure 

10). “What do you think?” the performer asks. The spectator guesses 

“inside” or “outside” and the performer pulls the chain until it either 

is caught on the spectator’s fi nger or pulls free.

“Let’s make a little game out of this,” the performer patters. “Look,” 

the chain is placed into a loop and the performer touches the table 

at points A, then B, then C, saying, “outside, inside, outside. Right?” 

(See fi gure 11.)

Now, the end of the chain is pushed into the circle, as in fi gure 12. 

The performer touches A, then B, C, and D, saying, “outside, inside, 

outside, inside.” Next, the loop at D is picked up and placed onto the 

chain between A and C (fi gures 13 and 14).

The performer puts a left fi nger at X and a right fi nger at Y (fi gures 

15 and 16), pulling apart, keeping the loops at X and Y open (fi gures 

Figure 7. Frog about to jump Figure 8. Bob teaches Kate Graham to 

make a fl apping bird

Figure 6. Resting frog
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Figure 10. Finger in a tangled chain loopFigure 9. Finger in a simple chain loop

Figure 12. Pushing end into the circle

Figure 15. Putting fi ngers in loops

Figure 18. Completed pulling apart

Figure 11. Chain on the table 

Figure14. Placing it on the loop

Figure 17. Pulling apart

Figure 20. Final confi guration

Figure 13. Picking up loop at D

Figure 16. Different view

Figure 19. Squeezing together

17 and 18). The top and bottom of the chain are pushed together as 

in fi gures 19 and 20.

The performer continues: “One loop is inside; if you put your fi n-

ger there, you win. One loop is outside; if you put your fi nger there, 

you lose.” The spectator is asked to choose, puts a fi nger down, and 

A

B

C

A

B
C D

A

B
C

D

Y

X

A

B
C
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X
Y
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the chain is pulled until it pulls free or is caught. Almost always, the 

spectator puts a fi nger at Y and wins. “Hmmm, you’ve played this be-

fore?” the performer asks. “Let’s try it again.” The whole sequence is 

repeated, perhaps pushing in from the left this time. The spectator 

will probably guess correctly and the performer acts chagrined.

“Okay, let’s play it for real now.” The performer makes a tricky 

throw, winding up with the basic confi guration (fi gure 19). Now it is 

not obvious which side wins. In fact, this third throw is made so that 

both sides win. We explain this subterfuge in the following section. It 

is the creation of the great American magician Stewart Judah. The 

performer looks cunningly at the spectator, “One side wins, one side 

loses, which do you pick?” The spectator chooses and the performer 

(hamming it up a bit) asks if the spectator wants to switch. Whichever 

choice is fi nally made, when the chain is pulled, the spectator wins by 

having her fi nger caught. The performer acts defeated, “Are you sure 

you haven’t played this before?”

Now, changing the tone slightly, the performer offers to play for 

one penny. The chain is thrown, the spectator chooses, and the chain 

pulls free (the spectator loses). A practice throw is made, and the spec-

tator wins. Another throw for a penny—the spectator loses. This can 

be continued. The point is, the performer has several ways of throw-

ing the chain (explained below). One ensures that both sides win, 

another ensures that both sides lose. There are similar-looking throws 

where left wins and right loses (or vice versa).

After a bit of this the performer patters, “These throws are com-

plicated. Let’s go back to basics.” The chain is made into a circle and 

the same steps (and patter) as in fi gures 10 through 19 are carried 

out. By this time, the spectator is getting used to these confi gura-

tions and it is clear which side wins. The moves are made slowly and 

deliberately. The performer offers to bet double or nothing. We have 

had spectators —sure they were going to win—offer to bet a lot more. 

When the spectator chooses, the chain is pulled free and the per-

former wins. Indeed, there is a fi nal crafty twist that ensures that both 

sides lose (after all, it is double or nothing!). For details, see the fol-

lowing section.

The sequence above can be presented as a gambling game, as a 

lesson in how to protect yourself on the street, or as a story. The per-

former can involve several spectators, with one as a shill who always 
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wins. Some performers like to challenge the spectator while others try 

to avoid making anyone look foolish. The endless chain is a compa-

triot of three-card monte and the three-shell game. All are widely used 

hustles even today. There is a lot of magical literature on how to enter-

tainingly perform with various montes. Much of it can be adapted to 

the endless chain.

It is “obvious” that a closed circle, placed on the table and wiggled 

about, has an inside and an outside. In the variants discussed above, 

the chain is a three- dimensional object that goes above and below it-

self on the table. Consider the simpler case where the chain is fi rst in a 

simple circle and poked about, without crossing, in an arbitrarily com-

plex fashion. Clearly, it still has an inside and an outside. It turns out 

that this is really hard to prove rigorously. This is the celebrated Jor-

dan Curve Theorem. It is usually carefully proved only in a graduate 

course in topology. The most accessible proof we know is in Carsten 

Thomassen’s wonderful article “The Jordan- Schönfl ies Theorem and 

the Classifi cation of Surfaces.”10 A recent trend in mathematics is to 

try to give proofs that are completely free of heuristic geometric rea-

soning. Every step of these proofs is carefully checked by computers. 

The Jordan Curve Theorem was fi nally given a computer- based proof 

in 2005 by Thomas Hales. The history of formal proofs in mathemat-

ics is engagingly told in the December 2008 issue of the Notices of the 
American Mathematical Society.

Three final secrets

We now explain several throws of the chain. Some are “fair” in that 

one side wins and one side loses. A “super- fair” throw has both sides 

winning. The “cheating” throw has both sides losing.

A Fair Throw. The vanilla fl avor fair throw begins with a circle, the 

performer loops it around, lays it on top of itself, and pulls it into a 

fi nal confi guration (see fi gures 21 through 28).

We do this by placing the right hand under the original circle at the 

right, carrying the right- hand side around to the left, placing the origi-

nal right on top, and then straightening this out to the fi nal confi gu-

ration as shown. With this throw, the right side loses and the left side 

wins. If you put the left part of the original circle on top of the right 
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in a kind of mirror image, the left side loses and the right side wins. 

There is no skill required to perform these throws. A small amount of 

practice will make them fl ow. 

A Cheating Throw. This is almost indistinguishable from the fair 

throw and results in both sides losing. Beginning with a single circle, 

use your right hand to lift up the right-hand piece (right hand palm-

up) and place it on top of the left part, turning palm-down as you do 

so (see fi gures 29 through 36).

A Superfair Throw. This was shown to us fi fty years ago by the 

Cincinnati magician Stewart Judah. One of the original Greater Magic 
Ten-Card stars, Judah was soft- spoken and slow working. Most of his 

Figure 22. Fair throw 2Figure 21. Fair throw 1

Figure 25. Fair throw 5Figure 24. Fair throw 4 Figure 26. Fair throw 6

Figure 23. Fair throw 3

Figure 27. Fair throw 7 Figure 28. Fair throw 8
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tricks did not depend on advanced sleight of hand, just diabolical han-

dling. As far as we know, this maneuver has not been previously de-

scribed. However, Nick Trost, a student of Judah’s, recorded many of 

Judah’s wonderful inventions. Trost’s book describes many of Judah’s 

gambling demonstrations, including a handling of the belt loop, an 

early version of the endless chain.11 However, Judah’s endless chain 

moves are not described. Instead, an interesting endless chain origi-

nated by Dennis Flynn is described. This has a very different set of 

throws, done in the air, for achieving the same four fi nal outcomes. 

Without further ado, Judah’s throw is illustrated in fi gures 37–42.

Begin with the chain in a circle, fl at on the table. Place both hands, 

palms up, under the part of the chain farthest from you (fi gure 37). 

Curl both hands inward, so that your fi ngers point in towards you, 

Figure 33. Cheating throw 5Figure 32. Cheating throw 4

Figure 36. Cheating throw 8Figure 35. Cheating throw 7

Figure 34. Cheating throw 6

Figure 30. Cheating throw 2Figure 29. Cheating throw 1 Figure 31. Cheating throw 3
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Figure 38. Judah 2Figure 37. Judah 1 Figure 39. Judah 3

Figure 41. Judah 5Figure 40. Judah 4 Figure 42. Judah 6

making two small loops (fi gure 38). Cross your hands, keep both 

palms upward, and lay the two loops at opposite ends of the chain (fi g-

ure 39). Drop the loops onto the table, removing your hands (fi gure 

40). Now straighten the chain into the basic fi gure-eight position as 

usual (fi gures 41 and 42). If done properly, both sides are winning for 

the spectator.

Synopsis. There is a simple mathematical underpinning to the 

three throws just described. In each, the right side of the original loop 

is laid on top of the left. In the fi rst variant, the right side is kept paral-

lel to the left at all times. This results in the right side losing and the 

left side winning. In the second variant, a single twist is made in the 

right side before laying it on the left. This results in both sides losing. 

In the third variant, a double twist is made in the right side before 

laying it on the left. This results in both sides winning. With a bit of 

thought and practice, these extra twists can be done subtly so that they 

are not noticed by the audience. 

Denouement. In the last sequence of the performance, the per-

former returns to the simple beginning sequence shown in fi gures 11 
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through 14. The only difference comes at the end. Instead of laying 

the bottom loop on the top, keeping it simply parallel, turn over the 

bottom loop (see fi gure 32) as you lay it on top. This is done in a com-

pletely open fashion, and the fi nal result has both sides losing. If each 

of the top and bottom loops is given a twist as you lay them on top of 

each other, the result in that both sides win for the spectator.

With all this control, you can let the spectator decide if being 

caught or free results in winning or losing. This can even be varied 

from throw to throw. In performance, this much freedom is confus-

ing. It is best to stick to the classical “catching wins.” We will not detail 

further performance tips but many spectators think that the way the 

chain is pulled away affects things. You can let them pull the chain 

away. We sometimes let the spectator put one fi nger on each side, 

pull the confi guration taut, and, after study, let her lift one of her 

fi ngers.

A Dai Vernon Trick. We cannot resist adding a trick to the dis-

cussion. The trick may well be standard, but it was a favorite of Dai 

Vernon, the greatest exponent of pure sleight of hand of the twenti-

eth century. Vernon had collected fi fty impromptu tricks done using 

a piece of string. We don’t remember the other forty- nine very clearly 

but one has stayed with us for over fi fty years. People fi nd it surprising.

Take a loop of string knotted into a circle (or the endless chain 

of the previous demonstration). Have someone hold up a fi nger and 

loop the chain once around it. You hold the other end of the chain 

in your left hand. There should be some tension that holds the chain 

fairly taut (fi gure 43).

The performer’s right hand comes over the chain from above, palm-

down. The right-hand second fi nger contacts the left part of the chain 

at point X (see fi gure 44) and moves it right and over the right- hand 

part of the loop (fi gures 45 and 46). Now, the right hand turns palm-

up, twisting its piece of the chain under the other side (fi gure 47). The 

right hand’s index fi nger enters the loop adjacent to the spectator’s 

fi nger at point Y (fi gures 48 and 49).

Now, with the chain entangled between its fi ngers, the right hand 

turns back palm-down (fi gure 50). The tension between the left hand 

and the spectator’s fi nger keeps the confi guration from slipping. Place 

the right hand’s second fi nger on top, so that it is touching the specta-

tor’s fi nger (fi gures 51 through 54).
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Figure 44. Close-up of starting positionFigure 43. Starting position Figure 45. Finger inserted

Figure 47. View from belowFigure 46. Starting to move fi nger Figure 48. Approaching the other hand

Figure 50. Releasing the third fi ngerFigure 49. Inserting the index fi nger Figure 51. Connecting the fi ngers

Figure 53. Index fi nger is releasedFigure 52. Releasing index fi nger Figure 54. Chain is released

Y

Y

X



stars of mathematical magic    173

This can be presented by saying something like, “This loop is con-

strained at both ends. What I do with the middle won’t change that. 

Watch . . . !’’ People fi nd it quite magical.

Henry Christ

Henry J. Christ was an inner- inner-circle magician. He was close to the 

great sleight-of-hand performers of the twentieth century— masters 

like Leipzig, Cardini, Annemann, Findley, Vernon—who created mod-

ern magic. Henry knew them, caroused with them, and fooled them. 

All of these experts coveted Henry’s secrets and showed him their best 

in exchange.

Born in 1903 in Brooklyn, New York, Henry started doing magic 

very early. His hands were small at seven years old and his parents 

bought him a miniature deck of Little Duke playing cards to practice 

with. He invented and performed magic for friends. An early magical 

bill for performing college students shows Henry demonstrating card 

fl ourishes.

Henry married Evelyn Pilliner, had three kids (Richard, Michael, 

and Robert), and took a job as an engineer with New York’s Transit 

Authority. He held this job for more than forty years (1924–1968), then 

retired to practice the guitar and his beloved magic. The great sleight-

of-hand performer Sam Horowitz (also known as Mohammed Bey) was 

at Henry’s retirement dinner. Figure 55 shows how they looked in 1968.

Henry kept magic in place as a serious hobby. He invented all sorts 

of tricks—for example, the color-changing deck. Here, a card is se-

lected and shuffl ed back into the deck. All of a sudden, the backs of 

all the cards change from red to blue and the spectator’s selection is 

the only red-backed card left in the pack. Henry showed this trick to 

the great stage performer Nate Leipzig, who popularized it. The trick 

is widely performed today.

The fi rst avant- garde magic magazine was Theo Annemann’s Jinx. 

He pried the best secrets out of the best performers and preserved 

these in a four- to six-page biweekly format. Annemann was a real ex-

pert at pseudo–mind reading and his treatise Practical Mental Effects is 
a bible for this work. Henry and Annemann became best friends when 

Annemann moved to New York. Annemann had shaky emotional 

health and a serious alcohol problem. The Jinx’s coming out on time 

and much of the magic it contained depended on Henry. 

FIigure 55. Henry Christ (left) and Sam 

Horowitz, circa 1968
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Figure 56. Outside of program with Henry Christ performace

Figure 57. Inside of program with Henry Christ performace



stars of mathematical magic    175

Some of Henry’s tricks are described in the pages of Jinx. One cel-

ebrated trick, Dead Man’s Hand, is built around the death of Wild 

Bill Hickock, while he was playing poker. He was shot in the back 

while holding the “dead man’s hand” of aces and eights. Henry’s trick 

weaves around Hickock’s story. At the end, when the aces and eights 

are shown, a shot rings out—a really loud bang—made by a cap pistol 

under the table. This gives the trick a dramatic ending. Henry’s recol-

lections of this trick (in his own words) are shown in fi gure 58.

Notes on “Dead Man’s Hand” (by HJC) 

published in Jinx #33, June 1937

A few days after the publication of Jinx #33,

I was at Gen Grant’s magic shop on 42nd Street.

As I walked in, David Bamberg was making a purchase

at the counter. After he completed his purchase,

he left the counter. He had a copy of

Jinx  #33 in his hand and a paper bag. He

recognized me and said, “Are you the Henry

Christ who dreamed up this ‘Dead Man’s Hand’?”

I said I was. He said “This is the greatest

dramatic card effect I ever heard of! I

just bought 24 cap shooting gimics [sic]. This

is one trick I’m going to do!’’ This was 

indeed a complement [sic] coming from a performer

of his background and experience!

 About a month later, I met a friend

of mine, Hal Haber, a devout amateur

magician. He was a successful consulting engineer, had

degrees in Chemical, Mechanical, Civil and

Electrical Engineering and was a Licensed

Professional Engineer. He could make a

perfect rising card mechanism out of any

one dollar Ingersoll watch! He said to

me, “I did your ‘Dead Man’s Hand’ the other

night at a Newspapermen’s Convention. They

are a hard- boiled audience. But the ‘Dead Man’s

Hand’ knocked them for a loop. They said it was

the greatest card trick they ever saw!”
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Figure 58. Notes from Henry Christ



stars of mathematical magic    177

Henry invented and performed great sleight of hand, mechanical 

magic, and the cups and balls (with differently colored balls and color- 

coded cups). He found joy in subtle, self- working card magic. Some 

of his tricks are recorded in Martin Gardner’s Mathematics, Magic and 
Mystery. Henry tired of magicians in the 1950s and restricted himself 

to seeing only New York’s inner circle. He’d had enough tricks stolen 

and published under someone else’s name that he stopped showing 

tricks to magicians.

We met him in 1960 when Vernon brought us around to the inner 

circle. Henry showed us a trick called Eliminating the Methods. Four 

aces are placed separately on the table, with a few cards placed on 

each ace. At the end, the four aces assemble in one pile. The trick is 

designed to fool magicians. As the cards are dealt and handled, the 

standard methods of doing the four-ace assembly are described and 

eliminated—“Sometimes performers only pretend to deal the aces on 

the table. To eliminate this, I will deal them face up in separate spots. 

Some people use extra aces. To eliminate this, let’s deal the extra cards 

so you can see what they are. . . .” At the end, the aces assembled any-

way and none of the experts had a clue as to how it worked.

We became friends with Henry, engaging in a long, detailed corre-

spondence about his magic. He carefully taught us close to one hun-

dred of his tricks. One of the last was the details of Eliminating the 

Methods. We hope to do these wonderful tricks justice someday, but 

that is not for this book. We content ourselves with a trick we invented 

jointly with Henry.

The Roulette System

The performer says he has learned an amazing system that guaran-

tees that he will always win at roulette. To demonstrate, a prediction 

is made and handed to the spectator for safekeeping. The roulette 

wheel is simulated by a packet of fi ve cards: Two reds, two blacks, and 

the joker (a house number). “I’ll bet on whatever you say, red or black, 

and I lose when the joker comes up.” The spectator decides on (say) 

red. The performer lays out the system:

It’s kind of a martingale, but with a twist. Whatever I bet, if I win, 

I’ll bet half as much the next time. If I lose, I’ll bet half again as 

much. Look: I’ll bet $16 fi rst. If I win, I’ll bet $8 next. If I lose, I’ll 

bet $24 (that’s $16 plus half of $16).
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The spectator shuffl es the little deck of fi ve cards and the cards are 

turned up one at a time. Each time, the performer bets on, say, red, 

following the rules. A tally is kept and, at the end, no matter how the 

cards are shuffl ed, the performer wins exactly $5. When the predic-

tion is opened, it says “I win $5.”

Suppose the cards come out R, B, B, J, R ( J for joker). Then the 

tally is:

Bet Win Lose

16  16

 8   8

12   12

18   18

27  27

 43 38

Hence, the difference is $43 − $38 = $5, just as the prediction says.

The trick is self- working and permits many variations. As a check, 

suppose the cards come out B, R, R, B, J. In this case, the tally is:

Bet Win Lose

16   16

24  24

12  12

 6    6

 9    9

 36 31

Again, the difference is $36 − $31 = $5, as predicted. In performance, 

we sometimes write the prediction on one side of a piece of paper, 

placed face-down on the table. The tally sheet is written on the other 

side and fi lled in as the game progresses. There is no reason to use 

cards. Five coins or counters—two pennies, two dimes, and a quarter 

for the joker will work just as well. The spectator can even be allowed 

to cheat, looking at the cards and deciding which ones to turn. As long 

as all of the cards are turned once, the fi nal result is forced.

This trick began, as so many do, with a postcard from Martin Gard-

ner. One of his readers had sent in a curious puzzle and he thought 
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a trick might result. We talked it over with Henry and that is how the 

trick above evolved. Even back then, all of us were interested in “get-

ting to the guts of it.” Here is what we discovered.

Why it works (and some variations)

Suppose we have a deck of N cards with k red cards and N − k black 

cards. We bet on red to win throughout. In our example, N = 5, k = 

2, N − k = 3. (We count the joker—a losing card—as black here.) The 

betting system is this: Each time, if the last bet is A and we win then 

we next bet xA. On the other hand, if we lose then we instead bet yA. 

Here, x and y are positive numbers. (They were 2
1  and 2

3  in the exam-

ple.) We go through the cards one at a time until the end. 

Here is the main fi nding. 

If x + y = 2 then no matter how the cards are shuffl ed, the fi nal 

amount won is the same. This fi nal amount is x
x y
1

1

–

– k n k–

 (or “winning fac-

tor’’) times the original-amount bet. 

For our original example,

1

1
2 1 .

x
x y

32

27

16

5

–

–
–

k n k–

= =d n

So, if the original-amount bet is $16, this yields a win of $5. 

After the discovery, we have found a simple way to see the fi nal 

result. Suppose the original order of the cards is some scattered pat-

tern RBBRRB. . . . We show that switching a consecutive pair BR to 

the pair RB yields the same win. Thus, all the reds can be shifted left 

and the fi nal patterns . . . . . .BB B RR R
–k n k

6 7 844 44 6 7 844 44  has the same fi nal win. This is now 

easy to compute and yields the fi nal answer. For example, if the ini-

tial arrangement is BRBBR, the successive changes to RBBBR, RBBRB, 

RBRBB, RRBBB all yield the same fi nal win.

Why? Consider a bet of A and successive cards in order RB and BR. 

The following calculation shows the outcome for the arrangement RB: 

Initially we win A, then bet and lose xA for a total win of A − xA = (1 − x)

A . For the arrangement BR, we initially lose A and then bet (and win) 

yA for a total win of −A + yA = (y − 1)A. Note that if x + y = 2 then 1 − x 

= y − 1 so the total wins are the same. From here, the fi nal calculation 

is easy (it involves summing a geometric series). Also, after either RB 

or BR, the amount bet is the same, namely, xyA.
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The calculations and fi nal formulas have some consequences. Here 

are two. With fi ve cards, two winning and three losing, using x = 2
1  and 

y = 2
3 , gives a fi nal win of 16

5  times the initial bet. We may ask what value 

of x gives the best results. It turns out that x = 0.07777 . . . (a little more 

than 13
1 ) gives better results, with a fi nal win of about 1.0377 times the 

initial bet. For the second consequence, consider a deck with only 

one winning card and n − 1 losing cards. It doesn’t look good for the 

bettor. Nevertheless, there is a choice of x (and y = 2 − x) such that no 

matter how the cards are shuffl ed, the performer wins a fi xed amount 

of the initial bet. When n = 5 and k = 1, the best x is actually 0, and 

this guarantees a fi nal win equal to the amount initially bet. What this 

means is that the performer should keep doubling the bet after each 

loss (y = 2) and, after the unique win (since k = 1), should continue 

the rest of the game by betting 0. When k = 2, then for any value of n, 

the best value of x is slightly more than 0, and this choice guarantees a 

win of slightly more than 1 times the initial bet. In fi gure 59 we give a 

plot (for k = 2) showing how the winning factor varies as a function of 

x, so that when x = 1/2 then our winning factor is 16
5  (as we saw in our 
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Figure 59. Plot of “winning factor” versus x
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example) whereas for x = 0.07777 . . . the winning factor is somewhat 

larger than 1. This phenomenon holds for any value of n > 2.

In fact, when k = 2 then, for any value of n, the best value for x 

(which is usually just slightly larger than 0) always guarantees a win-

ning factor of (slightly) more than 1.

If we take x = 2, the performer keeps doubling bets until a win and 

then stops betting. The formula shows the total amount won will al-

ways be the initial bet as long as there is at least one winning card. We 

caution the reader that all of this depends on our setup of sampling 

without replacement. If the cards are reshuffl ed every time, there are 

no gambling systems that beat the house advantage.

There are a number of gambling games in which the fi nal answer is 

forced, independent of the strategy chosen. In the game of Say Red, 

a deck of n reds and n blacks is well shuffl ed. The cards are turned up 

one at a time. The spectator may say “red” before any turn—even the 

fi rst turn—and must say red, once, some time. If the next card is red, 

the spectator wins $1. If the next card is black, the spectator loses $1. 

Since the spectator can say red before any cards are turned up, the 

game is (at least) fair. It seems clear that the spectator can gain an ad-

vantage by waiting until there are more reds left than blacks. Cornell 

University’s geometer Robert Connelly’s surprising discovery is that it 

simply doesn’t matter. Whatever complex strategy is devised (as long 

as it doesn’t involve looking into the future), the game is exactly fair.

The mathematics involved in setting this up and proving it is the 

same as the mathematics used to prove that our roulette trick works. 

The same math can be used to show that gambling systems are im-

possible. The reader can fi nd out more by tracking down the phrases 

“martingale” and “optimal stopping.”

A similar surprise (i.e., no matter what strategy is used, the fi nal out-

come is predetermined) occurs in the world of “chip fi ring” games, for 

example.12 We have yet to see a reasonable, performable trick based 

on these developments. We are sorry we can’t ask Henry.

Stewart James

I hated school, everything about it, and mathematics most of all.

The stars in this chapter have produced strangely brilliant tricks that 

leave all of us thinking, “How on earth did anyone think of that?’’ 
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and “Why does that work?” Stewart James is a wonderful example. He 

spent a lifetime inventing such magic. A few of his tricks have made 

their way into basic, widely performed magic. Essentially none of them 

have been thought about, much less understood. There is gold in 

these hills, we promise you! 

James was born, lived, and died in the tiny town of Courtright, Ontario, 

in Canada. He was a prolifi c contributor to magic literature, publishing 

a dozen books and hundreds of journal articles. Anyone interested in 

mathematical magic has to come to terms with Stewart James.

We met Stewart at a magic convention in 1961—after hitchhiking 

from New York to Colon, Michigan, with a friend. Colon is a tiny town 

and they deal with the hundreds of conventioneers by putting them up 

in local people’s homes. We slept on fl oors, but, really, we didn’t sleep. 

We talked, watched, performed, and learned magic until we dropped.

Stewart was a respected senior citizen by then and we were kids, 

but, the way magic works, we were all in the same space. Trying to fool 

and educate each other, enjoying the rare possibility of talking openly 

about secrets. A few years later, we wrote to Stewart, trying to make 

contact with one of the great magicians. The fi rst page of his answer is 

reproduced in fi gure 60. It gives more details of magic convention life.

Stewart’s letter went on for another page and then stopped abruptly 

in midsentence. We wrote back, asking if a page was missing and were 

told that he didn’t like to waste time with the usual “Apologies for not 

answering sooner,” “Hello,” “Goodbye,” etc. Indeed, his next letter be-

gan with “pg 3, paragraph a,” and continued the incomplete sentence. 

Stewart referred to his letters as “the letter,” and continued in this way 

throughout the correspondence.

After a few years of correspondence, we decided to visit Stewart. This 

was no simple matter as at that time the closest public transportation 

stopped about fi fty miles from Courtright. Coordinating bus schedules, 

Stewart picked us up at an appointed time and drove us to his house. 

We slept in a downstairs bedroom. Stewart cooked, and occasionally 

left for an hour to do his “rounds,” but mostly we talked magic.

The talks were about people, history, and ideas. Stewart had a very 

good library of magic books that he kept track of with a typewritten, 

alphabetical index of all his books. Since about one to two hundred 

books come out each year, this index amazed us—how did he keep it 

up to date as books accrued? The answer is simple: Every six months 

or so, he simply sat down and retyped it!
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After about a day and a half of talk, we wanted to show Stewart a card 

trick with his own deck. Up to this time, all the tricks were done “in the 

air” by talking them through rather than performing them. We asked 

to borrow a deck. He answered, “This may sound strange but I don’t 

have a real deck of cards in the house—haven’t had one for four or fi ve 

years.’’ Keep in mind that all this time Stewart was producing a monthly 

Figure 60. Letter from Stewart 

James (1968)
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column of card tricks and contributing dozens of other articles to vari-

ous magic journals. He explained: “After all, when Agatha Christie 

writes a murder mystery, she doesn’t have to go out and kill somebody.”

Stewart was the constant caretaker for his aging mother. During 

our visit she was not happy he was sharing his attention and often 

screamed loudly. He said it was diffi cult to leave home for more than 

an hour or two. Stewart’s job was as an auxiliary free- delivery mailman. 

He did this in his own car and had learned to drive on the “wrong 

side,” sitting on the right- hand side of the front seat, steering with 

his left hand stretched over, his left foot operating the gas and brake 

pedals. We went out with him one morning, sitting in the back. There 

was not a lot of traffi c on those roads but the occasional passing car 

seemed shocked to fi nd a driverless vehicle tootling along. One driver 

followed us for a mile or two. When he got too close, Stewart pulled 

over so nothing could be seen. 

One of Stewart’s most famous tricks is called Miraskill. Here is a 

bland description: Shuffl e a full deck of cards and turn over two at a 

time. If the pair is mixed—one red, one black—they cancel each other 

out and are set aside. If both are red, the pair is put aside on the left. If 

both are black, the pair is set aside on the right. At the end, no matter 

how the pairs are shuffl ed, the number of red- red pairs is the same as 

the number of black- black pairs. One may patter as if at a basketball 

game—“Two points for the red team,” etc. The game ends in a tie. If 

four red cards are removed before the shuffl e, the black team will win 

by four points.

The version Stewart published is almost as bland as just described. 

There are many variations possible and we wondered why it had not 

been developed. He explained that he had been thrilled by the prin-

ciple when he fi rst discovered it and made the mistake of performing 

it for some jerk who promptly began sending it around, claiming poor, 

minor variations as his own invention. Stewart sent the bland version 

to Theo Anneman for publication in Jinx magazine to receive some 

credit for his invention. He told us: “It was stillborn for me after that 

and I vowed not to think about it.”

We have occasionally taught a class on mathematics and magic 

tricks. One year, in our second meeting with him, a Harvard fresh-

man, Joe Fendel, offered the following version of Miraskill—it is a fi ne 

illustration of the gold waiting in Stewart’s work. We will quote Joe’s 

own description of the effect:
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You may be familiar with the game Rock, Paper, Scissors. If not, 

don’t worry, the rules are simple. Two people randomly choose 

one of three objects: a rock, a sheet of paper, or a pair of scissors. 

They simultaneously reveal their choice. If both have chosen the 

same object, the game is considered to be a tie. If they have cho-

sen different objects then the winner is determined as follows:

If rock and scissors are chosen, the rock is considered to have 

smashed the scissors, and whoever chose the rock wins.

If scissors and paper are chosen, the scissors are considered to 

cut through the paper, and whoever chose the scissors wins.

If paper and rock are chosen, the paper is considered to en-

wrap the rock, and whoever chose the paper wins.

So as you see, under random probability, each is equally likely 

to win and equally likely to lose. Furthermore, under the usual 

playground rules, there is no reward for winning, but rather a 

penalty of some sort to be infl icted on the loser by the winner!

I have provided you with a deck of cards (see fi gure 61). You 

will notice that there are exactly twenty-seven cards. Cut the cards 

and mix them. Holding them face-down, draw one and put it 

elsewhere, not knowing what it is. Mix the cards again for good 

measure. Take out a pen to keep score on the score sheet I’ve 

provided (see fi gure 62).

Begin with round one. Go through the deck, drawing two 

cards at a time. (You will make thirteen draws per round.) For 

round one, look at the top picture on the two cards. If they are 

the same, it’s a tie, so put them in the discard pile. If they are dif-

ferent, score a penalty point for the loser. For example, if the top 

pictures of the two cards show rock and paper, score one point 

under rock because paper beats rock. Again, remember:

Rock beats scissors, paper beats rock, scissors beat paper.

After all thirteen draws, do a fi nal comparison. Two of the 

scores should be of the same parity. (Two are odd and one is 

even, or two are even and one is odd.) Take the two scores that 

are the same parity, and examine the objects who hold those 

scores. Place the winning object of the two in the “Final Win-

ner’s Box” for round one. For example, if scissors and paper both 

had odd scores, you would write “scissors” in the “Final Winner’s 

Box,” because scissors beat paper.
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Rock

Round
1

Round
2

Round
3

Scissors Paper
Final

Winner ’s
Box

Figure 62. Score sheet

Figure 61. Joe Fendel’s twenty-seven 

cards

Now repeat the process for round two, this time looking at the 

middle picture of each card. After you determine the fi nal winner 

of round two, repeat the process for round three, this time exam-

ining the bottom picture.

You should now have your three fi nal winner’s boxes full. Con-

centrate very hard on that column, and fetch the card you ini-

tially removed from the deck. Turn it over, and . . .

Lo and behold!!!  The pictures on the card match the pictures in 

the fi nal winner’s boxes exactly.

We leave it to the interested reader to understand just why this works. 

It is a close cousin to Voodoo Fortune Telling, a trick of Bob Hum-

mer’s that also exploits the Miraskill principle.
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Martin Gardner had a favorite Stewart James trick—this involved 

Fibonacci numbers, a sequence where the next number is the sum 

of the previous two (1, 1, 2, 3, 5, 8, 13, 21, . . . ). These numbers were 

introduced in Fibonacci’s book Liber Abaci in 1202! The Fibonacci se-

quence has many variations and applications. We have used it in our 

“day jobs.”13 One of the most celebrated problems in modern math-

ematics, Hilbert’s tenth problem, was cracked using exotic properties 

of Fibonacci numbers.14 There is even a journal, The Fibonacci Quar-
terly, that has collected together the strange and surprising properties 

of these and related sequences for nearly fi fty years. 

Additionally, the Fibonacci numbers have a crank aspect to them 

with ties to the divine proportion and aesthetics. Some of the found-

ers of the Fibonacci Quarterly parked only in spots labeled by Fibonacci 

numbers. There are so many properties just under the surface that 

they are repeatedly rediscovered by amateur number sleuths. A mar-

velous account of “Fibonacciana’’ is in Martin Gardner’s Mathematical 
Circus.15

Gardner was surprised to fi nd that Stewart had stumbled upon a 

new property and managed to harness it for a performable trick. We 

offer a novel variation, an explanation, and a host of generalizations. 

Here is our version of Stewart’s trick. 

The Mysterious Number Seven. The performer shows a blank 

four-by-four grid and says he has written a prediction on its back (fi g-

ure 63). If you get a piece of paper and draw such a square, you can 

follow along and fool yourself as we go. “They teach kids the crazi-

est things in school nowadays. My daughter came home and told me 

about clock arithmetic. And she was doing it modulo seven! Here, let 

me show you this. Name any two small numbers.” Suppose the specta-

tor says “fi ve” and “three.” “I’ll start off with your numbers” (the per-

former writes “fi ve” and “three” in the fi rst two spots in the square). 

“Now, we’ll add ‘mod seven.’ This just means if the sum is eight or 

more, we subtract seven. Let’s see, fi ve and three are eight. This is 

more than seven, so we’ll subtract seven from eight to get one.” The 

performer writes “one” in the next spot. “Now we continue: Let’s see, 

three and one are four, that’s okay, one and four are fi ve, which is 

okay, four and fi ve make nine, so we subtract seven to get two, fi ve and 

two are seven, which is still okay, seven and two are nine to get” (the 

performer may ask for help or ask what the next step is) “two.” This Figure 63. A four-by-four grid
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pattern is continued until all sixteen squares are fi lled in, resulting in 

the grid shown in fi gure 64. 

If you are working along with us, start with any two small numbers 

(but not both sevens!) and fi ll in the squares, always adding the last 

two mod seven to get the next number. The surprise comes at the end. 

With a truly random start and the chaotic pattern fi lled in, the ordinary 
sum is always exactly sixty- three. The performer turns over the grid and 

shows this has been predicted.

Stewart’s original version (the AAG principle)16 involved a fi ve-by-

fi ve grid with addition modulo nine. The performer picks the fi rst 

number, the spectator picks the second number, and the total is always 

the performer’s choice plus 117 (so if the performer chooses fi ve, the 

total is 122). The four-by-four Fibonacci mod seven grid (as well as a 

three-by-three version) was explored at the end of Card Colm’s col-

umn in June 2007.17

How do such tricks work? Let’s consider the mod seven version. 

Here, the spectator can name any two numbers to start (which we 

will require to be no larger than seven). Thus, there are exactly forty- 

nine different starting possibilities. However, one of these is ruled out, 

namely, when the fi rst two choices are both seven. (In this case, fi lling 

in the grid by our mod seven rule would result in all the squares fi lled 

in with sevens, a not very interesting pattern!) Suppose the choice is 1, 

2. Then the numbers fi lled in are 1, 2, 3, 5, 1, 6, 7, 6, 6, 5, 4, 2, 6, 1, 7, 

1, 1, 2, 3, 5, . . . , where the dots mean the sequence repeats cyclically 

with period sixteen, forever. If any of the sixteen pairs in this sequence 

had been chosen, e.g., 2, 3 or 6, 6, then the same set of sixteen inte-

gers would appear. Hence, in this case the sum is fi xed (and, you can 

check, it is 63). Take a pair that doesn’t appear, e.g., 1, 3. This gener-

ates 1, 3, 4, 7, 4, 4, 1, 5, 6, 4, 3, 7, 3, 3, 6, 2, 1, 3, 4, 7, . . . . This gives 

another set of sixteen pairs and, again, a sum of 63. Finally, a start of 1, 

4 gives 1, 4, 5, 2, 7, 2, 2, 4, 6, 3, 2, 5, 7, 5, 5, 3, 1, 4, 5, 2, . . . and, again, 

a sum of 63. This gives 16 + 16 + 16 = 48 pairs, and the forbidden 7, 7 

makes for all forty- nine starting pairs.

In Stewart’s version (modulo nine), there are eighty-one possible 

starts. Calculations show that there are three cycles of length twenty- 

four (with starting values 1, 1; 2, 2; and 4, 4), one cycle of eight (with 

starting value 3, 3), and one cycle of length one (with starting value 

9, 9). Stewart originally did not allow both of the starting values to be 

multiples of three (easily achieved by having the spectator not choose 

Figure 64. Filled-in grid 

starting with 5 and 3

5 3

25

42

2 5

41

7 2

36

7 5

5 3



stars of mathematical magic    189

a multiple of three), in which case the twenty- fi ve numbers in the 

fi lled- in grid will be all the numbers in one of the length twenty- four 

cycles together with a repeat of the fi rst number in position twenty-

fi ve (which was just the spectator’s chosen number). Since the sum 

of all twenty- four numbers in any of the “long” cycles is 117, then the 

predicted sum will be 117 plus the spectator’s choice. This version was 

modifi ed by James who noticed that if the starting pair comes from the 

“short” (length eight) cycle, then the predicted sum should now be 81 

plus the spectator’s choice.

There are two key features: The period of the possible starts and 

the sums of all the numbers in the various orbits. In the modulo seven 

case, there are three orbits of size sixteen (and one orbit of size one). 

All the length sixteen orbits have the same sum, 63. One may try vari-

ous moduli, searching for these two features. For example, modulo 

fi ve, there is one orbit of length twenty (with a sum of forty) and one 

orbit of length four (1, 3, 4, 2). Thus, a four-by-fi ve grid can be pre-

pared and a prediction of 40 written. Have the spectator select two 

numbers and write them down (to avoid the starts 1, 3; 3, 4; 4, 2; and 

2, 1 by reversing the order when entering them, i.e., using 3, 1; 4, 3; 

2, 4; or 1, 2). The curious reader will fi nd modulo eight gives a mess!

There has been a fair amount of mathematical study of the periods 

of Fibonacci sequences. For example, it is known that if the modulus 

is a prime p that is ±1 (mod fi ve), then the period must divide p − 1. 

Thus, p = 11 has a period of 10 (which certainly divides p − 1). For a 

prime p which is ±2 (mod fi ve), the period must divide 2p − 2. Much 

more is known, some of it involving sophisticated results from number 

theory.18 To be honest, we do not fi nd these tricks useful magically. 

They are too slow and too prone to error. Perhaps the reader can cre-

ate a story that makes them play well.

We end our recollection of Stewart James with his playful side. He 

loved puns and word games. Two that he showed us may amuse the 

reader. They start with the well-known arrangement Ralph
wood

 (read as 

Ralph Underwood). Can the reader parse nowallu s? What about B De
0

?

Charles Thornton Jordan

Charles Jordan was the fi rst great inventor of mathematical card tricks. 

We have devoted several chapters to developments of just one of his 

ideas: He was the fi rst to use the principles behind de Bruijn sequences Figure 65. Charles Thornton Jordan
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in his trick Colouria (developed here in chapters 2, 3, and 4). Jor-

dan has a mysterious legacy among avant-garde magicians today. He 

appeared in 1915 “out of nowhere” via advertisements for amazing 

new tricks in magic magazines. There was a steady fl ow of new magic, 

books, and individual secrets until 1923. Then, he essentially disap-

peared, except for collections of his previous work peddled by entre-

preneurs. His magic was sometimes said to be invented by others; he 

is frequently described as a Petaluma chicken farmer; he invented and 

sold fancy radios. . . . Here is what little we know.

Jordan was born in Berkeley, California, on October 1, 1888, to Mr. 

and Mrs. Charles Ronlett Jordan. He died in Petaluma, California, at 

the home of his sister, Mrs. George Woodson, on March 24, 1944. He 

began magic as a hobbyist but was too shy to be a reasonable per-

former. He turned to selling magic to other magicians. One of his 

most celebrated tricks came into the world this way.

New Ones on the Magical Horizon

Long distance mind reading. You mail an ordinary pack of 

cards to anyone, requesting him to shuffl e and select a card. He 

shuffl es again and returns only half the pack to you, not intimat-

ing whether or not it contains his card. By return mail, you name 

the card he selected.

Price—$2.50

Note: On receipt of 50 cents, I will give you an actual demon-

stration. Then, if you want the secret, remit the balance of $2.00.

This ad appeared in the premier American magic magazine the 

Sphinx in May 1916. The Sphinx sold for ten cents a copy in 1916. Com-

parable journals sell for fi ve dollars a copy as we write this in early 

2009. That makes a factor of fi fty, so Jordan was selling his trick for a 

fantastic sum. It is also a fantastic trick; nothing remotely like it had 

been seen before. Magicians scrambled to fi nd Jordan’s magic. One 

would buy a trick and then type up copies and trade it for others. The 

magic caused an excitement that carries through to today. We will ex-

plain Jordan’s trick later in this section but for now we return to his 

life’s story. 

Jordan moved to Penngrove, California, and, indeed, worked there 

as a chicken farmer for many years. This was mixed with many other 

interests. For a while, he designed and built large radios. There are still 

some of Jordan’s marvelous radios lurking in attics in the Petaluma Figure 66. Jordan’s business card
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area. The one we saw was about three feet deep, fi ve feet wide, and 

three feet high—a massive object, fi nished in fi ne woodwork, with 

huge vacuum tubes inside. 

Jordan had an active secret life in another dimension. According 

to J. Burnham he was “the champion of puzzle contesters of America 

in the 1920’s and 1930’s.”19 Newspapers often had contests to increase 

readership. There was a daily set of trick questions; perhaps a cartoon 

or anagram hiding a famous name. Such a puzzle is often called a 

rebus. For example, fi gure 67 asks the reader to use the pictures to 

guess the names of four famous explorers. The solutions were given 

the following day. In this case, the answers to the fi rst is (Admiral) 

Byrd. The last is DeSoto. We leave the other two to the reader. The 

contest that Jordan and Blackledge entered involved a variation. The 

initial offering was shown in fi gure 68. The right answer, gleaned 

from reading the text and sounding out the names, is “Theodore 

Dreiser.” This is only one of a list of ninety and all had to be guessed 

correctly. 

Readers who sent in a perfect set of answers won cash prizes. Jordan 

and a team of coworkers began entering and winning such contests, 

fi rst in nearby towns and then nationwide. They made tens of thou-

sands of dollars yearly (a huge sum in those days). They were soon 

banned and had to fi nd shills to win the prizes on their behalf. Jordan 

turned to the magic community for this. He would fi nd a prominent 

magician and write along the lines of, “You may remember me as the 

inventor of card tricks. . . .” Jordan proposed a deal whereby he’d send 

all the answers and let the magician keep 10 percent of the prize. We 

have been fortunate enough to obtain a complete record of one such 

episode. Jordan contacted the well-known magician J. Elder Black-

ledge in Indianapolis in 1938. Blackledge was a stage performer, some 

of whose polished routines have become standards among today’s ma-

gicians. Several of his tricks are described in the multi volume Tarbell 
Course in Magic. He was an inspiration to young magicians in the India-

napolis area. One of them, Harry Riser, has written about Blackledge’s 

legacy at length.20

Blackledge accepted Jordan’s offer, and here the plot thickens: Jor-

dan’s team wasn’t the only group of contest professionals. The initial 

questions were easy and more than two hundred people submitted 

correct sets of answers to ninety cartoon puzzles. There was a run-

off, and another runoff after that. Finally, only a few contestants had 

I’ll Hem
This!

1

2

3

4

4 Famous Explorers

Figure 67. Famous explorers (redrawn 

from and courtesy of the Indianapolis 

News)
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That $5,000.00 CASH FIRST PRIZE 

. . .CAN BE YOURS! YOURS as a 

reward for a few minutes spent each day 

in solving a collection of amusing and 

humorous cartoons!

BEGIN NOW by naming today’s Car-

toon No. 68. Locate and assemble the 

various clues concealed within the 

drawing, such as words, syllables, 

objects, etc. and when properly 

combined they will form ONE of the 

names in the list printed below the

 cartoon. 

Submit Answers Weekly
Enclose Ten Cents in Coin

Name Cartoon No. 69 . . . in tomorrow’s

INDIANAPOLIS 
NEWS

First Prize       $5,000.00
Second Prize   $1,000.00
Third Prize      $300.00
Fourth Prize  $150.00
Fifth Prize  $125.00
Sixth Prize  $75.00
Seventh Prize   $50.00
Eighth Prize   $25.00
Ninth Prize  $15.00
Tenth Prize   $10.00
50 prizes at $5 each $450.00
100 prizes at $3 each $300.00
200 prizes total  $7,500.00

$7,500.00 IN PRIZES

Charles Schwab
George M. Cohan
Ford C. Frick
Fielding Yost
Luigi Pirandello
Connie Mack
Edward Bowes
Billy Sunday
Knute Rockne
Reed Smoot
Leopold Stokowski
Malcolm Campbell
Gar Wood
John Garner
Arthur Brisbane

John D. Rockefeller
Monte Blue
Giovanni Martinelli
Theodore Dreiser
Rockwell Kent
Nicholas Murray Butler
Will Durant
Andrew Mellon
Walter Damrosch
Burns Mantle
Kenesaw Landis
Lewis Stone
Hugh Herbert
Jimmy Durante
James Branch Cabell

CARTOON NO. 68

Which Name Does Cartoon No. 68 Represent?
Select the Name From the Following list:

WHEW–
THE ODOR!

IT’S
RYE, SIR

The correct answer is the name of the person whose picture 
appears in the circle and the name is included in the list 
above.

THE NAME FOR 
CARTOON NO. 68 IS ……………………………………….

MY NAME IS ………………………………………………..

MY ADDRESS IS …………………………………………… 

CITY……………………………. STATE……………………

Figure 68. Rebus no. 68 (redrawn from and 

courtesy of the Indianapolis News)
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submitted perfect scores on each set of questions. These included 

Blackledge, who was getting his answers by telegraph and special 

delivery from Jordan in California. The remaining contestants were 

required to come into the newspaper offi ce to take a fi nal test in 

person! Unquestionably, some of the other winners were also front-

ing for a syndicate, and were as nervous and inept (at puzzle solving) 

as Blackledge. Blackledge managed to answer fi ve of the questions 

and fi nished second (the thousand dollar prize went to Blackledge, 

who settled up equitably with the Jordan team). The story evolves as 

a nail- biter and we have reproduced key parts of the correspondence 

in fi gures 69–76.

Jordan wasn’t only in the rebus business for the money. According 

to Burnham “He [Jordan] was an enthusiastic collector of rebus and 

famous- names material, and of books on all contest subjects. On the 

day of the night he died he asked his physician to bring him a cata-

logue of surgical instruments for his rebus collection. Charles Jordan 

was a devoted hobbyist to the end.”21

Trailing the Dovetail Shuffle to Its Lair. Jordan’s fi rst mar-

keted trick, Psychola,22 and many later effects depend on the observa-

tion that an ordinary riffl e shuffl e does not thoroughly mix a deck of 

cards. This can be understood by picturing a full deck with the thirteen 

spades, in order from ace to king, on top. For the shuffl e, the deck is 

cut into two piles as usual, and the two halves are riffl ed together. The 

spades will intermingle with the other cards, but the relative order of 

the spades is (still) ace through king. If you can’t picture this, go get a 

deck and try it out. The crude idea was introduced earlier by the En-

glish magician C. O. Wiliams, who published “Reading the Fifty- two 

Cards after a Genuine Shuffl e” in the September 1913 issue of the 

magazine Magic. Jordan acknowledged Williams’s trick and went to 

town with it.

The way we use this principle now is as follows. A deck of cards is 

mailed to a friend (or given to a group of spectators while the per-

former turns away). “Give the cards a cut, give them a shuffl e, then 

give them another cut and another shuffl e, give them a few more cuts. 

I’m sure you’ll agree that no human can know the name of the top 

card. Please take this card off, look at it, and remember it. Insert it 

into the middle of the deck. Give the cards a random cut and another 



194 Chapter 10

     Penngrove, Calif.,

     January 6, 1938.

Mr. J. Elder Blackledge,

4011 North Meridian St.,

Indianapolis, Indiana.

Dear Mr. Blackledge:

 In corresponding with Max Holden, of New York City, he 

suggested that I write you concerning a contest now being con-

ducted by the Indianapolis News. If not interested yourself, I 

would appreciate it very much if you could put me in touch with 

some good reliable person who might be.

 The contest I refer to is the “Game of Names,” and clos-

es within the next few weeks. One of the requirements is that the 

entrant be a resident of Indiana. As I have no correspondents in 

your state, I wrote Holden, who has helped me out on matters of 

this sort on several previous occasions.

 In brief, the set-up is this. Working with a friend in 

Oakland, Calif. on just this type of contest, in each case work-

ing through a local name for the entrant, we both ran our incomes 

into five figures last year, which naturally means that we suc-

ceeded in landing a major prize in nearly every case. Nothing 

in the rules whatever prevents the local entrant from obtaining 

assistance from whatever source he desires and the whole thing 

is perfectly legal and above board.

 Our proposition is this:  We pay all expenses in ad-

vance, and when the contest is concluded, we permit the entry 

name to retain 10% of the win as compensation for acting as 

our representative. The contests are usually wound up in short 

 order, and in the case of the NEWS, the commission would be $500 

in case of a first-prize win, which we have succeeded in accom-

plishing more than once.

 If you would be interested in such a proposition your-

self, or if you could refer me to some reliable friend who would 

be willing to act as our representative, I would be more than 

grateful for your cooperation.

 At any rate, please hold the matter confidential, and 

let me hear from you as soon as possible, when, if you or some 

friend of yours would like to take me up, I will immediately send 

a remittance to cover expenses, and detailed instructions. As 

the contest is drawing to a close, the utmost haste is essential, 

and I enclose a stamped addressed envelope for your reply.

 Thanking you in advance for any assistance you can ren-

der me, and with all good wishes, I remain,

Box 101    Very truly yours,

    

    Charles T. Jordan

Mr. Charles T. Jordan, January

Box 101,    12

Penngrove, California.  1938

Dear Mr. Jordan:

Upon my return to Indianapolis I find your 

letter of January sixth.

I see no reason why I can’t accept your 

proposition. My engagements out of the city 

I think in no way interfere with this. If you 

will give me the details I’ll do all I can to 

help.

I shall expect to hear from you in the near 

future.

Sincerely yours,

4011 North Meridan Street,

Indianapolis,     Indiana.

Figure 69. First letter from Jordan to Blackledge

Figure 70. Blackledge’s response to Jordan
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Mr. J. Elder Blackledge,  Penngrove, Calif.,

Indianapolis, Indiana.  January 15, 1938

Dear Mr. Blackledge:

 Thank you for yours of the 12th, which arrived this morning. I can’t tell 
you how much I appreciate your willingness to cooperate with us in this matter.

 First off, I enclose a money order for $10.00, which will more than cover 
preliminary expenses.

 The first thing necessary to do is to obtain from the paper back cop-
ies of all pictures, and the answer forms for each week. I believe today is the 
close of the first 13 weeks of the fifteen-week contest, and as they charge three 
cents apiece for the back pictures, it will be necessary for you to call at the 
paper office and purchase all back pictures, or to cut out the form which appears 
each day in the paper and mail it to them with the necessary amount of money. You 
have them mail them to you, of  course, and immediately [after] you receive them, 
please mail the entire lot by air-mail special delivery, to Mr. J. S. Railsback, 
2459 Truman Avenue, Oakland, California. This is my partner’s address, and we use 
it for most of the correspondence, as mail connections are so much better there.

 Then it will be best to subscribe to the paper for a month or two, and 
clip the pictures each day, and mail same say every two or three days to the same 
address in Oakland. It is not necessary to send us the answer forms. Just retain 
them, and as soon  as we have the puzzles solved we will return them to you, and 
you  can send in the entire lot of ninety, with the necessary $1.50 during the 
week which is allowed following publication of the final picture.

 I am sure everything will work out all right if you will have some member 
of your family tend to the mailings to us in case you are out of town. 

 Of course these preliminary pictures are comparatively simple. The real 
difficulties arise upon issuance of the tie-breakers. Usually anywhere from 10 
to two or three hundred contestants submit correct solutions to the preliminary 
pictures. Then, in two or three weeks, the paper mails out tie-breakers, which 
contain anywhere from 60 to 90 extremely difficult puzzles. It is extremely urgent 
that  these tie-breaking pictures reach us at the earliest possible moment after 
they are issued. We [will] have them photostated and [will] return the originals 
to you immediately, sending you the solutions by air mail daily, and the remain-
ing few by wire. As they sometimes allow only five or six days for working the 
tie-breakers, you can see the necessity of their reaching Oakland on the earliest 
possible plane after they are received by you. So if you are not in town at the 
time, if you can arrange to have them forwarded to us by some trusted friend or 
relative everything should work out nicely. 

 When we send you the solutions we also include a complete explanation 
[of] how they are arrived at, so that you will be at all times kept informed as 
to what it is all about. Naturally our names etc. are not to be mentioned to  the 
paper, but after the whole thing is over there is nothing to be harmed by admit-
ting that you had outside assistance if the question is ever brought up. It seldom 
is, as nothing in the rules  declares that you may not have all the assistance 
you desire.

 As I wrote you previously, we will pay all expenses in  advance, and when 
and if a prize is won, you are to retain ten percent of it and your state income 
tax, if your state has one, [with] the balance to come to us -- we of course pay 
the federal income tax of same. But all of that can be gone into later, of course.

 Mr. Railsback will write you further on this matter just as soon as we 
know that you have mailed the pictures to us. And I would appreciate it very much 
if you will wire him collect, in Oakland, just as soon as you have mailed the 
puzzles, to some such purport as:

 “Papers mailed to-day.”

 Thanking you again for your assistance, and trusting that the whole en-
terprise will prove mutually profitable to us, I remain,

  Sincerely,

Box 101  Charles T. Jordan. Figure 71. Jordan’s response to 

Blackledge
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Dear Contestant:

This is Official Notification from The Indianapolis News that as a

result of your answers submitted in the “Game of Names” Contest, you

are tied for a prize.

Just what prize you will win, if any, will depend on your answers

to the tie-breaking cartoons we are enclosing. This is in accor-

dance with Rule No. 5 of the contest which provides, in case of ties,

another set of cartoons will be submitted to the persons tied.

Your answers to this tie-breaking series of cartoons must be filled

in directly under the cartoons to which they apply, and the folder

must be returned or mailed to The Indianapolis News on or before Midnight 

of   MAR  6 1938   .

Trusting that we will receive your answers promptly, and with best

wishes for success, we are,

   Cordially yours,

Enc.

   Games of Names Editor

   THE INDIANAPOLIS NEWS

LD65 HG 14

 INDIANAPOLIS IND 1234P MAR 25 1938

J ELDER BLACKLEDGE, DELIVER PERSONAL ONLY

 4011 NORTH MERIDIAN ST INDPLS

OFFICIAL NOTIFICATION THAT YOU MUST WORK TIEBREAKER 

AT OUR OFFICE NINE AM MARCH 26

 CONTEST DEPARTMENT THE INDIANAPOLIS NEWS

      1252P

Figure 72. Newspaper informs them 

that they are eligible for the tiebreaker

Figure 73. Newspaper informs 

Blackledge that he must appear in 

person for the tiebreaker
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     2459 Truman Ave.

     Oakland, Calif.,

     March 10, 1938.

Dear Mr. Blackledge:

   In spite of the fact the mail planes were delayed last 

week end, we believe we had all titles correct on the breaker. Another 

breaker came from Boston at the same time but we were unable to complete 

it, so had to drop out.

 Inasmuch as there may possibly be another breaker to solve, and 

you couldn’t mail us your own copy, due to the short time they would 

probably allow, our only chance to stay in the running, if another 

breaker is necessary, is to have you get a photostatic  copy of it and 

shoot it out. So I am enclosing $15.00, which should be enough to cover 

the cost, and trust you will do so if necessary. Any Blue Print shop will 

make it for you, and will usually hurry it if you ask them to. We would 

want one negative and one positive copy, the same size as the original. 

If we can  get even twelve hours on it, we will have a good chance to 

crack it. If this becomes necessary, please wire me the same as before, 

giving number of pictures, closing date, and the time you mail it, so we 

can figure when to expect it.

 You might phone the contest editor and ask him when the results 

of  the first tie-breaker will be announced, and if any further tie- 

breakers will have to be solved. Might get an idea that way as to the 

possibility of another one.

 If they should call on you and tell you that there were ties 

for first place, and ask if you would rather divide up the prize money 

involved than work on another one, tell them by all means you would be 

willing to split. This would insure a fair prize and avoid any further 

work on it. This often happens when only a few are tied.

 You have probably grasped the way in which these puzzles are 

solved, that is, the title to a given cartoon is made up of the sounds, 

syllables, or words represented by the queer objects, etc. in the pic-

ture. For instance, picture No. 4, which was “Tom and Jerry”. TOMAN 

(Scotch) is a mound (the word mound, uttered by a Scotchman, appears in 

the picture)--D, the letter is on a sign post--JERRY (a railroad section 

worker). Running these together, we get TOMAN-D-JERRY, or Tom and Jerry. 

It’s just a matter of dividing up each possible title under the picture, 

until we find the definitions that fit words under the picture, which 

strung together, produce the complete title. Just plain old dictionary 

digging, and you’d be  surprised the number of different ways a word can 

be spelled and still pronounced the same way.

 If you get any advance information from the paper, please let me 

know at once. And many thanks for your efficient and kind help so far. 

     

Sincerely,

     J. S. Railsback

     

Figure 74. Jordan’s partner, 

J. S. Railsback, informs Blackledge 

they are in the tiebreaker
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Mr. J. S. Railsback,   April

2459 Truman Avenue,         6

Oakland, California.   1938

Dear Mr. Railsback:

I have been waiting to write you until I know what the results of the con-

test were. In the yesterday afternoon News the enclosed was published.

As you know, on March 26th I went down to the News Office with four others 

for the second tie-breaker. There were two women (Mrs. O’Hara was one) and 

two other men. We worked from 9:00 in the morning until 6:00 that after-

noon. From the check on the answer list I got five correct – which was not 

quite enough. These were, to me at least, very difficult. I did the best I 

could going in there cold – just about the same as playing tennis with Bill 

Tilden. It was quite a surprise to me to be called but I didn’t want to let 

you down. I had never solved any of these before and all I knew about it was 

the instruction Mr. Leonardgave me. And by the way, none of the tips were 

there. Of course, had you been able to solve this last bunch yourselves the 

result would have been first. I am sorry I fell down on you but, as I say, 

I did the best I could under the circumstances.

I have the check and as soon as I find out just what my taxes on the full 

amount will be I’ll send the balance to you. Do you want the check made 

out to you?

With Best regards, I am

Sincerely yours,

    Penngrove, Calif.,

May 10, 1938.

Dear Mr. Blackledge,

 It may seem like criminal negligence, my not having written you 

sooner, but for the last few weeks we have been tied up with a series of tie-

breakers of various sorts that has simply kept us on the jump every minute.

 Wanted to thank you sincerely for the fine attention you gave the 

Indianapolis contest, and for your swell sportsmanship in daring the brave 

the interior of the newspaper office for that totally unexpected tie-breaker. 

Usually when so few are tied the paper goes around to see them, and ask if 

they care to split the prizes, so naturally we anticipated that procedure if 

another tie-breaker was not mailed out.

 Anyway, it’s over with now, and I thank you again, also for your 

prompt remittance. If I had any favorite card trick or a dozen of them, they 

would be yours instanter [sic], but the truth of the matter is, I gave up all 

connection with magic years ago, and have practically nothing pertaining to 

it on the place.

 Railsback and I will be very glad to see you when you come to the 

coast this fall. Be sure and advise us well in advance.

    

     Sincerely,

Box 101

     Charles T. Jordan

Figure 75. Blackledge describes the 

in-person tiebreaker to Railsback

Figure 76. Jordan congratulates 

Blackledge on his in-person 

performance
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shuffl e. Mail the deck back to me. Oh yes, at 6:00 p.m., every evening, 

please concentrate on your card.” When the performer gets the deck 

back, it is possible to decode the mess and fi nd the selected card.

The deck the performer mails is arranged in a known order. For 

the purpose of this description, let us suppose that the spades are in 

order on top, followed by the ace through king of clubs, then the ace 

through king of hearts, and fi nally the ace through king of diamonds. 

As explained above, a single riffl e shuffl e leaves the cards in two inter-

locking chains (fi gure 77).

What happens after a second shuffl e? The top half is cut off—this 

has two chains. The bottom half also has two chains. When the two 

halves are riffl ed together, the deck has four chains. A further shuffl e 

results in eight chains. When the top card is noted and moved to the 

middle, it makes a ninth chain of size one! 

When the performer gets the deck back, the chains can be undone 

by playing a kind of solitaire. Turn up the top card and deal it face-up 

on the table. Say it is the six of hearts. If the next card is the seven of 

hearts, play it on the six. If not, start a new pile. Continue this, starting 

new piles, with subsequent cards being played on previous cards. As 

you go through the deck you will form eight piles, each of size about 

one- eighth of the pack, and a ninth pile, of size one containing the 

selected card.

Since the cards have been repeatedly cut they must be treated cy-

clically, so the bottom card (the king of diamonds) is followed by the 

original top card (the ace of spades). It is best to practic this with cuts 

followed by one shuffl e, then two shuffl es. The trick has a small chance 

of failing (if the selection is placed back very close to the top, for ex-

ample). Extensive empirical experiments, as reported by D. Bayer and 

Figure 77. Two chains
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P. Diaconis,23 show that the trick works more than 90 percent of the 

time. The reference also contains a more refi ned way of undoing the 

eight chains. 

Jordan’s trick was the key to one of our most celebrated mathemati-

cal fi ndings—the theorem showing that it takes at least seven ordi-

nary riffl e shuffl es to adequately mix up fi fty-two cards. The discussion 

above shows that three shuffl es are defi nitely not enough. Similarly, 

after fi ve shuffl es, the deck can have at most thirty-two chains. On 

average, a well-mixed deck has about twenty-six chains, but can easily 

have more than thirty-two. A more careful analysis shows that, after 

fi ve shuffl es, a sizable proportion of the possible arrangements still 

can’t be reached. Note that this is true no matter how the shuffl es are 

performed: Neatly, randomly, or dependent from shuffl e to shuffl e. 

To go further, we used a natural model of riffl e shuffl es introduced 

by Bell Labs scientists Ed Gilbert, Claude Shannon, and Jim Reeds. 

This shows that the original order fades away starting at seven shuffl es, 

tending to zero exponentially fast. The details are too technical for the 

present treatment.24 The analysis of shuffl es has many further math-

ematical implications and many practical implications as well.25

Returning to magic, Jordan’s original Long Distance Mind Read-

ing trick took no chances. The deck was repeatedly cut, riffl e shuffl ed 

once, and the cards were then cut into two piles. A card is randomly 

chosen from the middle of one of the two piles, noted, and moved to 

the opposite pile. Finally, either pile is chosen, shuffl ed thoroughly, 

and mailed to the performer. With the information above, the reader 

should be able to see how the performer can take the shuffl ed pile 

and determine the selected card. It takes a bit of thought but is rela-

tively surefi re.

We have accrued a lot of mileage from Jordan’s inventions, both 

magically and mathematically. He has inspired all who are serious 

about mathematical magic. Stewart James wrote, “To me, Jordan was 

the greatest idea man that card magic has produced.”26 As we write 

this, we have Henry Christ’s fi le of Jordan’s individually sold secrets 

open in front of us. Bought one at a time as they came out, they were 

lovingly read and saved (both the envelopes and the faded “Secret 

Gimmicks”). The individual secrets sold from fi fty cents to two dollars 

or so in the 1920s. There were about a hundred of them. Again, this 

makes for a sizable investment. Looking back, we are glad it was made 

and wish there were more of these saved secrets to be found.Figure 78. One of Jordan’s envelopes
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Bob Hummer

The word genius gets tossed around easily. We have not used it else-

where but, for us, Bob Hummer was a genius at inventing mathemati-

cal magic. He was also as odd and original a personality as we have 

encountered. We began this book with his “turn over two” ideas. His 

Figure 79. An arrangement of cards (see fi gure 80 for an explanation)

A

C

B

D
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Figure 80. Instructions for The Climax

mathematical Three-Card Monte is developed below. Let us relate 

what little we know of his life.

Hummer was born on January 25, 1906, and died in Havre de 

Grace, Maryland, in April 1981. His father worked for the Salvation 

Army. He had a brother and sister but we do not know many details 

of his early life. He fi rst appeared on the magic scene as a secret as-

sistant for a great stage card worker, Paul Le Paul. Le Paul would call 

Hummer up from the audience as a “volunteer.” Hummer had a very 

funny persona on stage that just naturally made people laugh. While 

we will focus on his mathematical inventions, Hummer also did fi ne, 

original sleight of hand (we still use his one- handed color change). 

He invented and performed strange tricks. He could toss a single card 
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up into the air so it made a 360-degree circle around his body before 

being caught. One spectacular feat—after a card was selected and 

signed, he threw the deck at a nearby window with a half- open window 

shade. The shade sprang up and the spectator’s card was seen stuck 

to the window. When the spectator went to check the signature, shock 

set in. The card was stuck to the glass outside the window.

Hummer made a living doing magic around Chicago, often busk-

ing in bars and passing the hat. He hung around magicians, swapping 

tricks and telling awful jokes: “A family of skunks sat down for dinner 

around a head of lettuce. Bowing heads, the father said ‘Let us pray’” 

(= lettuce pray = let us spray). He performed throughout the Midwest, 

never a star and never driven to make money. He worked when he 

needed to.

Figure 81. Two publicity photos of Bob Hummer
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Along the way, he began to market easy- to- do but highly original 

magic. Perhaps his most well-known trick is called Mathematical 

Three-Card Monte. First published in 1951, and widely varied and per-

formed since, the trick fools you even after you know how it is done. 

It uses the fi ngers as a true digital computer and has a Lewis Car-

roll logician’s fl avor. We begin with the original, then pass to standard 

variations. Then, we show how a look at the mathematics shows that an 

improvement is available. Finally, we provide some unpublished varia-

tions by the movie director (and great card man) Cy Enfi eld.

Hummer’s three-card Monte

The Original. Three random cards are placed face-up on the 

 table. The performer says to the spectator they are going to play “men-

tal three-card monte” and turns away. He asks the spectator to switch 

various pairs of cards to mix things up, then think of one of the three 

cards and make a few more switches. Without turning back around, 

the performer says: “Concentrate on your card . . . let’s see; please pick 

up the card on your left’’—this proves to be the chosen card.

Wait, Wait. The above is the effect as the spectator sees it. There 

are, as always, pertinent details to be fi lled in. First, as the spectator 

makes the initial switches, they are called out, as in “left and middle” 

or “left and right.” After a few switches, the performer asks the specta-

tor to think of a card, remember it, and silently switch the other two. 

Figure 82.  A notice for Bob Hummer’s 

act in 1942 (from the Billboard)
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A few more called-out switches are made. Then the performer success-

fully reveals the chosen card. 

As to the method: When the cards are laid out, spot the middle card 

(say it is the ace of spades for this description). The right hand will act 

as a tiny computer. To begin, touch the thumb to the middle fi nger 

(where the ace of spades is). Turn your back to the spectator and ask 

him to switch a pair. If he switches the ace, your thumb moves to the 

appropriate fi nger. When we do it, the right hand is palm-down and 

the fi rst fi nger corresponds to the left card. If the spectator switches 

“left and middle,” your thumb moves to the fi rst fi nger. If the next 

switch is “middle and right,” your thumb stays on the fi rst fi nger. If the 

next is “left and right,” your thumb moves to the third fi nger—always 

showing where the ace goes. This may be continued for as long as 

needed, but two or three switches is usually enough. 

Have the spectator think of one of the three cards and silently 

switch the other two. Your thumb stays put. Have him call out some 

more switches and your thumb keeps track as before, following the 

presumed ace. At the end, ask the spectator to hand you the card at 

the position indicated by your thumb (e.g., the left card if your thumb 

is on the fi rst fi nger). Glance at it; if it is the ace of spades, that’s the 

chosen card and the trick is over. If it is not the ace of spades then, 

without missing a beat, say, “Please hand me one of the remaining 

cards.” Glance at it; if it is the ace of spades, say: “Congratulations, the 

card on the table is the card you are thinking of.” If it is not the ace 

of spades, then the card just handed to you is the chosen card. Say 

“Congratulations—I guessed wrong but you are right on the money. 

The chosen card is [name the card just handed to you].”

As we said, it takes a bit of thought to see why it works, even after you 

know how it works. We leave that pleasure to you.

Variations. There is no reason to use cards. Indeed, a pricey stage 

presentation with three brightly colored billiard balls (say, red, green, 

and yellow) was sold in the late 1950s as Chop- Chop’s Mental Col-

orama. Just listen to this: 

For the magician that likes distinction!! The aristocrat of magic 

props! It’s the 1—2—3 of magic mentalism. No. 1—For your 

desk or den. A conversation piece to be exhibited! No. 2—Do a 

mental effect simply, clearly and colorfully with masterful results! 
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No. 3—Just have a spectator think of one of the three perfect lucite 

colored balls (set on a highly polished small black lucite stand). 

And while your back is turned, have them move the red, green 

and yellow balls from space to space any number of times. When 

they decide to stop, you turn around and immediately announce 

the color of the selected ball. Mental Colorama has enabled you 

to be a master mentalist as fast as you can say 1—2—3. The magi-

cian in your family will treasure this beauty. Price—$10.00.27

For the record, Hummer’s two- page description sold for one dollar. 

The cost of the magic journal in which Mental Colorama was adver-

tised was sixty cents. In 2011, Genii sells for six dollars an issue. Over-

blown though it may be, it does show that Hummer’s little trick can 

be built up to something that could be performed for an audience of 

a thousand.

A popular way to get away from cards was marketed by our friend 

Al Koran, a British mentalist, in the 1950s. Here, three coffee cups 

are borrowed and turned mouth-down in a row on the table. The 

performer (you) notices an identifying mark on one of the cups 

and follows this cup as if it were the ace of spades. A spectator puts 

a crumpled - up dollar bill under any one of the cups. Turning away 

from the proceedings, say you are going to play a mental version of 

the three-shell game and ask her to silently switch the positions of the 

other two cups as a practice move. Have her call out a sequence of 

switches, as in “left—right’’ or “left—center.” To conclude, you turn 

to face the cups. If the marked cup is in the position indicated by 

your thumb, that cup contains the bill. If not, the bill is under the cup 

not in the designated position. It’s a good trick and bears repeating a 

time or two. Koran managed a spectacular fi nish by introducing some 

sleight of hand so that he could name the serial number on the bill.

These variations use two pieces of information. For example, the 

magician must turn around in the bill-under-the-cup version. The 

New York memory expert Harry Lorayne introduced a neat variation: 

Three objects, say a coin, a matchbox, and a straw, are placed on the 

table. A spectator thinks of one, switches the other two, and calls out 

the switches as before. At the end, the performer asks if the origi-

nal objects happen to be in the original order. If not, the spectator 

is asked to call out switches until the order is restored. To conclude, 

consult your thumb! If it indicates that the original central object is 
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back in the center, that’s the object. If not, the thought-of object is at 

the position not represented by your thumb nor in the center.

Martin Gardner, improving on a clever variation of Hummer’s trick 

by Max Abrams,28 suggested the following highly performable variation 

that eliminates the spectator’s calling out of switches. It is explained 

here for the fi rst time, with his permission. Take three cards from a 

borrowed, shuffl ed deck and place them face-down on the table. Spot 

an imperfection (a spot or bend) in one of the three; this is surpris-

ingly easy, particularly with a well-worn deck. Turn your back and have 

the spectator look at one of the three cards. He then silently switches 

the other two. You turn back around. If the spotted card is still in its 

original position, that’s the thought-of card. If not, the thought-of card 

is what’s left after eliminating the spotted card and the card currently 

where the spotted card was. You thus know where the thought-of card 

is. Now engage in a quick set of switches, like a street three-card monte 

operator. Keep track of the selected card. To conclude, have another 

spectator put a hand on one of the three cards. If it is the selection, 

conclude there (with an appropriate buildup). If not, say “We’ll elimi-

nate that card.” Have the original spectator choose one (perhaps after 

more mixing). If correct, conclude there. If not, say “With two cards 

eliminated, the last must be correct. Name your card.” And turn it 

over to show it is correct.

Our Contribution. In thinking things through, we realized that 

previous versions do not use all the information. To explain things 

clearly, suppose an ace, a two, and a three are face-up on the table, or-

dered left to right. As the spectator calls out switches, there is enough 

information to follow the exact position of all three cards. Now the 

spectator makes a silent switch as above (after thinking of one of the 

three cards). There are only three possibilities as unknowns. After 

further switches are called out, there are still only three unknowns. 

To conclude, the performer asks for (say) the middle card. This can 

be any of the three and gives enough information to determine the 

thought-of card. If it’s what it should be in following the order, it is the 

thought-of card. If not, then neither it nor the projected center card 

work so the third possibility is the thought-of card.

This eliminates the second question in the original Hummer trick 

and the awkward “Let’s reset the cards to their original order.” Finally, 

it is easy to mechanically follow all three cards. One method is to use 
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both thumbs. The right hand’s thumb follows the original center card 

and the left thumb follows the original left-hand card. If you don’t 

want to use your fi ngers, use a dodge of Hummers—locate three ob-

jects in your view, say a lamp, a clock, and a window. Shift your gaze 

between the three as the switches are called for the central object and 

point to one of the three with a fi nger for the second object. It takes 

practice, but it’s not exactly what anyone would call sleight of hand. 

Wait, maybe the fi nger version does count as sleight of hand!

We worked out a variation that might help in some situations. This 

involves following only one card (say card number one) as with the 

original. However, you also keep track of parity (even or odd) of the 

total number of switches. To conclude, ask for the card at the position 

indicated by your thumb as in the original Hummer presentation. If 

this is what it should be, stop. If not, the thought-of card is still on 

the table. It is either to the right (+1) of the removed card, or to the 

left (−1) of the removed card, going cyclically. Here is a simple rule. 

If the card handed to you is the two, count +1; if it is the three, count 

−1. If the number of switches is even, you are done. If the number of 

switches is odd, switch the signs. This gives the position of the thought-

of card.

Cy Endfield’s Rock, Paper, scissors

Cy Endfi eld was an amazing guy. A famous American movie director 

(Sands of the Kalahari, Zulu, Gentleman Joe Palooka) blacklisted during 

the McCarthy era, he moved to England and made more movies as 

well as a new life. Cy was a very skillful card handler. The three vol-

umes of his Entertaining Card Magic set a new standard for advanced 

card magic that also provided solid performance material. Later, he 

created a sensation with a hand- crafted chess set that stacked into two 

pens but broke down into real playable chess pieces.

He and his wife, Maureen, made the ragtime music of Scott Jop-

lin into a musical (about his hometown of Scranton, Pennsylvania). 

Of Cy’s many successes, we mention his Microwriter—a one- handed 

keyboard that became a successful product in the early days of the 

computer revolution.

We carried on an extensive correspondence with Cy over a forty- 

year period. For about fi ve years we worked on Hummer’s Mathemati-

cal Three-Card Monte. The following routine, worked out jointly, was 



stars of mathematical magic    209

in Cy’s performing repertoire. He was proud enough to perform a ver-

sion by mail for Martin Gardner—Martin gave us all of his magical cor-

respondence. We were proud to see that our trick fooled Martin. He 

asked Cy for the details but Cy turned him down! Here is the secret.

Rock, Paper, Scissors. The performer explains the classical game 

of Rock, Paper, Scissors. Each dominates another: Paper covers rock, 

rock breaks scissors, and scissors cut paper, in a nontransitive cycle. 

The performer turns his back to the audience and a spectator chooses 

one of the three objects, then silently switches the other two. A second 

spectator chooses one of the other two objects and switches them. Fi-

nally, a third spectator is stuck with the third object. After a few more 

switches, without turning around, the performer successfully reveals 

all three choices.

Here are the performance details. Take a single sheet of paper, tear 

it into three roughly equal pieces, with one piece slightly larger so 

the three pieces can be distinguished as large, center (with two rough 

edges), and small. Write “rock,” “paper,” and “scissors” on the pieces 

in a known order (e.g., “rock” on small, “paper” on center, “scissors” 

on large). Turn your back and have Spectator One think of one of the 

three and silently switch the other two. Have Spectator Two choose 

one of the remaining two objects, and switch the other two, calling out 

his switch (e.g., “left—right”). Ask him to make a few more random 

switches, calling them out. Spectator Three is asked to concentrate on 

the third object.

With your back turned at all times, you reason as follows. When the 

second spectator calls out his switch (e.g., “left—right”), you remem-

ber the position not called (here, “middle”). This will be the object 

thought of by the fi rst spectator. They may make any further number 

of switches. You follow the position of the fi rst player’s object.

At the end, tell Spectator Three to pick up the object that was at the 

position unnamed by the second spectator. Tell the second spectator 

to pick up the object that is at the position you’re following. The fi rst 

spectator’s object is the one that remains on the table. Done with bra-

vado, it seems that you have divined all three choices.

It takes practice to do this smoothly, and some thought to see why it 

works. Thus far, the fact that the performer can recognize the pieces by 

shape has not been used. The trick above can be done with any three 

objects, e.g., an actual rock, a piece of paper, and a pair of scissors (or 
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a coin, watch, and banana). The reason for the shape comes in the 

next phase. 

Bob Neale’s Rock, Paper, Scissors. Turn the three pieces of pa-

per face-down, mix them a bit, and place them, one at a time, in front 

of the three spectators. Because of the shapes, you know who has what. 

Suppose they are as: 

Tom Dick Harry

Rock Paper Scissors

Again, the performer turns his back to the audience and has the 

spectators switch places a few times. They don’t have to tell you who 

they are, they just have to call out “switch.” Similarly, they can switch 

pairs of playing pieces, rock and paper, etc. They keep up either kind 

of switching for a few moves. The effect appears in three phases:

1. After a few switches, the performer (correctly) announces that 

Tom beats Harry.

2. More switches; the performer asks for the names of two  players 

and then divines who beats whom.

3. More switching; spectators pick one player (e.g., Tom). The 

performer announces that Tom should play Dick to win.

We leave the working of this to you as a problem in logic. It’s actu-

ally amazing. This trick is Cy’s version of Bob Neale’s fi rst trick from 

This Is Not a Book. It is a development of Neale’s End Game from the 

Pallbearers Review.29 Cy dressed the trick up as a battle between three 

gladiators with a dagger, pike, and net (pike breaks dagger, dagger 

penetrates net, and net covers pike). He had versions with chess pieces 

and playing cards. In retrospect, the torn paper dodge is not really 

needed. Working directly with a small rock, piece of paper and pair of 

scissors is probably better. For the Neale trick, one can work without 

props. Have three spectators hold out their hands, one as a fi st (rock), 

one open handed (paper), and one with an extended pair of fi ngers 

(scissors). When two switch, they just switch their positions. 

This has been an extended development of Hummer’s original 

idea. Our fi rst chapter did the same. It seems to us that many of 
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Hummer’s other ideas have similar promise. The reader will have to 

work to fi nd them.

Martin Gardner

Just before writing this section we typed “Martin Gardner” into the on-

line bookstore Amazon.com. One hundred and forty- fi ve titles came 

up. It is a remarkable feat to have written (or edited) this many books. 

It’s even more amazing to have a large fraction of that number in 

print. They include novels, philosophy books, popular science books, 

books of poems, and riddle and puzzle books. Martin is the dean of 

popular science writers. A ferocious debunker of the occult and pseu-

doscience, a skillful sleight-of-hand worker, but, mostly, he was our 

friend. For more than fi fty years he encouraged and taught us, pub-

lished our tricks and mathematics, and was a focal point for the latest 

and funniest of these.

For twenty-fi ve years, from 1956 to 1981, Martin wrote a mathemati-

cal games column for Scientifi c American. This opened the gentle art of 

recreational mathematics to an international audience of millions. In 

the course of his column, Martin truly changed the world—he pub-

lished the fi rst description of public- key cryptography which is now 

used in many online banking transactions.30 He published the fi rst de-

scriptions of John Horton Conway’s Game of Life and Roger Penrose’s 

celebrated Penrose tiles.31 The Game of Life so overloaded computers 

around the world that the game was forcibly banned in many locations.

Martin’s column did much more. A blurb that appears on one of 

his books says:

Warning: Martin Gardner has turned dozens of innocent young-

sters into math professors and thousands of math professors into 

innocent youngsters.

We are living proof; Martin nurtured a runaway fourteen- year-old, pub-

lished some of our mathematical fi ndings to give a fi rst publication (in 

Scientifi c American), found time to occasionally help with homework, 

and, when the time came to apply for graduate school, Martin was 

one of our letter writers. There are heart- warming stories here. Mar-

tin’s letter of recommendation said something like: “I don’t know a 

lot about mathematics but this kid invented two of the best card tricks 
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of the past ten years. You ought to give him a chance.’’ Fred Mosteller, 

a Harvard statistics professor and keen amateur magician, was on the 

admissions committee and let the kid into Harvard. Fred became the 

kid’s thesis advisor and, after graduation, the kid eventually returned 

to Harvard as a professor.

One other tale about Martin’s letter. It was sent to a long list of 

graduate schools. He got a reply from Martin Kruskal at Princeton (a 

major mathematician who was most well-known for his discovery of 

solitons) that went roughly: “It’s true, Martin. You don’t know about 

mathematics. No one with this kid’s limited background could ever 

make it through a serious math department.” Kruskal went on to ex-

plain what has come to be known as the Kruskal principle. This is a 

broadly useful new principle in card magic. A few years later, the kid 

lectured at the Institute for Defense Analyses, a kind of cryptography 

think tank in Princeton. Kruskal came up afterwards, full of enthu-

siasm for the lecture, and asked: “How come I never heard of you? 

That was wonderful!” The kid tried to remind Kruskal of their history. 

Kruskal denied it but the kid still has the letter. This was one of the few 

times that Martin Kruskal’s keen insight led him astray!

One secret of Martin’s writing is that he touches the material he 

writes about, building small models, trying examples, internalizing, 

playing with the examples and theorems until he “sees” them. Here is 

an illustration, and the story of Martin’s fi rst research paper.

The story starts in the think tank run by the largest telephone 

company —Bell Laboratories. Understandably, they study the problem 

of how to connect a bunch of sites using the least amount of wire (or 

optical fi ber, nowadays). To get a feel for this, consider the three ver-

tices of an equilateral triangle, each side of length one. Running the 

wire along two of the sides connects the three points together, and 

uses a total wire length of two (see fi gure 83).

However, consider adding a fi ctional point in the middle (called a 

Steiner point), and connecting all vertices to this middle point (see 

fi gure 84). This network still connects all three of the triangle vertices 

together and its total length is only 3 . An easy calculation shows that 

we have managed to save length by a factor of 3
2  = 0.866. . . . This 

raises the problem of just how much can be saved and how to do it. 

Is this central point the best? (Yes.) What about more general sets of 

vertices? Even for the case when we have the four vertices of a square, 

it isn’t obvious what the best confi guration is. It turns out that it is the 

Figure 83. Three vertices of a unit 

triangle
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Figure 84. Adding an extra point 

in the middle
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one shown in fi gure 85 (which can also be rotated 90 degrees). In 

this case, the total length of the shortest possible network connecting 

the four vertices of a unit square is 1 + 3  = 2.73205 . . . , no matter 

how many extra points you try to use! Compare this with the length of 

three if no additional points are allowed.

Working with Fan Chung, we studied the problem of fi nding the 

best network for a set of points on a 2 × n square grid. In particular, 

we were able to show that when n was an even number, then the best 

thing to do is to join these 2 × 2 squares together by single edges (see 

fi gure 86), so, in particular, we only had to add n additional Steiner 

points. However, the shortest network when n is odd needs 2n − 2 ad-

ditional Steiner points and has a much more complex structure.

Figure 85. Shortest network 

for unit square

1

1

Figure 86. Shortest network for 2 x 2n 

ladders

Figure 87. Minimum Steiner tree 

for 2 x 11 ladder

In fact, it is now known that you can never save more than a factor 

of 3
2  for any set of vertices when you are allowed to arbitrarily add 

additional Steiner points. A beautiful open problem is to fi nd the cor-

responding best ratio for sets of vertices that are in three dimensions. 

The conjectured ratio in this case is the amazing quantity:32
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9 11 21 2
0.78419

––
+ =

We currently offer a thousand dollars for a proof (or disproof) that 

this ratio is the best possible.

One day a letter arrived from Martin. He was writing a column on 

“The Steiner Problem.” He had a host of examples and conjectures 

about more general grids. We answered, he answered, each fi nding 

new examples and counterexamples to the other’s conjectures. The 
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work was substantial enough to merit publication. This was Martin’s 

fi rst appearance in a refereed math journal.33

Our work was mostly sharp conjectures. For example, for an n × n 

square grid when n = 7, we conjectured the shortest confi guration was 

the one shown in fi gure 88. We are proud to report that our joint pa-

per won a prize for exposition. Even better, our conjectures caught the 

eye of a research team from Australia a few years later. They managed 

to rigorously prove all of our discoveries and more.33 Martin told his 

own version of the story in his last Scientifi c American column, reprinted 

with addenda in The Last Recreations.35 This all shows what we mean by 

saying he touches the material. 

Thus, we and many others are proof: Martin has turned innocent 

youngsters into math professors. If you go to one of the national 

Figure 88. Shortest network 

for 7 x 7 grid
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mathematics meetings and ask randomly about Martin Gardner, you 

will fi nd hundreds of examples of the converse, professional mathema-

ticians who have become intrigued by one of Martin’s columns and 

who have spent hours lost in the wonder that an interesting problem 

creates.

How did he do it? Perhaps Martin’s greatest trick is this. He wrote 

mathematics so that both youngsters and professional mathematicians 

couldn’t wait to see his next column. He was not a mathematician. 

He had an undergraduate degree in philosophy from the University 

of Chicago. Indeed, while he understood the idea of limits, Martin 

didn’t really know calculus (for example, integrating sin3(x)). This is 

probably all to the good in communicating with nonmathematicians. 

How he kept professionals interested is still a mystery. One thing we 

noticed: Martin’s writing is chock full of examples, facts, related anec-

dotes, and mathematical facts that tumble out with very little philoso-

phy or fi ller. Also, as a nonprofessional, Martin allowed himself to be 

engagingly enthusiastic about his topics.

But there is more. It is not fashionable to write about talent in these 

days of equality. Yet we acknowledge talent in athletics, drawing, and 

singing. Well, Martin was as talented a writer about recreational math-

ematics as we are ever likely to see. It doesn’t come easily. Martin told 

us that during his twenty-fi ve years writing for Scientifi c American, he 

spent more than twenty-fi ve days a month working full time on his 

monthly column. This included writing answers to countless letters 

and inquiries. For dealing with cranks, he had a postcard printed with 

a checklist of crank topics:

I cannot answer your letter about:

□ trisecting the angle;

□ the four color problem;

□ doubling the cube;

. . .

because I am not trained as a professional mathematician. 

And he would place a ✓ at the appropriate topic.

His network of correspondents brought brilliant recreational 

gems out of the woodwork. There is strength in numbers. The best 

of thousands of cute contributions can be profound. The great com-

puter scientist Don Knuth has spent weeks going through Martin’s 

fi les, panning for (and fi nding) lost gold. By Knuth’s efforts, and the 
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hard work of Stan Isaacs, Martin’s fi les, including a folder or three 

for every column, his research materials, drafts, and the letters from 

readers, are available for qualifi ed scholars at Stanford University’s 

Green Library.

Here is a story we fi nd sad. One day (around 1970) Martin seemed in 

unusually high spirits. “You know, after college I wrote a novel about the 

intricacies of modern religion in academia. I sent it around and around, 

and its been on the shelf all these years. I was at a party and a young pub-

lisher asked if I had anything sitting around. I’ve dusted off my novel 

and he likes it.” For a year thereafter, it was all Martin could talk about. 

“I’ve fi nished the galleys on the novel.” They’ve designed a great cover.” 

“I hear it might be reviewed in the daily New York Times.” And then, one 

of the saddest sentences we have ever heard: “If this thing takes off, 

maybe I can fi nally stop writing about puzzles.” We found it shocking 

that the best writer of popular mathematics in the world wasn’t deeply 

satisfi ed. We have taken our shock to heart in our own work. Each of us 

has talents. We vowed to enjoy our success for these and each will throw 

a pie at the other if he has high- blown fantasies.

Martin spent a lifetime in magic. He saw Houdini and Thurston as 

a lad, and every serious magician since, over a more than eighty- year 

period. Similarly, for the past fi fty years, he had been in the absolute 

center of mathematical magic. We regularly called on his recollections 

to explain one of our omissions. An early popular book on mathemati-

cal recreations is Royal V. Heath’s Mathemagic: Magic, Puzzles and Games 
with Numbers.36 Heath performed and wrote actively. Why isn’t he on 

our list? The answer is simple. Heath was a rich stockbroker who car-

ried himself as a pompous fool. He performed tedious mathematical 

tricks that put his audience to sleep. Martin recalled Heath doing a 

stage performance at New York’s Society of American Magicians. He 

covered a large blackboard with things like magic squares made up of 

only prime numbers. It is one thing to do this at your kitchen table 

and maybe a great showman could make it come to life, but Heath 

wasn’t a showman and the audience was dying. Near the end of his 

performance, just before he delivered his closing lines, an elderly gen-

tleman arose and said he’d like to try something different. He erased 

the board and had ten people call out various ten- digit numbers. As 

fast as they were called, he wrote them down, drew a line underneath, 

and instantly wrote down a giant total. He quickly erased the numbers 

(so no one could check) and took a deep bow. The old timer was Al 
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Baker, dean of American Magicians at the time. He was well-known for 

poking the air out of infl ated egos. The audience loved it and Heath 

stormed off furious.

Martin never had a bad word for anyone. To our tale above he added 

that Heath is the reason he had a career writing about recreational 

math. Heath had a large cloth model of a fascinating “hexafl exagon” 

in his high- rise Manhattan apartment. Martin became intrigued and 

went out to Princeton to interview the four scientists (Richard Feyn-

man, John Tukey, Arthur Stone, and Bryant Tuckerman) who had 

cooked up the amazing gadget. He sold the story about it to Scientifi c 
American. The publisher at that time,  Gerard Piel, liked it and asked 

for more. The readers liked these and the column was born.

At the time Martin was just barely eking out a living writing for chil-

dren’s magazines. Dai Vernon told us that Martin was really down. 

When the magicians met, Martin couldn’t afford a meal and settled 

for a cup of coffee. “His cuffs were frayed and he was close to poverty 

for several years.’’ He turned down corporate jobs. He wanted to make 

it by writing his way. He never sold out.

It’s time for a bit of Martin’s magic. By far, his most famous trick is his 

Lie Speller. Here, someone chooses a card and the name of the card 

is spelled out (one card for each letter) but the spectator is allowed 

to lie along the way. At the end, the last card dealt is the actual card 

that was chosen. This was a new plot (and method) that has intrigued 

magicians. It was fi rst published in the American magic magazine the 
Jinx.37 The persistent reader can fi nd it, along with many variations, in 

Martin Gardner Presents. We asked Martin which of his tricks he likes 

best and he told us about an amazing geometrical vanish that he pub-

lished without taking credit for his invention. It consists of a square, 

cut into pieces. When the pieces are slid about and rearranged, the 

square appears with a large interior hole (fi gure 90). Martin had writ-

ten on extensions of geometrical vanishing puzzles (in Mathematics, 
Magic and Mystery). This version results in a much larger hole than any 

previous one. Martin tells this story in his own words in an interview in 

the College Mathematics Journal.38

This interview also contains many of Martin’s favorites, including 

his favorite toothpick puzzle: “Move just one toothpick in the Giraffe 

shown [in fi gure 91] and leave the animal exactly as before except with 

a different orientation on the plane.” (See fi gure 91.) The reader can 

fi nd much more about these intriguing vanishing puzzles in Games 

Figure 89. A paper hexafl exagon 

(image courtesy of Robert Lang)

Figure 90. Martin Gardner’s vanishing 

square



218 Chapter 10

Magazine and the beautiful book Puzzles Old and New, by Slocum and 

Boterman.39 

Here is a version of a small trick of Martin’s that we fi nd charming. 

Find a spectator who has three initials. (We are P.W.D. and R.L.G.; 

Martin had no middle initial.) Say the initials are S, P, and H. You pat-

ter as follows: “There are curious coincidences all around us. I’d like 

to show you something strange about these initials.” Write them out 

three times on a piece of paper and tear the paper into nine pieces.

Put one set of initials onto the table. Hand the remaining two sets 

to two of the spectators. “I’d like you both to help with a coincidence. 

Choose, in any way you like, to put your set of initials face-down below 

the set on the table. Just so that we don’t have anything obvious, please 

don’t put an ‘S’ under the ‘S,’ a ‘P’ under the ‘P,’ or an ‘H’ under the 

‘H’” (see fi gure 92). The spectators comply while you engage them in 

conversation (“You two didn’t collude, did you?” “How long have you 

known S.P.H.?” etc.). To conclude, you show that an amazing coinci-

dence has indeed occurred.

One of two things can happen. When the spectators turn up the 

face-down papers below each of the three face-up letters, the fi rst pos-

sibility is that all three pairs match, i.e., the two ‘S’s are together, as are 

the two ‘P’s and two ‘H’s. If so, the face-up ‘S,’ ‘P,’ and ‘H’ are swept 

away and the coincidence is revealed (with some fanfare). Alterna-

tively, each pile of three has a complete set of initials ‘S,’ ‘P,’ and ‘H’ 

(see fi gure 93). You conclude, “Despite your randomizing things, like 

seeks like and the unity of your name shines through.’’

The trick works itself. Martin invented it with playing cards and pub-

lished it as Ace—Two—Three.40 A marketed version with the initials 

E—S—P also appeared. The version with initials was shown to us by 

Figure 91. Martin Gardner’s giraffe 

toothpick puzzle

Figure 92. Labeled scraps of paper

S HP

Fogure 93. The two possible outcomes
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Frank Quinn forty years ago. Frank is long gone but his charming 

variation will live on.

Perhaps Martin’s most serious contribution is creating the fi eld of 

modern recreational mathematics. We owe this book and much else 

to this star of mathematical magic. Both of us had many pats on the 

back during our careers. One of the honors we are proudest of: Each 

of us has had Martin dedicate a book to us. It doesn’t get any better 

than that!

Figure 94. The authors with 

Martin Gardner in 2007
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Going further 

Suppose you’ve gotten this far and want some more. More recreational 

mathemagic, more math, more magic. This chapter gives pointers to 

resources and techniques for going forward.

Recreational Mathematics. It’s always nice when questions 

have easy answers. How does one learn more recreational mathemat-

ics? What are the best, most interesting sources? Answer: Go get any 

(or all) of Martin Gardner’s collections of Scientifi c American columns 

or his Colossal Book of Mathematics for a good sampling. If you are inter-

ested in magic, all of these books have a chapter focused there as well. 

The books have so much more and are so engagingly written that we 

bet you will get lost for hours.

A word of caution: Martin has well over 140 books in print. The 

most relevant ones are these sixteen:

0. Mathematics, Magic and Mystery
1. Hexafl exagons and Other Mathematical Diversions
2. The Second “Scientifi c American” Book of Mathematical Puzzles and 

Diversions
3. New Mathematical Diversions
4. The Unexpected Hanging and Other Mathematical Diversions
5. Martin Gardner’s Sixth Book of Mathematical Diversions from “Scien-

tifi c American”
6. Mathematical Carnival
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 7. Mathematical Magic Show
 8.  Mathematical Circus
 9.  The Magic Numbers of Dr. Matrix
10.  Wheels, Life and Other Mathematical Amusements
11.  Knotted Doughnuts and Other Mathematical Entertainments
12.  Time Travel and Other Mathematical Bewilderments
13.  Penrose Tiles to Trapdoor Ciphers
14.  Fractal Music, Hypercards and More Mathematical Recreations 

from “Scientifi c American”
15.  The Last Recreations: Hydras, Eggs and Other Mathematical 

Mystifi cations

The complete collection, without item (0), is available on one 

searchable CD from the Mathematical Association of America. The 

books are being reissued by Cambridge University Press in updated 

versions: Martin learned to use the Web (at ninety-fi ve years of age!) 

and helped to bring the books up to date.

Item (0) is Martin’s original mathematical magic book. It is still the 

best single (short) source. The remaining books are collections of his 

Scientifi c American columns enriched with extensive addenda based on 

the collected wisdom of Martin’s many readers.

We have taught courses on mathematics and magic tricks at both 

Harvard and Stanford. The students are a mix of math kids and magic 

kids with a scattering of the curious. We try to pair the math kids with 

the magic kids—they really do have something to learn from each 

other. The fi rst assignment is always this: Go get one of Martin Gard-

ner’s books out of the library. Find a chapter with a magic trick. Next 

week you will have to perform your trick and explain how it works. We 

recommend this homework assignment to our readers.

Learning More Math. There has recently been an explosion of 

popular mathematics books.  These aim at giving a fl avor of the ex-

citement going on in the world of mathematics. There are at least 

four books about zero, books dedicated to various basic mathematical 

constants (π, e, i, φ, γ, 15– , . . . ), books on focused topics such as the 

heroic classifi cation of fi nite simple groups, the recent solution to the 

one million–dollar Poincaré conjecture, and at least fi ve books on the 

celebrated Riemann hypothesis.
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Most of these books “give a fl avor,” rather than attempting to clearly 

teach any serious mathematics. One remarkable exception, which we 

recommend, is Richard Courant’s and Herbert Robbins’s wonderful 

classic, What Is Mathematics? (1941). For a gentler introduction, we 

suggest Barry Mazur’s Imagining Numbers (Particularly the Square Root of 
Minus Fifteen) (2003).

Higher mathematics is usually thought of as starting with calculus. 

Curiously, we know of essentially no magic tricks that lean on calculus. 

If the reader wants an introduction to calculus, perhaps the best is Sil-

vanus P. Thompson’s Calculus Made Easy (2008). It has been wonder-

fully updated by—Martin Gardner.

The kind of mathematics used in our book is of three basic fl a-

vors: combinatorics, number theory, and group theory. There are ac-

cessible introductory accounts of these topics in Sherman K. Stein’s 

Mathematics: The Man- Made Universe (1998) and, at a slightly higher 

level, Herstein’s and Kaplansky’s Matters Mathematical (1978).  If these 

appeal, there are accessible introductory courses on the Web and at 

many colleges through their extension programs. 

Learning More Magic. The kind of self- working magic explained 

in this book is only a tiny part of the subject. There are sleight-of-hand 

tricks, tricks with special props and gadgets, grand illusions, mental 

magic, tricks aimed at kids, religious magic, bizarre magic, and so on.

To go further, we suggest a little basic sleight of hand with cards. 

Jean Hugard’s and Frederick Braue’s Royal Road to Card Magic (1951) 

is the best introduction. Further, a wonderful series of books by the 

Swiss magician Roberto Giobbi take the reader from self- working 

tricks to advanced sleight of hand. Indeed, Giobbi’s multivolume Card 
College makes for the equivalent of a university degree in card magic.1

There is a huge magic literature aimed at serious amateurs and 

professionals. One of us has (about) fi ve thousand pamphlets, books, 

and volumes of magic journals in our personal library. We currently 

subscribe to some thirty magic journals, most of these (almost surely) 

too technical for an outsider to get much from. There is also a large, 

growing collection of teaching CDs that are more easily accessible. 

One can fi nd almost any trick demonstrated on YouTube and many 

tricks explained in Wikipedia.

How to touch this world? One route is this: Many sizable cities have 

a magic store and most sizable towns have magic clubs. The Society 
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of American Magicians (S.A.M.) and the International Brotherhood 

of Magicians (I.B.M.) are backbones for many of these in the United 

States, with other countries having parallel structures.

Find a nearby magic store, drop in, and buy a book or CD. They will 

try to sell you a load of junk and this should be avoided until you know 

what you are doing. If you go on a Saturday afternoon, a bunch of 

magicians will be hanging around. Introduce yourself, saying you are 

just starting. Most likely, they will show you some tricks and tell some 

stories. The proprietor will be able to tell you about local magic clubs. 

We have found magicians to be a gentle, sociable bunch. Most magic 

clubs have occasional evenings aimed at the public. If you go and meet 

a few people, they will have advice, help correct your fl edgling tech-

nique, and point you to local resources. 

Like mathematics, magic has a deeper side. In addition to the se-

crets and the sleights, how the gadgets work and the like, there are the 

real secrets of magic: Presentation, misdirection, and the philosophy 

of magic. These make the difference between a kid who does tricks 

and a performance that really fools and moves people. It is diffi cult to 

lay out a road map here. If you want something to aim for, try to gear 

up to read, digest, and understand the series of books about the magic 

of Arturo Ascanio and Juan Tamariz.2

Learning More Juggling. There is a large variety of sources from 

which to advance your skill in juggling. The main source of all kinds 

of information on juggling is the Web site www.juggling.org. It carries 

rather complete lists of juggling videos, juggling props, juggling fes-

tivals, Web sites of many current prominent jugglers, books, meeting 

times and locations of local juggling clubs, etc. Many colleges have 

juggling clubs that welcome jugglers at all levels, especially beginners. 

A good beginning book is The Art of Juggling by Ken Benge.3

And Back. In this book, we have traveled the road from magic to 

mathematics and back to magic. The road doesn’t stop there. We 

have found the back-and-forth keeps going. If you manage to use 

mathematical understanding to invent a good new trick, you may 

fi nd that natural variations of the trick lead to new math problems. 

So it goes. 

Two things that are hard to explain: What makes a magic trick a 

good trick? What distinguishes a self- working trick from a real piece 

www.juggling.org


224 Chapter 11

of mathematics? Time and again we have seen hackneyed presenta-

tions of simple arithmetic presented as original contributions. Most 

self- working magic has this fl avor: A poor trick devoid of mathematics. 

It reminds us of a “horse- cow” (i.e., it gives milk like a horse and runs 

like a cow). We have tried to show there is something left. There is 

certainly a lot left to do.



Chapter 12
on secrets

Magic gets some of its appeal from its secrets. The magician knows but 

doesn’t tell. Some spectators fi nd this frustrating, some fi nd it allur-

ing. The secrets are a central part of the story. When you are accepted 

into the magicians’ world, you agree to keep the secrets private. Those 

who deviate are shunned, literally thrown out of the club and not usu-

ally accepted back. David Devant, one of the great creators and per-

formers in the early twentieth century, “erred” in writing a magic book 

for the public. He was thrown out of The Magic Circle, an exclusive 

English magic society he helped to found (he had also been its presi-

dent), and was never readmitted. He spent years being looked down 

on by other magicians. 

Things are changing but secrets are the glue of social fabric in the 

close-knit mix of the magic community. From our teenage years to 

now, if we are in a strange city or a strange part of the world, we can 

snoop around and fi nd a serious local magician (usually someone who 

does something else for a day job). This is done with a phone call or 

an email: “Do we know anybody serious in Indianapolis (or Nice or 

Shanghai)?” When we get into town, we call perfect strangers and an-

nounce: “I’m a magician visiting from the West Coast. X told me that 

you were seriously interested in magic. . . .” Invariably, we are invited 

over, or get to meet over coffee or a meal. Joe from down the road 

comes along too and a “session” of some sort transpires. This is usually 

A mathematician is a conjuror who 
gives away his secrets.

—John Horton Conway
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just gossip and trading tales, although sometimes, some wonderful 

magic is shown. Magicians are happy to meet others with whom they 

can share secrets. They also enjoy trying to fool each other.

Mathematics used to be shrouded in secrecy. Back in 287–212 bc, 

Archimedes, one of the truly great mathematical creators of all time, 

used to tantalize other mathematicians by announcing special cases of 

general theorems of his own and challenging them to prove them. It 

was recently discovered that Archimedes had essentially created calcu-

lus two thousand years before Newton and Leibniz. He could use it to 

see things that others couldn’t imagine. He kept his secret (called “the 

Method”) private and, when he died, it seemed that the secret died 

with him. It turned out that he entrusted the secret to a friend in a 

long-missing manuscript that has been lost forever. A copy (of a copy) 

surfaced in an illuminated religious book about a hundred years ago. 

Centuries before, Archimedes’ manuscript had been scrubbed off in 

order to reuse the parchment. Someone spotted the remnants of math 

close to two thousand years later and the manuscript was rediscovered. 

This amazing story is well-told in The Archimedes Codex: How a Medieval 
Prayer Book Is Revealing the True Genius of Antiquity’s Greatest Scientist by 

Reviel Netz and William Noel. Keeping secrets has its costs.

The tradition of keeping secrets lived throughout math’s history. 

Tartaglia, a sixteenth-century mathematician, fi gured out how to solve 

cubic equations (such as fi nd x  so that x 3 + 10x 2 + 7x = 100). Such prob-

lems were publicized and prizes offered. When Tartaglia visited a new 

town, if the local sages couldn’t solve the problem, Tartaglia’s reputa-

tion was established. In a moment of weakness, Tartaglia explained his 

method to another mathematician, Cardano. Though Cardano swore 

secrecy, we all know what that too often means. Cardano published the 

method a few years later and often gets credit for the result, even today.

Nowadays, secrecy in mathematics too often comes mainly from 

mathematicians trying to ensure credit for their discoveries. Hun-

dreds of years ago, Newton and Leibniz (two great mathematicians 

who competed with each other) communicated their work with secret 

codes so each could claim credit. In the twentieth century, Andrew 

Wiles worked on Fermat’s last theorem in secret for seven years be-

fore he went public with his discovery. In the other direction, an un-

usual collaborative project called Polymath was recently carried out 

by the Cambridge mathematician Tim Gowers. He enlisted the real- 

time efforts of literally dozens of mathematician around the globe to 
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collaborate via the Internet to attack a previously unsolved (and dif-

fi cult) problem in combinatorial mathematics. He argued that, with 

our new communication technology, many brains working in concert 

could be more effective than individuals each struggling on his or her 

own. Amazingly, this experiment actually worked and several proofs of 

the desired result were discovered, and then generalized to prove even 

more. The problem then became how to allocate the credit. Gowers’s 

plan was to publish the fi nal proof under the name Polymath (perhaps 

thanking all the participants in the acknowledgments). Is Polymath 

a possible new paradigm in research (both in mathematics as well as 

magic)? Only time will tell.

The mathematics of secrets has emerged as a hot topic through cryp-

tography and so- called zero- knowledge proofs in theoretical computer 

science. In this last application, you want to convince someone that 

you know a secret without giving any information about what that 

 secret is.

Here is an example, related to us by computer scientist Moni Naor. 

He was playing the popular game Where’s Waldo (sometimes called 

Where’s Wally) with his seven-year-old daughter. Here, a group of play-

ers looks at a huge picture and tries to spot the tiny fi gure of Waldo 

in a mess and tumble of people. It’s a hard visual recognition task and 

kids are as likely to succeed as adults. This time, after a minute, Moni 

called out, “I got it,” and his daughter called out, “Liar, liar.” (Nowa-

days, kids just don’t respect their parents the way they used to!) Thus, 

a problem. Moni knew a secret (where Waldo was) and wanted to con-

vince his daughter that he knew it without telling her anything further. 

We will tell Moni’s solution at the end of our discussion, but invite the 

reader to speculate for now. 

In the zero- knowledge proof variation, we want to convince some-

one that we can prove a theorem (say, Fermat’s last theorem) without 

giving a hint of how our proof goes. Here is an example: In chapter 3, 

we encountered the problem of fi nding a cycle through a graph that 

starts and ends at the same point and passes through every vertex just 

once. For some graphs this is easy (picture a cycle on n points). But it 

doesn’t seem easy to fi nd such a cycle in general graphs without end-

less trial and error (e.g., see fi gure 1).

Indeed, a solution to the Hamiltonian cycle problem would solve a 

huge list of related so- called NP- hard problems. These are a vast col-

lection of presumably diffi cult computational problems for which the 
Figure 1. Does this graph have a 

Hamiltonian cycle?
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only solutions in the general case involves a brute-force enumeration 

of all possibilities.1

Suppose we know a Hamiltonian cycle in a graph and want to con-

vince an adversary that we know one without giving any further infor-

mation. Here is the trick: The original graph is just a list of vertices 

and edges. We proceed by (secretly) choosing a (random) permuta-

tion of the vertices. This determines a new graph (where the old edges 

permute to new edges). This permutation gives an isomorphic copy of 

the original graph. It seems to be impossible to practically tell if two 

large graphs are isomorphic or not. Even when the graphs are not so 

large, it can be tricky. For example, in Figure 2 we show three pictures 

of the same graph drawn in three different ways.

Back to our trick, we show our new graph, write down our permu-

tation on a piece of paper, and write down a Hamiltonian cycle in 

the new graph on a second piece of paper. This is easy to do because 

we know the permutation. Now, our adversary chooses (say, by fl ip-

ping a coin) to check either our permutation, or our cycle in the new 

graph. In either case she learns nothing about our cycle in the original 

graph. Of course, doing this just once isn’t convincing (we might have 

just made up a graph with a Hamiltonian cycle and presented it as 

an isomorphic graph) but by repeating this basic choice on, say, one 

hundred fresh instances, one must conclude that either we know a 

Hamiltonian cycle in the original graph or an event of probability 
2

1
100  

has occurred.

 The above captures the essential idea in a special case. Since a huge 

list of problems are known to be computationally equivalent to Hamil-

tonian cycle problems, the procedure is broadly useful.

What about Moni’s solution? He simply did this: He took a large 

double-sheet of newspaper and cut out a tiny hole. He took the Where’s 
Waldo book and put it under the paper, twisting and turning it so that 

the position of the book was random. Then he carefully positioned 

the hole in the paper above Waldo and showed it to his daughter with-

out revealing anything further.

There is a curious tension for us in the keeping of secrets. We are 

academics. When we are around our mathematical colleagues, we are 

dying to tell them what we are up to. Once in a while, a nonmagician 

will ask us how a trick works. It feels funny to say, “Sorry, I can’t tell you, 

I’m sworn to secrecy.”

Figure 2. Three drawings of the 

same graph
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Magicians keep secrets from each other, too. Over the years, we 

have been privy to the inner workings of wonderful magic and we have 

kept these secrets. If nothing else, it reminds the magic world of the 

charm and allure of secrets. Juan Tamariz, the great Spanish magician, 

has a nice way to balance secrecy (within magic) and magic’s growth as 

a fi eld. When he discovers something new, he keeps it for himself for 

ten years, and then tells the brethren. We might point out that the tra-

dition in juggling is just the opposite. Jugglers love to share their tricks 

and techniques with anyone interested in listening and learning. The 

feeling is that if you are willing to practice hard enough to learn some 

diffi cult juggling skill (such as spinning a three- ball high stack or jug-

gling a cross- handed fi ve- ball cascade), then more power to you. Of 

course, most of these very challenging skills don’t have much com-

mercial performance potential!

As of 2010, a profound change has taken over magic and its secrets. 

There has always been public exposure. A journalist will spot a method 

and write it up in a newspaper with fanfare. A “masked magician” will 

spill the beans on a television special. These are painful intrusions but 

they disappear within a day. What has changed magic is the Internet. 

Many, many tricks are now permanently on display on sites like You-

Tube and Wikipedia. If you see a trick and want to know how it’s done, 

you can just type a few keywords and fi nd out, maybe even on your 

iPhone during the performance.

This record of secrets exposed is permanent. It builds on itself. 

The same strengths that build Wikipedia, the collective wisdom of the 

community, conspire to take away magic’s secrets. With this change, 

magicians themselves have become promiscuous. First in books, then 

on tapes, and now on DVDs and Internet chat rooms, many carefully 

guarded secrets are hung out for all to see. This change isn’t going away. 

How will it change magic? Here are three optimistic thoughts. First, 

with the huge sea of information, it is hard to tell the good from the 

bad, the right method from the wrong ones. Now the secret becomes 

knowing where to look, and what to believe. Maybe it’s always been 

that way. Second, perhaps the exposure of standard methods will drive 

the magic community to invent new ones. A look at magic’s techniques 

and effects reveals many a method that goes back over fi ve hundred 

years. Bring on the new. We need it. Finally, maybe the exposure will 

allow a performance style where skill, technique, and presentation 
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carry the day. After all, when we hear a gifted singer render a well-

known song, we can still enjoy it and be moved. Dai Vernon once took 

us to an old- fashioned billiard parlor where three-cushion billiards was 

the game of choice. Instead of a rowdy group of beer drinkers, there 

was a silent crowd watching two masters battle it out. Quiet nods and 

polite applause were the crowd’s response. Vernon said, “It would be 

wonderful if magic could be appreciated in this way.”
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