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Preface

Andrzej Bobola Maria Schinzel, born on April 5, 1937 at Sandomierz (Poland), is well
known for his original results in various areas of number theory appearing in over 200
research papers, of which the first thirty were published while he was an undergraduate
at the Warsaw University. Working under the guidance of Wacław Sierpiński, he became
interested in elementary number theory, and the subjects of his early papers range from
properties of arithmetical functions, like Euler’s ϕ-function or the number of divisors, to
Diophantine equations. Paul Erdős, a big champion of elementary number theory, wrote in
his letter to Sierpiński of October 23, 1960—when Andrzej was studying at the University
of Cambridge under the supervision of Harold Davenport—“Schinzel’s completion of my
proof is much simpler than anything I had in mind”. Many mathematicians cooperating
with Andrzej Schinzel could repeat the words of Erdős.

Since completing his studies at Warsaw University in 1958, Andrzej Schinzel has been
employed by the Institute of Mathematics of the Polish Academy of Sciences, where he
obtained his Ph.D. in 1960. On his return from a Rockefeller Foundation Fellowship at the
University of Cambridge and the University of Uppsala (where he studied under Trygve
Nagell) he completed his habilitation in 1962. In 1967 he was promoted to Associate
Professor, and in 1974 to Full Professor. In 1979 he was elected to Corresponding Member
of the Polish Academy of Sciences and in 1994 to Full Member.

Andrzej Schinzel’s very first paper(1)—published at the age of 17—is a postscript to
a result of H.-E. Richert who proved a general theorem about partitions of integers into
distinct summands from a given set which implied in particular that every integer> 33 is a
sum of distinct triangular numbers. Schinzel observed that every integer> 51 is a sum of at
most four distinct triangular numbers. The favorite subject of the early research of Schinzel,
Euler’s totient function, is considered here in five papers; the earliest one, published in
1954, is not included(2). In 1958 a joint work J1 with Sierpiński appeared, analyzing
various consequences of the conjecture stating that if f1, . . . , fs ∈ Z[x] are irreducible
polynomials having positive leading coefficients and there is no natural number > 1 that
is a divisor of each of the numbers f1(n) · · · fs(n) for n being an integer then for infinitely
many natural n the values f1(n), . . . , fs(n) are primes. This celebrated conjecture—with
many unexpected consequences—is called “Schinzel’s Hypothesis H”.

Schinzel’s doctoral thesis B1 dealt with the period of a class of continued fractions and
was related (see B2) to a question concerning pseudo-elliptic integrals, considered already

(1) Sur la décomposition des nombres naturels en sommes de nombres triangulaires distincts, Bull.
Acad. Polon. Sci. Cl. III 2 (1954), 409–410.

(2) Sur quelques propriétés des fonctions ϕ(n) et σ(n), Bull. Acad. Polon. Sci. Cl. III 2 (1954),
463–466 (with W. Sierpiński).
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by N. H. Abel in the very first volume of Crelle’s Journal. In his habilitation thesis—
consisting of four papers I1, I2, I3 and a paper not included(3)—Schinzel generalized a
classical theorem of Zsigmondy of 1892 (often called the Birkhoff–Vandiver theorem) on
primitive divisors.

The central theme of Schinzel’s work is arithmetical and algebraic properties of poly-
nomials in one or several variables, in particular questions of irreducibility and zeros of
polynomials. To this topic he devoted about one-third of his papers and two books(4).
In the books Schinzel presented several classical results and included many extensions,
improvements and generalizations of his own.

Undoubtedly Schinzel and his beloved journal Acta Arithmetica influenced many
mathematicians, stimulating their thinking and mathematical careers. Andrzej Schinzel
has since 1969 been the editor of this first international journal devoted exclusively to
number theory, being a successor of his teacher W. Sierpiński. Among the other editors
of Acta Arithmetica during these years were/are J. W. S. Cassels, H. Davenport, P. Erdős,
V. Jarník, J. Kaczorowski, Yu. V. Linnik, L. J. Mordell, W. M. Schmidt, V. G. Sprindzhuk,
R. Tijdeman and P. Turán. These people and the other outstanding mathematicians from
the advisory board of Acta Arithmetica have determined the line of the journal.

Andrzej Schinzel’s work has been influential in the development of many areas of math-
ematics, and his 70th birthday gives us an opportunity to honor his accomplishments by
putting together his most important papers. This selection of Schinzel’s papers—published
during more than five decades—is divided into two volumes containing 100 articles. We
have asked some outstanding mathematicians for commentaries to the selected papers.Also
included is a list of unsolved problems and unproved conjectures proposed by Schinzel in
the years 1956–2006, arranged chronologically. The first volume covers six themes:

A. Diophantine equations and integral forms (with commentaries by Robert Tijdeman)
B. Continued fractions (with commentaries by Eugène Dubois)
C. Algebraic number theory (with commentaries by David W. Boyd and Donald J. Lewis)
D. Polynomials in one variable (with commentaries by Michael Filaseta)
E. Polynomials in several variables (with commentaries by Umberto Zannier)
F. Hilbert’s Irreducibility Theorem (with commentaries by Umberto Zannier)

The second volume contains papers covering seven themes:

G. Arithmetic functions (with commentaries by Kevin Ford)
H. Divisibility and congruences (with commentaries by Hendrik W. Lenstra, Jr.)
I. Primitive divisors (with commentaries by Cameron L. Stewart)
J. Prime numbers (with commentaries by Jerzy Kaczorowski)
K. Analytic number theory (with commentaries by Jerzy Kaczorowski)
L. Geometry of numbers (with commentaries by Wolfgang M. Schmidt)
M. Other papers (with commentaries by Stanisław Kwapień and Endre Szemerédi)

(3) The intrinsic divisors of Lehmer numbers in the case of negative discriminant, Ark. Mat. 4
(1962), 413–416.

(4) Selected Topics on Polynomials, XXII+250 pp., University of Michigan Press, Ann Arbor
1982, and Polynomials with Special Regard to Reducibility, X+558 pp., Encyclopaedia of
Mathematics and its Applications 77, Cambridge Univ. Press, Cambridge 2000.



Preface vii

Many people helped with the editing of the volumes. First of all, we gratefully thank
the authors of the commentaries we had the pleasure to work with. Second, our special
thanks go to Stanisław Janeczko, Director of the Institute of Mathematics, Polish Academy
of Sciences, for his support, and to Manfred Karbe, Publishing Director of the European
Mathematical Society Publishing House, for his invaluable assistance during the work on
the Selecta. Third, we wish to thank Jerzy Browkin for reading the papers and some cor-
rections, and Jan K. Kowalski for retyping the papers and offering valuable suggestions
for improving the presentation of the material. Finally, we wish to express our grati-
tude to the staff of the European Mathematical Society Publishing House, especially to
Irene Zimmermann, for the very pleasant cooperation.

We have decided to unify some notations, using the “blackboard bold” type for most
common sets; so C, R, Q, Qp and Fp always stand for the complex, real, rational, p-adic
and finite fields respectively; Z, Zp for the rings of integers and p-adic integers; and N, N0
for the sets of positive and nonnegative integers. The greatest common divisor of integers
a1, a2, . . . , an is denoted by (a1, a2, . . . , an). If (a1, a2, . . . , an) = 1, the integers are
called relatively prime, and if (ai, aj ) = 1 for any 1 � i �= j � n, the integers are called
coprime. As usual, for x ∈ R set [x] = max{n ∈ Z : n � x}, �x� = min{n ∈ Z : x � n}
and ‖x‖ = min{x − [x], �x� − x}. We denote by {x} the fractional part of x. Lines where
minor corrections of the original text have been made are marked “c” in the left margin.

March 2007 Henryk Iwaniec
Władysław Narkiewicz

Jerzy Urbanowicz
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with P. Erdős . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 877
G5 On the functions ϕ(n) and σ(n)

with A. M
↪akowski . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 890

G6 On integers not of the form n− ϕ(n)
with J. Browkin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 895

H. Divisibility and congruences 899
Commentary on H: Divisibility and congruences

by H. W. Lenstra jr. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 901
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Diophantine equations and integral forms





Andrzej Schinzel
Selecta

Commentary on A:
Diophantine equations and integral forms

by R. Tijdeman

A1. In 1960 the authors published a paper [12] in which they remark that the equation
investigated in their 1956 paper is equivalent with the equation 2n − 7 = y2. Already in
1915 Ramanujan claimed that the latter equation in positive integers n, x has only solutions
for n = 3, 4, 5, 7, 15. This result follows immediately from the paper by Browkin and
Schinzel and had been confirmed earlier by Nagell [34], however by a different method.
For a survey of the further developments up to 1966 see Hasse [27].

In the 1960 paper the authors used the method from their 1956 paper to prove results
of the following type: if D �≡ 0, 4, 7 (mod 8), then the equation

(1) 2n −D = y2

has one solution at the most. If any solution exists, then n � 2. They conjectured that if
D > 0 and D �= 7, 23, 2k − 1 (k ∈ N) then (1) has at most one solution.

The conjecture was established by Beukers [6]. By use of hypergeometric functions
he first gave a good lower bound for the approximation to

√
2 by rationals whose de-

nominators are a power of two. From this Beukers obtained an explicit upper bound
n < 435+10(log |D|/ log 2) for any solution (y, n) of (1) and subsequently he proved the
Browkin–Schinzel conjecture. He also dealt with the case D < 0 and showed that there
are at most four solutions. M. Le [31] sharpened this result by proving among other results
that if D is not of the form 22m − 3 · 2m+1 + 1, then there are at most three solutions.

In a second paper [7] Beukers extended his investigations to the equation y2−D = pn,
where D is a positive integer and p is an odd prime not dividing D. He showed that there
are at most four solutions and gave a family of such equations having three solutions. That
there are at most three solutions was proved much later by Bauer and Bennett [3]. For
related later work, see e.g. Bender and Herzberg [4], Le [32], Yuan [62] and Bugeaud and
Shorey [14].

Many papers have been written on individual Diophantine equation of Ramanujan–
Nagell type (1). The theory on linear forms in logarithms of algebraic numbers made
it possible to treat whole classes of such equations at the same time. By first applying
this theory, next the basis reduction algorithm of Lenstra, Lenstra and Lovász, and finally
the Fincke–Pohst algorithm for finding short lattice vectors, de Weger [60] extended the
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theory into two directions. In the first place he studied for fixed integer k and primes
p1, . . . , ps the generalized Ramanujan–Nagell equation y2 + k = pz11 · · ·pzss in y ∈ N,
0 � z1, . . . , zs ∈ Z. As an illustration of his method he computed all 16 nonnegative
numbers y such that y2 + 7 has no prime divisors larger than 20 explicitly, the largest
being y = 273. Secondly he considered the equation x + z = y2 in integers x, y, z with
x > z, y > 0, x and |z| composed of fixed primes. As an illustration he computed all 388
solutions where x and |z| are composed of the primes 2, 3, 5 and 7, the largest solution
being 199290375 − 686 = 141172. For further developments into this direction see e.g.
Smart [48] and Wildanger [61].

A2. Suryanarayana and Rao [50] gave another solution to the problem of writing
3/(2n + 1) for any integer n > 1 as the sum of reciprocals of three distinct odd posi-
tive integers. They also showed that 2/(2n+ 1) can be expressed as the sum of two such
reciprocals if and only if 2n + 1 is not a prime ≡ 3 (mod 4). The result of paper A2 has
been recently rediscovered by Hagedorn [26]. See also Sierpiński [44].

A3. The result of this paper is presented in the book by Honsberger [29]. It has been
generalized by Kulikowski [30] to the corresponding problem in higher dimensions.

A4. Schinzel’s main result in this paper was later applied by Schinzel and Sierpiński
[42] to prove that every sufficiently large integer is a sum of four powers ab with integers
a > 1, b > 1.

The hypothesis that the restriction n < 101200 in Corollaire 3 can be dropped was
earlier made in E. Grosswald, A. Calloway, and J. Calloway [24] who proved that there
exists a finite set S of numbers with the following property: if n > 0 is not divisible by 4,
not ≡ −1 (mod 8) and not in S, then n is the sum of three strictly positive squares. See
further Mordell [33] and, for an application of such results to the non-relativistic quantum
statistical mechanics of an ideal gas at low temperature, Baltes, Draxl and Hilf [2].

A5. An immediate consequence of Corollary 2 is that the Diophantine equation
x2 + ym = z2n has infinitely many primitive solutions if (m, n) = 1. This observa-
tion was made by Schinzel after D. W. Boyd had proved this fact in another way. See
Boyd [10].

For later work on equations xl +ym = zn see Darmon and Granville [19] who showed
that there are only finitely many integer solutions in x, y, z with gcd(x, y, z) = 1 pro-
vided that 1/l + 1/m + 1/n < 1 by using descent arguments and Faltings’ theorem,
remarked that there are no solutions at all if 1/l+ 1/m+ 1/n = 1, and for each case with
1/l + 1/m + 1/n > 1 wrote down a parametrization that gives rise to infinitely many
non-zero coprime integer solutions (when one plugs in integers for the parameters). For
further work see Beukers [8] and Edwards [22].

A6. Theorem 1 of this paper was generalized by Schinzel in F1 to the case of polyno-
mials in several variables.

An immediate consequence of Theorem 1 of the above paper is that if f ∈ Q[x] is an
integer-valued polynomial such that every arithmetic progression contains an integer a
for which f (a) is a kth power, then f = gk , where g ∈ Q[x] is integer-valued. Berstel [5]
extended this under suitable conditions to rational functions.
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Perelli and Zannier [35] gave the following related version. Let f (x) be a polynomial
with integral coefficients. Assume that every arithmetic progression contains an integer
x such that f (x) = A(x)yk(x), where A(x), y are integers, k(x) � k0, and the prime
divisors of A(x) belong to a finite set S. Then f (x) = A(P (x))k identically, where A is
an integral constant, P(x) is a polynomial with integral coefficients and k � k0.

S. Chowla [16] proved the following variant of the Corollary to Theorem 2 in paper A6:
If g(x) is a sum of two squares for every sufficiently large integer x, then there exist two
polynomials P1(x) and P2(x) with integer coefficients such that g(x) = P1(x)

2 + P2(x)
2

for all x.
In a subsequent paper [20] the three authors extended the Corollary to Theorem 2 as

follows. Let F(x, y, t) be any polynomial with integral coefficients which is of degree at
most two in x and y. Suppose that every arithmetic progression contains an integer t such
that the equation F(x, y, t) = 0 is soluble in rationals x, y. Then there exist rational
functions x(t) and y(t)with rational coefficients such that F(x(t), y(t), t) = 0 identically
in t .

Far reaching generalizations of results in the paper by Davenport, Lewis and Schinzel
can be found in Theorems 51 and 57, and Corollary 4 in Section 5.6 of Schinzel [41].

A7. A refinement of Schinzel’s result was given by Ayad [1] who gave explicit forms
of the Puiseux expansions corresponding to the places at infinity of the associated function
field.

The “only if” part of the following statement for n = 2 is a direct consequence of
Schinzel’s above paper. Let C/Q be an irreducible affine curve of geometric genus 0 and
fix an embedding of C into An so that the ideal of C is generated by polynomials with
integer coefficients. Further, let C∞ be the set of points “at infinity” on the projective
closure C of C in Pn, and let �∞ be the points “at infinity” on the desingularization
of C. Assume that C(Z) contains at least one nonsingular point. Then C(Z) is infinite if
and only if one of the following two conditions is satisfied: (a) �∞ consists of a single
point; or (b) �∞ consists of exactly two points which are conjugate over a real quadratic
field. The general statement was proved by Silverman [46]. The “if” part was proved by
Poulakis [38] who corrected an error of Silverman who formulated the conditions in terms
of C∞, instead of in terms of �∞. Counterexamples for Silverman’s statement involving
�∞ can be found in the review MR 2001h:11080.

For more information on Runge’s method see A14 and the added notes.

A8. The result in this paper was generalized by Shorey, van der Poorten, Tijdeman,
and Schinzel in [43] as follows. Let S be the set of all non-zero integers composed of
primes from some fixed finite set. Let f ∈ Q[x, y] be a binary form with f (1, 0) �= 0
such that among the linear factors in the factorization of f at least two are distinct. Let
d be a positive integer. Then the equation wzq = f (x, y) in integers q,w, x, y, z with
w ∈ S, y ∈ S, (x, y) = d , |z| > 1 implies q < C where C is an effectively computable
constant depending only on f, d and S. As an application they proved the following
generalization of a result of Mahler about the greatest prime factor of axn + byq tending
to ∞ if max(|x|, |y|) → ∞ with (x, y) = 1. Let n ∈ Z, n > 1. Let S be as above. The
equation uxn + vyq = w in non-zero integers q > 1, u ∈ S, v ∈ S, w ∈ S, x ∈ Z, y ∈ Z

with |x| > 1, |y| > 1, (ux,w) = 1 and nq � 6 has only finitely many solutions.
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Quantitative versions of the Schinzel–Tijdeman theorem were given by Turk [53]. He
proved for example: Let a ∈ Z be non-zero and let F ∈ Z[X] have at least two distinct
zeros, degree n and heightH . Suppose F(x) = aym for some x, y ∈ Z with |y| > 1. Then

m < exp

{
Cn5(log(3H))2

log(n log 3H)

}
(log 3|a|)(log log 3|a|)2,

where C is an absolute constant. Later Pink [36] gave new explicit lower bounds for the
difference |F(x)− bym| where F(X) is an integer polynomial of degree n � 2 and x, y,
b, m are non-zero integers with m � 2, |y| � 2 and F(x) �= bym.

Various results on the representation of powers by polynomials with coefficients from an
algebraic number field were derived by Trelina [52]. Győry, Pink and Pintér [25] have given
effectively computable upper bounds for n in the equations f (x) = wyn and F(x, z) =
wyn, where f is a polynomial,F a binary form, both with discriminants belonging to some
set S of S-integers, x, y,w, z, n are unknown integers with z,w ∈ S, y /∈ S and n � 3.
The upper bounds only depend on the product p1 · · ·ps and on the degrees of f (X) and
of F(X, Y ).

Quantitative versions of the Schinzel–Tijdeman approach have been used to solve Dio-
phantine equations. For example Herrmann, Járási and Pethö [28] completed the study
of the Diophantine equation xn = Dy2 + 1 in variables (n, x, y) for 1 � D � 100.
Using a combination of elementary techniques, and a clever criterion due to Nagell,
J. H. E. Cohn [17] had determined all solutions except for the six cases (n,D) ∈
{(3, 31), (5, 31), (3, 38), (3, 61), (5, 71), (7, 71)}. The remaining cases were treated by
using the methods on linear forms in logarithms.

Bugeaud, Mignotte and Siksek [13] studied the equations Fn = qkyp and Ln = qkyp,
where Fn and Ln denote the nth Fibonacci and Lucas numbers, respectively, and k > 0
and p, q are primes. They have announced to have proved that the only Fibonacci numbers
which are powers yn with integers y > 1, n > 1 are 8 and 144.

Other examples where the Schinzel–Tijdeman theorem has been applied areVoorhoeve,
Győry and Tijdeman [58], Brindza [11] for the equation 1k+2k+ . . .+ (x−1)k+R(x) =
byz, and Dilcher [21], Urbanowicz [54], [55], [56] for some generalizations of the equation,
and Bilu, Kulkarni and Sury [9] for the equation x(x + 1) · · · (x + (m− 1))+ r = yn.

A9. Call two number fields arithmetically equivalent if they have the same zeta function.
Define the normset of a number field K as the set of elements of Z that are norms of integers
of K . Coykendall [18] has given an example of arithmetically equivalent fields that have
different normsets. The fields are K = Q(

8
√−15) and L = Q( 8

√−240). B. de Smit and
R. Perlis [49] have shown that these fields are arithmetically equivalent and in fact have
the same class number. The paper A9 shows that there are non-isomorphic fields which are
arithmetically equivalent and have class number 1, so consequently have the same normset.
Thus the normset cannot, in general, distinguish between non-isomorphic arithmetically
equivalent fields.

A10. Generalizations of Theorem 2 to polynomials with coefficients in a number field
K can be found as Theorems 53 and 55 in Schinzel [41].
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A11. Chapter 5 of Schinzel’s book [41] is mainly devoted to the study of the following
question. Let K be a number field. Assume that F ∈ C[x, t] has a zero in Ks for a
sufficiently large set t∗ ∈ Zr . Does it follow that F viewed as a polynomial in x has a zero
in K(x)s? Schinzel proves that for s = 1 the answer is yes. By an example he shows that
the answer is in general no for s � 3. The problem is open for s = 2. The example in the
above paper shows that the answer is no provided that Selmer’s conjecture is correct.

The paper induced J. Silverman [45] to conjecture that almost all ranks of the curves
from a certain family he studied are at most 1.

A12. Generalizations of results from this paper to the case t ∈ Zr for any positive
integer r have been given in Schinzel [40]. Further generalizations of Theorems 1 and 2
where coefficients are taken from a number field can be found as Theorems 58 and 59 in
Schinzel’s book [41].

A13. Theorem 1 of this paper has been stated as Exercise 11.4 in Cassels’ book [15]
with the following hint: the intersection of Fj (x, y, z) = 0 is either (i) a conic, (ii) a line
or (iii) a set of n � 4 points conjugate over k.

A14. Later bounds for solutions of Diophantine equations which do not satisfy Runge’s
condition have been given by Walsh [59] and in the special case that the irreducible poly-
nomial is of the form F(x)−G(y) where F and G are monic polynomials with rational
coefficients and gcd(degF, degG) > 1 by Tengely [51].

In a slightly different setting various estimates were obtained by D. Poulakis, partly in
collaboration with others. For example, in [37] he obtained the following sharp bound.
Let K be a number field and denote by OK its ring of integers. Let F(X, Y ) be an
irreducible polynomial in K[X, Y ] \ K[Y ] of total degree N and of degree n > 0
in Y . Suppose K is totally real, and FN(1, Y ) is a polynomial of degree n without real
roots, where FN(X, Y ) denotes the homogeneous part of degree N of F(X, Y ). Denote
by H the (multiplicative) absolute height. If F(x, y) = 0 with (x, y) ∈ OK × K , then

max{H(x),H(y)} < (2NN)N3
H(F)2N

3
.

In [39] Poulakis improved upon Walsh’s estimates especially with respect to the de-
pendence on gcd(x, y) in the following special case: F(X, Y ) is an irreducible, integer
polynomial of degree � 2 such that the curve C defined by the equation F(X, Y ) = 0 has
infinitely many integer points and the point (0, 0) is simple on C whereas d � 1 is a real
number.

A15. A general conjecture is that for all positive integers m, k with m > k � 3 the
equations

(2)
m

n
= 1

x1
+ 1

x2
+ . . .+ 1

xk

is solvable in positive integers x1, x2, . . . , xk for all but finitely many values of n. For
(m, n) = (4, 3) Erdős and Straus even conjectured that there are no exceptions at all, for
m > k = 3 it is Schinzel’s conjecture, both cited in the above paper. The conjecture for
k > 3 follows trivially from the conjecture for k = 3. The conjecture is still wide open.

Some authors have derived upper bounds for the number of exceptions

Em,k(N) = |{n � N : equation (2) has no solution}|.



8 A. Diophantine equations and integral forms

Vaughan [57] proved that Em,3(N) � bmN exp(−cm(logN)2/3) where bm and cm are
positive constants. Elsholtz [23] improved upon earlier results of C. Viola and Z. Shen by
generalizing Vaughan’s result to Em,k(N)� cm,kN exp(−bm,k(logN)ek ) where bm,k and
cm,k are positive constants and ek = 1 − 1/(2k−1 − 1) for all m, k specified above.

A16. This paper provides an effective method for finding points over a finite field on
an elliptic curve of the form E : Y 2 = X3 + B. In a subsequent paper Skałba [47] has
given a deterministic polynomial time algorithm for finding points over a finite field on an
elliptic curve E : Y 2 = X3 + AX + B provided that A �= 0.
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Sur les nombres de Mersenne
qui sont triangulaires*

avec Georges Browkin

Démonstration que l’équation 2x −1 = (1/2)y(y+1) en entiers positifs x et y n’a que les solutions
(x, y) = (1, 1), (2, 2), (4, 5) et (12, 90).

Théorème. Les nombres de MersenneMn = 2n − 1 (où n = 1, 2, . . . ) qui sont en même
temps triangulaires, tk = (1/2)k(k + 1), sont seulement les nombresM1 = t1,M2 = t2,
M4 = t5 etM12 = t90.

Démonstration. L’équation 2n − 1 = (1/2)k(k + 1) équivaut à(
k + 1

2

)2+7

4
=
[(1

2

)2+7

4

]n+1
,

c

donc à

(1)
(
k + 1

2
+ 1

2

√−7
)(
k + 1

2
− 1

2

√−7
)
=
(1

2
+ 1

2

√−7
)n+1(1

2
− 1

2

√−7
)n+1

.

Les nombres (1/2) ± (1/2)√−7 sont des entiers du corps Q(
√−7) et, en tant que

facteurs du nombre premier rationnel 2, ils sont premiers dans le corps Q(
√−7).

Posons αk = k+ (1/2)+ (1/2)
√−7 et βk = k+ (1/2)− (1/2)

√−7. On a αk −βk =√−7 et αkβk = 2n+1. Le plus grand diviseur commun des nombres αk et βk [dans le corpsc

Q(
√−7)] divise donc les normes des nombres

√−7 et 2n+1, c’est-à-dire les nombres 7 et
2n+1, donc aussi le plus grand diviseur commun de ces derniers, c’est-à-dire le nombre 1.
Or, dans le corps Q(

√−7) les seuls diviseurs du nombre 1 sont les nombres 1 et −1. On
en conclut que les nombres αk et βk sont premiers entre eux [dans le corps Q(

√−7)] et
évidemment distincts des unités de ce corps. Or, puisque dans le corps Q(

√−7) a lieu le
théorème sur l’unicité du développement en facteurs premiers, on en déduit de (1) que

αk = ±αn+1
0 et βk = ±βn+1

0 ou bien αk = ±βn+1
0 et βk = ±αn+1

0 ,

et, comme αk − βk =
√−7, on trouve

√−7 = ±αn+1
0 ∓ βn+1

0 ou bien
√−7 = ±βn+1

0 ∓ αn+1
0

* Note transmise par M. Wacław Sierpiński, séance du 27 février 1956.
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et en posant uk = (1/
√−7)(αk0 − βk0 ) pour k = 1, 2, . . . , on trouve

(2) |un+1| = 1.

On a u1 = u2 = 1 et, comme l’a remarqué M. Antoine Wakulicz, uk+1 = uk − 2uk−1
pour k = 2, 3, . . . . Les nombres uk (k = 1, 2, . . . ) sont donc des entiers rationnels.

Pour k et l naturels le nombre

ukl

uk
=
l−1∑
j=1

α
k(l−j)
0 βk0

est entier dans le corps Q(
√−7), donc, comme nombre réel, est un entier rationnel. On a

donc

(3) uk |ukl pour k et l naturels.

On démontre sans peine que les restes mod 64 des nombres uk (k = 1, 2, . . . ) forment
une suite infinie périodique dont la période, précédée par la suite 1, 1, −1, −3, −1 est
formée de 16 termes : 5, 7, −3, −17, −11, 23, −19, −1, −27, −25, 29, 15, 21, −9, 13,
31. Le nombre ±1 pour k > 5 figure dans cette suite périodique seulement pour k ≡ 13
(mod 16) et alors on a uk ≡ −1 (mod 64). Il résulte donc de (2) que n = 0, 1, 2, 4 ou bien

(4) n+ 1 ≡ 13 (mod 16) et un+1 = −1.

La suite vk = u16k+13 (k = 0, 1, 2, . . . ) donne mod 17 les restes qui forment une suite
périodique dont la période (commençant au premier terme de la suite) a 9 termes : −1, −5,
0, 5, 1, 2, −4, 4, −2. Le nombre −1 figure dans cette suite seulement pour k ≡ 0 (mod 9),
d’où l’on déduit que n+ 1 ≡ 13 (mod 9 · 16), donc que n+ 1 ≡ 1 (mod 3).

La suite wk = u3k+1 (k = 0, 1, 2, . . . ) donne mod 79, les restes formant une suite
périodique dont la période (commençant dès le premier terme de la suite) a 13 termes 1,
−3, 7, −11, −1, 14, 17, −39, −20, 17, −4, −37, −20 et le nombre −1 figure dans cette
suite seulement pour k ≡ 4 (mod 13), ce qui donne n+ 1 = 3k + 1 ≡ 13 (mod 39), d’où
n+ 1 = 13(3s + 1) et, d’après (3)

u3s+1 |un+1 = −1, d’où |u3s+1| = 1.

S’il était 3s = 0, on auraitn = 12. Pour 3s �= 0, d’après 3s �= 1, 2, 4, on conclut comme
plus haut que 3s + 1 = 13(3t + 1) (où s et t sont des entiers � 0), n+ 1 = 169(3t + 1)
et, d’après (3)

u169 |un+1 = −1, d’où u169 = ±1,

ce qui contredit à (4), puisque 169 �≡ 13 (mod 16).
Notre théorème se trouve ainsi démontré.



Andrzej Schinzel
Selecta

Originally published in
Mathesis 65:4-5-6 (1956), 219–222

Sur quelques propriétés des nombres 3/n et 4/n,
où n est un nombre impair

En rapport avec un théorème connu des Égyptiens d’après lequel tout nombre rationnel positif
est une somme d’un nombre fini de fractions primaires distinctes (c’est-à-dire de nombres 1/k, où
k est un entier positif), E. P. Starke a posé en 1952 la question de savoir si tout nombre rationnel
positif au dénominateur impair est une somme d’un nombre fini de fractions primaires distinctes aux
dénominateurs impairs (1). Deux années plus tard ce problème a été résolu positivement, entre autres
par R. Breusch (2). Or, les démonstrations qu’on a données ne contiennent aucun renseignement sur
le nombre des termes nécessaires pour représenter un nombre rationnel donné comme somme de
fractions primaires distinctes aux dénominateurs impairs.

W. Sierpiński a examiné les nombres rationnels positifs aux numérateurs 1, 2 et 3. Il a démontré
que aucun nombre 1/n, où n est un nombre impair n’est une somme de deux fractions primaires aux
dénominateurs impairs, et que pour tout nombre impair n > 1 le nombre 1/n est une somme de trois
fractions primaires distinctes aux dénominateurs impairs. Il a aussi démontré que pour n impair> 1
le nombre 2/n est une somme de 4 fractions primaires distinctes aux dénominateurs impairs, et
que pour aucun nombre impair n le nombre 2/n n’est une somme de trois fractions primaires aux
dénominateurs impairs. Or pour que le nombre 2/n, où n est un nombre impair, soit une somme de
deux fractions primaires distinctes aux dénominateurs impairs, il faut et il suffit que le nombre n soit
> 1 et qu’il ne soit pas un nombre premier de la forme 4k + 3 (3).

Quant aux nombres 3/n, W. Sierpiński a exprimé l’hypothèse que pour n impair> 3 ils sont des
sommes de trois fractions primaires distinctes aux dénominateurs impairs. Je démontrerai ici cette
hypothèse.

1. Théorème. n étant un nombre impair > 3, le nombre 3/n est une somme de trois
fractions primaires distinctes aux dénominateurs impairs.

Si le nombre 3/n est une somme de trois fractions primaires distinctes aux dénomina-
teurs impairs

3

n
= 1

x
+ 1

y
+ 1

z
,

(1) American Mathematical Monthly 59 (1952), p. 640, problem 4512.
(2) Ibidem, 61 (1954), p. 200–201 ; voir aussi [2], p. 785.
(3) Les démonstrations de ces théorèmes paraîtront dans le livre [1] de W. Sierpiński, Théorie des

nombres, vol. II (en polonais), préparé pour l’impression.
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tout nombre 3/kn, où k = 1, 3, 5, . . . jouit de la même propriété puisqu’on a alors

3

kn
= 1

kx
+ 1

ky
+ 1

kz
.

Vu encore que
3

9
= 1

5
+ 1

9
+ 1

45
, il en résulte que pour démontrer notre théorème,

il suffit de le démontrer pour les nombres 3/n, où n est un nombre premier > 3. De tels
nombres sont de la forme 6k ± 1, où k est un nombre naturel.

Si n = 6k+ 1, la démonstration résulte tout de suite de l’identité suivante, trouvée par
W. Sierpiński :

(1)
3

6k + 1
= 1

2k + 1
+ 1

(2k + 1)(4k + 1)
+ 1

(4k + 1)(6k + 1)
.

c

Si n = 6k − 1, on a n + 1 = 6k et n + 1 = 3s · 2t , où s et t sont des entiers positifs
et t n’est pas divisible par 3, donc t = 3u+ 1 ou bien t = 3u+ 2, où u est un entier � 0.
On a donc n+ 1 = 3s(6u+ 2) ou bien n+ 1 = 3s(6u+ 4).

Si n+ 1 = 3s(6u+ 2), on a, comme on le vérifie sans peine

(2)
3

n
= 1

3s(2u+ 1)
+ 1

(2u+ 1)n
+ 1

3s(2u+ 1)n
.

Tous les dénominateurs à droite sont impairs et distincts, puisque, d’après n > 3 on a
n = 3s(6u+ 2)− 1 � 3s · 2 − 1 > 3s .

Si n + 1 = 3s(6u + 4), alors, comme on le vérifie aisément, en posant m =
3s−1(6u+ 4)+ 2u+ 1, on trouve

(3)
3

n
= 1

m
+ 1

3sm
+ 1

3smn

et, comme 3s > 1 et n > 3, tous les dénominateurs à droite sont distincts.
Le théorème est ainsi démontré. Notre démonstration donne en même temps le moyen

de trouver pour chaque nombre impair n > 3 donné une décomposition désirée.
Par exemple, pour n = 191, on a n+ 1 = 192 = 3(6 · 10 + 4), d’où la décomposition

3

191
= 1

85
+ 1

3 · 85
+ 1

3 · 85 · 191
.

Pour n = 863, on a n+ 1 = 864 = 32(6 · 5 + 2), d’où la décomposition

3

863
= 1

27 · 11
+ 1

11 · 863
+ 1

27 · 11 · 863
.

Il est à remarquer qu’il peut exister d’autres décompositions que celles qui sont déter-
minées par notre démonstration. Par exemple, pour n=359, on a n+1=360=32(6 ·6+4)

et notre démonstration donne la décomposition
3

359
= 1

133
+ 1

32 · 133
+ 1

32 · 133 · 359
,

mais on a aussi la décomposition
3

359
= 1

112 + 1

3 · 11 · 359
+ 1

3 · 112 · 359
.

Vu que pour tout nombre impair n > 1 le nombre 1/n est une somme de trois fractions
primaires aux dénominateurs impairs (évidemment > n), en partant du théorème et en
appliquant cette décomposition au plus petit terme de la décomposition du nombre 3/n en
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somme de fractions primaires distinctes aux dénominateurs impairs successivement s − 1
fois (où s est un nombre naturel), nous obtenons le corollaire :

s étant un nombre naturel quelconque et n un nombre naturel > 3, le nombre 3/n est
une somme de 2s + 1 fractions primaires distinctes aux dénominateurs impairs.

D’autre part, il est clair que pour n impair le nombre 3/n n’est pas une somme d’un
nombre pair de fractions primaires aux dénominateurs impairs (puisque la somme de ces
dernières est un nombre rationnel au numérateur pair et dénominateur impair, donc un
nombre distinct de 3/n).

2. Théorème. n étant un nombre naturel tel que n > 1 et n �= 5, le nombre 4/n est
une somme de quatre fractions primaires distinctes aux dénominateurs impairs.

Soit n un nombre impair > 1 et n �= 5. Si n = 3 on a

4

3
= 1

1
+ 1

5
+ 1

9
+ 1

45
,

d’où il résulte tout de suite que le théorème est vrai pour tout nombre impair n divisible
par 3. Il nous reste donc les nombres de la forme 6k ± 1, où k = 1, 2, . . . .

Si n = 6k + 1, on a

4

n
= 1

6k + 1
+ 3

6k + 1

et la vérité du théorème pour le nombre n résulte de la formule (1) et de la remarque que,
pour k naturel, on a

2k + 1 < 6k + 1 < (2k + 1)(4k + 1) < (4k + 1)(6k + 1).

Si n = 6k − 1, alors, comme dans la démonstration du premier théorème, nous dis-
tinguerons les cas n + 1 = 3s(6u + 2) et n + 1 = 3s(6u + 4), où s = 1, 2, . . . et
u = 0, 1, 2, . . . .

Si n+1 = 3s(6u+2) et u = 0, donc si n = 3s ·2−1, alors pour s pair on a n = 8k+1,
où k est un nombre naturel et la vérité du théorème pour le nombre n résulte de l’identité
de W. Sierpiński

4

8k + 1
= 1

2k + 1
+ 1

(2k + 1)(4k + 1)

+ 1

(2k + 1)(8k + 1)
+ 1

(2k + 1)(4k + 1)(8k + 1)
,

et pour s impair on a, comme on le démontre sans peine, n = 16k + 5, où, vu que n �= 5
et que n n’est pas divisible par 3, k est un entier > 1, et la vérité du théorème pour le
nombre n résulte de l’identité

4

16k + 5
= 1

3(2k + 1)
+ 1

16k + 5
+ 1

3(16k + 5)
+ 1

(2k + 1)(16k + 5)
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et de la remarque que pour k > 1 on a

3(2k + 1) < 16k + 5 < 3(16k + 5) < (2k + 1)(16k + 5).

Si n + 1 = 3s(6u + 2) et u > 0, alors, vu que 4/n = 1/n + 3/n, la vérité du théorème
pour le nombre n résulte de la formule (2) et de la remarque que les nombres n, 3s(2u+1),
(2u+ 1)n et 3s(2u+ 1)n sont tous distincts.

Enfin, si n + 1 = 3s(6u + 4), la vérité du théorème pour le nombre n résulte des
formules 4/n = 1/n+ 3/n et (3) [oùm = 3s−1(6u+ 4)+ 2u+ 1] et de la remarque que
les nombres n, m, 3sm et 3smn sont tous distincts.

Le théorème se trouve ainsi démontré.
Or, en ce qui concerne le nombre n = 5, W. Sierpiński a démontré que le nombre 4/5

n’est pas une somme de moins de six fractions primaires aux dénominateurs impairs et
qu’on a

4

5
= 1

3
+ 1

5
+ 1

7
+ 1

15
+ 1

21
+ 1

105
.

On peut démontrer sans peine que pour que le nombre 4/n, où n est un nombre impair,
soit une somme de deux fractions primaires aux dénominateurs impairs, il faut et il suffit
que n ait un diviseur naturel de la forme 8k + 3.

Ouvrages cités

[1] W. Sierpiński, Teoria liczb, cz ↪eść 2. Monografie Matematyczne 38, PWN, Warszawa 1959.

[2] B. M. Stewart, Sums of distinct divisors. Amer. J. Math. 76 (1954), 779–785.



Andrzej Schinzel
Selecta

Originally published in
L’Enseignement mathématique IV:1 (1958), 71–72

Sur l’existence d’un cercle passant par un nombre donné
de points aux coordonnées entières

Le but de cette Note est de démontrer ce

Théorème. Quel que soit le nombre naturel n, il existe dans le plan un cercle dont la
circonférence contient précisément n points aux coordonnées entières.

(Ce théorème a été mentionnée dans l’article de M. W. Sierpiński Sur quelques prob-
lèmes concernant les points aux coordonnées entières paru dans ce fascicule, page 25.)

Démonstration. Pour n impair, n = 2k + 1, où k est un entier � 0, le cercle au centre( 1
3 , 0
)

et au rayon 5k/3 satisfait à notre théorème.
En effet, d’après un théorème connu sur le nombre de décomposition en deux carrés,

l’équation x2 +y2 = 52k a 4(2k+1) solutions en nombres entiers x et y. Comme 52k ≡ 1
(mod 3) pour k = 0, 1, 2, . . . , on démontre sans peine que dans chaque telle solution, un
et un seul des nombres x et y est divisible par 3. Les solutions se divisent donc en 2k + 1
quadruples disjoints : (x, y), (x,−y), (y, x), (−y, x), où x est un entier divisible par 3
et y un entier qui n’est pas divisible par 3. Dans chaque tel quadruple, une et une seule
solution satisfait à la condition que le premier terme de la paire ≡ −1 (mod 3) et le second
≡ 0 (mod 3). Il existe donc précisément 2k+1 = n solutions en nombres entiers z et t de

l’équation (3z− 1)2 + (3t)2 = 52k , c’est-à-dire de l’équation
(
z− 1

3

)2 + t2 = ( 5k
3

)2. Cela
prouve qu’il existe précisément n points aux coordonnées entières sur le cercle déterminé
par cette équation, ce qui démontre notre théorème pour n impair.

Pour n pair, n = 2k, où k est un nombre naturel, le cercle au centre
( 1

2 , 0
)

et au
rayon 5(k−1)/2/2 satisfait à notre théorème. En effet, d’après le théorème mentionné plus
haut, l’équation x2 + y2 = 5k−1 a précisément 4k solutions en nombres entiers x et y.
Or, des nombres x, y, un et seul un est pair et ainsi toutes les solutions se divisent en
2k paires disjointes (x, y) et (y, x) qui ne diffèrent entre elles que par l’ordre de leurs
termes. Dans chaque telle paire précisément une solution satisfait à la condition que le
premier élément est impair et le second pair. Il existe donc précisément 2k = n solutions
en nombres entiers z, t de l’équation (2z − 1)2 + (2t)2 = 5k−1, c’est-à-dire à l’équation(
z− 1

2

)2 + t2 = ( 5(k−1)/2

2

)2, ce qui démontre notre théorème pour n pair.
Notre théorème se trouve ainsi démontré.



Andrzej Schinzel
Selecta

Originally published in
Bulletin de l’Academie Polonaise des Sciences

Série des sci. math., astr. et phys.
VII (1959), 307–310

Sur les sommes de trois carrés

Présénte par W. Sierpiński le 18 mars 1959

Une de mes communications antérieures [1] contient la remarque que l’hypothèse de
G. Pall ([2]) soutenant que tout nombre naturel de la forme 2(8n+ 1) > 2 est une somme
de trois carrés > 0 est en défaut pour n = 8.

Or, le problème suivant s’impose : quels sont les nombres naturels qui sont sommes de
trois carrés positifs ? Le but de la présente communication est de démontrer le théorème
qui suit.

Théorème 1. Pour que le nombre n admette une décomposition n = x2 + y2 + z2, où
x, y, z > 0 et (x, y, z) = 1, il faut et il suffit que n ait à la fois deux propriétés suivantes :
(i) n �≡ 0, 4, 7 (mod 8);
(ii) n a un diviseur naturel de la forme 4k−1 ou bien n n’est pas un “numerus idoneus”.

Les “numeri idonei” sont — comme on sait — des nombres naturels D vérifiant
l’équation p(−4D) = 1, où p(d) est un nombre des classes de formes binaires au discrim-
inant d de genre principal. Une définition arithmétique de “numeri idonei” a été donnée
par Euler (cf. [3], vol. 1, p. 361 ; pour les corrections voir [4]).

Démonstration. Le nombre N3(n) des réprésentations propres du nombre n > 3 par la
forme x2 + y2 + z2 est donné par la formule (cf. [3], vol. 2, p. 265)

(1) N3(n) =

⎧⎪⎨⎪⎩
12h(−4n) pour n ≡ 1, 2, 5, 6 (mod 8)

24h(−4n) pour n ≡ 3 (mod 8)

0 pour n ≡ 0, 4, 7 (mod 8),

où h(d) est le nombre des classes de formes binaires au discriminant d. Mais, d’après le
théorème sur la duplication, on a :

(2) h(d) = p(d) ·

⎧⎪⎨⎪⎩
2λ−2 pour d ≡ 4 (mod 16)

2λ pour d ≡ 0 (mod 32)

2λ−1 pour d’autres cas,

où λ est le nombre des facteurs premiers du nombre d.
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Pour n > 3, on obtient de formules (1) et (2)

(3) N3(n) =

⎧⎪⎨⎪⎩
3 · 2μ+2p(−4n) pour n ≡ 1, 2, 5, 6 (mod 8)

3 · 2μ+2p(−n) pour n ≡ 3 (mod 8)

0 pour n ≡ 0, 4, 7 (mod 8),

où μ est le nombre des facteurs premiers impairs du nombre n.
D’autre part, le nombre des décompositions du nombre n en sommes de deux carrés

rélativement premiers est donné par l’égalité

(4) N2(n) =
{

0 lorsque 4 |n ou 4k − 1 |n pour k = 1, 2, . . .

2μ+2 en cas contraire.c

Or, si n > 1, le nombre des réprésentations de n dans la forme x2 + y2 + z2, où
(x, y, z) = 1 et xyz = 0, est égale à

(3
2

)
N2(n) = 3N2(n). La condition nécessaire et

suffisante pour que le nombre n > 1 soit une somme de trois carrés positifs, rélativement
premiers est donc l’inégalité N3(n) > 3N2(n). En vertu de (3) et de (4) cette inégalité
exprime que n �≡ 0, 4, 7 (mod 8) et que N2(n) = 0, où bien p(−4n) > 1. Vu (4) et la
définition des “numeri idonei”, la démonstration est achevée.

Corollaire 1. Si n �≡ 0, 4, 7 (mod 8), n �= 25 et n a un diviseur quadratique > 1, n est
une somme de trois carrés positifs, rélativement premiers.

C’est une conséquence immédiate du Théorème 1 et du théorème de Grube ([4]),
d’après lequel les nombres 9, 18, 25, 45, 72 sont les seuls “numeri idonei” ayant un
diviseur quadratique impair > 1.

Remarque. Corollaire 1 affirme davantage que le théorème de Pall ([2]), à savoir que le
réprésentation par la forme x2 + y2 + z2 est propre.

Corollaire 2. Tout nombre naturel n �≡ 0, 4, 7 (mod 8) suffisamment grand est une somme
de trois carrés positifs rélativement premiers.

En effet, il résulte directement du Théorème 1 et du théorème de Chowla [5] * que
limd→∞ p(−d) = ∞.

Corollaire 3. Les seuls nombres naturels n < 101200 tels, que n �≡ 0, 4, 7 (mod 8) et qui
ne sont pas sommes de trois carrés > 0, sont les suivants

1, 2, 5, 10, 13, 25, 37, 58, 85, 130.

La démonstration consiste à appliquer le Théorème 1 et les résultats de Cunningham
et Cullen [7] sur les “numeri idonei” < 101200.

L’autre hypothèse de Pall [2], à savoir que tout nombre naturel �= 1, 25 de la forme
8k + 1 est somme de trois carrés > 0, résulte directement de l’hypothèse suivante :

* La démonstration de Chowla n’est pas effective (cf. [6]).



20 A. Diophantine equations and integral forms

Hypothèse 1. Dans le Corollaire 3 la condition n < 101200 peut être supprimée.c

Théorème 2. Pour qu’un nombre naturel n se décompose en une somme de trois carrés
distincts et rélativement premiers, il faut et il suffit que n ait à la fois la propriété (i) et la
suivante :
(iii) ou bien n a un diviseur premier ≡ 5, 7 (mod 8), ou bien n ≡ 1, 2, 6 (mod 8) et

p(−4n) > 1, ou bien n ≡ 3 (mod 8) et p(−n) > 1.

La démonstration du Théorème 2 est tout à fait analogue à celle du Théorème 1. Elle
est basée sur la formule pour le nombre des réprésentations de n dans la forme x2 + 2y2.

Corollaire 4. Tout nombre n �≡ 0, 4, 7 (mod 8) suffisament grand est une somme de trois
carrés distincts et rélativement premiers.

C’est une conséquence du Théorème 2 et de celui de Chowla [5].

Corollaire 5. Les seuls nombres naturels n �≡ 0, 4, 7 (mod 8) qui ne sont pas des sommes
de trois carrés distincts sont les suivants :c

1, 2, 6, 9, 18, 22, 33, 57, 102, 177

(pour n ≡ 1, 2, 5, 6 (mod 8) et n < 101200) ;

3, 11, 19, 27, 43, 51, 67, 99, 123, 163, 187, 267, 627

(pour n ≡ 3 (mod 8) et n < 23000).

La démonstration consiste à appliquer le Théorème 2 et les résultats de Cunningham
et Cullen [7] de même que ceux de S. B. Townes (cf. [8] p. 89).

Corollaire 6. Les seuls nombres naturels n < 2875 qui ne sont pas des sommes de trois
nombres triangulaires distincts sont les suivants :

1, 2, 3, 5, 6, 8, 12, 15, 20, 23, 33, 78.

C’est une conséquence de la partie du Corollaire 5 concernant les nombres n ≡ 3
(mod 8).

Si l’on admet l’hypothèse suivante :

Hypothèse 2. Les inégalités n < 101200 et n < 23000 peuvent être supprimées dans le
Corollaire 5 et l’inégalité n < 2875 peut l’être dans le Corollaire 6,

le Corollaire 6 entraîne un théorème plus précis que celui établi dans ma communication
précedente [1].
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On the Diophantine equation
n∑

k=1

Akxk
ϑk = 0 *

The equations

(1) ϕ =
n∑
k=1

Akx
ϑk
k = 0 (Ak, ϑk,mk are non-zero integers),

(1′)
n∑
k=1

AkX
mk
k = 0

will be called equivalent by a birational G transformation, if there exists a mutually
rational transformation in the sense of Georgiev [2] which transforms the function ϕ into
the function

F =
n∏
r=1

Xμrr

n∑
k=1

AkX
mk
k (μr an integer).

It is easy to prove that the above relation of equivalence is reflexive, symmetric and
transitive.

It is also clear that if all solutions of equation (1) in non-zero rationals are known, then
substituting them into the formulas of the appropriate birational G transformation we will
obtain all solutions in non-zero rationals of an arbitrary equation equivalent to (1).

Georgiev proved ([2], p. 216) that for a birational G transformation which takes the
function ϕ to F to exist, it is necessary and sufficient that the following condition be
fulfilled:

(2) the numbers λr,p = μr/ϑp(r �= p) and λr,r = (μr +mr)/ϑr be integers,

and also that

(3)
(

1 +
n∑
k=1

μk

mk

) n∏
i=1

mi = ±
n∏
i=1

ϑi.

* Presented at the meeting of the Wrocław Branch of the Polish Mathematical Society on 3 June
1955. Corrigendum: Prace Mat. 44 (2004), 293–294.
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The relevant transformation is then given by the formulas:

(4) xp =
n∏
r=1

X
λr,p
r (1 � p � n).

This has been deduced by Georgiev via his Theorems 3 and 10 from his Theorem 2,c

which needs a modification (allowing a permutation of terms in the considered sum). When
this modification is made the condition (2) is replaced by

(2a)

there exists a permutation σ of {1, 2, . . . , n} such that

Aσ(k) = Ak for all k and the numbers λr,p = μσ(r)/ϑp (r �= p)

and λr,r =
(
μσ(r) +mσ(r)

)
/ϑr are integers

and formula (4) by

(4a) xp =
n∏
r=1

X
λr,p
σ (r) (1 � p � n).

The conditions (2) and (4) correspond to the case σ(r) = r .
We shall prove

Theorem 1. Equation (1) is equivalent by a birational G transformation (4) to the equation

(5)
n∑
k=1

AkX
mk
k = 0, where mk = (ϑk, [ϑ1, . . . , ϑk−1, ϑk+1, . . . , ϑn]).

Moreover

(6)
x
p
p

x
ϑs
s

= X
mp
p

X
ms
s

(1 � p, s � n).

Proof. Let
n∏
i=1

ϑi = ϑ, [ϑ1, . . . , ϑk−1, ϑk+1, . . . , ϑn] = θk,
n∏
i=1

mi = m.

Suppose that the prime number q is a factor of ϑk with exponent ek . Without loss of
generality we can assume that ek � ek+1 for k = 1, . . . , n − 1. Therefore q is a factor
of θk with exponent en for k � n − 1, and en−1 for k = n. The number q is a factor of
(ϑk, θk) with exponent ek for k � n− 1 and en−1 for k = n. The number q is a factor of
θnm/mn with the same exponent as that of m. Because q was arbitrary and the formula
below is symmetric, it means that

g.c.d.
k=1,...,n

(θkm/mk) |m.

But m |ϑ −m and therefore the equation

(7) m+
n∑
k=1

ξkθkm/mk = ϑ

has a solution.
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Let μk = ξkθk correspond to some specific solution {ξk}k=1,...,n. We will show that for
j �= k we have

(8) mjϑk | θjmk.
We distinguish two cases:

1◦ k � n− 1. In this case mj | θj , and q is a factor of mk with exponent ek .

2◦ k = n. In this case q is a factor of θj with exponent en, of mj with exponent ej ,
therefore of the divisor with exponent ej + en, and of the dividend with exponent
en + en−1.

In both cases q is a factor of the dividend with exponent not smaller than it is a factor
of the divisor, which is sufficient to establish formula (8).

Multiplying (8) by m/mjmk we have

ϑkm/mk | θjm/mj (j �= k)
and, because of (7), ϑkm/mk |m+μkm/mk , and therefore ϑk |μk +mk (1 � k � n) and
the numbers λr,r = (μr +mr)/ϑr are integers. Since the numbers

λr,p = μr

ϑp
= ξr θr

ϑp
(r �= p),

are integers because of the way θr is defined, condition (2) holds.
From formula (7) we have (

1 +
n∑
k=1

μk

mk

)
m = ϑ,

so also condition (3) holds, which finishes the proof of the first part of the theorem.
By formulas (4) and (2) we have

x
ϑp
p

x
ϑs
s

=
∏n
r=1X

ϑpλr,p
r∏n

r=1X
ϑsλr,s
r

=
n∏
r=1

X
ϑpλr,p−ϑsλr,s
r = X

mp
p

X
ms
s

which finishes the proof of the second part of the theorem. ��

Theorem 2. The equations

(1)
n∑
k=1

Akx
ϑk
k = 0

and

(9)
n∑
k=1

Aky
ηk
k = 0 (ηk non-zero integers)

are equivalent by a birational G transformation of the form

(10) xp =
n∏
r=1

y
kr,p
r (1 � p � n)
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if and only if, for k = 1, . . . , n

(11) mk = lσ (k),c

where mk = (ϑk, [ϑ1, . . . , ϑk−1, ϑk+1, . . . , ϑn]), lk = (ηk, [η1, . . . , ηk−1, ηk+1, . . . , ηn])
and σ(k) is a permutation of {1, 2, . . . , n} such that Aσ(k) = Ak for all k.

Then we have

(12)
x
ϑp
p

x
ϑs
s

= y
ησ(p)
σ (p)

y
ησ(s)
σ (s)

.

Proof. By Theorem 1, equation (1) is equivalent to

(5)
n∑
k=1

AkX
mk
k = 0,

and equation (9) is equivalent to the equation

(13)
n∑
k=1

AkY
lk
k = 0.

By reflexivity, symmetry and transitivity of the equivalence considered, the sufficiency
of condition (11) is obvious. By formula (6), formula (12) is also obvious.

To show the necessity of condition (11), suppose that equations (1) and (9) are equiva-
lent. It then follows that equations (1) and (13) are equivalent, and (5) and (9) are equivalent
too.

Replacing in condition (2a) mr by lr and μr by λr we have ϑp |λσ(r) (r �= p), hencec

θr |λσ(r) and mr |λσ(r) and ϑr |λσ(r) + lσ (r), thus mr |λσ(r) + lσ (r). Therefore, mr | lσ (r).
From the equivalence of (5) and (9) it follows similarly that lr |mτ(r), where τ is a

permutation of {1, 2, . . . , k} such that Aτ(r) = Ar for all r . Thus mr |mτ(σ(r)) for all r ,
which gives mτ(σ(r)) = mr and lσ (r) = mr . ��

Theorem 2 immediately implies Theorem 12 from the quoted paper of Georgiev [2].
By formula (12) we also have:

Corollary 1. If equations (1) and (9) are equivalent by a birational G transformation

(10), Ak are distinct, and xs and ys are greater than zero, then x
ϑp
p > x

ϑs
s if and only ifc

y
ηp
p > y

ηs
s .

We assign the solutions {xk}k=1,2,...,n, {x′k}k=1,2,...,n of equation (1) (respectively
{yk}k=1,2,...,n, {y′k}k=1,2,...,n of equation (9)) to the same class, if and only if

x′ϑpp
x
ϑp
p

= x′1
ϑ1

x
ϑ1
1

(
resp.

y′ηpp
y
ηp
p

= y′η1
1

y
η1
1

)
(1 � p � n).

Writing this condition in the form

x′ϑpp /x′ϑ1
1

x
ϑp
p /x

ϑ1
1

= 1

(
resp.

y′ηpp /y′η1
1

y
ηp
p /y

η1
1

= 1

)
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by formula (12) we have

Corollary 2. Under a birational G transformation of the form (10), which gives the
equivalence of (1) and (9), every class of solutions of equation (9) maps to a class of
solutions of equation (1).

Now suppose that in equation (1) we have (ϑn, ϑ1 · · · · ·ϑn−1) = 1 (n > 1). Therefore
mn = (ϑn, [ϑ1, . . . , ϑn−1]) = 1, and by Theorem 1 equation (1) is equivalent by a
birational G transformation to the equation

(14)
n−1∑
k=1

AkX
mk
k + AnXn = 0,

all of whose rational solutions are given by the formulas:

Xk = tk (1 � k � n− 1), Xn = −∑n−1
k=1 Akt

mk
k

An
,

where tk (1 � k � n− 1) are rational parameters.
The case n = 2 gives one class of solutions of equation (14), the case n = 3, m1 =

m2 = 1 was considered by L. Tchacaloff and C. Karanicoloff [3], the case n � 3 and
mk = g (1 � k � n − 1) was considered by N. M. Basu [1], the general case was
considered by T. Vijayaraghavan [4].

For n � 3 equation (14) has infinitely many classes of rational solutions. Therefore
from Corollary 2 and the observation that every class of rational solutions of equation (1)
contains integer solutions, it follows that

Corollary 3. If n � 3 and if (ϑn, ϑ1 · · · · · ϑn−1) = 1, then equation (1) has infinitely
many classes of integer solutions.
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1.

Let f (x) be a polynomial with integral coefficients. It is well known that if f (x) is
a k-th power for every positive integer x, then f (x) = (g(x))k identically, where g(x)
has integral coefficients. For proofs and references, see Pólya and Szegö [8], Section VIII,
Problems 114 and 190; also Fried and Surányi [2].

In this connection, we shall prove the following general theorem:

Theorem 1. Let f (x, y) be a polynomial with integral coefficients. Suppose that every
arithmetical progression contains some integer x such that the equation f (x, y) = 0 has
an integral solution in y. Then there exists a polynomial g(x) with rational coefficients
such that

(1) f
(
x, g(x)

) = 0

identically.

Corollary. Let k > 1 be an integer and let f (x) be a polynomial with integral coefficients.
Suppose that every arithmetical progression contains some integer x such that f (x) is a
k-th power. Then f (x) = (g(x))k identically, where g(x) is a polynomial with integral
coefficients.

Professor LeVeque raised the question (in conversation) whether, if f (x) is repre-
sentable as a sum of two squares for every positive integer x, or for every sufficiently large
integer x, then f (x) is identically a sum of two squares. We shall prove that this is true,
and we shall deduce it from the following general theorem.

Theorem 2. Let K be any normal algebraic number field of degree n, with integral basis
ω1, ω2, . . . , ωn, and let

N(u1, u2, . . . , un) = norm(u1ω1 + u2ω2 + . . .+ unωn)
* This author was partially supported by a grant from the National Science Foundation.
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denote the norm-form corresponding toK . Let f (x) be a polynomial with rational coeffi-
cients, and suppose that every arithmetical progression contains an integer x such that

f (x) = N(u1, u2, . . . , un)

for some rational numbers u1, u2, . . . , un. Suppose further that either K is cyclic or the
multiplicity of every zero of f (x) is relatively prime to n. Then

f (x) = N(u1(x), u2(x), . . . , un(x)
)

identically, where u1(x), u2(x), . . . , un(x) are polynomials with rational coefficients.

We observe that the hypotheses on K are always satisfied if K is normal and of prime
degree n.

The two alternatives in the hypothesis—one relating to K and the other to f (x)—are
appropriate conditions to impose, in the sense that if both are violated, the conclusion may
not hold. This is shown by the example (see §6)

f (x) = x2, K = Q(e2πi/8),

where Q denotes the rational number field.
The property of f (x) postulated in the theorem implies the solubility of the congruence

f (x) ≡ N(u1, . . . , un) (modm)

in u1, . . . , un for every integer x and every positive integer m. The congruence is to be
understood in the multiplicative sense; see Hasse [3], 25, footnote *. If K is cyclic, then
by a theorem of Hasse [4] this implies the apparently stronger statement that for every x
we have

f (x) = N(v1, . . . , vn)

for some rational v1, . . . , vn. Thus when K is cyclic, we have three apparently different
conditions on f (x) which are in reality equivalent.

Corollary to Theorem 2. Let f (x) be a polynomial with integral coefficients, and suppose
that every arithmetical progression contains an integer x such that f (x) is a sum of two
squares. Then

f (x) = u2
1(x)+ u2

2(x)

identically, where u1(x) and u2(x) are polynomials with integral coefficients.

In the particular case of Theorem 2, namely the case K = Q(i), which is needed for
this Corollary, our method of proof has much in common with that used by Lubelski [7]
in his investigation of the primes p for which f (x) ≡ 0 (mod p) is soluble.

It will be seen that in the conclusion of the Corollary, it is asserted that u1(x), u2(x)

have integral coefficients. In the more general Theorem 2, if it is postulated that f (x) has
integral coefficients and that u1, . . . , un are integers, it is not in general possible to draw
the conclusion with u1(x), . . . , un(x) having integral coefficients. This is illustrated by
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the example (see §6)

f (x) = 2x2(x + 1)2 + 3x(x + 1)+ 4, K = Q(
√−23).

However, it is possible to draw the conclusion stated above if the highest coefficient
in f (x) is 1. This can be proved by first comparing the highest terms on both sides, and
then appealing to Gauss’s lemma.

There are other problems, of the same general character as those considered in this
paper, which we are quite unable to attack. The simplest of them is that in which f (x) is
representable as a sum of two integral cubes for every sufficiently large integer x.

2.

Proof of Theorem 1. We note first that the hypothesis implies that every arithmetical
progression contains infinitely many integers x such that the equation has an integral
solution in y. For if d is the common difference of the progression, and x0 is one integer
with the property, there exists an integer xn ≡ x0+dn (mod dn+1) for n = 1, 2, . . . which
has the property, and the integers xn are all distinct.

We factorize f (x, y) into a product of powers of polynomials which are irreducible
over the rational field Q; by Gauss’s lemma we can take these polynomials to have integral
coefficients. We can omit any factor f0(x, y) for which the equation f0(x, y) = 0 has only
finitely many integral solutions, since its omission will not invalidate the hypothesis. We
can also omit any factor which does not contain y. Hence we can take

(2) f (x, y) = f1(x, y)f2(x, y) · · · fk(x, y),
where f1(x, y), . . . , fk(x, y) are irreducible over Q and are such that each of the equations
fj (x, y) = 0 has infinitely many integral solutions.

It follows from Hilbert’s Irreducibility Theorem (Hilbert [5], p. 275; for references
to later work, see Lang [6], pp. 163–164) that there exists an integer x0 such that all the
polynomials fj (x0, y), considered as polynomials in y, are irreducible over Q and are of
the same degree in y as fj (x, y). Suppose first that all these degrees are greater than 1,
and let nj denote the degree of fj (x0, y) in y.

Let η be a root of fj (x0, η) = 0, and consider the prime ideal factorization of a rational
prime p in Q(η) and in its least normal extension Q∗(η). Let dr denote the density (in the
Dirichlet series sense) of those primes which have exactly r prime ideal factors of the first
degree in Q(η). Then (Hasse [3], p. 129)

n∑
r=0

dr = 1,
n∑
r=0

rdr = 1.

To prove that d0 > 0, it will suffice to prove that d1 < 1. Now any large prime p which
has just one prime ideal factor of degree 1 in Q(η) will have some prime ideal factor of
degree greater than 1 in Q(η), and so also in Q∗(η). Since Q∗(η) is normal, all prime
ideal factors of p in Q∗(η) will be of degree greater than 1, and the density of such p is
exactly 1− 1/n∗j , where n∗j denotes the degree of Q∗(η) (Hasse [3], pp. 138–139). Hence
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d1 � 1 − 1/n∗j , whence the result. In particular, there are infinitely many primes which
have no prime ideal factor of the first degree in Q(η).

By a well-known principle of Dedekind, if qj is such a prime (and is sufficiently large)
we have

(3) fj (x0, y) �≡ 0 (mod qj )

for all integers y. There is such a prime qj for each j . On the other hand, the hypothesis
of the theorem implies that the arithmetical progression

x ≡ x0 (mod q1q2 · · · qk)
contains an integer x such that f (x, y) = 0 for some integer y. But then fj (x, y) = 0 for
some j , whence

fj (x0, y) ≡ fj (x, y) ≡ 0 (mod qj ),

contrary to (3).
It follows that there is some j for which fj (x, y) is linear in y, say

fj (x, y) = yA(x)− B(x),
where A(x), B(x) are relatively prime polynomials with integral coefficients. There exist
polynomials A1(x), B1(x) with integral coefficients such that

A(x)A1(x)+ B(x)B1(x) = c
identically, where c is a non-zero constant. If x is an integer for which there is an integer y
satisfying fj (x, y) = 0, then A(x) must divide c, and since this happens for infinitely
many x, it follows that A(x) is a constant. Hence

fj
(
x, g(x)

) = 0

identically, where g(x) is the polynomial B(x)/A. This proves Theorem 1. ��

The deduction of the Corollary is immediate, since we get f (x) = (g(x))k , where g(x)
has rational coefficients, and then it follows from Gauss’s lemma that g(x) has integral
coefficients.

3.

Lemma 1. Suppose that the hypotheses of Theorem 2 hold. Let

(4) f (x) = c(f1(x)
)e1(f2(x)

)e2 · · · (fm(x))em,
where c �= 0 is a rational number and f1(x), f2(x), . . . , fm(x) are distinct primitive
polynomials with integral coefficients, each irreducible over Q, and where e1, e2, . . . , em
are positive integers. For any j , let q be a sufficiently large prime for which the congruence

(5) fj (x) ≡ 0 (mod q)

is soluble. If (ej , n) = 1 then q factorizes completely in K into prime ideals of the first
degree. If K is cyclic then q factorizes completely into prime ideals of the first degree in
the unique subfield Kj of K of degree n/(ej , n).
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Proof. Put

F(x) = f1(x)f2(x) · · · fm(x).
Since the discriminant ofF(x) is not zero, there exist polynomials ϕ(x),ψ(x)with integral
coefficients such that

(6) F(x)ϕ(x)+ F ′(x)ψ(x) = D
identically, where D is a non-zero integer.

Let q be a large prime for which the congruence (5) is soluble, and let x0 be a solution.
By (6) we have F ′(x0) �≡ 0 (mod q), whence

F(x0 + q) �≡ F(x0) (mod q2).

By choice of x1 as either x0 or x0 + q, we can ensure that

fj (x1) ≡ 0 (mod q), F (x1) �≡ 0 (mod q2),

whence

fj (x1) �≡ 0 (mod q2) and fi(x1) �≡ 0 (mod q) for i �= j.
By the hypothesis of Theorem 2, there exists x2 ≡ x1 (mod q2) such that

(7) f (x2) = N(u1, u2, . . . , un)

for some rational u1, u2, . . . , un. From the preceding congruences we have

fj (x2) ≡ 0 (mod q), fj (x2) �≡ 0 (mod q2),

fi(x2) �≡ 0 (mod q) for i �= j.
Hence

(8) f (x2) ≡ 0 (mod qej ), f (x2) �≡ 0 (mod qej+1).

Let the prime ideal factorization of q in K be

(9) q = q1q2 · · · ql;
the factors are distinct since q is supposed to be sufficiently large. We note that l divides n
because K is a normal field, and that

(10) Nqi = qn/l .
Write the prime ideal factorization of u1ω1 + . . .+ unωn in K in the form

u1ω1 + . . .+ unωn = q
α1
1 · · · qαll ab−1,

where a, b are ideals in K which are relatively prime to q. Then

(11) N(u1ω1 + . . .+ unωn) = ±qn(α1+...+αl)/ lNa(Nb)−1,

and Na, Nb are relatively prime to q.
It follows from (7), (8), (11) that

n(α1 + . . .+ αl)/ l = ej ,
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whence
n

(ej , n)
divides l.

If (ej , n) = 1 we get that n divides l, whence l = n and it follows from (9) and (10)
that q factorizes completely in K into prime ideal factors of the first degree.

Now suppose thatK is cyclic(1). The Galois group ofK is a cyclic group G of order n;
it has a unique subgroup H of order n/l, and each qi is invariant under the automorphisms
of H . The subgroup H determines a subfield L of K , of degree l, and H is the Galois
group of K relative to L. A prime ideal factor of q in L cannot split further in K , since
any such factors would be derived from one another by the automorphisms of H and so
would not be distinct. Hence the factorization of q inL is also of the form (9). Comparison
of norms shows that the qi , considered as prime ideals in L, are of the first degree.

The unique subfield Kj of K , of degree n/(ej , n), is a subfield of L, and therefore q
also factorizes completely in Kj , the number of prime ideal factors being equal to the
degree of Kj and each being of the first degree.

This completes the proof of Lemma 1. ��

Lemma 2. Let G(x) be a polynomial with integral coefficients, irreducible over Q, and
let G(θ) = 0. Let J be any subfield of Q(θ). Then

(12) G(x) = aNJ
(
H(x)

)
identically, where H(x) is a polynomial over J , and NJ denotes the norm from J to Q,
extended in the obvious way to apply to J [x], and a is rational.

Proof. Let ω be a generating element of J and let ω(1) = ω, . . . , ω(m) be the conjugates
of ω, where m is the degree of J . Since J is contained in Q(θ), we have

ω = g(θ),
where g is a polynomial with rational coefficients. ThusG(x) has a zero in common with
the polynomial

(13)
m∏
j=1

(
g(x)− ω(j)),

which has rational coefficients, and since G(x) is irreducible, it must divide this polyno-
mial.

The factors of (13) are relatively prime in pairs, since their differences are non-zero
constants. Hence the polynomials

H(j)(x) = (G(x), g(x)− ω(j))
are relatively prime in pairs, and since each of them divides G(x), their product must

(1) In dealing with this case we do not need to exclude the possibility that (ej , n) = 1.
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divide G(x). Thus

G(x) = A(x)
m∏
j=1

H(j)(x) = A(x)NJ
(
H(1)(x)

)
.

The norm on the right is a non-constant polynomial with rational coefficients, so it follows
from the irreducibility of G(x) that A(x) is a constant. This proves the result. ��

Lemma 3 (Bauer). Let J be a normal number field and let k be any number field. Suppose
that every sufficiently large prime which has at least one prime ideal factor of the first
degree in k also has at least one prime ideal factor of the first degree in J . Then J is
contained in k.

Proof. See Bauer [1] or Hasse [3], pp. 138 and 141. ��

4.

Proof of Theorem 2. Let f (x) be the polynomial of the theorem, and fj (x) any one of its
irreducible factors, as in (4). Let θ be any zero of fj (x) and q any large prime which has
at least one prime ideal factor of the first degree in Q(θ). Then by Dedekind’s theorem the
congruence

fj (x) ≡ 0 (mod q)

is soluble.
If (ej , n) = 1, it follows from Lemma 1 that q factorizes completely in the fieldK . By

Lemma 3, with J = K and k = Q(θ), this implies that K is contained in Q(θ). It follows
now from Lemma 2, with G(x) = fj (x), that fj (x) is expressible identically in the form

fj (x) = ajNK
(
Hj(x)

)
,

as in (12). Hence

(14)
(
fj (x)

)ej = aejj NK(Hejj (x)) = bjNK(H ∗
j (x)
)
.

Now suppose thatK is cyclic. It follows from Lemma 1 that q factorizes completely in
the field Kj . By Lemma 3 with J = Kj and k = Q(θ), this implies that Kj is contained
in Q(θ). It follows now from Lemma 2, with G(x) = fj (x), that fj (x) is expressible
identically in the form

fj (x) = ajNKj
(
Hj(x)

)
.

Now

NK
(
Hj(x)

) = {NKj (Hj(x))}(ej ,n),
since the degree of K relative to Kj is (ej , n). Hence

(15)
(
fj (x)

)ej = aejj {NK(Hj(x))}ej /(ej ,n) = bjNK(H ∗
j (x)
)
.
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The conclusions (14) and (15), reached on two alternative hypotheses, are the same.
By (4) and the multiplicative property of the norm, we have

f (x) = aNK
(
h(x)
)
,

where h(x) is a polynomial over K . By the hypothesis of the theorem, taking x to be a
suitable integer, we infer that a is the norm of an element α of K . Putting

αh(x) = ω1u1(x)+ . . .+ ωnun(x),
we obtain

f (x) = N(u1(x), . . . , un(x)
)

identically. ��

5.

Proof of the Corollary to Theorem 2. It follows from the theorem, on taking K = Q(i),
that

f (x) = U2
1 (x)+ U2

2 (x),

where U1, U2 are polynomials with rational coefficients. Let

U1(x)+ iU2(x) = αν(x),
where ν(x) is a primitive polynomial whose coefficients are integers in Q(i) and α is an
element of Q(i). Then

f (x) = |α|2ν(x)ν̄(x).
Since ν(x) and ν̄(x) are both primitive and f (x) has integral coefficients, it follows from
Gauss’s lemma that |α|2 is an integer. But |α|2 is a sum of two rational squares, and so
it must be a sum of two integral squares, i.e. |α|2 = |β|2, where β is an integer in Q(i).
Putting

βν(x) = u1(x)+ iu2(x),

where u1, u2 are polynomials with (rational) integral coefficients, we get

f (x) = u2
1(x)+ u2

2(x). ��

6. Two examples

(1) Suppose that

f (x) = x2, K = Q(e2πi/8).

We prove first that every square is expressible as a value of the norm form ofK . This norm
form is

N
(
u1 +

√
iu2 + iu3 +

√
i3u4
) = (u2

1 − u2
3 + 2u2u4)

2 + (u2
2 − u2

4 − 2u1u3)
2.
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Plainly 22 is representable with u1 = u3 = 0, u2 = u4 = 1.
Also if p is a prime and p ≡ 1 (mod 4) then p = a2 + b2 and p2 is representable with

u1 = u3 = 0, u2 = a, u4 = b. Finally, if p ≡ 3 (mod 4) then p is representable either as
a2 − 2b2 or as a2 + 2b2, and we take u1 = b, u3 = ±b, u2 = a, u4 = 0.

On the other hand, x2 is not representable in the form

x2 = N(u1(x), . . . , u4(x)
)
,

where u1(x), …, u4(x) are polynomials with rational coefficients. For if the greatest
degree of any of these polynomials is g � 1, then the coefficient of x4g on the right is
N(c1, . . . , c4), where c1, . . . , c4 are rational numbers, not all zero, and this coefficient is
not 0.

In this example, K is normal but not cyclic, and the multiplicity of the zero of f (x) is
not relatively prime to the degree (namely 4) of K .

(2) Suppose that

f (x) = 2x2(x + 1)2 + 3x(x + 1)+ 4, K = Q
(√−23

)
.

Here the norm form of K is

N(u1, u2) = u2
1 + u1u2 + 6u2

2.

For every integer x we have x(x + 1) = 2t , where t is an integer, and

f (x) = 8t2 + 6t + 4 = N(t + 2, t).

On the other hand, if u1(x), u2(x) are polynomials in x with integral coefficients, the
coefficient of the highest power of x in N

(
u1(x), u2(x)

)
is an integer of the form

a2 + ab + 6b2,

and cannot be 2, since the least positive integer other than 1 represented by this form is 6.
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An improvement of Runge’s theorem
on Diophantine equations

Summarium. Auctor investigat quando aequatio cum duabus variabilibus infinitum solutionum
integralium numerum habere possit.

I

The first general result concerning the number of integer solutions of a Diophantine
equation is due to Runge [3] and in its simplest form is as follows.

(i) If f (x, y) is a polynomial with integer coefficients irreducible in the rational field
and the equation f (x, y) = 0 has infinitely many integer solutions, then the highest
homogeneous part of f (x, y) is up to a constant factor a power of an irreducible form.

The more general formulation refers to the highest isobaric part of f (x, y).
The final result permitting to decide whether any given equation f (x, y) = 0 has

infinitely many integer solutions is due to Siegel [4] and is as follows.

(ii) If f (x, y) = 0 has infinitely many integer solutions, then there exist rational
functions R(t), S(t) not both constant such that

(1) f
(
R(t), S(t)

) = 0

identically in t and either

(2) R(t) = A(t)

L(t)m
, S(t) = B(t)

L(t)m

or

(3) R(t) = C(t)

Q(t)m
, S(t) = D(t)

Q(t)m
,

where A,B,C,D,L,Q are polynomials with integer coefficients, L is linear, Q irre-
ducible indefinite quadratic.

The aim of this note is to deduce from the two above results the following improvement
of the first one.

Paper presented on October 17th, 1968 by Pontifical Academician H.E. Wacław Sierpiński.
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Theorem. If f (x, y) is a polynomial with integer coefficients irreducible in the rational
field and the equation f (x, y) = 0 has infinitely many integer solutions then the highest
homogeneous part of f (x, y) is up to a constant factor a power of a linear or irreducible
indefinite quadratic form.

Proof. Let f (x, y) have degree n and denote by fn(x, y) its highest homogeneous part.
By (i) either fn(x, y) = axn or fn(x, y) = byn or

(4) fn(x, y) = axn + . . .+ byn (ab �= 0).

It remains to consider the last case. By (ii) we have (1) where either

1. R, S are polynomials not both constant or

2. (2) holds with m > 0, (A,B,L) = 1 or

3. (3) holds with m > 0, (C,D,Q) = 1.

In the case 1. it follows from (1) and (4) that R and S are of the same degree. Denoting
this degree by d and the leading coefficients of R and S by r and s, respectively, we get

fn(r, s) = lim
t=∞ t

−ndf
(
R(t), S(t)

) = 0.

Hence fn(x, y) is divisible by sx − ry and by (i)

fn(x, y) = c(sx − ry)n.
In the case 2. let t0 be the zero of L(t). Clearly A(t0) �= 0 or B(t0) �= 0. Multiplying

(1) by L(t)mn and substituting afterwards t = t0 we obtain

fn
(
A(t0), B(t0)

) = 0.

Hence fn(x, y) is divisible by B(t0)x − A(t0)y and by (i)

fn(x, y) = c
(
B(t0)x − A(t0)y

)n
.

In the case 3. let t1, t2 be the zeros ofQ(t). Clearly

C(ti) �= 0 or D(ti) �= 0 (i = 1, 2).

Multiplying (1) byQ(t)mn and substituting afterwards t = ti we obtain

fn
(
C(ti),D(ti)

) = 0 (i = 1, 2).

Hence fn(x, y) is divisible by D(ti)x − C(ti)y and by (4) D(ti) �= 0 (i = 1, 2). If
C(t1)D(t1)

−1 is rational then by (i)

fn(x, y) = c
(
D(t1)x − C(t1)y

)n
.

If C(t1)D(t1)−1 is irrational, the C(ti)D(ti)−1 are conjugate in a real quadratic field and
by (1)

fn(x, y) = c
[(
D(t1)x − C(t1)y

)(
D(t2)x − C(t2)y

)]n/2
.
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Corollary. If fn(x, y) is an irreducible form of degree n > 2 and g(x, y) is a polynomial
with integer coefficients of degree m < n then the equation

fn(x, y) = g(x, y)
has only finitely many integer solutions.

The corollary represents an improvement on the analogous results with Roth [2] de-
duced from his famous theorem; this had stronger hypothesis m < n− 2.

I conclude by expressing my thanks to Professors H. Davenport and D. J. Lewis for
their helpful suggestion and in particular for pointing out the corollary which they were
first to prove.c

II

In this second part I wish to extend the result of the first part so as to improve on
Runge’s theorem in its full generality.

Let f (x, y) be a polynomial with integer coefficients irreducible in the rational field
and suppose that the equation f (x, y) = 0 has infinitely many integer solutions. Then
according to Runge [3] (see [6], p. 89):

(1) the highest terms in x and y occur in f separately as axm, byn;

(2) each branch of the algebraic function y of x defined by f = 0 tends to infinity with x
and is of order xm/n, every term cxρyσ in f has nρ +mσ � mn;

(3) the sum g(x, y) of the terms with nρ +mσ = mn is expressible as

b
∏
β

(
yν − d(β)xμ) (β = 1, . . . , n

ν
),

where
∏
β

(
u− d(β)) is a power of an irreducible polynomial.

Runge does not say explicitly that
n

ν
= m

μ
= (m, n),

but what he really proves is that g(x, y) is up to a constant factor a power of an irre-c

ducible polynomial (for another proof see Skolem [5]). Therefore, factorizing if necessary
yν − d(β)xμ we can conclude that

(4) g(x, y) = bh(xm/d, yn/d)λ, d = (m, n),
where h(u, v) is an irreducible form. We shall prove:

Theorem. If f (x, y) is a polynomial with integer coefficients irreducible in the rational
field, of degree m in x and n in y, and the equation f (x, y) = 0 has infinitely many
integer solutions then (1) and (2) hold and the sum g(x, y) of all terms cxρyσ of f with
nρ + mσ = mn is of the form bh

(
xm/d, yn/d

)λ
, where d = (m, n) and h is a linear or

irreducible indefinite quadratic form.
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The proof is based on the theorem of Siegel [4] quoted in part I, it will be however a little
simpler if we reformulate the said theorem, examining Siegel’s argument. Siegel proves
that if f (x, y) = 0 has infinitely many integer solutions then the genus of f (x, y) = 0 is
zero(∗). In this case (cf. Skolem [6], p. 102) there is a parametrization

(5) x = ϕ(u, v)

χ(u, v)
, y = ψ(u, v)

χ(u, v)
,

where ϕ,ψ, χ are relatively prime forms of the same positive degree with rational coeffi-
cients and where the equation

χ(u, v) = h
has infinitely many integer solutions for some h �= 0. Now, as proved by Maillet [1] (cf. [6],
p. 100) the last condition implies that

(6) χ(u, v) = c1(a1 + b1v)
l or χ(u, v) = d1(a2u

2 + b2uv + c2v
2)l,

where b2
2 − 4a2c2 is positive and is not a perfect square. The latter case by the substitution

u = t , v = 1 leads to a parametrization

(7) x(t) = C(t)

Q(t)α
, y(t) = D(t)

Q(t)β
, f

(
x(t), y(t)

) = 0,

where C,D,Q are polynomials with rational coefficients,Q is irreducible indefinite qua-
dratic, α � 0, β � 0 and x(t), y(t) are not both constant.

Moreover, and this remark of Maillet seems to have been so far overlooked, the former
case leads to the same parametrization (7) with α = β = 0. Indeed on substituting u = t ,
v = b−1

1 (1 − a1t) we get from (5) and (6)

x(t) = ϕ
(
t, b−1

1 (1 − a1t)
)

c1
, y(t) = ψ

(
t, b−1

1 (1 − a1t)
)

c1

and the polynomials on the right hand side which are not both constant can be taken as
C(t), B(t) in (7). Therefore, if f (x, y) = 0 has infinitely many integer solutions then (7)
holds and either

(8) α = β = 0, C,D are not both constant

or

(9) α + β > 0, (C,Qα) = (D,Qβ) = 1.

Proof of the theorem. By Runge’s theorem we have (1), (2) and (4) and it remains to show
that h is linear or indefinite quadratic. Set m/d = μ, n/d = ν.

In the case (8) let γ, δ be the degrees of C,D respectively and c0, d0 their leading
coefficients. If t tends to infinity then x is of order tγ , y of order tδ and by (2) δ = γm/n.
Thus we get from (7)

g(c0, d0) = lim
t=∞ t

−γmf
(
x(t), y(t)

) = 0,

(∗) The assumptions imply the absolute irreducibility of f , hence the genus is defined.
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from (4)

h
(
c
μ
0 , d

ν
0

) = 0

and h(u, v) is divisible by dν0u− cμ0 v. Since h is irreducible it must be linear.
In the case (9) let t1, t2 be the zeros ofQ(t). If t tends to ti then x is of order (t − ti )−αc

(possibly tends to 0 if α = C(ti) = 0), y of order (t − ti )−β (possibly tends to 0 if
β = D(ti) = 0) and by (2) β = αm/n, C(ti) �= 0 �= D(ti) (i = 1, 2). Thus we get
from (7)

g
(
C(ti),D(ti)

) = lim
t=ti
Q(t)αmf

(
x(t), y(t)

) = 0,

from (4)

h
(
C(ti)

μ,D(ti)
ν
) = 0

and h(u, v) is divisible by D(ti)νu− C(ti)μv (i = 1, 2).
If C(t1)−μD(t1)ν is rational h must be linear as before.
If C(t1)−μD(t1)ν is irrational then C(ti)−μD(ti)ν are conjugate in a real quadratic

field, h is divisible by (
D(t1)

νu− C(t1)μv
)(
D(t2)

νu− C(t2)μv
)

and h is indefinite quadratic. This completes the proof.
It should be noted that the above proof does not share an essential advantage of Runge’s

proof, namely it does not permit to estimate the size of solutions of f (x, y) = 0 if the
theorem implies the finiteness of their number. The reason for this defect is the noneffective
character of Siegel’s theorem.
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On the equation ym = P(x)

with R. Tijdeman (Leiden)

The aim of this paper is to prove the following

Theorem. If a polynomial P(x) with rational coefficients has at least two distinct zeros
then the equation

(1) ym = P(x), x, y integers, |y| > 1,

implies m < c(P ) where c(P ) is an effectively computable constant.

For a fixed m the Diophantine equation (1) has been thoroughly investigated before
(see [1] and [4]) and the known results together with the above theorem imply immediately

Corollary 1. If a polynomial P(x) with rational coefficients has at least two simple zeros
then the equation (1) has only finitely many integer solutionsm, x, y withm > 2, |y| > 1
and these solutions can be found effectively.

Corollary 2. If a polynomialP(x)with rational coefficients has at least three simple zeros
then the equation (1) has only finitely many integer solutionsm, x, y withm > 1, |y| > 1
and these solutions can be found effectively.

A simple proof of the special case of Corollary 1 that P(x) has at least two
simple rational zeros can be found in a survey paper by the second named author [6].
Corollary 2 is a step towards the following

Conjecture. If a polynomialP(x)with rational coefficients has at least three simple zeros
then the equation y2z3 = P(x) has only finitely many solutions in integers x, y, z with
yz �= 0.

This conjecture lies rather deep, since it implies the existence of infinitely many
primes p such that 2p−1 �≡ 1 (mod p2).

The proof of the theorem is based on Baker’s work [2] and on two lemmata. We denote
by ‖x‖ the distance from x to the nearest integer.
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Lemma 1. For any complex numbers X, Y different from 0, a positive integer h and any
choice of the roots X1/h, Y 1/h we have

|X1/h − Y 1/h|(2)

� max
(|X|, |Y |)1/h ·

⎧⎪⎨⎪⎩
(

1 − 1

e

)
min
(

1,
1

h

∣∣log |XY−1|∣∣) if |X| �= |Y |,
4

h

∥∥∥ logXY−1

2πi

∥∥∥ if |X| = |Y |.

Proof. We can assume without loss of generality that

|X| � 1 = Y 1/h.

If |X| > 1 we have

|X1/h − 1| � |X|1/h − 1 = |X|1/h(1 − |X|1/h),
and if |X| � eh the inequality (2) follows immediately. To settle the case eh > |X| > 1
we verify by differentiation that the function

f (t) = (1 − t−1)/ log t

is decreasing in the interval (1, e). Since f (e) = 1−e−1, (2) follows on taking t = |X|1/h.
Suppose now that |X| = 1,

X = cosϕ + i sin ϕ, ϕ = i−1 logX.

Then

X1/h = cos
ϕ + 2πj

h
+ i sin

ϕ + 2πj

h
for some integer j

and

|X1/h − 1| = 2 sin
∣∣∣ϕ + 2πj

2h

∣∣∣.
However, sinψ/ψ is decreasing on (0, π/2). Hence for all real ψ

|sinψ | � 2
∥∥∥ψ
π

∥∥∥
and

|X1/h − 1| � 4
∥∥∥ϕ + 2πj

2πh

∥∥∥ � 4

h

∥∥∥ logX

2πi

∥∥∥.
In the following lemma we denote the height of an algebraic number x by H(x).

Lemma 2. If γ1, γ2 are algebraic integers of a field K of degree d then

(3) H(γ1/γ2) � 3d2d
∏
σ

max
(|γ σ1 |, |γ σ2 |),
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where σ runs through all the isomorphic injections ofK into the complex field. Moreover,
if K = K (the bar denoting complex conjugation) then

H
(|γ1/γ2|2

)
� 3d2d

∏
σ

max
(|γ σ1 |, |γ σ2 |)2.

Proof. Clearly γ1/γ2 satisfies the equation

F(x) =
∏
σ

(
γ σ2 x − γ σ1

) = 0.

F (x) has rational integral coefficients, but it may be reducible. We have

F(x) = NK/Q γ2 · f (x)r ,
where f is the minimal polynomial of γ1/γ2. By Gauss’s lemma F(x) = c · g(x)r , where
c is an integer, g has integral coefficients and is irreducible as a constant multiple of f . By
an inequality of Gel′fond ([3], p. 139) we have

H(F) � 1

3dr
H(g)r � 1

3d
H(g), unless H(g) = 1,

c

where H(P ) denotes the height of the polynomial P .
On the other hand,

H(F) �
∏
σ

(|γ σ1 | + |γ σ2 |) � 2d
∏
σ

max
(|γ σ1 |, |γ σ2 |).

This implies (3). Now if K = K we have |γ 2
i | = γiγ i ∈ K (i = 1, 2). Hence

H
(|γ1/γ2|2

)
� 3d2d

∏
σ

max
(|γ σ1 γ σ1 |, |γ σ2 γ σ2 |)

� 3d2d
∏
σ

max
(|γ σ1 |, |γ σ2 |) ·∏

σ

max
(|γ σ1 |, |γ σ2 |)

= 3d2d
∏
σ

max
(|γ σ1 |, |γ σ2 |)2.

Proof of the Theorem. Let K be the splitting field of P and let

bP (x) = a
n∏
i=1

(x − αi)ri (αi distinct, b integer)

have integral coefficients. It follows from (1) that

(4)
n∏
i=1

(ax − aαi)ri = baN−1ym, N =
n∑
i=1

ri,

where the numbers aαi are algebraic integers. Since for integer x

(ax − aαi, ax − aαj ) | (aαi − aαj ),
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the highest common ideal divisor of any two factors on the left hand side of (4) is composed
exclusively of prime ideals of K dividing

Δ =
∏

1�i<j�n
(aαi − aαj ).

Hence, for each i � n we have

(5) (ax − aαi)ri = dcm

for some ideals d and c such that d is composed exclusively of prime factors of abΔ and
(c, abΔ) = 1. If p is a prime ideal and pt ‖ cm then clearly m | t and by (5) ri | t , thus

[m, ri] | t . It follows that
m

(m, ri)

∣∣∣ t
ri

. Moreover d = d
ri
i and we get from (5)

(6) (ax − aαi) = dic
s
i , s = m

(m, [r1, . . . , rn]) .
Let p1, . . . , pk be all prime ideal divisors of abΔ in K and let h be the class number

of K . We have

phj = (πj ) (1 � j � k),
chi = (γi) (1 � i � n),

and by (6) for suitable integer exponents yij � 0

(ax − aαi)h =
( k∏
j=1

π
yij
j γ

s
i

)
.

If ε0, ε1, . . . , εr are a basis for the group of units in K we get

(7) (ax − aαi)h =
r∏
q=0

ε
xiq
q

k∏
j=1

π
yij
j γ

s
i (1 � i � n),

where we can suppose without loss of generality that

(8) 0 � xiq < s, 0 � yij < s,
since any product

r∏
q=0

ε
xq
q

k∏
j=1

π
yj
j with xq ≡ yj ≡ 0 (mod s), yj � 0,

can be incorporated in γi .
By our assumption n � 2. We use (7) for i = 1, 2, denoting the right hand side of (7)

by X and Y , respectively. If X = Y we have

(ax − aα1)
h = (ax − aα2)

h

and it follows, from α1 �= α2, that ax − aα1 = e2πig/h(ax − aα2), 0 < g < h, and

|x| � |α1| + |α2|
2 sin(π/h)

.
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Since |y| > 1, equation (1) givesm < c1, where c1 as the subsequent constants c2, c3, . . .
depends only on P and is effectively computable.

If X �= Y we have either |X| �= |Y | or |X| = |Y | and
∥∥∥ logXY−1

2πi

∥∥∥ �= 0. In the former

case we infer by (8) from Baker’s theorem [2] that∣∣log |XY−1|∣∣ > H (|γ1/γ2|2
)−c2 log s

,

in the latter case similarly ∥∥∥ logXY−1

2πi

∥∥∥ > H (γ1/γ2
)−c3 log s

,

where in case H( ) = 1, it should be replaced by 2.

In virtue of Lemmata 1 and 2 we have in both cases

|aα1 − aα2| = |X1/h − Y 1/h|
> c4 max

(|X|, |Y |)1/h∏
σ

max
(|γ σ1 |, |γ σ2 |)−c5 log s

> c−s6 max
(|γ1|, |γ2|

)s/h∏
σ

max
(|γ σ1 |, |γ σ2 |)−c5 log s

for some constant c6 > 1.

Applying any isomorphic injection τ of K into C to both sides of (7) and arguing asc

before we get

|aατ1 − aατ2 | > c−s6 max
(|γ τ1 |, |γ τ2 |)s/h∏

σ

max
(|γ σ1 |, |γ σ2 |)−c5 log s

.

On taking the product over all injections τ we obtainc

|NK/Q(aα1 − aα2)| > c−ds6

∏
σ

max
(|γ σ1 |, |γ σ2 |)s/h−c5d log s

.

Since the left hand side is independent of s, this implies that either s � c7 or∏
σ

max
(|γ σ1 |, |γ σ2 |) < c2dh

6 .

In the former case we have m � c7[r1, . . . , rn], in the latter case, by (7),

(9) NK/Q
(
(ax − aα1)

h(ax − aα2)
h
) = ±

k∏
j=1

N(πj )
y1j+y2jG s ,

where G = |Nγ1γ2| < c4dh
6 . The greatest prime factor of the right hand side of (9) is

bounded by abΔc4dh
6 . The left hand side of (9) is a polynomial in x with integer coefficients

and at least two distinct zeros. It has been proved by the first named author, M. Keates,
S.V. Kotov andV. G. Sprindzhuk (see [5]) that the greatest prime factor of such a polynomial
exceeds c8 log log |x|. So we obtain |x| � c9 and in view of (1) with |y| > 1, m � c10.
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Zeta functions
and the equivalence of integral forms
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1.

Two algebraic number fields K , K ′ are said to be arithmetically equivalent when
their zeta functions ζK(s) and ζK ′(s) coincide. In this paper we give an example of two
nonisomorphic arithmetically equivalent fields of class number one, and then show that
the norm forms from the rings of integers of these fields provide a negative answer to an
old conjecture concerning integral forms.

We will consider the values of integral forms when the variables run through Z. The
fixed divisor of a form g ∈ Z[X1, . . . , Xn] is the gcd of its values. Letw(R) be the number
of integers in the interval (−R,R) which appear as values of g. Then g has density zero
if the quotient w(R)/R approaches zero as a limit as R increases to infinity. Let X denote
the n-tupel of variables (X1, . . . , Xn), letA be an n-by-nmatrix, and letX ·A be the linear
change of variables defined by A.

Chowla has made the following conjecture (see [2], and [4], p. 23):

Let g and h be irreducible integral forms of degree d in n variables, each having
density zero and fixed divisor one, and representing the same numbers when the variables
run through Z. Then there is an integral matrix A of determinant ±1 for which

g(X) = h(X · A).

To support this conjecture, Chowla claimed it is true for binary quadratic forms, but
this was due to an oversight. For example, g = X2 +XY + Y 2 and h = X2 + 3Y 2 satisfy
all the hypotheses of the conjecture, but it is easy to check that any linear transformation
taking h to g has determinant 1/2, and hence cannot be integral.

* Supported by the Sonderforschungsbereich „Theoretische Mathematik” of Bonn University.
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2.

There are several ways in which this conjecture can be mended for binary quadratic
forms:

a) One can additionally require that g and h have the same discriminant.

b) One can additionally require that the integers represented properly by g (i.e., those
values g(x1, . . . , xn) with (x1, . . . , xn) = 1) coincide with the integers represented
properly by h.

c) One can additionally require that g (and h) is integrally equivalent to any form f ∈
Z[X1, . . . , Xn] representing it integrally.

d) One can weaken the conclusion to assert only that g and h are equivalent via a rational
transformation of non-zero determinant.

With each of these alterations, the validity of Chowla’s conjecture for binary quadratic
forms follows easily from the following reformulation of a theorem of Schering ([9]): Let
g and h be two primitive binary quadratic forms with

|disc. g| � |disc. h|.
Then g and h have the same sets of values if and only if either (i) g and h are integrally
equivalent, or (ii) disc. g = D ≡ 5 (mod 8), the equation X2 − DY 2 = 4 has proper
solutions, and h(X, Y ) is integrally equivalent to the form g(X, 2Y ).

Let g and h be the norm forms from the rings of integers of the fields Q
(
(−3)1/8

)
and

Q
(
(−48)1/8

)
. We will show below that these forms are a counterexample to the conjecture

even when one adds all the extra hypotheses a), b), c), and weakens the conclusion to d).
Despite this negative result, certain special versions of Chowla’s conjecture may be

true. For binary forms of any degree the situation has been studied in [10], and results of a
positive nature have been found. For more than two variables, the problem of relating the
equivalence of forms to their values seems much more complicated; however, the following
comment may be of some interest.Although discriminants have long been defined for forms
of any degree and any number of variables (see for example [5], lecture 44, p. 159), their
arithmetic meaning is far from clear in general: when the number of variables exceeds
two, the discriminant is zero for any form that is not absolutely irreducible. In particular, it
vanishes for such well-behaved forms as norm forms (the forms of our counterexample).
This suggests that perhaps further investigations of Chowla’s conjecture should initially
be restricted to nonsingular forms.

3.

Let K = Q
(
(−3)1/8

)
and K ′ = Q

(
(−48)1/8

)
. These are nonisomorphic fields of

degree eight whose zeta functions coincide (see [7], p. 351). We will show in Sections 4
and 5 that both K and K ′ have class number one. Using this result from below, we will
now construct a counterexample to Chowla’s conjecture with all the variations a), b), c),
and d) of Section 2.
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Select a basis {θi} for the integers of K and {θ ′i } for the integers of K ′ and define

(1)
g(X1, . . . , X8) = normK/Q(X1θ1 + . . .+X8θ8)

h(X1, . . . , X8) = normK ′/Q(X1θ
′
1 + . . .+X8θ

′
8).

Then g and h are irreducible ([1], Th. 2, p. 80) integral forms of degree eight in eight
variables, of density zero ([6]) and fixed divisor one. By the remark at the end of Section 2,
they have the common discriminant zero.

To check the validity of assumption b), we will characterize the sets of numbers properly
represented by either form. Consider one of these forms, say g. Any value g(x1, . . . , x8) is
the norm of the algebraic integer

∑
xiθi . This norm is positive, sinceK is totally imaginary,

and equals the norm of the ideal
(∑
xiθi
)
. Conversely, K has class number one, as will

be shown below, so the norm of any ideal is the norm of an element, and this means that
the values of g are precisely the norms of integral ideals.

One sees at once that x1, . . . , x8 are relatively prime if and only if the corresponding
ideal

(∑
xiθi
)

is primitive, i.e., not divisible by any rational integer. Consider two ideals
A and B whose norms are relatively prime. If their product AB is not primitive, then it
is divisible by some prime number p and hence by every prime ideal factor of p. All of
these latter divide exactly one of A or B, since (norm A, norm B) = 1, and therefore p
divides either A or B. That is, the product of primitive ideals with relatively prime norms
is again primitive. It is obvious that any factor of a primitive ideal is primitive, and this
together with the previous fact means: g (and similarly, h) properly represents a product of
relatively prime numbers if and only if it properly represents each factor. Thus, in order to
know which values are properly represented by g, it suffices to know which prime powers
pt are properly represented.

Let p = ∏i P eii (i = 1, . . . , s) be the factorization of a prime number p in K , with
ramification indices ei and inertia degrees fi , and suppose that pt is the norm of an integral
ideal A. Then this ideal necessarily has the form A = ∏i P vii (i = 1, . . . , s) with non-
negative v’s, and is primitive if and only if at least one of these vi is strictly less than the
corresponding ramification index ei . Taking norms then shows: pt is properly represented
by g if and only if the exponent t can be written as t =∑ vifi with nonnegative v’s, and
vi < ei for at least one i.

The analogous characterization holds for the prime powers properly represented by the
form h, of course, with the ramification indices e′i and the inertia degrees f ′

i now computed
inK ′ instead of inK . As has already been mentioned,K andK ′ have equal zeta functions.
From this, it automatically follows that the prime ideal factors Pi of p in K can be paired
with the factors P ′

i in K ′ so that the corresponding inertia degrees are equal, fi = f ′
i

(i = 1, . . . , s) (see [7], Th. 1, p. 345). In general, ei and e′i do not have to agree under
this correspondence, but for the specific fields K , K ′ in question, they do. The ramified
primes are 2, 3 and 3, being an eighth power, obviously ramifies totally in K . It follows
from the equality of the zeta functions that there is a unique prime ofK ′ lying over 3, and
that it has inertia degree one, so 3 ramifies totally in K ′. We will show in the next section
that (2) = P 4 in K and (2) = P ′4 in K ′. With this, it follows that either both of g and h
or neither of them properly represents a given pt , and hence they properly represent the
same sets of values.
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We now turn to the task of verifying assumption c). Suppose g(X) = f (X · A) with
f ∈ Z[X1, . . . , X8] and an integral matrix A of determinant d �= 0. We will show that
d = ±1. Set B = d · A−1. Then B = (bij ) is an integral matrix of determinant d7, and
g(X · B) = f (dX), which can be rewritten to give

(2) norm(X1λ1 + . . .+X8λ8) = d8 · f (X)
where λi =∑j bij θj . If A is the integral ideal generated by the λ’s, then (2) implies

(3) norm A � d8.

Consider the lattice Λ = ⊕Zλi contained in A. Then B is the matrix of the transition
map from the lattice O = ⊕Zθi of all integers in K to the lattice Λ, so the index of Λ
in O is [O : Λ] = |detB| = |d|7. On the other hand, Λ � A so [O : Λ] � d8, by (3),
implying d = ±1.

Suppose finally there were a rational matrix A giving a linear substitution

(4) (y1, . . . , y8) = (x1, . . . , x8) · A
for which

(5) g(x1, . . . , x8) = h(y1, . . . , y8).

For xi ∈ Q let yj be defined by (4) and consider the map T : K → K ′ taking
∑
xiθi to∑

yj θ
′
j . This is an additive map which preserves norm. Hence for α ∈ K and for every

natural number n

(6) norm(n− α) = norm
(
T (1) · n− T (α)),

and this implies that the polynomials

(7) s(X) = norm(X − α) and t (X) = norm
(
T (1) ·X − T (α))

coincide. If we select α to generate K over Q, then the roots of s(X) are the conjugates
of α. Since T (α) · T (1)−1 lies in K ′ and is a root of t (X) = s(X), it follows that K ′
contains a conjugate of α. Since K and K ′ have the same degree, this implies K ∼= K ′,
and this contradiction shows that g and h are not rationally equivalent.

4.

It remains to show that the class numbers ofK = Q
(
(−3)1/8

)
andK ′ = Q

(
(−48)1/8

)
are one. We begin by proving the implication

(8) hK = 1 =⇒ hK ′ = 1;
then we will show in the next section that hK = 1. So, assume hK = 1 and letL = K(√2).
Then L is alsoK ′(

√
2). We contend that each of the quadratic extensions L/K and L/K ′

has exactly one ramified prime, which then necessarily ramifies totally.
Clearly any ramified prime is finite and lies over 2. Consider first K . We check easily

that (2) = P 4 in K where P = (1 + (−3)1/8
)

has norm 4. Since 2 is inert in the subfield
Q(

√−3) of K , it follows that P is a prime ideal, and the only prime ideal of K lying
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above 2. Hence P is the only prime ofK that can possibly ramify in L. Since hK = 1, the
abelian extension L/K must ramify, so P ramifies; i.e., 2 is the eighth power of a prime
ideal inL. Intersecting this ideal withK ′ shows that there is only one prime P ′ ofK ′ lying
above 2, and P ′ ramifies in L. This proves the statement in italics above, and also shows
that (2) = P ′4 in K ′, settling the question of ramification indices left open in Section 3.

Iwasawa has shown that the validity of the italic statement just proved suffices to
conclude that

(9) 2 |hK ⇐⇒ 2 |hL ⇐⇒ 2 |hK ′

(see [3]). Since hK = 1, it follows that hK ′ is odd. But it has been proved in [8] that the
class number quotient hK/hK ′ = 2i for an integer i. The left side of this equality being
odd, we have i = 0, which proves (8).

5.

It is to be shown that hK = 1. Set θ = (−3)1/8 and let (x0, x1, . . . , x7) denote
∑
i xiθ

i .
By considering the tower of quadratic extensions of Q leading up toK , it is easy to verify
that

(10)
{1

2

(
a, b, c, d, a + 2e, b + 2f, c + 2g, d + 2h

) ∣∣ a, b, c, d, e, f, g, h ∈ Z

}
c

is the full ring of integers of K . From this, we calculate the discriminant of K to be
DK = 216 · 37.

The ideal class group ofK is generated by the prime ideals whose norm does not exceed
the Minkowski boundMK = N ! · N−N · (4/π)t · √|DK |, where t = 4 is the number of
complex valuations of K and N = 8 is the field degree. We haveMK < 76.

The ramified primes are 2 and 3. We have already seen in Section 4 that each of these
has exactly one prime factor in K and this factor is principal.

Let P be a prime ideal of K whose norm pf does not exceed 76. Excluding the
ramified primes, we have p � 5 and hence f � 2. If f = 2, then p is either 5 or 7. The
irreducible polynomial of θ is F(X) = X8 + 3 and has the discriminant 224 · 37. The
only primes dividing this discriminant are the ramified primes 2 and 3, so there are no
inessential discriminant divisors, and hence the splitting of an unramified prime number p
is determined by the factorization of F(X)modulo p. Since F(X) is irreducible modulo 5,
the prime number 5 is inert inK and hence has no prime factor of degree f = 2. Modulo 7,
the polynomial factors as F(X) = (X+ 2)(X− 2)(X2 + 4)(X2 −X + 4)(X2 +X + 4),
so 7 splits into the product of five prime ideals in K , two of norm 7 (f = 1) and three of
norm 49 (f = 2). We will show that each of these five ideals is principal. To this end, it
suffices to exhibit five integers inK , two of norm 7 and three of norm 49, such that none is
divisible by any of the others. These integers are given in Table 1 at the end of this paper.

With this, we know that the ideal class group of K is generated by prime ideals of
degree f = 1, lying over prime numbers p in the range 7 < p < 76. Now, a prime
number p has a factor of degree f = 1 if and only if X8 + 3 has a root modulo p. In
particular, −3 must be a square modulo p, and with the law of quadratic reciprocity it
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follows that p ≡ 1 (mod 3). There are eight prime numbers satisfying this congruence and
lying in our range; we divide them into three sets, as follows:

(11)

A = {p with 2 ‖ (p − 1)} = {19, 31, 43, 67};
B = {p with 4 ‖ (p − 1)} = {13, 37, 61};
C = {p with 8 | (p − 1)} = {73}.

The multiplicative group of Z/pZ is cyclic of order p− 1. This implies that −3, being
a quadratic residue, is automatically an eighth-power residue modulo each of the four
primes in the set A, and in fact it implies that each of these primes has exactly two prime
factors inK of degree f = 1. A moment’s thought shows that these two prime factors are
conjugate via the automorphism of K sending θ to −θ , and thus one factor is principal if
and only if the other one is. Hence, for p ∈ A, we will have proved that every prime factor
of p with f = 1 is principal as soon as we have exhibited an integer of K with norm p.
These are given in Table 2.

Let p be a prime in the set B. Then −3 is an eighth power if and only if it is a
fourth power modulo p. This shows that 13 has no factor of degree one in K , while each
of 37 and 61 has precisely four prime factors of degree one. We will prove all these to be
principal by exhibiting four non-associated integers of norm p, for p = 37 and 61.

The only element of C is p = 73. One checks directly that −3 is not a fourth power
and hence certainly not an eighth power modulo 73, implying that 73 has no prime factor
of degree f = 1.

Thus, the tables below prove that K , and consequently, as shown above in Section 4,
also that K ′, has class number one.

We conclude with a comment of the tables. Due to the simplicity of the defining
polynomial X8 + 3, it is more-or-less trivial to multiply two integers of K given in the
form (10) and to express the result again in this form. Computing norms via the tower
of quadratic subfields leading from K down to Q, it takes three such multiplications to
check that an integer in these tables has the norm claimed for it. When this has been
done, it remains to check that various entries are not divisible by others. This can be done
efficiently as follows. Let I denote an integer with norm N . The entry T appearing below
denotes the quotient N/I ; its value can be checked by computing T · I . Finally, to show
that an integer J is not divisible by I , it suffices to multiply J · T and to find a single
coordinate which is not divisible by N (up to a factor of 1/2, due to the form (10) of
integers in K).

Let Iσ denote the integer obtained from I by changing the sign of the second, fourth,
sixth, and eighth component; i.e., by replacing θ by−θ . Since the primes in these tables are
unramified inK , one can show that when the norm of I is prime, then I cannot divide Iσ .
With these easy observations, it is possible to check the accurracy of the following tables,
and hence that hK = hK ′ = 1, in a short amount of time, by hand.
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Table 1

Integer I N = norm I T = N/I
I1 = ( 1, 1, 1, 0, 0, 0, 0, 0) 7 (−2, −1, 3,−2,−1, 3,−2,−1)
Iσ1 = ( 1,−1, 1, 0, 0, 0, 0, 0) 7 (−2, 1, 3, 2,−1,−3,−2, 1)
I2 = (−1, 0, 1, 0,−1, 0, 0, 0) 49 (−7, 0, 14, 0, 21, 0, 7, 0)
I3 = ( 1,−1,−1, 0,−1, 1, 0, 0) 49 ( 7, 35, 14, 0, 21, 7,−7, 0)
Iσ3 = ( 1,−1,−1, 0,−1,−1, 0, 0) 49 ( 7,−35, 14, 0, 21,−7,−7, 0)

Table 2

Prime p Integer I of norm p T = N/I
19 = (2, 1, 1, 0, 0,−1,−1,−1) (−25, −1, 22, −9,−11, 14, −4, −7)
31 = (1,−1,−1, 1, 0,−1, 0, 0) (−35, 28,−10, 8, 6,−11, 15,−12)
43 = (1, 0,−1, 1,−1, 1,−1, 1) (−29,−39, −5, 17, 11, −3, −7, −2)
67 = (1, 0, 0, 0,−1, 1, 0, 0) ( 64, 42, 15, −9, −8,−22,−27,−24)
37 I1 = (1, 1, 0, 1, 0, 0, 0, 0) ( 7,−16,−11, 4, 12, −1, −3, −9)
37 Iσ1 = (1,−1, 0,−1, 0, 0, 0, 0) ( 7, 16,−11, −4, 12, 1, −3, 9)
37 I2 = (1, 1, 1, 0, 0, 0,−1,−1) ( 31,−40, 54,−47, 32,−21, 8, 4)
37 Iσ2 = (1,−1, 1, 0, 0, 0,−1, 1) ( 31, 40, 54, 47, 32, 21, 8, −4)
61 J1 = (1, 1, 1, 1, 1, 0, 0, 0) ( −2, −7, 6, 21,−18, −2, −7, 6)
61 Jσ1 = (1,−1, 1,−1, 1, 0, 0, 0) ( −2, 7, 6,−21,−18, 2, −7, −6)

61 J2 = (1,−2, 3
2 ,−2, 1,−1, 1

2 , 0) ( 59
2 , 8, −67

2 , −13
2 , 43

2 , 11, 7
2 ,

5
2 )

61 Jσ2 = (1, 2, 3
2 , 2, 1, 1, 1

2 , 0) ( 59
2 , −8, −67

2 , 13
2 ,

43
2 ,−11, 7

2 ,
−5
2 )
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1.

In an earlier paper [3] written in collaboration with the late Harold Davenport we
proved:

Theorem A. Let a(t), b(t) be polynomials with integral coefficients. Suppose
that every arithmetical progression contains an integer τ such that the equation
a(τ)x2 +b(τ)y2 = z2 has a solution in integers x, y, z, not all 0. Then there exist polyno-
mials x(t), y(t), z(t) in Z[t], not all identically 0, such that a(t)x(t)2 + b(t)y(t)2 ≡ z(t)2
identically in t .

From this result we derived:

Theorem B. Let F(x, y, t) be a polynomial with integral coefficients which is of degree
at most 2 in x and y. Suppose that every arithmetical progression contains an integer τ
such that the equation F(x, y, τ ) = 0 is soluble in rational numbers for x and y. Then
there exist rational functions x(t), y(t) in Q(t) such that F

(
x(t), y(t), t

) ≡ 0 identically
in t .

Earlier, one of us asked [6] whether a result similar to Theorem B holds if F(x, y, t)
is replaced by any polynomial F(x, y, t1, . . . , tr ) and the stronger assumption is made
that for all integral r-tuples τ1, . . . , τr , the equation F(x, y, τ1, . . . , τr ) = 0 is soluble in
the rational numbers for x and y. The stronger assumption is needed since the hypothesis
analogous to the one of Theorem B involving arithmetical progressions is not sufficient
already for F(x, y, t) = x2 − y3 − t . We shall show here that if F is of degree at most 2
in x and y a hypothesis analogous to the one of Theorem B suffices for any number of

* This paper was written while the authors were partially supported by an NSF grant.
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parameters ti . We shall also indicate an equation of an elliptic curve over Q(t) for which
the stronger assumption involving all integers t does not seem to suffice.

As for allowing more variables, we note that in virtue of Gauss’s theorem, for every
integer τ , the equation

x2 + y2 + z2 = 28τ 2 + 1

is soluble in integers x, y, z, but there do not exist rational functions x(t), y(t), z(t) in
Q(t) such that

x(t)2 + y(t)2 + z(t)2 ≡ 28t2 + 1

identically in t , since 28 is not the sum of three rational squares. A. Pfister has shown us a
more refined example of the equation

x2 + y2 + z2 = 5t2 + 13

which for all rational values of t is soluble with x, y, z in Q, without being soluble with
x, y, z in Q(t).

We now turn to the crucial lemma from which the generalization of Theorems A and B
in the case of several parameters will be deduced in §3.

2.

Lemma 1. Let a(t1, . . . , tr ), b(t1, . . . , tr ), c(t1, . . . , tr ) �≡ 0 be polynomials with integral
coefficients. Suppose that for all r-tuples of integers τ1, . . . , τr such that c(τ1, . . . , τr ) �= 0
the equation

(1) a(τ1, . . . , τr )x
2 + b(τ1, . . . , τr )y2 = z2

has a solution in integers x, y, z not all 0. Then there exist polynomials x(t1, . . . , tr ),
y(t1, . . . , tr ), z(t1, . . . , tr ) with integral coefficients, not all identically 0, such that

(2) a(t1, . . . , tr )x(t1, . . . , tr )
2 + b(t1, . . . , tr )y(t1, . . . , tr )2 ≡ z(t1, . . . , tr )2

identically in t1, . . . , tr .

Proof. The proof is by induction on r . For r = 1 the result follows from Theorem A
since clearly every arithmetical progression contains an integer τ for which c(τ ) �= 0.
Alternatively, with the stronger hypothesis of our lemma one can give a simpler direct
proof for the case r = 1 following the arguments of Theorem A.

Suppose the lemma is true for fewer than r parameters. We can obviously suppose
that neither a(t1, . . . , tr ) nor b(t1, . . . , tr ) is identically 0, since otherwise the conclusion
follows trivially. Denote the degree of a polynomial q in tr by |q|. We now proceed by
induction on the degree of ab with respect to tr . If |a| + |b| = 0, the hypothesis of the
lemma holds for c′(t1, . . . , tr−1) = c(t1, . . . , tr−1, τ ), where τ is an integer so chosen that
c′ �≡ 0; and, hence, the lemma is true from our induction assumption. Suppose the result
holds for all a, b, c satisfying |a| + |b| < n and c �= 0 where n is some positive integer;
we have to prove the result for polynomials a, b, c when |a| + |b| = n and c �= 0. We can
suppose, without loss of generality, that |a| � |b|, and, so, in particular |a| > 0.
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Suppose first that a(t1, . . . , tr ) is not square free as a polynomial in tr , say

a(t1, . . . , tr ) = k(t1, . . . , tr )2a1(t1, . . . , tr ),

where k has integral coefficients and |k| � 1. The hypothesis of the lemma regarding
a, b, c insures that this hypothesis also holds for the polynomials

a1(t1, . . . , tr ), b(t1, . . . , tr ) and c1(t1, . . . , tr ) = k(t1, . . . , tr )c(t1, . . . , tr ).
Indeed, if τ1, . . . , τr are integers such that c1(τ1, . . . , τr ) �= 0, then the hypothesis for
a, b, c asserts there are integers x, y, z, not all 0, satisfying (1). But then

a1(τ1, . . . , τr )x
2 + b(τ1, . . . , τr )y2 = z2

has xk(τ1, . . . , τr ), y, z as a nontrivial integral solution. Since |a1| + |b| < |a| + |b| = n,
the inductive hypothesis implies the existence of polynomials x1(t1, . . . , tr ), y1(t1, . . . , tr ),
z1(t1, . . . , tr ) with integer coefficients and not all identically 0, such that

a1(t1, . . . , tr )x1(t1, . . . , tr )
2 + b(t1, . . . , tr )y1(t1, . . . , tr )

2 = z1(t1, . . . , tr )
2.

On taking

x(t1, . . . , tr ) = x1(t1, . . . , tr ),

y(t1, . . . , tr ) = y1(t1, . . . , tr )k(t1, . . . , tr ),

z(t1, . . . , tr ) = z1(t1, . . . , tr )k(t1, . . . , tr ),

we obtain an identical solution of (2).
Hence we can suppose that a(t1, . . . , tr ) is square free as a polynomial in tr and hence

its discriminantD(t1, . . . , tr−1)with respect to tr is not identically 0. Let a0(t1, . . . , tr−1),
c0(t1, . . . , tr−1) be the leading coefficient of a and c with respect to tr ; taking c0 = c if
|c| = 0. Let T be the set of points t = (t1, . . . , tr−1) in (r − 1)-dimensional affine space
defined by the inequality

a0(t1, . . . , tr−1)c0(t1, . . . , tr−1)D(t1, . . . , tr−1) �= 0,

and let T be the set of all integral (r − 1)-tuples τ = (τ1, . . . , τr−1) in the set T . For
every τ in T the polynomial cτ (tr ) = c(τ , tr ) �≡ 0. Our hypothesis on a, b, c asserts that
for every integer τr such that cτ (τr ) �= 0 the equation

a(τ , τr )x
2 + b(τ , τr )y2 = z2

is soluble nontrivially in integers x, y, z. Hence for each τ in T , by the case r = 1 of our
theorem, there exist polynomials xτ (tr ), yτ (tr ), zτ (tr ) with integral coefficients, not all
identically 0, such that

(3) a(τ , tr )xτ (tr )
2 + b(τ , tr )yτ (tr )2 ≡ zτ (tr )2

identically in tr . We can suppose that
(
xτ (tr ), yτ (tr ), zτ (tr )

) = 1. Since a0(τ )D(τ ) �≡ 0,
a(τ , tr ) has no multiple factors, thus setting

dτ (tr ) =
(
a(τ , tr ), yτ (tr )

)
we get successively from (3): dτ (tr ) |zτ (tr )2, dτ (tr ) |zτ (tr ), dτ (tr )2 |a(τ , tr )xτ (tr )2,
dτ (tr ) |xτ (tr ) and hence dτ (tr ) ≡ 1. Therefore, for τ in T we have

(4) b(τ , tr ) ≡
( zτ (tr )
yτ (tr )

)2 ≡ βτ (tr )
2 mod a(τ , tr ),
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where βτ is in Q[tr ] and |βτ | < |a| or βτ = 0.c

In order to exploit the congruence (4) we note that for all nonnegative integers h,

thr ≡
|a|−1∑
l=0

αhl(t)t
l
r mod a(t, tr ),

where αhl(t) are rational functions of t1, . . . , tr−1 with powers of a0(t) in the denominator.
For τ in T we have a0(τ ) �= 0, hence αhl(t) are defined. Let

(5) βτ =
|a|−1∑
i=0

ξi t
i
r , ξi ∈ Q.

From (4) we get for τ in T ,

b(τ , tr ) ≡
|a|−1∑
l=0

t lr

|a|−1∑
i,j=0

ξiξjαi+j,l(τ )mod a(τ , tr ),

and if

b(t, tr ) =
|a|∑
i=0

bi(t)t
i
r , bi(t) in Z[t]

we get

(6) bl(τ )+ b|a|(τ )α|a|,l(τ ) =
|a|−1∑
i,j=0

ξiξjαi+j,l(τ ) for l � |a| − 1.

Let u be a new indeterminate and R(t, tr , u) be the resultant of the system of polyno-
mials

(7)

(
bl(t)+ b|a|(t)α|a|,l(t)

)
x2|a| −

|a|−1∑
i,j=0

xixjαi+j,l(t) (0 � l < |a|),

|a|−1∑
i=0

xit
i
r − x|a|u

with respect to the variables x0, . . . , x|a|. We shall prove that R(t, tr , u) �= 0.

By a known property of resultants (see [4], p. 11) the coefficient of u2|a| in R is the
resultant R0 of the system obtained from (7) by substitution x|a| = 0. If R0 were 0, the
system of homogeneous equations

(8)
|a|−1∑
i,j=0

ξ∗i ξ∗j αi+j,l(t) = 0

would have nontrivial solutions ξ∗i in the algebraic closure of Q(t). However, it then follows
from (4), (5), (6), and (8) that

(9) 0 ≡
(|a|−1∑
i=0

ξ∗i t ir
)2

mod a(t, tr ).
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Since a(t, tr ) is square free, (9) implies

|a|−1∑
i=0

ξ∗i t ir ≡ 0 mod a(t, tr );

which is impossible since |a(t, tr )| = |a|.
Therefore R0 �= 0 and moreover R0 ∈ Q(t). Let m be chosen so that

G(t, tr , u) = a0(t)
mR(t, tr , u) ∈ Z[t, tr , u].

Then a0(t)
mR0(t) is the leading coefficient of G with respect to u.

Let

G(t, tr , u) = g0(t)

q∏
�=1

G�(t, tr , u)

where g0 ∈ Z[t], G� ∈ Z[t, tr , u] and G� are irreducible over Q of positive degree and
with leading coefficient g�(t) with respect to u. We can orderG� so thatG� is of degree 1
in u for � � p and of degree at least 2 for � > p. If for all � � p we have

H�(t, tr ) = G�(t, tr , 0)2 − b(t, tr )g�(t)2 �≡ 0 mod a(t, tr )

then let the leading coefficient of the remainder from division ofH� by a(t, tr ) in the ring
Q(t)[tr ] be f�(t)a0(t)

−m� , where f� ∈ Z[t]. By Hilbert’s irreducibility theorem there
exist integers τ 0

1 , . . . , τ
0
r−1 such that the polynomials G�(τ 0, tr , u) are irreducible and

a0(τ
0)c0(τ

0)D(τ 0)

p∏
�=1

f�(τ
0)

q∏
�=0

g�(τ
0) �= 0.

Clearly τ 0 is in T . It follows from (5) and (6) that for t = τ 0, u = βτ 0(tr ) the system of
polynomials (7) has a common zero(

ξ0, . . . , ξ|a|−1, 1
)
.

Since this zero is non-trivial we get successively

R
(
τ 0, tr , βτ 0(tr )

) = 0, G
(
τ 0, tr , βτ 0(tr )

) = 0

and G�
(
τ 0, tr , βτ 0(tr )

) = 0 for a certain � � q. Since G�
(
τ 0, tr , u

)
is irreducible of

degree at least 2 in u for � > p we get � � p
g�(τ

0)β0(tr )+G�(τ 0, tr , 0) = 0.

Hence by (4)

g�(τ
0)2b(τ 0, tr )−G�(τ 0, tr , 0)

2 ≡ 0 mod a(τ 0, tr )

and f�(τ 0) contrary to the choice of τ 0. The obtained contradiction shows that for a certain
� � p

g�(t)
2b(t, tr )−G�(t, tr , 0)2 ≡ 0 mod a(t, tr ).

Reducing G�(t, tr , 0)g�(t)−1 modulo a(t, tr ) in the ring Q(t)[tr ] we find a
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β(t, tr ) ∈ Q(t)[tr ] such that

(10) b(t, tr ) ≡ β(t, tr )2 mod a(t, tr )

and

(11) |β| < |a| or β = 0.

We write

β2(t, tr )− b(t, tr ) = h−2(t)a(t, tr )A(t, tr )

where h(t) ∈ Z[t] and A ∈ Z[t, tr ]. In particular h(t)β(t, tr ) ∈ Z[t, tr ].
If A(t, tr ) ≡ 0 identically, we can satisfy (2) by taking

x(t, tr ) = 0, y(t, tr ) = h(t), z(t, tr ) = h(t)β(t, tr ).
If A(t, tr ) is not identically 0, we have by (11) that |A| < |a|. We now prove the

hypotheses of the lemma are satisfied for the polynomials

A(t, tr ), b(t, tr ), C(t, tr ) = a(t, tr )h(t)c(t, tr )A(t, tr ).
We know that for all integers τ1, . . . , τr such that C(τ , τr ) �= 0, the equation (1) has a
solution in integers x, y, z, not all 0. Taking

X = a(τ , τr )x, Y = h(τ )(z− yβ(τ , τr )), Z = h(τ )(b(τ , τr ))y − β(τ , τr )z)
we obtain

A(τ , τr )X
2 + b(τ , τr )Y 2 − Z2 = h(τ )2(β(τ , τr )2 − b(τ , τr ))(ax2 + by2 − z2) = 0.

AlsoX, Y,Z are integers not all 0, since a(τ , τr )h(τ )A(τ , τr ) �= 0. The inductive hypoth-
esis applies to the polynomials

A(t, tr ), b(t, tr ), C(t, tr ) since |A| + |b| < |a| + |b| = n.
Hence there exist polynomialsX(t, tr ), Y (t, tr ), Z(t, tr )with integral coefficients and not
all identically zero, such that

A(t, tr )X(t, tr )
2 + b(t, tr )Y (t, tr )2 ≡ Z(t, tr )2

identically in t, tr . Putting

x(t, tr ) = A(t, tr )X(t, tr ),
y(t, tr ) = h(t)

(
β(t, tr )Y (t, tr )+ Z(t, tr )

)
,

z(t, tr ) = h(t)
(
b(t, tr )Y (t, tr )+ β(t, tr )Z(t, tr )

)
we obtain (2). Further x(t, tr ), y(t, tr ), z(t, tr ) do not all vanish identically since neither
A(t, tr ) nor b(t, tr )− β2(t, tr ) vanish identically.

Remark. The argument following formula (11) is implicit in Skolem’s paper [8].

3.

Theorem 1. Let a(t1, . . . , tr ), b(t1, . . . , tr ) be polynomials with integral coeffi-
cients. Suppose that for all r-tuples of arithmetical progressions P1, . . . , Pr there exist
integers τi ∈ Pi such that the equation (1) has a solution in integers x, y, z not all 0. Then
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there exist polynomials x(t1, . . . , tr ), y(t1, . . . , tr ), z(t1, . . . , tr ) with integral coefficients,
not all identically 0, such that (2) holds identically in t1, . . . , tr .

Proof. It is enough to show that the assumption of the theorem implies the assumption
of the lemma. Now take any r-tuple of integers τ1, . . . , τr , an arbitrary prime p and
a positive integer m. By the assumption of the theorem the arithmetical progressions
pmt + τ1, . . . , pmt + τr contain integers τ 0

1 , . . . , τ
0
r respectively such that the equation

a(τ 0
1 , . . . , τ

0
r )x

2 + b(τ 0
1 , . . . , τ

0
r )y

2 = z2

has a solution in integers not all 0. Hence it has a solution x0, y0, z0 with (x0, y0, z0) = 1
and we get

a(τ1, . . . , τr )x
2
0 + b(τ1, . . . , τr )y2

0 ≡ z2
0 mod pm.

By Theorem 2 of §5 of [1] it follows that (1) is soluble nontrivially in the field of p-adic
numbers. By Lemma 2 in §7 ibidem it follows that (1) is soluble nontrivially also in real
numbers, hence by Theorem 1 of §7 ibidem it is soluble nontrivially in integers.

Added in proof. Slightly different proof of Theorem 1 valid for arbitrary number fields will
appear in a forthcoming book [7] of the second author.

Theorem 2. Let F(x, y, t1, . . . , tr ) be any polynomial with integral coefficients which is
of degree at most 2 in x and y. Suppose that for all r-tuples of arithmetical progressions
P1, . . . , Pr there exist integers τi ∈ Pi such that the equation

F(x, y, τ1, . . . , τr ) = 0

is soluble in rationals x, y. Then there exist rational functions x(t1, . . . , tr ),
y(t1, . . . , tr ) with rational coefficients such that

F
(
x(t1, . . . , tr ), y(t1, . . . , tr ), t1, . . . , tr

) ≡ 0

identically in t1, . . . , tr .

Proof. Theorem 2 follows from Theorem 1 for r > 1 in exactly the same way as Theorem B
was derived from Theorem A (see [3]). In the argument (page 357) where the Corollary to
Theorem 1 of [2] is used, one has instead to apply Theorem 2 of [6].

M. Fried has observed that Theorem B implies an analogous result for curves of genus 0
defined over Q(t). The remark applies, mutatis mutandis, to Theorem 2.

One can moreover extend it to equations that define a finite union of curves of genus 0
over the algebraic closure of Q(t). As to the curves of genus 1 it follows from the so-called
Selmer’s conjecture in the theory of rational points on such curves that for every integer t
there is a rational solution of the equation

(12) x4 − (8t2 + 5)2 = y2

(see [9]). On the other hand, suppose that rational functions x(t), y(t) in Q(t) satisfy (12).
There exist infinitely many integer pairs 〈u, v〉 such that 5u2 + 8v2 is a prime p. Take u, v
such that for τ = 5u/8v, x(τ), y(τ) are defined. The equation (12) gives(

4vx(τ)
)2 − 100p2 = (16v2y(τ)

)2
.
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But, by a theorem of Nagell [5] the Diophantine equation

X4 − 100p2 = Y 2 (p prime ≡ 1 mod 4)

has no rational solutions.
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1.

In this note we consider the elliptic curve

(1.1) A : y2 = x{x2 − (1 + t4)2}
over the field C(t) of rational functions with complex coefficients. It turns out that all
C(t)-rational points on A satisfy x, y ∈ Q(

√
2, i, t). As a consequence, the curve

(1.2) B : y2 = x{x2 − (7 + 7t4)2}
has only points of order 2 over Q(t). On the other hand, the famous conjecture of Selmer [7]
is shown to imply that for every rational r the curve

(1.3) Br : y2 = x{x2 − (7 + 7r4)2}
has infinitely many rational points.

To place this phenomenon in a more general setting, let R = Q[t] and let F ∈ R[x, y]
be irreducible over the algebraic closure of Q(t). If x, y are regarded as coordinates of
affine space, the equation F = 0 defines an affine curve over Q(t) and also a family of
affine curves F(x, y, r) = 0 over Q, as r runs over the elements of Q such that F(x, y, r)
is absolutely irreducible (the remaining values of r form a finite set E).

Let C be the projective curve defined over Q(t) obtained from normalization of the
completion of the curve F = 0 and let Cr be the normalization of the completion of the
affine curve F(x, y, r) = 0 for r ∈ Q \ E.

If C is a curve of genus 1, then for all but finitely many values r ∈ Q \ E the curve
Cr is also of genus 1. Without further comment we ignore the exceptional values of r .
Let C

(
Q(t)
)

denote the set of Q(t)-rational points on C , and Cr (Q) the set of Q-rational
points on Cr .

If C
(
Q(t)
)

and Cr (Q) are nonempty, they have natural structure as groups when one
point is selected as origin. They are finitely generated by virtue, respectively, of the the-
orems of Néron ([6], Théorème 3) and of Mordell. Let g(C ) (respectively g(Cr )) be the
reduced rank of C

(
Q(t)
)

(respectively Cr (Q)). Néron has shown (ibid., Théorème 6) that
there are infinitely many r ∈ Q such that g(Cr ) � g(C ). Our example shows that there
can be strict inequality for every rational r .
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An analogous result where r is restricted to values in Z has been obtained by D. J. Lewis
andA. Schinzel [4]. The curve C given by y2 = x4−(8t2+5)2 has g(C ) = 0, but Selmer’s
Conjecture implies that g(Cr ) � 1 for every integer r . In this example, however, g(Cr ) = 0
for infinitely many rational r .

The following fundamental problem of M. Fried remains open. If, in the language
above, C

(
Q(t)
)

is empty, does there exist r ∈ Q for which Cr (Q) is empty?

The original version of this note was written by the second author (A. Schinzel). It
contained proofs of the statements about the behaviour of B over Q(t) and of Br over
Q but not the more general result about A . During the preparation of that version he
was visiting the University of California, Irvine. He wishes to thank the University for
its hospitality and Dr. L. J. Colliot-Thélène and Professor M. Fried for their valuable
suggestions, which have been partially incorporated in the present version.

2.

In this section we prove

Theorem 1. If x, y ∈ C(t) satisfy

(2.1) y2 = x{x2 − (1 + t4)2},
then x, y ∈ Q(i,

√
2, t). All solutions may be described explicitly.

Proof. We extend the base field to C(s, t), where s2 = 1 + t4.
Then

η2 = ξ(ξ2 − 1),

where

η = y/s3, ξ = x/s2 = x/(1 + t4).
On putting

(2.2) u = t2 − s, v = 21/2tu,

we have

s = − 1
2 (u+ u−1), t = v/21/2u,

and

v2 = u(u2 − 1).

We therefore work on the elliptic curve

(2.3) Y 2 = X(X2 − 1),

whose ring of complex multiplications is Z[i]. By hypothesis,

ξ, η ∈ C(s, t) = C(u, v).
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Hence in terms of group addition on (2.3) we have

(2.4) (ξ, η) = α(u, v)+ (u0, v0),

where α ∈ Z[i] and (u0, v0) with u0, v0 ∈ C is a constant point. Here we use the fact
that any rational map of an elliptic curve into itself is a complex multiplication followed
by a translation. (For the corresponding result for abelian varieties of any dimension cf.
Mumford ([5], p. 43, Corollary 1), Swinnerton-Dyer ([9], Theorem 32) or Lang ([3],
Chapter II, Theorem 4).)

Let (′) denote the automorphism of C(s, t)/C(t). Then

u′ = −1/u, v′ = −v/u2,

and so

(2.5) (u, v)′ = −(u, v)+ (0, 0).
Here (0, 0) is of order 1 + i on (2.3). We require that x, y ∈ C(t), and so

ξ ′ = ξ, η′ = −η;
that is

(2.6) (ξ, η)′ = (ξ,−η) = −(ξ, η).
On comparing (2.4), (2.5), (2.6) we see that a necessary and sufficient condition that
x, y ∈ C(t) is

(2.7) α(0, 0) = 2(u0, v0).

Hence for given α there are precisely 4 values of (u0, v0) ∈ C2 which will do. More
precisely, either (i) α(0, 0) is the point 0 at infinity, in which case (u0, v0) is 0 or a point
of order 2 or (ii) α(0, 0) = (0, 0), in which case (u0, v0) is one of the points

(
i,±(1− i)),(−i,±(1 + i)). Hence there are 4 solutions of (2.1) defined over C(t) for every α ∈ Z[i].

Since the complex multiplication is defined over Q(i) and the only other irrationality we
have used is the

√
2 in (2.2), the truth of the theorem follows. ��

The proof of the statement in §1 about (1.2) follows almost immediately. More gener-
ally, we have the

Corollary. Let d be a positive integer and suppose that

μ2 = λ{λ2 − d2(1 + t4)2}
has a solution λ,μ ∈ Q(t) with μ �= 0. Then d is a square or twice a square.

Proof. The point x = d−1λ, y = d−3/2μ is a solution of (2.1) defined over C(t). It is
defined over Q(i,

√
2, t) only if μ = 0 or if d is of the shape specified. ��
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3.

In this section we prove the assertions in §1 about (1.3):

Theorem 2. Selmer’s Conjecture [7] implies that for any r ∈ Q the Mordell-Weil rank of

(3.1) y2 = x{x2 − (7 + 7r4)2
}

is odd, and so there are infinitely many rational points on (3.1).

Proof. Let r = l/m with l, m ∈ Z, (l, m) = 1. Then X = m4x, Y = m6y satisfy

(3.2) Y 2 = X(X2 − n2),

where

n = 7l4 + 7m4 ≡ 6, 7 (mod 8).

We have now only to invoke the result of Stephens [8] that, subject to the Selmer conjecture,
the rank of (3.2) is odd whenever n ≡ 5, 6, 7 (mod 8) is a positive integer. ��

4.

We conclude with three remarks.

(i) We have been unable to find an equianharmonic curve with similar properties to
(1.2). However

C : x3 + y3 = 27(2t + 1)2 + 1

has only finitely many points over Q(t), whereas on Selmer’s Conjecture the specializations
Cr for r ∈ Z all have odd rank.

(ii) The ideas of §2 rapidly show that the only solutions x, y ∈ C(t) of

(4.1) y2 = x{x2 − (1 + t2)2}
have y = 0. One extends the ground field to C(s, t), where

(4.2) s2 = 1 + t2.
Here (4.2) has genus 0 and Lüroth’s Theorem applies.

(iii) Presumably the general techniques of Christie [2] (cf. also [1]) for elliptic curves
over C(t) could be used to prove Theorem 1, but not so simply.
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Families of curves having each an integer point

H. Davenport, D. J. Lewis and the writer [3] proved that if an equation with integral
coefficients F(x, y, t) = 0 quadratic in x and y is solvable in rational x, y for at least
one integer t from every arithmetic progression, then the equation is solvable in ratio-
nal functions x(t), y(t) ∈ Q(t). The question has been raised whether the solvability of
F(x, y, t) = 0 in integers x, y for all integers t implies the solvability of the equation in
polynomials. It is the aim of the present paper to study this question in a more general
context. We shall prove

Theorem 1. If L ∈ Z[x, t] is of degree at most four in x,M ∈ Z[t] and every arithmetic
progression contains an integer t∗ such thatL(x, t∗) = M(t∗)y is solvable in integers x, y
then there exist polynomials X, Y ∈ Q[t] such that L

(
X(t), t

) = M(t)Y (t).
The theorem is no longer true in general if the degree of L is greater than four. Also

for L of degree non-exceeding four the conclusion cannot in general be strenghtened to
assert the existence of integer valued polynomials X, Y . The relevant examples will be
given after the proof of Theorem 1. Theorem 1 easily implies

Theorem 2. If F ∈ Z[x, y, t], the highest homogeneous part F0 of F with respect to x, y
is quadratic and singular and every arithmetic progression contains an integer t∗ such
that F(x, y, t∗) is solvable in integers x, y, then there exist polynomialsX, Y ∈ Q[t] such
that F

(
X(t), Y (t), t

) = 0.

It seems likely that if we assume the solvability of F(x, y, t) = 0 in integers x, y for
all t∗ ∈ Z, the conclusion remains true provided F0 is reducible over Q(t). However, in
general the conclusion fails as it is shown by the following

Theorem 3. The equation x2−(4t2+1)3y2 = −1 is solvable in integers x, y for all t∗ ∈ Z,
but there exist no polynomials X, Y ∈ Q[t] such that X(t)2 − (4t2 + 1)3Y (t)2 = −1.

Prompted by a question from Professor J. Leicht I have studied the possibility of
modifying the assumptions of Theorem 1 so that they would imply the existence of integer
valued polynomials X, Y . The result is the following

Theorem 4. Let n be a positive integer �≡ 0 (mod 8), A,B,M ∈ Z[t]. If every arith-
metic progression contains an integer t∗ such that A(t∗)xn + B(t∗) = M(t∗)y is
solvable in integers x, y, then there exist integer valued polynomials X, Y such that
A(t)X(t)n + B(t) = M(t)Y (t).
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The condition n �≡ 0 (mod 8) cannot be relaxed, as I shall show by an example.
For n = 1 Theorem 4 is contained in a more general result of Skolem [8] concerning
polynomials in many variables. According to Skolem the polynomials A,B,M may have
any number of variables provided A and M have no common zero. I shall show by an
example that already for n = 2 the corresponding statement is false. The possibility of
extending Theorems 1, 2, and 4 to polynomials in many variables will be studied in a
subsequent paper.

For the proof of the above theorems we need several lemmata.

Lemma 1. Let D be a Dedekind domain, f, g, h ∈ D[x], p be a prime ideal of D,
f (x) ≡ g(x)h(x) (mod p). If g, h are relatively prime mod p and the leading coefficient
of g is 1, then for every integer n � 0 there exist polynomials gn, hn ∈ D[x] such that

f (x) ≡ gn(x)hn(x) (mod pn+1),(1)

the degree of gn equals the degree of g, the leading coefficient of gn is 1,(2)

gn(x) ≡ g(x), hn(x) ≡ h(x) (mod p).(3)

Proof. This lemma is closely related to Hensel’s lemma and can be derived by following
the proof of Hensel’s lemma given by Hasse [6] up to the point where the solvability of
the congruence

gn−1zn + hn−1yn ≡ fn (mod p), fn ∈ D[x]
in polynomials yn, zn ∈ D[x] is needed. Then since gn−1, hn−1 are relatively prime mod p

we use the fact that D/p is a field. ��

Lemma 2. Let D be a principal ideal domain, a, b, c ∈ D, (p) be a prime ideal of D. If
p /| 2a and d = b2 − 4ac the congruence

(4) ax2 + bx + c ≡ 0 (mod pν)

is solvable in x ∈ D if and only if either ordp d � ν or ordp d = δ ≡ 0 (mod 2) and the
congruence z2 ≡ dp−δ (mod p) is solvable in D.

Proof. The congruence (4) is equivalent to

(2ax + b)2 ≡ d (mod 4apν)

and since p /| 2a, it is solvable if and only if y2 ≡ d (mod pν) is.
If δ = ordp d � ν it is enough to take y = 0. If δ < ν, the congruence implies

δ = 2 ordp y ≡ 0 (mod 2) and y = pδ/2z, z2 ≡ dp−δ (mod pν−δ). Thus the necessity of
the condition given in the lemma follows. On the other hand, if the condition is satisfied
and z2

0 ≡ dp−δ (mod p), z0 ∈ D, we can apply Lemma 1 withc

f (x) = x2 − dp−δ, g(x) = x − z0, h(x) = x + z0, n = ν − δ − 1.

The congruence

x2 − dp−δ ≡ gn(x)hn(x) (mod pn+1),c
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where deg gn = deg g = 1 and the leading coefficient of gn is 1, implies that x2 ≡ dp−δ
(mod pδ) has solutions ±gn(0). Multiplying by pδ , we getc (

pδ/2gn(0)
)2 ≡ d (mod pν). ��

Remark. The lemma can easily be modified so that it would apply to all Dedekind domains.
It is also possible, although not so easy, to prove analogous statements about congruences
of degree three and four. For instance, if D is a principal ideal domain, a, b ∈ D, (p) is a
prime ideal of D, p /| 3, then the congruence

x3 + ax + b ≡ 0 (mod pν)

is solvable in x ∈ D if and only if either ordp b � ν or 2 ordp b > 3 ordp a or 3 |β =
ordp b < ν, 2β � 3 ordp a and the congruence z3 + ap−2β/3 + bp−β ≡ 0 (mod p) is
solvable.

Lemma 3. IfA,B ∈ Z[t], (A,B) = 1, then for sufficiently large primes p the divisibilityc

p |A(t∗), t∗ ∈ Z, implies p /| B(t∗).

Proof. Let R be the resultant of A and B. Since (A,B) = 1, we have R �= 0 and there
exist polynomials U,V ∈ Z[t] such that AU + BV = R. Now, if p /| R we have either
p /| A(t∗) or p /| B(t∗). ��

Lemma 4. Let K be an algebraic number field, F ∈ K[x] be of degree at most four. If
the congruence F(x) ≡ 0 (mod p) is solvable for almost all prime ideals of degree 1 inK
then the equation F(x) = 0 is solvable in K .c

Proof. If F(x) is irreducible in K then the lemma follows from the more general result of
Hasse [5]. If F(x) is reducible in K but has no zero there then its degree must be four.
If now the congruence F(x) ≡ 0 (mod p) is solvable for almost all ideals p of K rather
than for almost all prime ideals p of degree 1 in K then the assertion holds in virtue of
Proposition 2 in Fujiwara [4]. However, in the proof of this proposition only prime ideals
of degree 1 are needed. ��

Lemma 5. Let Ai, Bi, Ci ∈ Z[t] (i = 1, 2), let P ∈ Z[t] be a primitive irreducible
polynomial,A1A2 �≡ 0 (mod P) and the polynomialsAi(t)x2 +Bi(t)x+Ci(t) (i = 1, 2)
be prime mod P(t). If for all sufficiently large primes p and all integers t∗ such that
p ‖P(t∗) the congruence

(5)
2∏
i=1

(
Ai(t

∗)x2 + Bi(t∗)x + Ci(t∗)
) ≡ 0 (mod pμ)

is solvable in x ∈ Z then the congruence

(6)
2∏
i=1

(
Ai(t)x

2 + Bi(t)x + Ci(t)
) ≡ 0

(
mod P(t)μ

)
is solvable in Q[t].



70 A. Diophantine equations and integral forms

Proof. Let Di(t) = Bi(t)
2 − 4Ai(t)Ci(t) = P(t)δiEi(t), where Pi /| Ei (i = 1, 2). (If

D1 = 0 or D2 = 0 (6) is clearly solvable.) If for an i � 2, δi � μ the congruence
Ai(t)x

2 +Bi(t)x+Ci(t) ≡ 0
(
mod P(t)μ

)
is solvable in virtue of Lemma 2 applied with

D = Q[t], hence (6) is solvable also.
Let P(ϑ) = 0, K = Q(ϑ), p be a prime ideal of degree 1 in K with norm p

assumed sufficiently large. Choose t∗ ≡ ϑ (mod p). Then P(t∗) ≡ 0 (mod p),
P(t∗ + p) ≡ 0 (mod p), P(t∗ + p) − P(t∗) ≡ pP ′(t∗) (mod p2). Since (P ′, P ) = 1,
we have by Lemma 3 P ′(t∗) �≡ 0 (mod p), thus P(t∗) �≡ 0 (mod p2) or P(t∗ + p) �≡ 0
(mod p2). Replacing t∗ by t∗ + p if necessary we may assume that P(t∗) �≡ 0 (mod p2),
and that (5) holds for a suitable x = x∗ ∈ Z.

Let R(t) be the resultant of Ai(t)x2 + Bi(t)x +Ci(t) (i = 1, 2) with respect to x. By
the assumption we have

(
P(t), R(t)

) = 1 and by Lemma 3 R(t∗) �≡ 0 (mod p). On the
other hand, if we had

Ai(t
∗)x∗2 + Bi(t∗)x∗ + Ci(t∗) ≡ 0 (mod p) (i = 1, 2)

it would follow that R(t∗) ≡ 0 (mod p). Thus there exists an i � 2 such that

Ai(t
∗)x∗2 + Bi(t∗)x∗ + Ci(t∗) ≡ 0 (mod pμ).

Since (P,Ei) = 1, we have by Lemma 3 p /| Ei(t∗). Thus ordp Di(t∗) = δi and by

Lemma 2 applied with D = Z we have δi ≡ 0 (mod 2) and
(Di(t∗)p−δi

p

)
= 1, whence(Ei(t∗)

p

)
= 1.

Now Ei(t∗) ≡ Ei(ϑ) (mod p) and we get
(Ei(ϑ)

p

)
= 1.

Take in Lemma 4

F(x) =
2∏
i=1

(1 + (−1)δi

2
x2 − Ei(ϑ)

)
.

We infer that for almost all prime ideals p of degree 1 in K the congruence F(x) ≡ 0
(mod p) is solvable in K . Hence by Lemma 4 F(x) has a zero in K and since
E1(ϑ)E2(ϑ) �= 0, it follows that for an i � 2 we have δi ≡ 0 (mod 2) andEi(ϑ) = G(ϑ)2
where G ∈ Q[t]. Hence

Ei(t) ≡ G(t)2
(
mod P(t)

)
and by Lemma 2 the congruence Ai(t)x2 + Bi(t)x + Ci(t) ≡ 0

(
mod P(t)μ

)
is solvable

in Q[t]. ��

Lemma 6. Let L ∈ Z[x, t] be of degree at most 4 in x, let P ∈ Z[t] be irreducible and
primitive. If for all sufficiently large primes p and all integers t∗ such that p ‖P(t∗) the
congruence L(x, t∗) ≡ 0 (mod pμ) is solvable in Z then L(x, t) ≡ 0

(
mod P(t)μ

)
is

solvable in Q[t].
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Proof (by induction on μ). We set K = Q(ϑ), where P(ϑ) = 0.

μ = 1. Let p be a prime ideal of degree 1 inK with norm p assumed sufficiently large,
t∗ ≡ ϑ (mod p). The argument used in the proof of Lemma 5 shows that without loss of
generality we may assume p ‖P(t∗). Hence L(x∗, t∗) ≡ 0 (mod p) for an x∗ in Z,

L(x∗, ϑ) ≡ 0 (mod p)

and by Lemma 4 L(x, ϑ) has a zero inK . Denoting this zero byX(ϑ),X ∈ Q[t], we infer
from L

(
X(ϑ), ϑ

) = 0 that

L
(
X(t), t

) ≡ 0
(
mod P(t)

)
.

The inductive step. Suppose that the lemma is true for exponents less than
μ � 2 and all polynomials L satisfying the assumptions. Let the congruence L(x, t∗) ≡ 0
(mod pμ) be solvable in Z for all sufficiently large primes p and all integers t∗ such that
p ‖P(t∗). By the case μ = 1, L(x, ϑ) has a zero in K . If L(x, ϑ) = 0 identically then
L(x, t) = P(t)L1(x, t),L1 ∈ Z[x, t]. For all sufficiently large primesp and all integers t∗
such that p ‖P(t∗) the congruence L(x, t∗) ≡ 0 (mod pμ−1) is solvable. Hence by the
inductive assumption there exists an X ∈ Q[t] such that L

(
X(t), t

) ≡ 0
(
mod pμ−1(t)

)
and then L

(
X(t), t

) ≡ 0
(
mod Pμ(t)

)
. If L(x, ϑ) has a simple zero we have

L(x, ϑ) = G(x, ϑ)H(x, ϑ)
where G,H ∈ Q[x, t], both the degree and the leading coefficient of G with respect to xc

are 1 and
(
G(x, ϑ),H(x, ϑ)

) = 1. Hence

L(x, t) ≡ G(x, t)H(x, t) (mod P(t)
)
,

G,H relatively prime mod P and by Lemma 1 applied with D = Q[t], p = (P(t)) we
infer that

L(x, t) ≡ Gμ−1(x, t)Hμ−1(x, t)
(
mod Pμ(t)

)
,

where Gμ−1(x, t) is of degree 1 in x with the leading coefficient 1. Therefore,
L
(−Gμ−1(0, t), t

) ≡ 0
(
mod Pμ(t)

)
.

If L(x, ϑ) is a product of two coprime quadratic factors we have L(x, t) ≡
G(x, t)H(x, t)

(
mod P(t)

)
, G,H ∈ Q[x, t], where G,H are quadratic in x, relatively

prime mod P(t) and we may assume without loss of generality that the leading coefficient
of G with respect to x is 1. By Lemma 1 applied with D = Q[t], p = (P(t)) we have

(7) L(x, t) ≡ Gμ−1(x, t)Hμ−1(x, t)
(
mod Pμ(t)

)
,

where polynomials Gμ−1, Hμ−1 ∈ Q[t] are quadratic with respect to x and relatively
prime mod P(t), moreover their leading coefficients are not divisible by P(t). For a
suitable integer d �= 0 we have

dGμ−1(x, t), dHμ−1(x, t) ∈ Z[x, t]c

and

d2P−μ(t)
(
L(x, t)−Gμ−1(x, t)Hμ−1(x, t)

) ∈ Z[x, t].
Hence the solvability of the congruence L(x, t∗) ≡ 0 (mod pμ), for p ‖P(t∗) implies the
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solvability of the congruence

dGμ−1(x, t
∗)dHμ−1(x, t

∗) ≡ 0 (mod pμ).

In virtue of Lemma 5 there exists an X ∈ Q[t] such that

dGμ−1
(
X(t), t

)
dHμ−1

(
X(t), t

) ≡ 0
(
mod Pμ(t)

)
and then by (7) L

(
X(t), t

) ≡ (mod P(t)μ
)
.

There remains only the case where L(x, ϑ) = c(x − a)r , a, c ∈ K , c �= 0, r � 2.
Let c = C(ϑ), a = A(ϑ), where A,C ∈ Q[t]. We have

L(x, t) ≡ C(t)(x − A(t))r (mod P(t)
)
, (P, C) = 1

and the congruence L(x∗, t∗) ≡ 0 (mod p) for p ‖P(t∗) implies x∗ ≡ A(t∗) (mod p).
(Note that C(t∗) �≡ 0 (mod p) by Lemma 3.) Hence x∗ ≡ A(t∗) + P(t∗)y∗ (mod pμ),
y∗ ∈ Z and we have

(8) L
(
A(t∗)+ P(t∗)y∗, t∗) ≡ 0 (mod pμ).

Let L1(y, t) = L
(
A(t)+ P(t)y, t)/P (t). We have for a suitable integer l �= 0

lL1(y, t) ∈ Z[y, t].
The congruence (8) together with p ‖P(t∗) implies that

lL1(y
∗, t∗) ≡ 0 (mod pμ−1).

By the inductive assumption there exists a polynomial Y ∈ Q[t] such that lL1
(
Y (t), t

) ≡
0
(
mod P(t)μ−1

)
and then L

(
A(t)+ P(t)Y (t), t) ≡ 0

(
mod Pμ(t)

)
. ��

Proof of Theorem 1. IfM(t) = 0 the theorem follows from Theorem 1 of [2].
IfM(t) �= 0 let

M(t) = m
k∏
i=1

Pi(t)
μi

be the canonical factorization of M into polynomials irreducible and primitive. Take an
index i � k, a prime p and integer t∗1 such that p ‖Pi(t∗). The arithmetic progression
pμiu + t∗ contains an integer t∗1 such that for suitable x∗, y∗ ∈ Z we have L(x∗, t∗1 ) =
M(t∗)y∗. Clearly L(x∗, t∗) ≡ L(x∗, t∗1 ) ≡ 0 (mod pμ). Hence by Lemma 6 there exists
a polynomial Xi ∈ Q[t] such that

L
(
Xi(t), t

) ≡ 0
(
mod Pμii (t)

)
.

By the Chinese Remainder Theorem there exists a polynomial X ∈ Q[t] satisfying

X ≡ Xi(t)
(
mod Pμii (t)

)
(1 � i � k). We get L

(
X(t), t

) ≡ 0
(
mod

k∏
i=1
P
μi
i (t)

)
, hence

L
(
X(t), t

) = M(t)Y (t), Y (t) ∈ Q[t]. ��
Here is an example showing that Theorem 1 fails for polynomials L of degree 5 in x.
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Example 1. Let L(x, t) = (x2 + 3)(x3 + 3), M(t) = 3t + 1. For every integer t∗ we

have M(t∗) =
k∏
i=1
p
αi
i

l∏
j=1
q
βj
j , where pi are primes ≡ 1 (mod 3), qj are primes ≡ 2

(mod 3). The congruences x2 + 3 ≡ 0 (mod paii ) and x3 + 3 ≡ 0 (mod q
βj
j ) are solvable

for all i � k, j � l. Denoting their solutions by xi and x′j , respectively, we can satisfy the

equation L(x, t∗) = M(t∗)y by taking x ≡ xi (mod pαii ), x ≡ x′j (mod q
βj
j ) (1 � i � k,

1 � j � l). On the other hand, the equation L
(
X(t), t

) = M(t)Y (t) where X, Y ∈ Q[t]
would implyX

(− 1
3

)2 + 3 = 0 orX
(− 1

3

)3 + 3 = 0 hence
√−3 ∈ Q or 3

√−3 ∈ Q, which
is impossible. (The idea comes from van der Waerden [12].)

The next example shows that the conclusion of Theorem 1 cannot be sharpened to assert
the existence of integer valued polynomialsX(t), Y (t) satisfyingL

(
X(t), t

) = M(t)Y (t).
Example 2. Let L(x, t) = (2x + 1)(3x + 1), M(t) = 5t + 1. For every integer t∗ we
haveM(t∗) = 2αN ,N odd. The congruences 2x+ 1 ≡ 0 (modN), 3x+ 1 ≡ 0 (mod 2α)
are both solvable. Denoting their solutions by x1 and x2 respectively we can satisfy the
equation L(x, t∗) = M(t∗)y by taking x ≡ x1 (modN), x ≡ x2 (mod 2α). Suppose now
that X(t), Y (t) are integer valued polynomials satisfying L

(
X(t), t

) = M(t)Y (t). Then
clearly

(9)
either 2X(t)+ 1 = (5t + 1)Y1(t) or 3X(t)+ 1 = (5t + 1)Y2(t),

Y1, Y2 ∈ Q[t].
Let m be a positive integer such that miYi ∈ Z[t] (i = 1 or 2) and let 2δ1 ‖m1, 3δ2 ‖m2.
Solving the congruence 5t + 1 ≡ 0 (mod 2δ1+1) if i = 1 or 5t + 1 ≡ 0 (mod 3δ2+1) if
i = 2, we get from (9) a contradiction (the idea comes from Skolem [10]).

Proof of Theorem 2. By the assumption we have

F(x, y, t) = C(t)(A(t)x + B(t)y)2 +D(t)x + E(t)y + F(0, 0, t)
whereA,B,C,D,E ∈ Z[t] and we can assume without loss of generality that (A,B) = 1.

Let R be the resultant of A and B and let G,H ∈ Z[t] be such that

A(t)G(t)+ B(t)H(t) = R.
We set

A(t)x + B(t)y = u, −H(t)x +G(t)y = vc

and obtain

RF(x, y, t) = RC(t)u2 + (D(t)G(t)+ E(t)H(t))uc

+ (A(t)E(t)− B(t)D(t))v + RF(0, 0, t) = 0.

Moreover, if x, y ∈ Z we have u, v ∈ Z. The assumptions of Theorem 1 are satisfied with

L(u, t) = RC(t)u2 + (D(t)G(t)+ E(t)H(t))u+ RF(0, 0, t),
M(t) = A(t)E(t)− B(t)D(t).



74 A. Diophantine equations and integral forms

By the said theorem there exist polynomials U,V ∈ Q[t] such that identically

L
(
U(t), t

) = M(t)V (t).
Setting

X(t) = 1

R
[G(t)U(t)− B(t)V (t)],

Y (t) = 1

R
[H(t)U(t)− A(t)V (t)],

we get X, Y ∈ Q[t] and F
(
X(t), Y (t), t

) = 0. ��

Proof of Theorem 3. Setting(
2t∗ +

√
4t∗2 + 1

)4t∗2+1 = x + y(4t∗2 + 1)
√

4t∗2 + 1,

we get for every integer t∗ integers x, y satisfying

x2 − (4t∗2 + 1)3y2 = −1.

On the other hand, it has been proved already by Abel [1] that all solutions of an equation
U2(t) − F(t)V 2(t) = const �= 0 are given by convergents of the continued fraction
expansion of

√
F(t). Since for F(t) = 4t2 + 1

F(t) = 2t + 1

4t
+ 1

4t
+ . . . ,

we infer from the equation

X(t)2 − (4t2 + 1)3X(t)2 = −1

that

X(t)+ (4t2 + 1)
√

4t2 + 1Y (t) = c(2t ±√4t2 + 1
)n
, n � 0.

Hence

n(2t)n−1 ≡ 0 (mod 4t2 + 1),

n = 0, X(t) = c, Y (t) = 0 and c2 = −1 contradicting X ∈ Q[t]. ��

For the proof of Theorem 4 we need four lemmata.

Lemma 7. Let M(t) = m
k∏
i=1
P
μi
i (t) where polynomials Pi(t) are coprime, irreducible

c

and primitive,μi > 0. Under the assumptions of the theorem and the conditionsBM �= 0,c

(A,M) = 1 there exist polynomials X0, Y0 ∈ Q[t] such that

A(t)X0(t)
n + B(t) = M(t)Y0(t),

X0(t) ≡ 0
(
mod

k∏
i=1

Pi(t)
−[−βi/n]), where Pi(t)

βi ‖B(t).
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Proof. By the assumption, Pi /| A (1 � i � k). Set B = P
βi
i Bi , where Pi /| B. By thec

Chinese Remainder Theorem for the ring Q[t] it is sufficient to show the solvability in this
ring of each congruence

(10) A(t)X(t)n + B(t) ≡ 0
(
mod Pμii (t)

)
(1 � i � k).

Let Pi(ϑ) = 0, K = Q(ϑ) and let p be a prime ideal of degree 1 in K with the
norm p sufficiently large. We have ϑ ≡ t0 (mod p) for a suitable t0 ∈ Z and Pi(t0) ≡ 0
(mod p). Choosing t1 = t0 or t0 + p we can achieve that every t∗ ≡ t1 (mod p2) satisfies
p ‖Pi(t∗). Moreover, since p is sufficiently large we have by Lemma 3 p /| ABi(t∗),
whence pβi ‖B(t∗). If βi � μi the congruence (10) has the solution X = 0. If βi < μi
the equality

A(t∗)xn + B(t∗) = M(t∗)y
implies that βi ≡ 0 (mod n), x ≡ 0 (mod pβi/n) and(

xPi(t
∗)−βi/n

)n ≡ −Bi(t∗)/A(t∗) (mod p).

However,

Bi(t
∗)

A(t∗)
≡ Bi(ϑ)

A(ϑ)
(mod p)

and thus −Bi(ϑ)/A(ϑ) is an nth power residue for almost all prime ideals of degree 1
in K . In virtue of Flanders’ theorem [3a] −Bi(ϑ)/A(ϑ) = C(ϑ)n, where C ∈ Q[t] and
thus

A(t)C(t)n + Bi(t) ≡ 0
(
mod Pi(t)

)
.

Hence

A(t)xn + Bi(t) ≡
(
x − C(t))H(x, t) (mod Pi(t)

)
.

Clearly, H
(
C(t), t

) �≡ 0
(
mod Pi(t)

)
; thus by Lemma 1 applied with D = Q[t] there

exists a Cμi−1 ∈ Q[t] such that

A(t)Cμi−1(t)
n + Bi(t) ≡ 0

(
mod Pμii (t)

)
.

Now we can satisfy (10) by taking

X(t) = Cμi−1(t)P
βi/n
i (t). ��

Lemma 8. Let under the assumptions of Lemma 7

Π(t) =
k∏
i=1

Pi(t)
max{−[−μi/n],μi+(n−1)[−βi/n]},

X(t, v) = X0(t)+ vΠ(t), Y (t, v) = A(t)X(t, v)n + B(t)
M(t)

.

If d, e ∈ Z, dX0 ∈ Z[t], eY0 ∈ Z[t] then dX(t, v) ∈ Z[t, v], [dnm, e]Y (t, v) ∈ Z[t, v].

Proof. The statement concerning X(t, v) is obvious and that concerning Y (t, v) follows
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from the identity

Y (t, v) = Y0(t)+
n∑
ν=1

(
n

ν

)
A(t)X0(t)

n−νΠ(t)νM(t)−1vν.

Indeed,

ordPi X
n−1
0 Π � −(n− 1)[−βi/n] + max{−[−μi/n], μi + (n− 1)[−βi/n]}

� μi = ordPi M,

ordPi Π
n � nmax{−[−μi/n], μi + (n− 1)[−βi/n]} � μi = ordPi M;

hence for each ν = 1, 2, . . . , n

X0(t)
n−νΠ(t)νPi(t)−μi ∈ Q[t].

Since dX0 ∈ Z[t] and Pi is primitive we have dn−νX0(t)
n−νΠ(t)νPi(t)−μi ∈ Z[t],

(11) mdn−νX0(t)
n−νΠ(t)νM(t)−1 ∈ Z[t]. ��

Lemma 9. Let P ∈ Z[t] be a primitive polynomial with discriminant D �= 0, t∗ ∈ Z,
p a prime. If ordp D = d , ∞ > ordp P (t∗) = e > 2d + 1 then there exists a t0 ≡ t∗
(mod pe−d−1) such that

ordp P (t0) = ordp P (t
∗)− 1.

Proof. If P is of degree 1 then P(t∗) ≡ 0 (mod p) implies P ′(t∗) �≡ 0 (mod p), P being
primitive. Therefore, it is enough to take t0 = t∗ + pe−1.

If P is of degree > 1 then we have for suitable polynomials U , V ∈ Z[t] that
PU+P ′V = D (see Rédei [7], Satz 275). Hence e > 2d+1 implies δ = ordp P ′(t∗) � d.
Take t0 = t∗ + pe−δ−1. From the Taylor formula we get

P(t0) ≡ P(t∗)+ P ′(t∗)pe−δ−1 (mod p2(e−δ−1)).

By the assumption 2(e − δ − 1) � 2(e − d − 1) > e − 1 = ordp P ′(t∗)pe−δ−1. Hence

ordp P (t0) = e − 1. ��
Remark. It may be that the lemma holds for e > d + 1, but the writer could not prove it.

Lemma 10. Under the assumptions of Lemmata 7 and 8 for every prime p

there exist an integer c and an integer valued function w(τ) defined on the setc

{0, 1, . . . , p2c − 1} such that if t∗ ∈ Z, v∗ ∈ Q, t∗ ≡ τ (mod p2c), pcv∗ ≡ w(τ)

(mod p2c) then X(t∗, v∗) and Y (t∗, v∗) are p-adic integers.

Proof. Let nonnegative integers ξ, η be chosen so that pξX0, p
ηY0 have integral p-adic

coefficients. Let Rij for i, j = 1, . . . , k be the resultant of Pi and Pj if i �= j and the
discriminant of Pi if i = j . Moreover, let Ri0 be the resultant of Pi and A, Ri,k+1 the
resultant of Pi and Bi = BPi(t)−βi (1 � i � k).c
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Put �ij = ordp Rij . Clearly, �ij = �ji � min
{
ordp Pi(t∗), ordp Pj (t∗)

}
for every

t∗ ∈ Z and i �= j (1 � i, j � k). Put further

ci = �i0 +
k∑
j=1

μj�ij + 2�ii + 2�i,k+1 + nξ + 2η + 2 ordp n+ ordp m,
c

c =
k∑
i=1

ciμi + ξ + ordp m.

For every nonnegative integer τ < p2c the arithmetic progression τ + pc−ξ+1u contains
an integer tτ such that for suitable integers xτ , yτ we have

(12) A(tτ )x
n
τ + B(tτ ) = M(tτ )yτ , M(tτ ) �= 0

(integers tτ , xτ , yτ are not determined uniquely, but any choice will do).
If for all i � k we have ordp Pi(τ ) � ci then

o = ordp Π(τ) �
k∑
i=1

μi ordp Pi(τ ) � c − ξ.

We define

w(τ) = pc−o−ξw,
where w is a root of the congruence

w
Π(τ)

po
+ pξX0(τ ) ≡ xτpξ (mod pc).

If t∗ ≡ τ (mod p2c) and pcv∗ ≡ w(τ) (mod p2c) then we have

ordp M(τ) = ordp m+
k∑
i=1

μi ordp Pi(τ ) � c − ξ,
c

hence

ordp M(t
∗) = ordp M(τ) = ordp M(tτ ),

X(t∗, v∗) ≡ X0(τ )+ w(τ)
pc

Π(τ) (mod pc).

By the definition of w(τ)

X(t∗, v∗) ≡ X0(τ )+ w

po+ξ
Π(τ) ≡ xτ (mod pc−ξ ),

c

A(t∗)X(t∗, v∗)n + B(t∗) ≡ A(tτ )xnτ + B(tτ ) ≡ M(tτ )yτ (mod pc−ξ ),

hence

ordp
(
A(t∗)X(t∗, v∗)n + B(t∗)) � min

(
c − ξ, ordp M(tτ )

) = ordp M(t
∗).

This shows that X(t∗, v∗) and Y (t∗, v∗) are both p-adic integers.
If, for a certain i � k, ordp Pi(τ ) > ci then, since ci � �ij , we have for all j �= ic

(1 � j � k) ordp Pj (τ ) � �ij � cj thus i is uniquely determined. We have the followingc
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possibilities: βi � μi ≡ 0 (mod n), βi � μi �≡ 0 (mod n) and βi < μi which we consider
successively.

1. βi � μi ≡ 0 (mod n). Here we set ζi = max{ξ, �i0},
Πi(t) = Π(t)P−μi/n

i (t), X0i (t) = X0(t)P
−μi/n
i (t),

Mi(t) = M(t)Pi(t)−μi .
We have

oi = ordp Πi(τ ) �
k∑
j=1
j �=i

μj ordp Pj (τ ) �
k∑
j=1
j �=i

μj�ij � ci − ζi � c − ζi .
c

Moreover from (12) and βi � μi we infer thatc

P
μi
i (tτ ) |A(tτ )xnτ

and since

ordp Pi(tτ ) � min
(
ordp Pi(τ ), c − ξ + 1

)
> ci � �i0,

we get

ordp A(tτ ) � �i0 � nζi,
n(ordp xτ + ζi) � μi ordp Pi(tτ ).

We define

w(τ) = pc−oi−ζiw,
where w is a root of the congruence

Πi(τ)

poi
w + pζiX0i (τ ) ≡ xτp

ζi

P
μi/n
i (tτ )

(mod pc).

If t∗ ≡ τ (mod p2c), pcv∗ ≡ w(τ) (mod p2c) we have

ordp Mi(τ ) = ordp m+
k∑
j=1
j �=i

μj ordp Pj (τ ) � ci − ζi � μi(ci − ζi) � c − μiζi − ξ,

hence ordp Mi(t∗) = ordp Mi(τ ) = ordp Mi(tτ ).
On the other hand, taking

Xi(t
∗, v∗) = X0i (t

∗)+ v∗Πi(t∗),
we get

Xi(t
∗, v∗) ≡ X0i (τ )+ w(t)

pc
Πi(τ ) (mod pc)

and by the definition of w(τ)

pζiXi(t
∗, v∗) ≡ pζiX0i (τ )+ w

poi
Πi(τ ) ≡ xτp

ζi

P
μi/n
i (tτ )

(mod pc).
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Since

ordp P
μi/n
i (t∗) � min

(
ordp Pi(τ ), 2c

)
> ci � ζi

we infer that X(t∗, v∗) = Xi(t∗, v∗)Pμi/ni (t∗) is a p-adic integer. Moreover

pnζi
(
A(t∗)Xi(t∗, v∗)n + Pi(t∗)βi−μiBi(t∗)

)
≡ A(tτ )p

nζi xnτ

P
μi
i (tτ )

+ pnζiPi(t∗)βi−μiBi(tτ ) (mod pc−ξ ).

By (12) the right hand side equals pnζiMi(tτ )yτ , hencec

ordp
(
A(t∗)Xi(t∗, v∗)n + Pi(t∗)βi−μiBi(t∗)

)
� min

(
c − ξ − nζi, ordp Mi(tτ )

) = ordp Mi(t
∗)

and

ordp
(
A(t∗)X(t∗, v∗)n + B(t∗)) � μi ordp Pi(t

∗)+ ordp Mi(t
∗) = ordp M(t

∗).
Thus Y (t∗, v∗) is a p-adic integer.

2. βi � μi �≡ 0 (mod n). Here we set w(τ) = 0.
If βi > μi we have

X0(t) ≡ 0
(
mod Pi(t)

−[−βi/n]), A(t)X0(t)
n + B(t) ≡ 0

(
mod Pi(t)

μi+1),
hence Y0(t) ≡ 0

(
mod Pi(t)

)
. Moreover, since Pi(t) is primitive, we have

(13) pξX0(t)Pi(t)
−1 ∈ Zp[t], pηY0(t)Pi(t)

−1 ∈ Zp[t],
where Zp is the ring of p-adic integers.

If t∗ ≡ τ (mod p2c), pcv∗ ≡ w(τ) (mod p2c), we have v∗ ≡ 0 (mod pc),

X(t∗, v∗) ≡ X0(t
∗) (mod pc),

Y (t∗, v∗) = Y0(t
∗)+

n∑
ν=1

(
n

ν

)
A(t∗)X0(t

∗)n−νΠ(t∗)ν

M(t∗)
v∗ν .

Since ordp Pi(t∗) > ci � max{ξ, η} we infer from (13) thatc

X0(t
∗), Y0(t

∗) ∈ Zp.

On the other hand, by (11)c

mpξ(n−ν) X0(t)
n−νΠ(t)ν

M(t)
∈ Zp[t] (ν = 1, 2, . . . , n).

Since ordp vν � c � ξ(n− 1)+ ordp m we conclude thatX(t∗, v∗), Y (t∗, v∗) are p-adic
integers.

If βi = μi we have as before X0(t) ≡ 0
(
mod Pi(t)

)
. If t∗ ≡ τ (mod p2c), pcv∗ ≡

w(τ) ≡ 0 (mod p2c), then X(t∗, v∗) ≡ X0(t
∗) (mod pc) is again a p-adic integer and

Y (t∗, v∗) ∈ Zp if and only if Y0(t
∗) ∈ Zp.

The latter condition is satisfied for all t∗ ≡ τ (mod p2c) if it is satisfied for one such t∗.
Since we cannot havePi(t∗) = 0 for all t∗ ≡ τ (mod p2c)we may assume thatPi(t∗) �= 0.
If η = 0, Y0(t

∗) ∈ Zp. If η > 0 we have ordp Pi(t∗) > ci � 2�ii + 1, hence by Lemma 9
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there exists a t0 ≡ t∗ (mod pci−�ii ) such that ordp Pi(t0) = ordp Pi(t∗)− 1. On the otherc

hand

ordp A(t
∗) � �i0 < ci − �ii,

ordp Bi(t
∗) � �i,k+1 < ci − �ii,c

ordp Mi(t
∗) � ordp m+

k∑
j=1
j �=i

μj�ij < ci − �ii − nξ,

hence

ordp A(t0) = ordp A(t
∗) <∞, ordp Bi(t0) = ordp Bi(t

∗) <∞,
ordp Mi(t0) = ordp Mi(t

∗) <∞.
Since μi �≡ 0 (mod n) we cannot have simultaneously

μi ordp Pi(t
∗)+ ordp Bi(t

∗) ≡ ordp A(t
∗) (mod n)

and

μi ordp Pi(t0)+ ordp Bi(t0) ≡ ordp A(t0) (mod n)

thus taking t1 = t∗ or t0 we can achieve that

ordp B(t1) = μi ordp Pi(t1)+ ordp Bi(t1) �≡ ordp A(t1) (mod n),

∞ > ordp Pi(t1) � ci − �ii,
a = max

{
ordp A(t1), ordp B(t1), ordp M(t1)

}
<∞.

The arithmetic progression t1 +pa+1u contains an integer t2 such that for suitable integers
x2, y2 we have

A(t2)x
n
2 + B(t2) = M(t2)y2.

Since

ordp A(t2) = ordp A(t1), ordp Pi(t2) = ordp Pi(t1),

ordp B(t2) = ordp B(t1), ordp M(t2) = ordp M(t1),

we have

ordp A(t2)x
n
2 ≡ ordp A(t2) �≡ ordp B(t2) (mod n).

It follows that

ordp B(t2) � ordp M(t2)y2 � ordp M(t2) and ordp B(t1) � ordp M(t1).
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On the other hand we have ordp Pi(t1) � ci − �ii > �ij for all j � k + 1, hence

ordp Pj (t1) � �ij (j �= i), ordp Mi(t1) � ordp m+
k∑
j=1
j �=i

�ijμj � ci − nξ − �ii;

ordp A(t1)X0(t1)
n � −n[−βi/n] ordp Pi(t1)− nξ

� (μi + 1) ordp Pi(t1)− nξ � μi ordp Pi(t1)+ ci − nξ − �ii
� μi ordp Pi(t1)+ ordp Mi(t1) = ordp M(t1).

Since A(t1)X0(t1)
n+B(t1) = M(t1)Y0(t1) we get ordp Y0(t1) � 0. However pηY0(t1) ≡

pηY0(t
∗) (mod pci−�ii ). Since ci − �ii � η, Y0(t

∗) is a p-adic integer and so is Y (t∗, v∗).
3. βi < μi . Here we have βi ≡ 0 (mod n),

Pi(t)
βi/n ‖X0(t), Pi(t)

μi−n−1
n
βi ‖Π(t).

Let

X0i (t) = X0(t)Pi(t)
−βi/n, Πi(t) = Π(t)Pi(t)

n−1
n
βi−μi ,

Mi(t) = M(t)Pi(t)−μi .
We have

A(t)X0i (t)
n + Bi(t) = Pμi−βii (t)Mi(t)Y0(t)

and

ordp Pi(τ ) > ci � �i,k+1 + η � ordp Bi(τ )+ η,c

hence

ordp P
μi−βi
i (τ )Mi(τ )Y0(τ ) > ordp Bi(τ )

and

ordp A(τ)X0i (τ )
n = ordp Bi(τ ).

We get

ordp X0i (τ ) � 1

n
ordp Bi(τ ) � 1

n
�i,k+1c

and

(14) oi = ordp
nX0i (τ )

n−1Πi(τ)

Mi(τ )
� ordp n+ �i,k+1 − ordp m � ci − η � c − η.

c

We define

w(τ) = pc−oi−ηw,
where w is a root of the congruence

nX0i (τ )
n−1Πi(τ)

Mi(τ )poi
w + pηY0(τ ) ≡ 0 (mod pη).
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If t∗ ≡ τ (mod p2c) and pcv∗ ≡ w(τ) (mod p2c) we have

ordp Pi(t
∗) > ci �

k∑
j=1

βj�ij + �i,k+1 + η.

If Pi(t∗) �= 0 then

(15)
ordp B(t

∗) � βi ordp Pi(t
∗)+ �i,k+1 < μi ordp Pi(t

∗)− η
� ordp M(t

∗)− η � ordp M(t
∗)Y0(t

∗).c

Therefore,

(16) ordp B(t
∗) = ordp A(t

∗)X0(t
∗)n.

Moreover, A(t∗)B(t∗)M(t∗) �= 0.

Let b = max
{
ordp A(t∗), ordp B(t∗), ordp M(t∗)

}
and let t0 be an integer in the

arithmetic progression t∗ + pb+1u such that for suitable x0, y0 ∈ Z

A(t0)x
n
0 + B(t0) = M(t0)y0.

We have ordp A(t0) = ordp A(t∗), ordp B(t0) = ordp B(t∗), ordp M(t0) = ordp M(t∗)c

and by (15) ordp B(t0) < ordp M(t0) � ordp M(t0)y0. Hence

ordp B(t0) = ordp A(t0)x
n
0

and by (16)

(17) ordp X0(t
∗) = ordp x0 � 0.

If Pi(t∗) = 0 there exists a t ′ ≡ t∗ (mod p2c) such that Pi(t ′) �= 0. Since

X0(t
∗) ≡ X0(t

′) (mod p2c−ξ )

we have (17) in every case. On the other hand

ordp v
∗Π(t∗) � min

{
c, ordp

w(τ)

pc
Π(τ)

}
� min

{
c, ordp Π(τ)− oi − η

}
� min{c, ci − oi − η} � 0,

hence

ordp X(t
∗, v∗) � 0.

It remains to prove that Y (t∗, v∗) is a p-adic integer. We have

Y (t∗, v∗) = Y0(t
∗)+ nX0i (t

∗)n−1Πi(t
∗)

Mi(t∗)
v∗

+
n∑
ν=2

(
n

ν

)
X0i (t

∗)n−νΠi(t∗)ν

Mi(t∗)
Pi(t

∗)(ν−1)(μi−βi)v∗ν .
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Now

(18)

pηY0(t
∗) ≡ pηY0(τ ) (mod p2c),

p(n−1)ξX0i (t
∗)n−1Πi(t

∗) ≡ p(n−1)ξX0i (τ )
n−1Πi(τ) (mod p2c),

Mi(t
∗) ≡ Mi(τ) (mod p2c),

ordp Mi(τ ) �
k∑
j=1
j �=i

μj�ij + ordp m < ci − nξ + ordp m < 2c.

c

Hence

pη
nX0i (t

∗)n−1Πi(t
∗)

Mi(t∗)
v∗

≡ pη nX0i (τ )
n−1Πi(τ)

Mi(τ )

w(τ)

pc

(
mod pc−(n−1)ξ+η−ordp Mi(τ)

)
and since c � ci + ordp m we have by the definition of w(τ)

pηY0(t
∗)+ pη nX0i (t

∗)n−1Πi(t
∗)

Mi(t∗)
v∗

c

≡ pηY0(τ )+ nX0i (τ )
n−1Πi(τ)

Mi(τ )poi
≡ 0 (mod pη).

Thus

Y0(t
∗)+ nX0i (t

∗)n−1Πi(t
∗)

Mi(t∗)
v∗

is a p-adic number.

Now take ν � 2 and consider the term

Eν(t
∗, v∗) =

(
n

ν

)
X0i (t

∗)n−νΠi(t∗)ν

Mi(t∗)
Pi(t

∗)(ν−1)(μi−βi)v∗ν .

We have by (18)

ordp
X0i (t

∗)n−νΠi(t∗)ν

Mi(t∗)
� −(n− ν)ξ −

k∑
j=1
j �=i

μj�ij − ordp m,

c

while by the congruence pcv∗ ≡ w(τ) (mod p2c), by the definition of w(τ) and by (14)

ordp v
∗ � −oi − η � − ordp n− �i,k+1 + ordp m− η,c

finally

ordp Pi(t
∗)μi−βi > ci �

k∑
j=1
j �=i

μj�ij + 2�i,k+1 + nξ + 2η + 2 ordp n.

c
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Hence

ordp Eν(t
∗, v∗) > −(n− ν)ξ −

k∑
j=1
j �=i

μj�ij − ordp m− ν ordp n

− ν�i,k+1 + ν ordp m− νη + (ν − 1)
k∑
j=1
j �=i

μj�ij

+ 2(ν − 1)�i,k+1 + (ν − 1)nξ + 2(ν − 1)η + 2(ν − 1) ordp n

= n(ν − 2)ξ + νξ + (ν − 2)
k∑
j=1
j �=i

μj�ij + (ν − 1) ordp m

+ (ν − 2) ordp n+ (ν − 2)�i,k+1 + (ν − 2)η + (ν − 2) ordp n � 0.c

Thus Eν(t∗, v∗) is a p-adic integer and so is Y (t∗, v∗). ��

Proof of Theorem 4. Suppose first that BM �= 0, (A,M) = 1. Let X0, Y0 have the
meaning of Lemma 7 and let d be chosen so that dX0 ∈ Z[t], dY0 ∈ Z[t]. Let further
X(t, v), Y (t, v) have the meaning of Lemma 8.

In virtue of Lemma 10 for every prime p |dm there exists an integer cp and an integer
valued functionwp(τ) defined on the set {0, 1, . . . , pcp−1} such that for all t∗ ∈ Z, v∗ ∈ Q

the congruences t∗ ≡ τ (mod p2cp ), pcv∗ ≡ wp(τ) (mod p2cp ) imply that X(t∗, v∗) and
Y (t∗, v∗) are p-adic integers. By a result of Skolem [8] there exists an integer valued
polynomial Wp(t) such that t∗ ≡ τ (mod p2cp ) implies Wp(t∗) ≡ wp(τ) (mod p2cp ).
Now take

V (t) =
∑
p |dm

Wp(t)

pcp

∏
q |dm
q �=p

qϕ(p
2cp )cq

where p, q run over primes and set

X(t) = X(t, V (t)), Y (t) = Y (t, V (t)).
We assert that X(t), Y (t) belong to the set I of integer valued polynomials. Indeed, byc

Lemma 8,

dX(t, v) ∈ Z[t, v], dnmY(t, v) ∈ Z[t, v].
Moreover, since

V (t)
∏
p |dm

pcp ∈ I
c

and X(t, v), Y (t, v) are in v of degrees 1 and n respectively, we have

X(t)d
∏
p |dm

pcp ∈ I , Y (t)dnm
∏
p |dm

pncp ∈ I.
c
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Thus for t∗ ∈ Z the values X(t∗) and Y (t∗) are p-adic integers for each p /| dm. On the
other hand if p |dm and t∗ ≡ τ (mod p2cp ), 0 � τ < p2cp we have

pcpV (t∗) ≡ pcp
∑
q1 |dm
q1 �=p

Wq1(t
∗)

q
cq1
1

∏
q2 |dm
q2 �=q1

q
ϕ(q

2cq1
1 )cq2

2 +Wp(t∗)
∏
q |dm
q �=p

qϕ(p
2cp )cq

≡ Wp(t∗) ≡ Wp(τ) (mod p2cp ),

hence by the property of the polynomials X(t, v), Y (t, v) stated above

X(t∗) = X(t∗, V (t∗)), Y (t∗) = Y (t∗, V (t∗))
are p-adic integers.

Suppose now that BM �= 0 and (A,M) �= 1. Then there exists a primitive polynomial
D ∈ Z[t] such that A = DA1, M = DM1, A1,M1 ∈ Z[t] and (A1,M1) = 1. Every
arithmetic progression contains an integer t∗ such that A(t∗)xn + B(t∗) = M(t∗)y is
solvable in integers x, y henceD(t∗) |B(t∗). It follows thatD |B and sinceD is primitive
B = DB1, where B1 ∈ Z[t]. Every arithmetic progression P contains a progression P1

such that D(t∗) �= 0 for t ∈ P1. Therefore, for t∗ ∈ P1

A(t∗)xn + B(t∗) = M(t∗)y implies A1(t
∗)xn + B1(t

∗) = M1(t
∗)y

and from the already proved case of the theorem we infer the existence of integer valued
polynomials X, Y such that A1(t)X(t)

n + B1(t) = M1(t)Y (t). Clearly, A(t)X(t)n +
B(t) = M(t)Y (t). It remains to consider the case BM = 0. If B = 0 we can take
X = Y = 0. If B �= 0 andM = 0 Theorem 1 of [2] implies the existence of a polynomial
X ∈ Q[t] such thatA(t)X(t)n+B(t) = 0. By the assumption every arithmetic progression
contains an integer t∗ such that either B(t∗) = 0 orX(t∗)n is an integer. Since B �= 0, the
former term of the alternative can be omitted. Let a positive integer d be chosen so that
dX ∈ Z[t] and let τ be an arbitrary integer. The arithmetic progression τ + du contains
an integer t∗ such that X(t∗) is an integer. We have dX(τ) ≡ dX(t∗) (mod d), hence
d |dX(τ) and X(τ) is an integer. Thus X is an integer valued polynomial and the proof is
complete. ��

Now we shall show by an example that the condition n �≡ 0 (mod 8) cannot be omitted
from the assumptions of Theorem 4.

Example 3. Take n = 8, A(t) = 1, B(t) = −16,M(t) = 2t + 1. For every integer t∗ we

haveM(t∗) = ±
k∏
i=1
p
αi
i , where pi are odd primes. For every i � k the congruence

x8 ≡ 16 (mod pαii )

is solvable (cf. Trost [11]). Denoting a solution of this congruence by xi and using the
Chinese Remainder Theorem we find x ≡ xi (mod pαii ) (1 � i � k), which satisfies
x8 − 16 ≡ 0 (mod 2t∗ + 1). On the other hand, the existence of polynomials X, Y ∈ Q[t]
satisfying X(t)8 − 16 = (2t + 1)Y (t) would imply X

(− 1
2

)8 = 16, X
(− 1

2

)2 = 2, a
contradiction.
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The next example shows that in Theorem 4 polynomials in one variable cannot be
replaced by polynomials in two variables even if A = 1 andM is irreducible.

Example 4. Take n = 2, A(t, u) = B(t, u) = 1, M(t, u) = u2 + (4t2 + 1)2. For every
pair of integers t∗, u∗ the congruence x2 + 1 ≡ 0

(
modM(t∗, u∗)

)
is solvable. Indeed,

we haveM(t∗, u∗) = 2α
∏
p
αi
i , where α = 0 or 1 and pi ≡ 1 (mod 4). On the other handc

suppose that polynomials X, Y ∈ Q[t, u] satisfy

X(t, u)2 + 1 = M(t, u)Y (t, u).
We get u2X(t, u)2 ≡ (4t2 + 1)2

(
modM(t, u)

)
and sinceM is irreducible

uX(t, u) ≡ ±(4t2 + 1)
(
modM(t, u)

)
.

The substitution u = 0 gives

4t2 + 1 ≡ 0
(
mod (4t2 + 1)2

)
,

a contradiction.
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Hasse’s principle
for systems of ternary quadratic forms

and for one biquadratic form

To Professor Jan Mikusiński on the occasion of the 70th birthday

Abstract. Let K be an algebraic number field and f1, . . . , fk ternary quadratic forms over K . If
f1, . . . , fk have a common non-trivial zero in every completion of K except at most one then—
it is proved here—they have a common non-trivial zero in K . Besides an example is given of an
absolutely irreducible n-ary biquadratic form (n � 3) that represents 0 in every completion of Q but
not in Q.

Let K be an algebraic number field and f1, . . . , fk ∈ K[x1, . . . , xn] quadratic forms.
Hasse’s principle asserts that if the forms f1, . . . , fk have a common non-trivial zero in
every completion ofK they have a common non-trivial zero inK . The principle holds for
k = 1, it trivially holds for n = 1, 2, and it fails for K = Q, k = 2, n � 4 (see [2]). Thus
it remains to consider the case n = 3.

We shall prove

Theorem 1. If quadratic forms f1, . . . , fk ∈ K[x, y, z] have a common non-trivial zero
in every completion of K except at most one then they have a common non-trivial zero
in K .

As to biquadratic forms over Q it is easy to give an example of a reducible ternary form
for which Hasse’s principle fails (see [1], p. 72). An example of an irreducible ternary
biquadratic form with the same property can be constructed by using results of Hilbert [4],
namely

norm(x + y√5 + z√−31).

This form, however, is reducible over the complex field. Mordell [6] has left open the ques-c

tion whether there exists an absolutely irreducible ternary biquadratic form not fulfilling
Hasse’s principle. The question is answered by

Theorem 2. The absolutely irreducible biquadratic form x4 − 2y4 − 16y2z2 − 49z4

represents 0 in every completion of Q but not in Q; for all n � 4 the absolutely irreducible
biquadratic form x4

1 − 17x4
2 − 2(x2

3 + . . . + x2
n)

2 represents 0 in every completion of Q

but not in Q.



88 A. Diophantine equations and integral forms

Lemma 1. If a binary form overK of degree not exceeding 4 represents 0 in all but finitely
many completions of K it represents 0 in K .

Proof. See Fujiwara [3]. ��

Lemma 2. Let R(x, y; u1, . . . , uk, v1, . . . , vk) be the resultant of
k∑
i=1
uifi ,

k∑
i=1
vifi with

respect to z (ui, vi are indeterminates). If

(1) R(a, b; u1, . . . , uk, v1, . . . , vk) = 0, a, b ∈ K, 〈a, b〉 �= 〈0, 0〉
then either fi have a common non-trivial zero in K or

(bx − ay)2 |R(x, y; u1, . . . , uk, v1, . . . , vk)

and the forms fi(at, bt, z) differ from their highest common divisor by a constant factor.

Proof. If fi are all of degree less than 2 with respect to z then they have a common non-
trivial zero, namely 〈0, 0, 1〉. If at least one of the forms fi is of degree 2 with respect
to z then both

∑k
i=1 uifi and

∑k
i=1 vifi are of degree 2 with respect to z with the leading

coefficients independent of x, y. Therefore (1) implies that

k∑
i=1

uifi(a, b, z) and
k∑
i=1

vifi(a, b, z)

have a common factor over the field K(u1, . . . , uk, v1, . . . , vk), hence also over the ring
K[u1, . . . , uk, v1, . . . , vk]. The factor must be independent of u1, . . . , uk, v1, . . . , vk . If it
is of degree 1 in z it has a zero c ∈ K and we have fi(a, b, c) = 0 (1 � i � k). If it is of
degree 2 in z we consider the Sylvester matrix

S(x, y; u1, . . . , uk, v1, . . . , vk)

of the polynomials
∑k
i=1 uifi ,

∑k
i=1 vifi . In virtue of a well-known theorem (see [7],

Satz 114) the rank of the matrix S(a, b; u1, . . . , uk, v1, . . . , vk) must be 2. Hence all the
minors of degree 3 of this matrix vanish and all the minors of degree 3 of the matrix
S(x, y; u1, . . . , uk, v1, . . . , vk) are divisible by bx − ay. On the other hand, there are
minors of degree 2 of the latter matrix not divisible by bx − ay, in fact independent of
x, y. Hence by a very special case of theorem of Rédei [8]

R(x, y; u1, . . . , uk, v1, . . . , vk) = det S(x, y; u1, . . . , uk, v1, . . . , vk)

is divisible by (bx − ay)2.

The last assertion of the lemma follows from the remark that if polynomials fi(a, b, z)
(1 � i � k) have a common factor of degree 2 they differ from this common factor by a
constant factor. ��



A13. Hasse’s principle 89

Proof of Theorem 1. Let us consider the resultant R(x, y; u1, . . . , uk, v1, . . . , vk) of∑
uifi and

∑
vifi with respect to z. Viewed as a polynomial in x, y it is either 0 or

a quartic form. In the first case fi (1 � i � k) have a common factor, say d. If d is of
degree 2 then for each i � k we have fi = cid, ci ∈ K . The solvability of fi(x, y, z) = 0
(i � k) in a completion Kv of K implies the solvability of d(x, y, z) = 0 in Kv , and if
it holds for all but one completion then by the product formula and Hasse’s principle for
one quadratic form we get solvability inK of d(x, y, z) = 0 and hence of fi(x, y, z) = 0
(1 � i � k). If d is of degree 1 then it has again a non-trivial zero in K and the same
conclusion holds.

IfR(x, y; u1, . . . , uk, v1, . . . , vk) is not identically 0, let r(x, y)be the highest common
divisor of its coefficients when viewed as a form in u1, . . . , uk, v1, . . . , vk . If fi(x, y, z)
(1 � i � k) have a common non-trivial zero 〈av, bv, cv〉 in Kv ,

∑
uifi and

∑
vifi have

it also, hence R(av, bv; u1, . . . , uk, v1, . . . , vk) = 0, which implies

(2) r(av, bv) = 0.

(Here we use the fact that the coefficients of R are forms in x, y). If av = bv = 0 we have
cv �= 0; hence the coefficient of z2 in fi is 0 for each i � k and the forms fi (1 � i � k)
have in K a common non-trivial zero 〈0, 0, 1〉. If 〈av, bv〉 �= 〈0, 0〉 for each valuation v
of K except at most one then by Lemma 1 r has in K a zero, say 〈a, b〉 �= 〈0, 0〉. Thus
bx − ay | r(x, y),

bx − ay |R(x, y; u1, . . . , uk, v1, . . . , vk)

and by Lemma 2 either fi have a common non-trivial zero in K or

(3) (bx − ay)2 |R(x, y; u1, . . . , uk, v1, . . . , vk)

and the forms fi(at, bt, z) (1 � i � k) differ from their highest common divisor by a
constant factor. In the latter case, by (3)

(bx − ay)2 | r(x, y).
Let

(4) r(x, y) = (bx − ay)αs(x, y),
where α � 2, s(a, b) �= 0, deg s = deg r − α � 2. For every valuation v of K except at
most one we have by (2) and (4)

bav − abv = 0 or s(av, bv) = 0.

The first equation implies av = at , bv = bt for a t ∈ K∗
v ; thus

F(t, u) = s(t, u) h.c.d.
1�i�k

fi(at, bt, u)

has a non-trivial zero in Kv . Since by (4)

degF = deg s + 2 = deg r + 2 − α � 4,

we infer from Lemma 1 that F has in K a zero, say 〈c, d〉 �= 〈0, 0〉. If this is a zero of the
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h.c.d.1�i�k fi(at, bt, u), then

fi(ac, bc, d) = 0 (1 � i � k), 〈ac, bc, d〉 �= 〈0, 0, 0〉.
If, on the other hand, s(c, d) = 0 then by (4) r(c, d) = 0; thus

R(c, d; u1, . . . , uk, v1, . . . , vk) = 0

and by Lemma 2 either fi have a common non-trivial zero in K or

(dx − cy)2 |R(x, y; u1, . . . , uk, v1, . . . , vk)

and fi(ct, dt, z) (1 � i � k) differ by a constant factor from their highest common divisor.
In the latter case

(dx − cy)2 | r(x, y)
and by (4)

r(x, y) = e(bx − ay)2(dx − cy)2.
For every valuation v of K except at most one we have by (2)

bav − abv = 0 or dav − cbv = 0;c

thus for a suitable t ∈ K∗
v either av = at , bv = bt or av = ct , bv = dt . It follows that the

quartic form

G(t, u) = h.c.d.
1�i�k

fi(at, bt, u) · h.c.d.
1�i�k

fi(ct, dt, u)

has a non-trivial zero in Kv . By Lemma 1 G(t, u) has in K a zero, say 〈t0, u0〉 �= 〈0, 0〉.
If 〈t0, u0〉 is a zero of the h.c.d.1�i�k fi(at, bt, u) then

fi(at0, bt0, u0) = 0 (1 � i � k), 〈at0, bt0, u0〉 �= 〈0, 0, 0〉;
if 〈t0, u0〉 is a zero of the h.c.d.1�i�k fi(ct, dt, u) then

fi(ct0, dt0, u0) = 0 (1 � i � k), 〈ct0, dt0, u0〉 �= 〈0, 0, 0〉.c

The proof is complete. ��

For the proof of Theorem 2 we need three lemmata.

Lemma 3. The equation u4 − 17v4 = 2w2 has no solutions in Q except 〈0, 0, 0〉.
Proof. See Lind [5] or Reichardt [10]. ��

Lemma 4. Let F(x1, . . . , xn) be a polynomial with integer p-adic coefficients and
γ1, . . . , γn p-adic integers. If for an i � n we have

F(γ1, . . . , γn) ≡ 0 (mod p2δ+1),

∂F

∂xi
(γ1, . . . , γn) ≡ 0 (mod pδ),

∂F

∂xi
(γ1, . . . , γn) �≡ 0 (mod pδ+1)
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(δ a nonnegative integer) then there exist p-adic integers θ1, . . . , θn such that

F(θ1, . . . , θn) = 0

and θ1 ≡ γ1 (mod pδ+1), . . . , θn ≡ γn (mod pδ+1).

Proof. See [1], p. 42. ��

Lemma 5. f (x, y, z) = x4 − 2y4 − 16y2z2 − 49z4 is irreducible over every field ofc

characteristic different from 2 and 17.

Proof. Let k be a field of this kind. It is enough to show that f (x, y, z) is irreducible as a
polynomial in x over k(y, z). If it were not, then by Capelli’s theorem (see [9], Satz 428)
±(2y4 + 16y2z2 + 49z4) would have to be a square in k(y, z). This condition implies that

162 − 4 · 2 · 49 = −8 · 17 = 0,

which is possible only if char k = 2 or char k = 17. ��

Proof of Theorem 2. f (x, y, z) = x4 − 17z4 − 2(y2 + 4z2)2; hence by Lemma 3 if
f (x, y, z) = 0 and x, y, z ∈ Q we have x = y2 + 4z2 = 0 and thus x = y = z = 0. Also
x4

1 − 17x4
2 − 2(x2

3 + . . .+ x2
n)

2 = 0 implies x1 = x2 = . . . = xn = 0 for xi ∈ Q.
It remains to show that f (x, y, z) represents 0 in every field Qp including Q∞ = R.

We verify this first using Lemma 3 for p = ∞, 2, 5, 7, 13 and 17.
For p = ∞ we take x = 4

√
2, y = 1, z = 0.

For p = 2 we use Lemma 4 with γ1 = 3, γ2 = 2, γ3 = 1, δ = 2, i = 1.c

For p = 5 we use Lemma 4 with γ1 = 0, γ2 = 2, γ3 = 1, δ = 0, i = 2.
For p = 7 we use Lemma 4 with γ1 = 2, γ2 = 1, γ3 = 0, δ = 0, i = 1.
For p = 13 we use Lemma 4 with γ1 = 1, γ2 = 2, γ3 = 3, δ = 0, i = 1.
For p = 17 we use Lemma 4 with γ1 = 0, γ2 = 1, γ3 = 2, δ = 0, i = 2.
For p �= 2, 5, 7, 13, 17 we have either p � 37 or for a suitable sign(±7 |p) = 1.
In the latter case the congruence

f (x, 0, z) = (x2 − 7z2)(x2 + 7z2) ≡ 0 (mod p)

is solvable non-trivially, and denoting its solution by γ1, γ3 we use Lemma 4 with γ2 = 0,
δ = 0, i = 1.

It remains to consider primes p � 37. For such primes f is by Lemma 5 absolutely
irreducible over Fp. Moreover, it has no singular zeros. Indeed, the equations

4x3 = 0, −8y3 − 32yz2 = 0, −32y2z− 196z3 = 0

imply x = 0 and either y = 0, 196z3 = 0 or y2 + 4z2 = 0, 68z3 = 0; thus in any casec

x = y = z = 0. By the Riemann-Hurwitz formula the curve f (x, y, z) = 0 is over Fp of
genus 3.

Therefore by Weil’s theorem the number of points on this curve with coordinates in Fp
is greater than p+ 1 − 6

√
p, i.e., at least one. Since all points are non-singular, Lemma 4

applies with δ = 0 and a suitable i. ��
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Note added in proof. I have learned that already in 1981 A. Bremner, D. J. Lewis and P. Morton
found the example 3x4 +4y4 −19z4 of a ternary biquadratic form for which Hasse’s principle fails,
but they did not publish it.
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In 1887, C. Runge [14] proved the following theorem. Let f ∈ Z[X, Y ] be an irre-
ducible polynomial. If the equation f (x, y) = 0 has infinitely many integer solutions then
the following conditions hold(∗):
(C1) the highest powers of X and Y in f occur as isolated terms aXm and bYn;

(C2) for every term cX�Yσ of f we have n� +mσ � mn;

(C3) the sum of all terms of f for which n�+mσ = mn is up to a constant factor a power
of an irreducible polynomial
(the last condition is stated by Runge in a little weaker form, but his proof gives what
is asserted here).

In the course of the proof Runge established also under the same assumption the
following condition which together with (C1) is stronger than (C2)–(C3):

(C4) there is only one system of conjugate Puiseux expansions at x = ∞ for the algebraic
function y = y(x) defined by f (x, y) = 0.

An essential feature of Runge’s theorem is that if his conditions are not fulfilled, all
integral solutions of the equation f (x, y) = 0 can be found effectively. The special case,
where all real roots of the leading form of f (X, Y ) are simple and rational �= 0 was
rediscovered by E. Maillet [11] and an algorithm to find bounds for the size of solutions
has been given by him in [12] under the additional assumption that all roots of the leading
form of f are distinct. In the general case, bounds have been given by D. L. Hilliker and
E. G. Straus [4]. If d0 = min{degX f, degY f } = 1 and d = max{degX f, degY f } > 2
their bound given in Theorem 3.3 is false (see below). But for d = 1 or d0 > 1 they
have proved that if Runge’s conditions (C1)–(C3), which they formulate differently, are
violated then all integral solutions of the equation f (x, y) = 0 satisfy

max{|x|, |y|} <
{

4(‖f ‖ + 1)2 if d = 1,

(8d‖f ‖)d2d3

if d0 > 1,

(∗) Capital lettersX, Y, . . . , Ξ,H, . . . denote indeterminates, small letters x, y, . . . , ξ, η, . . . de-
note elements of the relevant fields.
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where ‖f ‖ is the height of f (see [4], Theorem 3.2 and Theorem 4.9). Although they do
not say so the same inequality follows from their argument if (C4) is violated (then in their
notation degy Q

∗ � se < degy f , hence (Q∗, f ) = 1).
Many special equations to which Runge’s theorem applies have been considered. Thus

for f of degree 2 the second author gave the essentially best possible bound

max
{|x|, |y|}� ‖f ‖4

(see [16]) and for equationsy2 = f (x),f — a monic quartic polynomial, D.W. Masser [13]
gave the essentially best possible bound

|x| � ‖f ‖3

(essentially means here up to a multiplicative constant). D. W. Masser has also called our
attention to the fact that the bound of Hilliker and Straus can be improved by means of a
recent result of W. Schmidt [18]. Indeed, when one combines the argument of Hilliker and
Straus with Theorem 3 of [18] one obtains the following assertion.

Let f ∈ Z[X, Y ] be irreducible of height ‖f ‖. Let degX f = m, degY f = n, d0 =
min{m, n}, d = max{m, n} and let integers x, y satisfy f (x, y) = 0. If (C1) is not satisfied
by the variable X or (C4) does not hold, then

|x| �
(
217m3n6‖f ‖)16mn6(m+2)(n+2)

|y| �
(
217m3n6‖f ‖)16m2n5(m+2)(n+2)

.

If (C1) holds, but (C2) or (C3) does not, then

|x| �
(
217d3

0d
6‖f ‖)16d5

0dn(m+2)(n+2)

|y| �
(
217d3

0d
6‖f ‖)16d5

0dm(m+2)(n+2)
.

Hilliker and Straus have used the original Runge’s approach based on the Puiseux
expansions of the algebraic function defined by f (x, y) = 0. In 1922 Skolem [20] gave
another proof of Runge’s theorem based on elimination theory. In the present paper we
use Skolem’s approach to prove a bound for max

{|x|, |y|} which is better for d > 1 than
the bound of Hilliker and Straus, and often better than the assertion above, but which does
not apply if only (C4) is violated. In the course of the proof we fill in a gap that occurs in
Skolem’s paper. We prove the following

Theorem. Let f ∈ Z[X, Y ] be irreducible of height ‖f ‖, m = degX f , n = degY f ,
d0 = min{m, n}, d = max{m, n} and let integers x, y satisfy f (x, y) = 0.

(i) If (C1) is not satisfied by the variable X, then

|x| �
(
(m+ 1)(n+ 1)(mn+ 1)2/n‖f ‖

)2n(mn+1)3

,

|y| �
(
(m+ 1)(n+ 1)(mn+ 1)2/n‖f ‖

)2(mn+1)3

.
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(ii) If (C1) holds, but (C2) does not, then

|x| <
(
(4mnd0)

8mn(m,n)−1‖f ‖
)96m3n4(m,n)−4d4

0+m−1d0
,

|y| <
(
(4mnd0)

8mn(m,n)−1‖f ‖
)96m4n3(m,n)−4d4

0+n−1d0
.

(iii) If (C1) and (C2) hold, but (C3) does not, then

|x| <
(
(mn)3mn(m,n)

−1‖f ‖
) 5

128m
3n4(m,n)4+m−1(m,n)2

,

|y| <
(
(mn)3mn(m,n)

−1‖f ‖
) 5

128m
4n3(m,n)4+n−1(m,n)2

.

No attention should be attached to the coefficients of ‖f ‖, which in the cases (ii)–(iii)
probably can be much improved. On the other hand, an effort has been made to obtain the
exponents as small as the method allows.

Corollary. In the notation of the theorem either (C1)–(C3) hold or

max
{|x|, |y|} < {(45‖f ‖)250 if d = 2,(

(4d3)8d
2‖f ‖)96d11

if d > 2.

The example of the equation xy − ty − txd = 0 with a solution x = td+1 + t ,
y = (td + 1)d shows that the exponents 250 and 96d11 in the corollary cannot be lowered
below 4 or d2 respectively. The same example shows that the bound d(‖f ‖ + 1)2d given
by Hilliker and Straus in their Theorem 3.3 for the case d0 = 1 is false for d > 2. On the
other hand, the assertion on p. 93 implies that 96d11 can be replaced by 16d7(d + 2)2.c

The proof of the theorem falls into three main steps. (A) (Lemmas 1 to 4). We consider
the special case, where the leading form of f is a monomial divisible byXY . For equations
of this special type if f (x, y) = 0 and, say, |x| � max{x0, |y|} we have such good control
of y as a function of x that we can construct a polynomial F ∈ Z[X, Y ] prime to f , which
vanishes for all pairs (x, y) in question; this bounds the solution. (B) (Lemmas 5 to 9).
Under the general assumptions of the theorem we find polynomialsG,H ∈ Z[X, Y ] such
that the minimal equation connecting G(x, y), H(x, y) subject to f (x, y) = 0 is of the
special type considered in (A). (C) (Lemmas 10, 11 and the proof of the theorem in the
strict sense). We deduce the estimates in the general case from those obtained in (A) by
deducing bounds for x, y from those for G(x, y), H(x, y).

It should be mentioned that the condition (C3) has been sharpened by the second author
[15] and the condition (C4) by M. Ayad [1]. However their proofs do not lead to bounds
for the size of possible solutions of the equation f (x, y) = 0, since they use an ineffective
theorem of Siegel [19].

N and N0 denote the set of positive integers and of nonnegative integers, respectively.
For a real number x, �x� is the least integer greater than or equal to x.

For a polynomial F with coefficients ai ∈ C we shall put

‖F‖ = max
i

|ai |, ‖F‖ν =
(∑
i

|ai |ν
)1/ν

(ν = 1, 2).
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We conclude the introduction by expressing our thanks to Professor J. W. S. Cassels
for the remarks incorporated in the present version of the paper and to Mr. K. Stefański
for his remarks on an early draft.

Lemma 1. Let P,Q ∈ Z[X, y], (P,Q) = 1, degX P = p1, degY P = p2, and similarly
forQ. If

(1) P(x, y) = Q(x, y) = 0

then

|x| �
(
‖P ‖(p1 + 1)

√
p2 + 1

)q2
(
‖Q‖(q1 + 1)

√
q2 + 1

)p2
.

Proof. Since (P,Q) = 1 the resultant R(X) of P andQ with respect to Y is not zero and
clearly (1) implies that R(x) = 0. Since the leading coefficient of R is in absolute value
� 1 we have by the inequality of Landau [6]

(2) |x| � ‖R‖2.

Now

(3) ‖R‖2 � max|ξ |=1
|R(ξ)|

and using the Hadamard inequality for the determinant of the Sylvester matrix we obtain

‖R‖2 �

√√√√ q2∏
j=1

(‖P ‖2(p1 + 1)2(p2 + 1)
) p2∏
j=1

(‖Q‖2(q1 + 1)2(q2 + 1)
)
.

The inequalities (2) and (3) imply the lemma. ��

Lemma 2. For all integers n > ν > 0, r � 1, t � 0, μ � 0, λ � 1, k �= 0 for every
polynomial f ∈ Z[X, Y ] with the leading form equal to kXνYn−ν there exist polynomials
Br,t,μ, Cr,t,λ ∈ Z[X] with the following properties

degBr,t,μ � μ,(4)

‖Br,t,μ‖ � n2(r−1)‖f ‖r ,(5)

degCr,t,λ � νr + λ+ t − 1,(6)

‖Cr,t,λ‖ � 2n2(r−1)‖f ‖r ;(7)

if f (x, y) = 0, x �= 0 then

yn−ν+t =
r(ν−1)+t∑
μ=0

Br,t,μ(x)

(kxν)r
yn−1+(r−1)(ν−1)+t−μ +

n−ν∑
λ=1

Cr,t,λ(x)

(kxν)r
yn−ν−λ.



A14. Runge’s theorem about Diophantine equations 97

Proof. We define the polynomials Br,t,μ, Cr,t,λ by induction on r as follows

t+ν−1∑
μ=0

B1,t,μ(X)Y
n−1+t−μ +

n−ν∑
λ=1

C1,t,λ(X)Y
n−ν−λ

= −Y t(f (X, Y )− kXνYn−ν) := −
n−1∑
j=0

Aj(X)Y
n−1−j+t

and

Br+1,t,μ = −
∑
h+j=μ

r(ν−1)+t�h�0
n>j�0

Br,t,hAj (μ � (r + 1)(ν − 1)+ t),(8)

Cr+1,t,λ = kXνCr,t,λ −
∑

h+j=(r+1)(ν−1)+t+λ
r(ν−1)+t�h�0

n>j�0

Br,t,hAj (1 � λ � n− ν).(9)

All assertions of the lemma follow by induction on r .
Indeed, we have

B1,t,μ =
{
−Aμ if 0 � μ � min{n− 1, t + ν − 1},
0 otherwise,

hence

degB1,t,μ � degAμ � μ,
‖B1,t,μ‖ � ‖Aμ‖ � ‖f ‖

and by (8)

degBr+1,t,μ � max
h+j=μ{degBr,t,h + degAj } � max

h+j=μ{h+ j} = μ,
‖Br+1,t,μ‖ � n max

h+j=μ ‖Br,t,hAj‖ � n2‖f ‖max
h�μ

‖Br,t,h‖
� n2 · n2(r−1)‖f ‖r+1 = n2r‖f ‖r+1.

Similarly

C1,t,λ =
{
−Aν+λ+t−1 if 1 � λ � n− ν − t,
0 otherwise,

hence (6) and (7) follow from (9) by induction on r . Indeed, these formulae are true for
r = 1 and assuming that (6), (7) hold for a fixed r we find from (4), (5) and (9)

degCr+1,t,λ � max
{
ν + degCr,t,λ, (r + 1)(ν − 1)+ t + λ}

� max
{
ν(r + 1)+ λ+ t − 1, (r + 1)(ν − 1)+ t + λ}

= ν(r + 1)+ λ+ t − 1,
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‖Cr+1,t,λ‖ � k‖Cr,t,λ‖ + n max
h+j=(r+1)(ν−1)+t+λ ‖Bh,r,tAj‖

� k · 2n2(r−1)‖f ‖r + n2‖f ‖ max
h�(r+1)(ν−1)+t+λ ‖Bh,r,t‖c

� 2n2(r−1)‖f ‖r+1 + n2‖f ‖n2(r−1)‖f ‖r

�
(
n2r + 2n2(r−1))‖f ‖r+1

� 2n2r‖f ‖r+1.

The remaining assertion of the lemma is true by definition of B1,t,μ, C1,t,λ for r = 1 and
assuming its truth for a fixed r we infer by (8) and (9) from f (x, y) = 0

yn−ν+t =
r(ν−1)+t∑
μ=0

Br,t,μ(x)

(kxν)r
yn−1+(r−1)(ν−1)+t−μ

+
n−ν∑
λ=1

Cr,t,λ(x)

(kxν)r
yn−ν−λ =

r(ν−1)+t∑
μ=0

Br,t,μ(x)

(kxν)r
y(ν−1)r+t−μ

c

·
(
−
n−1∑
j=0

Aj(x)

kxν
yn−1−j

)
+
n−ν∑
λ=1

Cr,t,λ(x)

(kxν)r
yn−ν−λ

= −
(r+1)(ν−1)+t∑

μ=0

yn−1+r(ν−1)+t−μ

(kxν)r+1

∑
h+j=μ
0�j<n

0�h�r(ν−1)+t

Br,t,h(x)Aj (x)

c

−
n−ν∑
λ=1

∑
h+j=(r+1)(ν−1)+t+λ

Br,t,h(x)Aj (x)
yn−ν−λ

(kxν)r+1 +
n−ν∑
λ=1

Cr,t,λ(x)

(kxν)r+1 kx
ν

c

=
(r+1)(ν−1)+t∑

μ=0

Br+1,t,μ(x)

(kxν)r+1 yn−1+r(ν−1)+t−μ

+
n−ν∑
λ=1

Cr+1,t,λ(x)

(kxν)r+1 yn−ν−λ.

The inductive proof is complete. ��

Lemma 3. For all integers n > ν > 0, k �= 0 and every polynomial f ∈ Z[X, Y ] with the
leading form equal to kXνYn−ν there exists a polynomial F ∈ Z[X, Y ] with the following
properties

(10) the leading form of F is a monomial in Y,

(11) degX F < degY F < n
2,c

(12) ‖F‖ < (n2‖f ‖)2n2
.

(13) If x, y ∈ Z, |x| � |y| and

(131) f (x, y) = 0

then either F(x, y) = 0 or

|x| < (n2‖f ‖)2n3
.
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Proof. By Lemma 2 with r = n− ν + t (131) implies for x �= 0

(14)

yn−ν+t =
(n−ν+t)(ν−1)+t∑

μ=0

Bn−ν+t,t,μ(x)
(kxν)n−ν+t

yn−1+(n−ν+t−1)(ν−1)+t−μ

+
n−ν∑
λ=1

Cn−ν+t,t,λ(x)
(kxν)n−ν+t

yn−ν−λ.
c

Now let us write

(15) Cn−ν+t,t,λ = Dt,λXν(n−ν+t) + Et,λXν(n−ν+t)−n+ν+λ+1 + Ft,λ,
where

(16)

Dt,λ, Et,λ, Ft,λ ∈ Z[X],
degEt,λ < n− ν − λ− 1 if λ < n− ν − 1, Et,n−ν−1 = Et,n−ν = 0,

degFt,λ < ν(n− ν + t)− n+ min{λ+ ν + 1, n}.
It follows by (6) that

(17) degDt,λ � λ+ t − 1.

We have from (14)

(ky)n−ν+t =
(n−ν+t)(ν−1)+t∑

μ=0

Bn−ν+t,t,μ(x)
xν(n−ν+t)

yν(n−ν+t)−μ
c

+
n−ν∑
λ=1

Dt,λ(x)y
n−ν−λ +

n−ν∑
λ=1

Et,λ(x)

xn−ν−λ−1 y
n−ν−λ(18)

+
n−ν∑
λ=1

Ft,λ(x)

xν(n−ν+t)
yn−ν−λ.

For n− ν � 3 let us denote all the quotients ys/xt , where 0 < t < s � n− ν − 1 in
whatever order by Θ1, . . . , ΘN , where N = (n−ν−1

2

)
and let

(19)
n−ν∑
λ=1

Et,λ(x)

xn−ν−λ−1 y
n−ν−λ =

N∑
j=1

at,jΘj .

c

By (16) we have at,j ∈ Z, by (15) and Lemma 2

(20) |at,j | < 2n2(n−ν+t−1)‖f ‖n−ν+t .
By virtue of the Bombieri-Vaaler theorem [2] there exists an integer solution
[C0, C1, . . . , C2N−1] of the system of equations

(21)
2N−1∑
t=0

Ctat,j = 0 (1 � j � N)
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satisfying the condition

0 < max
0�t<2N

|Ct | � 2N√
detAAt ,

whereA is a submatrix of the maximal rank of (at,j )0�t<2N
1�j�N

. Using (20) and the generalized

Hadamard inequality (cf. [2], p. 16) we find

(22)
max

0�t<2N
|Ct | �

√√√√2N−1∑
t=0

4n4(n−ν+t−1)‖f ‖2(n−ν+t)

� 23/2n2(n−ν+2N−2)‖f ‖n−ν+2N−1 �
(
n2‖f ‖)n2

.c

For n− ν � 2 we take N = 1
2 , C0 = 1, so that (22) still holds.

From (18), (19) and (21) we obtain

2N−1∑
t=0

Ct(ky)
n−ν+t =

2N−1∑
t=0

Ct

(n−ν+t)(ν−1)+t∑
μ=0

Bn−ν+t,t,μ(x)
xν(n−ν+t)

yν(n−ν+t)−μ

+
2N−1∑
t=0

Ct

n−ν∑
λ=1

Dt,λ(x)y
n−ν−λ

+
2N−1∑
t=0

Ct

n−ν∑
λ=1

Ft,λ(x)

xν(n−ν+t)
yn−ν−λ.

If y �= 0 and

|x| > |y|
2N−1∑
t=0

|Ct |

·
{(n−ν+t)(ν−1)+t∑

μ=0

(μ+ 1)‖Bn−ν+t,t,μ‖ +
n−ν∑
λ=1

ν(n− ν + t)‖Ft,λ‖
}

then the sum of the first and of the third term on the right hand side above is in absolute
value less than 1, and since the second term is an integer and so is the left hand side, we
obtain

(23)
2N−1∑
t=0

Ct(ky)
n−ν+t =

2N−1∑
t=0

Ct

n−ν∑
λ=1

Dt,λ(x)y
n−ν−λ.

Therefore we take

(24) F = Y
2N−1∑
t=0

Ct(kY )
n−ν+t − Y

n−ν∑
λ=1

(2N−1∑
t=0

CtDt,λ(X)

)
Yn−ν−λ.
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By (16) F ∈ Z[X, Y ]. Let T be the greatest t < 2N such that Ct �= 0. Then by (17)

deg
2N−1∑
t=0

Ct(kY )
n−ν+t = n− ν + T > deg

n−ν∑
λ=1

(2N−1∑
t=0

CtDt,λ(X)

)
Yn−ν−λ

hence (10) holds. Besides

degX F < degY F � n− ν + 2N < n2,

while by (7), (15) and (22)

‖F‖ � max
{

max
0�t<N

|Ct | · kn−ν+2N−1,

2N−1∑
t=0

|Ct |max
λ

‖Dt,λ‖
}

c

�
(
n2‖f ‖)n2

max
{
kn−ν+2N−1, 2

2N−1∑
t=0

n2(n−ν+t−1)‖f ‖n−ν+t
}

�
(
n2‖f ‖)n2

4n2(n−ν+2N−2)‖f ‖n−ν+2N−1 �
(
n2‖f ‖)2n2

,

which gives (11) and (12).
If (131) holds then by (23) and (24) either F(x, y) = 0 or

|x| � |y|
2N−1∑
t=0

|Ct |

·
{(n−ν+t)(ν−1)+t∑

μ=0

(μ+ 1)‖Bn−ν+t,t,μ‖ +
n−ν∑
λ=1

ν(n− ν + t)‖Ft,λ‖
}
.

The latter relation implies by (5), (7), (15) and (22)

|x| � |y| · (n2‖f ‖)n2
2N−1∑
t=0

{(n−ν+t)(ν−1)+t∑
μ=0

(μ+ 1)n2(n−ν+t−1)‖f ‖n−ν+t

+ (n− ν)ν(n− ν + t) · 2n2(n−ν+t−1)‖f ‖n−ν+t
}
.

Now we use the principle that the sum of a series growing quicker than a geometric
progression with ratio 2 does not exceed the last term taken twice, and obtain

|x| � |y| · (n2‖f ‖)n2
2
{((n− ν + 2N − 1)(ν − 1)+ 2N + 1

2

)
n2(n−ν+2N−2)

· ‖f ‖n−ν+2N−1 + (n− ν)ν(n− ν + 2N − 1)

· 2n2(n−ν+2N−2)‖f ‖n−ν+2N−1
}

� |y| · (n2‖f ‖)n2
2
{n6

2
n2n2−10‖f ‖n2 + n

4

2
n2n2−10‖f ‖n2

}
� |y| · (n2‖f ‖)n2 := B|y|.
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If |x| � |y| we infer from the equation (131) that

|x|n � Bn−ν |k| |x|ν |y|n−ν = Bn−ν |f (x, y)− kxνyn−ν |
� Bn−ν

(
n+ 1

2

)
‖f ‖ |x|n−1,

hence

|x| �
(
n+ 1

2

)
Bn−ν‖f ‖ <

(
n+ 1

2

)
‖f ‖(n2‖f ‖)2n2(n−1)

�
(
n2‖f ‖)2n3

. ��

Remark 1. Although the general idea is the same, Skolem [20] constructs the polynomialF
differently. In his argument the proof is lacking, that the number C0 + . . .+CN occurring
in his formula (9) is different from zero.

Lemma 4. For every irreducible polynomial f ∈ Z[X, Y ] with the leading form equal to
kXνYn−ν (n > ν > 0) all integral solutions of the equation f (x, y) = 0 satisfy

max
{|x|, |y|} �

(
n2‖f ‖)2n3

.

Proof. In view of symmetry it is permissible to assume that |x| � |y|. LetF be a polynomial
with properties specified in Lemma 3. Since f is irreducible we have either f |F or
(f, F ) = 1. The former is impossible by (10), since the leading form of f does not divide
the leading form of F .

Therefore (f, F ) = 1 and by Lemma 1 and (11) the conditions f (x, y) = 0,F(x, y) =
0 imply

|x| �
(‖f ‖n3/2)n2(‖F‖n3)n−1

.

However by (12)

‖F‖ < (n2‖f ‖)2n2
.

Hence

|x| � n4n3− 5
2n

2+3n−3‖f ‖2n3−n2 �
(
n2‖f ‖)2n3

.

By (13) if f (x, y) = 0, F(x, y) �= 0 and |y| � |x| then

|x| �
(
n2‖f ‖)2n3

.

Hence in both cases

|x| �
(
n2‖f ‖)2n3

. ��

Remark 2. The example of the equation xyn−1 − t (x + y)n−1 = 0 with a solution x =
t (t + 1)n−1, y = (t + 1)n−1 shows that the exponent 2n3 in the lemma cannot be lowered
below n.



A14. Runge’s theorem about Diophantine equations 103

Lemma 5. For the resultant R(a1, a2, a3) of homogeneous polynomials Fi(x1, x2, x3)

(i = 1, 2, 3) of degrees l1 > 1, l2 � 1, l3 � 1 and with indeterminate coefficient vectors
a1, a2, a3, respectively, the following inequality holds

(25) ‖R‖1 � (l1 + l2 + l3)l1(18l1l2+7l22+7l23+36l2l3)/8.

Proof. The resultantR is a polynomial with integral coefficients dividing the determinantD
described on p. 7 of [8], the elements of which are either zeros or components of the vectors
a1, a2, a3.D is of order

(
l1+l2+l3

2

)
, hence the number of terms in its expansion is

(
l1+l2+l3

2

)!
and we have

(26) ‖D‖1 �
(
l1 + l2 + l3

2

)
! � (l1 + l2 + l3)(l1+l2+l3)2 .

It follows from the construction of the determinant D that it is homogeneous of degree(
l2+l3

2

)
in the components of a1 and homogeneous of degree l1(l1+2l3−1)

2 in the components
of a2.

Now D = AR, where A ∈ Z[b1, b2] and bi is the coefficient vector of Fi(x1, x2, 0)
(i = 1, 2), see [8], p. 11. Clearly, bi has li + 1 components and thus

(27)
s =

2∑
i=1

∑
b

degb D � (l1 + 1)

(
l2 + l3

2

)
+ (l2 + 1)

l1(l1 + 2l3 − 1)

2

<
1

2

(
l21 l2 + l1l22 + l1l23 + 4l1l2l3 + l21 + l22 + l23 − 2l1l2 + l1l3 + 2l2l3

)
,

where b in the inner sum runs through all the components of bi . It follows from a theorem
of Mahler [9] that

‖A‖1‖R‖1 � ‖D‖1 · 2s � ‖D‖1 · (l1 + l2 + l3)s/2
and since ‖A‖1 � 1, l1 > 1, we obtain (25) from (26) and (27). ��

Remark 3. A better estimate for ‖R‖1 would follow from the expression for the resultant
described in §7 of [7]. However this expression is given without a complete proof, therefore
we do not use it.

Lemma 6. Let c ∈ C \ {0}, g, h ∈ C[X, Y ] \ C, (g, h) = 1, α, β, γ, δ ∈ N, g0 =
g(Xα, Y β), h0 = h(Xα, Y β) be homogeneous of degrees p0, q0 respectively, p = p0

(p0,q0)
,

q = q0
(p0,q0)

.

Then the resultant R0 of the forms cgγ0 h
δ
0, gq0 − ΞZp0q , hp0 − HZq0p equals

c1Ξ
γp0q0pHδp0q0q , where c1 ∈ C \ {0}.

Proof. From 5.11.2, 5.7 and 5.9 of [5] we obtain successively

R0 = cpqp0q0 Res
(
g0, g

q
0 −ΞZp0q, h

p
0 −HZq0p

)γ
· Res

(
h0, g

q
0 −ΞZp0q, h

p
0 −HZq0p)δ

= cpqp0q0 Res
(
g0,−ΞZp0q, h

p
0 −HZq0p

)γ
· Res

(
h0, g

q
0 −ΞZp0q,−HZq0p)δ.
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Since p0q = q0p we can apply 5.9 of [5] again and obtain using 5.7, 5.8, 5.11.2 of [5]

R0 = cpqp0q0 Res(g0,−ΞZp0q, h
p
0 )
γ Res(h0, g

q
0 ,−HZq0p)δ

= ±cpqp0q0 Res(ΞZp0q, g0, h0)
γp Res(HZq0p, g0, h0)

δq .c

Taking now in the Laplace formula ([5], 5.10)

f1 = ΞZp0q, f2 = g0, f3 = h0, X1 = Z, X2 = X, X3 = Y,
we find

Res(ΞZp0q, g0, h0) = Res(ΞZp0q)p0q0 Res(g0, h0)
p0q = Ξp0q0 Res(g0, h0)

p0q .c

Similarly

Res(HZq0p, g0, h0) = Hp0q0 Res(g0, h0)
q0p.

Hence

R0 = c1Ξγpp0q0Hδqp0q0 ,

where

c1 = ±cpqp0q0 Res(g0, h0)
γpqp0+δpqq0 .

Since (g, h) = 1 we have, e.g. by Lemma 1 on p. 110 of [17], (g0, h0) = 1, hence
Res(g0, h0) �= 0 and c1 �= 0. ��

Lemma 7. LetX have weight α, Y the weight β, f ∈ Z[X, Y ] and let the part of f of the
greatest weight be equal to cgγ hδ , where α, β, γ, δ ∈ N, c �= 0, g, h ∈ Z[X, Y ] \ Z have
the weight p0, q0 and (g, h) = 1. Put p = p0

(p0,q0)
, q = q0

(p0,q0)
. Then the resultant R of the

polynomials f (Xα, Y β), g(Xα, Y β)q −Ξ , h(Xα, Y β)p −H has the following properties

the leading form of R equals c1Ξ
γpp0q0Hδqp0q0 , where c1 �= 0,(28)

‖R‖1 � (γp0 + δq0 + p0q + q0p)
(γp0+δq0)p0q0(9γp+9δq+25pq)/4

· ‖f ‖pqp0q0‖gq‖(γp0+δq0)pq0‖hp‖(γp0+δq0)p0q .
(29)

Proof. R equals the resultant of the forms

Zγp0+δq0f
(
(X/Z)α, (Y/Z)β

)
, g(Xα, Y β)q −ΞZp0q, h(Xα, Y β)p −HZq0p.

We have

(30) R =
∑
a(ε, ζ , η)

I∏
i=1

c
εi
i

J∏
j=1

d
ζj
j Ξ

ζJ+1

K∏
k=1

e
ηk
k H

ηK+1 ,

c

where c1, . . . , cI , d1, . . . , dJ , e1, . . . , eK are the coefficients of f, gq, hp, respectively (in
whatever order), ε = [ε1, . . . , εI ], ζ = [ζ1, . . . , ζJ+1], η = [η1, . . . , ηK+1] run through
NI0,N

J+1
0 ,NK+1

0 and a(ε, ζ , η) �= 0 impliesc

(31)
I∑
i=1

εi = pqp0q0,

J+1∑
i=1

ζj = (γp0 + δq0)pq0,

K+1∑
k=1

ηj = (γp0 + δq0)qp0
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(see [5], 2.3, (ii) with d1 = γp0 + δq0, d2 = qp0, d3 = pq0),

(32)
I∑
i=1

εiw(Ci)+ ζJ+1qp0 + ηK+1pq0 = (γp0 + δq0)pqp0q0

(see [5], 5.13.2), where w(ci) is the exponent of the power of Z by which ci stands
multiplied in Zγp0+δq0f

(
(X/Z)α, (Y/Z)β

)
. By convention, we take 00 = 1. We have

R =
∑

1
+
∑

2
,

where
∑

1,
∑

2 are taken over all vectors ε, ζ , η satisfying the condition
I∑
i=1
εiw(ci) = 0

and
I∑
i=1
εiw(ci) > 0, respectively.

However, by Lemma 6 ∑
1
= R0 = c1Ξγpp0q0Hδqp0q0 .

On the other hand, by (30) and (32) the degree of
∑

2 with respect to Ξ and H is less
than (γp+ δq)p0q0. (Note that qp0 = pq0.) Hence (28) holds. As to (29), it follows from
Lemma 5, (30), (31) and the inequalities

|ci | � ‖f ‖ (1 � i � I ),
|dj | � ‖gq‖ (1 � j � J ),
|ek| � ‖hp‖ (1 � k � K). ��

Lemma 8. Let f be irreducible. Under the assumptions of Lemma 7 there exists an
irreducible polynomial P ∈ Z[Ξ,H ] with the following properties

P(gq, hp) ≡ 0 (mod f );(33)

degP �
⌈
γp0 + δq0

αβ

⌉⌈
p0q

αβ

⌉
αβ = �;(34)

the leading form of P is of the type kΞμHν, where k �= 0, μ > 0, ν > 0;(35)

‖P ‖ � (γp0 + δq0 + 2p0q)
�(9γp0+9δq0+25p0q)/4‖f ‖�pq/(γp+δq)‖gq‖�‖hp‖�.(36)

Remark 4. Skolem only outlines for γ = δ = 1 a proof of the existence of an irreducible
polynomial P with the properties (33) and (35). No estimates for its degree or height are
given.

Proof. Using Proposition 7.2.1(i) of [5] with n = 2,

m1 = α, m2 = β, P1 = f, P2 = gq, P3 = hp,c

d1 =
⌈
γp0 + δq0

αβ

⌉
αβ, d2 = d3 =

⌈
p0q

αβ

⌉
αβ
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we infer the existence of a non-zero polynomial Φ ∈ Z[T1, T2, T3] of the typec

Φ =
∑

d1α1+d2α2+d3α3�d1d2d3/(αβ)

cα1α2α3T
α1
1 T

α2
2 T

α3
3 ,

such that

(37) Φ(f, gq, hp) = 0.

Let α0 be the least nonnegative integer such that for some α2, α3 we have cα0α2α3 �= 0.
Put

Q(T2, T3) =
∑

d1α1+d2α2+d3α3�d1d2d3/(αβ)

cα0α2α3T
α2

2 T
α3
3 .

It follows from (37) and the choice of α0 that

Q(gq, hp) ≡ 0 (mod f ).

Moreover, since d2 = d3 we have

degQ � d1d2

αβ
= �.

Since f is irreducible there exists an irreducible factor P ∈ Z[Ξ,H ] ofQ such that (33)
and (34) hold. Moreover, we may assume that P is primitive.

In order to prove (35) and (36) suppose that for some ξ, η ∈ C we have R(ξ, η) = 0,
whereR is the resultant described in Lemma 7. By the fundamental property of the resultant
(see [8], p. 13) there exist x, y, z ∈ C not all zero such that

zγp0+δq0f

((x
z

)α
,
(y
z

)β) = 0,

g(xα, yβ)q − ξzp0q = 0,

h(xα, yβ)− ηzq0p = 0.

However z = 0 is impossible, since it would give g(xα, yβ) = h(xα, yβ) = 0 and
since g(Xβ, Y α), h(Xβ, Y α) are homogeneous,

(
g(Xα, Y β), h(Xα, Y β)

) �= 1, hence
(g, h) �= 1, contrary to the assumption. Hence z �= 0 and taking x1 = (x/z)α , y1 = (y/z)β
we obtain

f (x1, y1) = g(x1, y1)
q − ξ = h(x1, y1)

p − η = 0.

From (33) it follows that P(ξ, η) = 0. Therefore, by the Hilbert-Netto theorem ([8], p. 48)
we have for a positive integer m and a polynomial S ∈ Q[Ξ,H ]

Pm = RS.
It follows from the irreducibility of P that for a positive integer μ and a c2 ∈ Q

(38) R = c2Pμ,
which together with (28) implies (35).
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However, since R ∈ Z[Ξ,H ] and P is primitive, we have c2 ∈ Z. Comparing the
degrees on both sides of (38) we obtain from (28) and (34)

(39)
1

μ
� �

(γp + δq)p0q0
.

On the other hand,

‖P ‖μ � max|ξ |=1
|η|=1

|P(ξ, η)|μ = max|ξ |=1
|η|=1

∣∣∣ 1

c2
R(ξ, η)

∣∣∣ � ‖R‖1,

hence by (39)

‖P ‖ � ‖R‖1/μ
1 � ‖R‖�/((γp+δq)p0q0)

1 .

Together with (29) this gives (36). ��

Lemma 9. In the special case of Lemma 8, where g = X, h = Y , (α, β) = 1, there is anc

irreducible polynomial P ∈ Z[X, Y ] satisfying (33), (35) and such that

degP � αγ + βδ,
‖P ‖ �

(
(m+ 1)(n+ 1)‖f ‖)αβ, m = degX f, n = degY f.

Proof. Consider the polynomial

F(X, Y ) =
β−1∏
i=0

α−1∏
j=0

f (ζ iβX, ζ
j
α Y ) ∈ Z[ζa, ζβ,X, Y ],

c

where ζα, ζβ are primitive roots of unity of order α, β, respectively. Since F is invariant
with respect to the substitutions X→ ζβX, Y → ζαY we have F ∈ Q(Xβ, Y α) and

F = Q(Xβ, Yα), whereQ ∈ Z[Ξ,H ].
LetQ0 be the leading form ofQ. If F0 is the part of F of the greatest weight, we have

F0(X, Y ) = Q0(X
β, Y α),

hence

F0(X, Y ) =
β−1∏
i=0

α−1∏
j=0

c(ζ iβX)
γ (ζ jα Y )

δ = ±cαβXαβγ Y αβδ.
c

On the other hand

‖Q‖1 = ‖F‖1 �
(
(m+ 1)(n+ 1)‖f ‖)αβ.

Now, let P ∈ Z[X, Y ] be an irreducible factor of Q such that f |P(Xβ, Y α), i.e. (33)
holds. We may assume without loss of generality that P is primitive. Since f |P(Xβ, Y α)
we have

F(X, Y ) |P(Xβ, Y α)αβ, thusQ |Pαβ.
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Since P is irreducible we haveQ = c0Pμ (μ ∈ N) and since P is primitive c0 ∈ Z. Hencec

Q0 = c0Pμ0 , where P0 is the leading form of P and (35) follows. Moreoverc

degP � degQ0 = αγ + βδ,
‖P ‖ � max|ξ |=|η|=1

∣∣P(ξ, η)∣∣ � max|ξ |=|η|=1

∣∣Q(ξ, η)∣∣ � ‖Q‖1

and the lemma follows. ��

Lemma 10. If F ∈ Z[X, Y ] is isobaric with respect to weights α, β, (α, β) = 1 and
(F,XY) = 1, then there exists a form F ∈ Z[X, Y ] such that

F(X, Y ) = F(Xβ, Y α).

Proof. IfF ∈ Z we takeF = F . IfF /∈ Z, since (F,XY) = 1 we haveF =
k∑
j=0
cjX

aj Y bj ,

where the vectors [aj , bj ] ∈ N2
0 are distinct, cj ∈ Z\{0} and, say, a0 �= 0, b0 = 0; ak = 0,

bk �= 0.
Since F is isobaric with respect to weights α, β we have

ajα + bjβ = a0α (0 � j � k)

and in particular bkβ = a0α. Since (α, β) = 1 we obtain a0 ≡ 0 (mod β) and from the
equation above

aj ≡ 0 (mod β), bj ≡ 0 (mod α) (0 � j � k).

The lemma follows with

F(X, Y ) =
k∑
j=0

cjX
aj /βY bj /α. ��

Lemma 11. If G1,G2 ∈ Z[X, Y ] \ Z, G1, G2 are homogeneous of degree r and
(G1,G2) = 1 we have for all complex x, y

(40) max
{|G1(x, y)|, |G2(x, y)|

}
�
(
8r2‖G1‖ ‖G2‖

)−r max
{|x|r , |y|r}.

Proof. We have
(
G1(X, 1),G2(X, 1)

) = 1, hence by the result of Mahler [10] for allc

complex z

max
{|G1(z, 1)|, |G2(z, 1)|

}
�
(
2‖G1‖1‖G2‖1

)−r
c

�
(
2(r + 1)2‖G1‖ ‖G2‖

)−r
�
(
8r2‖G1‖ ‖G2‖

)−r
.

Thus for all complex x and y

max
{|G1(x, y)|, |G2(x, y)|

}
�
(
8r2‖G1‖ ‖G2‖

)−r |y|r
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and by symmetry

max
{|G1(x, y)|, |G2(x, y)|

}
�
(
8r2‖G1‖ ‖G2‖

)−r |x|r ,c

which gives (40). ��

Proof of the theorem. If (C1) is not satisfied by the variableX, let the term of f containing
the highest power of X occurring in f and the highest power of Y besides be cXγ Y δ ,
where γ > 0, δ > 0. Let us give X the weight α = n− δ + 1, Y the weight β = 1. Since
Xγ Y δ has the weight greater than Xγ−1Yn, cXγ Y δ is the part of the greatest weight and
Lemma 9 is applicable. We have

p = p0 = α, q = q0 = 1.

For the polynomial P the existence of which is ensured by Lemma 9 we obtain from
f (x, y) = 0 and (33)

(41) P(x, yα) = 0.

Moreover, by Lemma 9

degP � αγ + δ � m(n− δ + 1)+ δ � mn+ 1,

‖P ‖ �
(
(m+ 1)(n+ 1)‖f ‖)α.

Since by (35) P satisfies the assumption of Lemma 4 we have from that lemma and (41)

max
{|x|, |yα|} �

(
(mn+ 1)2(m+ 1)α(n+ 1)α‖f ‖α)2(mn−mδ+m+δ)3 ,

which implies the inequality for |x| in (i). In order to prove the inequality for |y| let us
observe that for m = 1 a stronger inequality, namely

|y| < n(‖f ‖ + 1
)2n

follows on reversing the role of x and y and by the argument used by Hilliker and Straus
in the proof of their false Theorem 3.3 (the argument is sound only it does not prove what
is asserted in the theorem). For m > 1 we have

|y| �
(
(mn+ 1)2/(n−δ+1)(m+ 1)(n+ 1)‖f ‖

)2(mn−mδ+m+δ)3 := ϕ(δ).

Now, an easy calculation shows that in the interval (1, n− 1)c

ϕ′′(δ) > 2ϕ′(δ)
mn−mδ +m+ δ ,

hence ϕ(δ) has no local maximum in this interval and

|y| � max
1�δ�n,δ∈N

ϕ(δ) = max{ϕ(1), ϕ(max{1, n− 1}), ϕ(n)} = ϕ(1),
c

which completes the proof of (i).
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If (C1) holds, but (C2) does not, we give X the weight α = n
(m,n)

, Y the weight
β = m

(m,n)
. The part of f of the greatest weight is of the form

XεY ζ f1(X, Y ),

where ε > 0, ζ > 0,
(
f1(X, Y ),XY

) = 1 and f1 is isobaric. By Lemma 10

(42) f1 = f̄1(X
β, Y α),

where f̄1 ∈ Z[X, Y ] is a form of degree k1, say. By (C1) n > ζ + degY f1 > αk1, hencec

(43) k1 < (m, n).

Lemma 8 is applicable with

g = X, h = Y ζ f1(X, Y ), γ = ε < m, δ = 1.

We have

(44) p0 = α, q0 = β(ζ + αk1) < βn, p = α

(α, ζ )
, q = β (ζ + αk1)

(α, ζ )
, q(α, ζ ) � β.

For the polynomial P the existence of which is ensured by Lemma 8 we obtain from
f (x, y) = 0 and (33)

(45) P
(
xq, yζpf1(x, y)

p
) = 0.

Moreover, by (34) and (36)

(46) degP � � =
⌈
εα + q0

αβ

⌉⌈
αq

αβ

⌉
αβ � 2mn

(m, n)
min
{ q
β
+ 1, n

}
,

(47) ‖P ‖ � (εα + q0 + 2αq0)
�(9εα+9q0+25αq0)/4‖f ‖2αqmn2((m,n)(εα+q0))

−1‖hp‖�.c

However

εα + q0 + 2αq0 � 2mn

(m, n)
+ 2mn2

(m, n)2
� 4mn2

(m, n)2
,(48)

�(9εα + 9q0 + 25αq0) � 2mn

(m, n)

( q
β
+ 1
)
(9εα + 9q0 + 25αq0)

� 2mn

(m, n)
q
(9εα

β
+ 9n+ 25αn+ 9εα

q
+ 9α + 25α2

)
� 172mn3

(m, n)2
q.

(49)

Since (C2) does not hold

(50) (m, n)(εα + q0) > mn,
2αqmn2

(m, n)(εα + q0)
� 2n2

(m, n)
q.

By (42) and (43) the number of non-zero coefficients of f1 does not exceed (m, n), thus
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by (44)

(51)
‖hp‖ = ‖f p1 ‖ � (m, n)p−1‖f1‖p �

(
(m, n)‖f ‖)α(α,ζ )−1

�
(
(m, n)‖f ‖)min{α,αq/β}

.

Now, by (46)

min
{
α,
α

β
q
}
� � 2mn

(m, n)
· 2αq

β
= 4n2

(m, n)
q,

hence by (47)–(51)

‖P ‖ �
( 4mn2

(m, n)2

)43mn3(m,n)−2q

(m, n)4n
2(m,n)−1q‖f ‖6n2(m,n)−1q

� (4mn2)43mn3(m,n)−2q‖f ‖6n2(m,n)−1q .

Since by (34) P satisfies the assumptions of Lemma 4 we obtain from that lemma and (45)

(52)
max
{|xq |, |yζpf1(x, y)

p|} �
(
�2‖P ‖)2�3

�
( 4m2n4

(m, n)2
(4mn2)43mn3(m,n)−2q‖f ‖6n2(m,n)−1q

)16m3n6(m,n)−3

.

On the other hand,

G1 = Xq/β and G2 = Y ζ/(α,ζ )f̄1(X, Y )
α/(α,ζ )

c

are homogeneous polynomials of the same degree q/β � n and by (42)

xq = G1(x
β), yζpf1(x, y)

p = G2(x
β, yα).

Moreover, we have ‖G1‖ = 1 and by (51)

‖G2‖ = ‖f p1 ‖ �
(
(m, n)‖f ‖)n(m,n)−1

.c

Hence, by Lemma 11

max
{|xq |, |yζpf1(x, y)

p|} �
(

8n2((m, n)‖f ‖)n(m,n)−1)−q/β
max
{|xβ |q/β, |yα|q/β}.

On comparing this with (52) we obtain

max
{|xβ |, |yα|} �

(
(4mn2)8mn(m,n)

−1‖f ‖)96m4n8(m,n)−5+n(m,n)−1
.

By symmetry

max
{|xβ |, |yα|} �

(
(4m2n)8mn(m,n)

−1‖f ‖)96m8n4(m,n)−5+m(m,n)−1
.c

Hence

max
{|xβ |, |yα|} �

(
(4mnd0)

8mn(m,n)−1‖f ‖)96m4n4d4
0 (m,n)

−5+d0(m,n)
−1
,

which implies (ii).
Assume now that f satisfies (C1) and (C2), but does not satisfy (C3). Let X have the

weight α = n
(m,n)

, Y the weight β = m
(m,n)

and let the part of f of the greatest weight
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be g1g2, where gi ∈ Z[X, Y ] \Z, (g1, g2) = 1. Since g1g2 is isobaric so are g1, g2, more-
over by (C1)–(C2) we have (gi, XY ) = 1. Hence by Lemma 10 for suitable polynomials
ḡi ∈ Z[X, Y ] we have

(53) gi = ḡi (Xβ, Y α) (i = 1, 2),

where ḡi is homogeneous of degree, say, ki > 0. Clearly

(54) k1 + k2 = (m, n),
whence

(55) k1k2 � (m, n)2

4
.

Lemma 8 is applicable with g = g1, h = g2, γ = δ = 1. We have

p0 = k1
mn

(m, n)2
, q0 = k2

mn

(m, n)2
, p = k1

(k1, k2)
, q = k2

(k1, k2)
.

Put

r = k1k2

(k1, k2)
.

For the polynomial P the existence of which is ensured by Lemma 8 we obtain from
f (x, y) = 0 and (33)

(56) P
(
g1(x, y)

q, g2(x, y)
p
) = 0.

Moreover, by (34) and (36)

degP � � = �k1 + k2�
⌈
k1k2

(k1, k2)

⌉
mn

(m, n)2
= mn

(m, n)
r,

‖P ‖ � (p0 + q0 + 2p0q)
�(9p0+9q0+25p0q)/4‖f ‖�r(m,n)−1‖gq1‖�‖gp2 ‖�.

However, by (54) and (55)

p0 + q0 + 2p0q � mn

(m, n)
+ mn

2
� mn,

9p0 + 9q0 + 25p0q � 9mn

(m, n)
+ 25mn

4
� 43

4
mn,

hence

‖P ‖ � (mn) 43
16m

2n2(m,n)−1r‖f ‖mn(m,n)−2r2‖gq1‖mn(m,n)
−1r‖gp2 ‖mn(m,n)

−1r .

Since P by (35) satisfies the assumptions of Lemma 4 we have by that lemma and (56)

(57)

max
{|g1(x, y)

q |, |g2(x, y)
p|}

�
( m2n2

(m, n)2
r2(mn)

43
16
m2n2
(m,n)

r‖f ‖
mn

(m,n)2
r2

‖gq1‖
mn
(m,n)

r‖gp2 ‖
mn
(m,n)

r
) 2m3n3r3

(m,n)3 .
c

On the other hand, ḡq1 and ḡp2 are homogeneous polynomials of the same degree r . Hence
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by (53) and Lemma 11 with G1 = ḡq1 , G2 = ḡp2
max
{|g1(x, y)

q |, |g2(x, y)
p|} = max

{|ḡ1(x
β, yα)q |, |ḡ2(x

β, yα)p|}
�
(
8r2‖ḡq1‖ ‖ḡp2 ‖

)−r max
{|xβ |r , |yα|r},

which together with (57) gives

(58)

max
{|xβ |, |yα|} � 8r2‖ḡq1‖ ‖ḡp2 ‖

·
( m2n2

(m, n)2
32/3(mn)

43
16
m2n2
(m,n) ‖f ‖

mn

(m,n)2
r‖gq1‖

mn
(m,n) ‖gp2 ‖

mn
(m,n)

) 2m3n3

(m,n)3
r3

.
c

By (53) we have for every positive integer l

‖gli‖ = ‖ḡli‖ = ‖ḡi (X, 1)l‖ � (ki + 1)l−1‖ḡi (X, 1)‖l � (m, n)l−1‖ḡi (X, 1)‖l .
Moreover, since ‖ḡ1(X, 1)ḡ2(X, 1)‖ = ‖ḡ1ḡ2‖ = ‖g1g2‖ � ‖f ‖ we have by a lemma of
Gelfond ([3], p. 135)

‖ḡi‖ = ‖ḡi (X, 1)‖ � ek1+k2‖f ‖ = e(m,n)‖f ‖.
Hence

‖gq1‖ = ‖ḡq1‖ �
(
(m, n)e(m,n)‖f ‖)q(m, n)−1

‖gp2 ‖ = ‖ḡp2 ‖ �
(
(m, n)e(m,n)‖f ‖)p(m, n)−1

c

and (54), (55), (58) give

max
{|xβ |, |yα|} � 8

(m, n)2

16

(
(m, n)e(m,n)‖f ‖)(m,n)

c

·
(
m2n2

(m, n)2
32/3(mn)

43
16
m2n2
(m,n) ‖f ‖mn4 +mn((m, n)1− 2

(m,n) e(m,n)
)mn)m3n3(m,n)3

32

c

�
(
(mn)3mn(m,n)

−1‖f ‖) 5
128m

4n4(m,n)3+(m,n)
.

This implies (iii). ��

Proof of the corollary. For d = 2 the assumptions of (ii) are never satisfied and

max{|x|, |y|} �
(
46‖f ‖)82

<
(
45‖f ‖)250 in the case (iii).

It remains to consider the case (i). If the leading form of f is a monomial we have by
Lemma 4

max{|x|, |y|} �
(
42‖f ‖)128

<
(
45‖f ‖)250

.

If the leading form of f is not a monomial, it is equal either to aX2Y + bXY 2 or to
aXY + bY 2 or to aX2 + bXY (ab �= 0). In the first case (C1) is satisfied neither byX nor
by Y , hence

max{|x|, |y|} �
(
45‖f ‖)250

.
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In the second case m = 1, n = 2, hence

max{|x|, |y|} �
(
18‖f ‖)108

<
(
45‖f ‖)250

.

The third case is symmetric to the second.
For d > 2 of the three estimates

max{|x|, |y|} �
(
(d + 1)2(d2 + 1)2/d‖f ‖)2d(d2+1)3 in the case (i),

max{|x|, |y|} �
(
(4d3)8d

2‖f ‖)96d4(d−1)7+1 in the case (ii),

max{|x|, |y|} �
(
d6d2‖f ‖) 5

128 d
11+d in the case (iii)

the second is the worst. ��

Note added in proof. By using recent results of B. Dwork and A. J. van der Poorten,
which improve upon the work of W. Schmidt, P. G. Walsh has substantially sharpened
the estimates given on page 93. In most but not in all cases his results are better than our
Theorem. We also owe to him two corrections incorporated in the present paper. Walsh’s
paper is to appear in Acta Arithmetica(1).c
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On sums of three unit fractions
with polynomial denominators

To Professor Włodzimierz Staś on his 75th birthday

Abstract. The equation m/(ax + b) = 1/F1(x) + 1/F2(x) + 1/F3(x) is shown to be impossible
under some conditions on polynomials ax + b and F1, F2, F3.

A well known conjecture of Erdős and Straus [2] asserts that for every integer n > 1
the equation

4

n
= 1

x1
+ 1

x2
+ 1

x3

is solvable in positive integers x1, x2, x3. Sierpiński [10] has made an analogous conjecture
concerning 5/n and the writer has conjectured that for every positive integerm the equation

(1)
m

n
= 1

x1
+ 1

x2
+ 1

x3

is solvable in positive integers x1, x2, x3 for all integers n > n0(m) (see [10], p. 25). For
m � 12 one knows many identities

(2)
m

ax + b = 1

F1(x)
+ 1

F2(x)
+ 1

F3(x)
,

where a, b are integers, a > 0 and Fi are polynomials with integral coefficients and the
leading coefficients positive, see [1], [5], [7], [8], [11], Section 28.5. It could seem that a
proof of solvability of (2) for a fixed m and n > n0(m) could be obtained by producing a
finite set of identities of the form (2) with a fixed a and b running through the set of all
residues mod a. The theorems given below show that this is impossible.

Theorem 1. Let a, b be integers, a > 0, (a, b) = 1. If b is a quadratic residue mod a,
then there are no polynomials F1, F2, F3 in Z[x] with the leading coefficients positive,
satisfying (2) with m ≡ 0 mod 4.

Theorem 2. Let m, a, b be integers, a > 0, m > 3b > 0. There are no polynomials
F1, F2, F3 in Z[x] with the leading coefficients positive, satisfying (2).

Theorem 1 in the crucial casem = 4 has been quoted in the book [4] (earlier inaccurately
in [3]), but the proof has not been published before. The theorem is closely related to a
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result of Yamamoto [12] and the crucial lemma is a consequence of his work. Possibly,
Theorem 2 can be generalized as follows. Let k,m, a, b be positive integers, m > kb.
There are no polynomials F1, F2, . . . , Fk in Z[x] with the leading coefficients positive
such that

m

ax + b =
k∑
i=1

1

Fi(x)
.

Note that by a theorem of Sander [9] the above equation has only finitely many solutions
in polynomials Fi for fixed a, b,m and k.

Notation. For Ω ⊂ R[x] we shall denote by Ω+ the set of polynomials in Ω with the
leading coefficient positive.

For two polynomials A,B in Z[x], not both zero, we shall denote by (A,B) the
polynomialD ∈ Z[x]+ with the greatest possible degree and the greatest possible leading
coefficient such that A/D ∈ Z[x] and B/D ∈ Z[x].

Lemma 1. If A,B,C,D are in Z[x], (A,B) = 1 and A/B = C/D, then C = HA,
D = HB for an H ∈ Z[x]. If (C,D) = 1 then H = ±1.

Proof. This follows from Theorem 44 in [6], the so called Gauss’s lemma. ��

Lemma 2. The equations

(3) n2 = 4(cs − b∗)b∗r − s
and

(4) n2s = 4(cs − b∗)b∗r − 1

have no solutions in positive integers b∗, c, n, r, s.

Proof. This is a consequence of Theorem 2 in [12]: according to this theorem n2 does not
satisfy either of the two congruences

n2 ≡ −s (mod 4a∗b∗),(5)

n2s ≡ −1 (mod 4a∗b∗),(6)

where a∗, b∗, s are positive integers and s |a∗ + b∗, while just such congruences follow
from (3) and (4) with a∗ = cs − b∗. The impossibility of the congruences (5) and (6) is
established in [12] by evaluation of the Kronecker symbol (−s/ab); instead one can use
the Jacobi symbol as follows.

(3) gives n2 = (4b∗cr−1)s−4b∗2r , (4) gives (ns)2 = (4b∗crs−1)s−4b∗2rs, while
for e = 2αe0 > 0, e0 odd, we have by the reciprocity law ([6], Section 42)( −4b∗2e

4b∗es − 1

)
= −
( e0

4b∗es − 1

)
= −(−1)(e0−1)/2

(4b∗es − 1

e0

)
= −(−1)(e0−1)/2

(−1

e0

)
= −1. ��
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Proof of Theorem 1. It is clearly sufficient to prove the theorem for m = 4. Assume that
we have (2) with m = 4. Thus

4F1(x)F2(x)F3(x) = (ax + b)
(
F2(x)F3(x)+ F1(x)F3(x)+ F1(x)F2(x)

)
,

hence

F1(−b/a)F2(−b/a)F3(−b/a) = 0.

If we had Fi(−b/a) = 0 for each i � 3, then there would exist polynomials Gi ∈ Q[x]+
such that Fi(x) = (ax + b)Gi(x). Since (a, b) = 1 it follows from Gauss’s lemma that
Gi ∈ Z[x]+. Choosing an integer k such that (ak + b)G1(k)G2(k)G3(k) �= 0 we should
obtain

4 = 1

G1(k)
+ 1

G2(k)
+ 1

G3(k)
� 3, a contradiction.

Hence, up to a permutation of F1, F2, F3 there are two possibilities

F1(−b/a) = F2(−b/a) = 0 �= F3(−b/a),(7)

F1(−b/a) = 0 �= F2(−b/a)F3(−b/a).(8)

In the case (7)Fi(x) = (ax+b)Gi(x) (i = 1, 2),
(
F3(x), ax+b

) = 1, whereGi ∈ Z[x]+.
Let us put

D = (G1,G2), Gi = DHi (i = 1, 2),

C = (4DH1H2 −H1 −H2,DH1H2) = (H1 +H2,D),

D = CR, H1 +H2 = CS.
Hi, C,R, S are in Z[x]+ and we have (H1, H2) = 1, (RH1H2, S) = 1. By (2) withm = 4

ax + b
F3

= 4DH1H2 −H1 −H2

DH1H2
= 4RH1H2 − S

RH1H2
.

Since (ax+b, F3) = 1 = (4RH1H2 −S,RH1H2) and both F3 andRH1H2 are in Z[x]+,
it follows by Lemma 1 that

(9) ax + b = 4RH1H2 − S = 4(CS −H2)H2R − S.
Since b is a quadratic residue for a and C,H2, R, S are in Z[x]+ there exist integers k
and n such that

ak + b = n2 and b∗ = H2(k), c = C(k), r = R(k), s = S(k) are in Z+,

which in view of (9) contradicts Lemma 2.

Consider now the case (8). We have here

F1(x) = (ax + b)G1(x), Fi = DHi (i = 2, 3)

where G1 ∈ Z[x]+, D = (F2, F3), (H2, H3) = 1 and (DHi, ax + b) = 1 (i = 2, 3),
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Hi ∈ Z[x]+. Hence, by (2) with m = 4

(10)

4

ax + b = 1

(ax + b)G1
+ H2 +H3

DH2H3
,

DH2H3

ax + b = G1(H2 +H3)

4G1 − 1
.

Let us putC = (D,H2 +H3),D = CR,H2 +H3 = CS, so thatC,R, S are in Z[x]+.
Since (DH2H3, ax + b) = 1 we infer from Lemma 1 that 4G1 − 1 = (ax + b)H1, where
H1 ∈ Z[x]+. Hence, by (10),

RH2H3

S
= G1

H1
.

Since (RH2H3, S) = 1 = (G1, H1) and S and H1 are in Z[x]+ it follows from Lemma 1
that H1 = S, G1 = RH2H3 and

(11) (ax + b)S = 4G1 − 1 = 4RH2H3 − 1 = 4(CS −H2)H2R − 1.

Since b is a quadratic residue mod a and C,H2, R, S are in Z[x]+ there exist integers k
and n such that

ak + b = n2 and b∗ = H2(k), c = C(k), r = R(k), s = S(k) are in Z+,

which in view of (11) contradicts Lemma 2. ��

Proof of Theorem 2. If Fi(0) �= 0 for all i it follows from (2) on substituting x = 0 that

m

b
=

3∑
i=1

1

Fi(0)
� 3,

contrary to the assumption m > 3b.
If Fi(0) �= 0 for all but one i, it follows from (2) on taking the limit for x → 0

m

b
= ±∞,

a contradiction.
If Fi(0) = 0 for all i, it follows Fi(x) = xGi(x), Gi ∈ Z[x]+ and by (2)

mx

ax + b =
3∑
i=1

1

Gi(x)
.

When x → ∞ the terms on the left hand side are less than the limit m/a, the terms on
the right hand side are greater than or equal to the limit, which contradicts the equality.

Thus Fi(0) = 0 for exactly two i � 3 and we may assume without loss of generality
that

Fi(0) = 0 (i = 1, 2), F3(0) �= 0.

Arguing as in the proof of Theorem 1 we infer that Fi(−b/a) = 0 for at least one i. Hence
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up to a permutation of F1, F2 there are the following possibilities:

Fi(−b/a) = 0 (i = 1, 2, 3);(12)

Fi(−b/a) = 0 (i = 1, 2), F3(−b/a) �= 0;(13)

Fi(−b/a) = 0 (i = 1, 3), F2(−b/a) �= 0;(14)

Fi(−b/a) �= 0 (i = 1, 2), F3(−b/a) = 0;(15)

Fi(−b/a) �= 0 (i = 1, 3), F2(−b/a) = 0.(16)

We shall consider these cases successively.

Case (12). HereFi(x) = (ax+b)Gi(x),Gi ∈ Q[x]+ (i = 1, 2, 3) and by Gauss’s lemma
(a, b)Gi ∈ Z[x]+. Taking an integer k such that Gi(k) �= 0 we obtain from (2)

m =
3∑
i=1

1

Gi(k)
� 3(a, b) � 3b,

contrary to the assumption.

Case (13). Here Fi(x) = x(ax + b)Gi(x), Gi ∈ Q[x]+ (i = 1, 2)

m = 1

xG1(x)
+ 1

xG2(x)
+ ax + b

F3

and taking the limit for x → ∞ we infer that F3 = cx + d, where c = a/m. Hence

0 = 1

xG1
+ 1

xG2
+ b −md
cx + d .

For x large enough the first two terms are positive, hence b −md < 0 and d > 0.
Without loss of generality G2(−d/c) = 0, henceG2 = (cx + d)H2(x), H2 ∈ Q[x]+,

0 = lim
x→∞

cx + d
xG1(x)

+ b −md,

thus G1(x) = c
md−b and

0 = md − b
cx

+ 1

x(cx + d)H2
+ b −md
cx + d = (md − b)d

x(cx + d) + 1

x(cx + d)H2
.

This is impossible, since for x large enough both terms on the right hand side are positive.

Case (14). Here F1 = x(ax + b)G1, F2 = xG2, F3 = (ax + b)G3, where Gi ∈ Q[x]+
(i = 1, 2, 3) and

m = 1

xG1
+ ax + b
xG2

+ 1

G3
.

The first and the second term on the right hand side are greater than their limits for
x → ∞, the third term is greater or equal, while the left hand side is constant: this gives
a contradiction.
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Case (15). HereFi = xGi (i = 1, 2),F3 = (ax+b)G3, whereGi ∈ Z[x]+,Gi(−b/a) �=
0 (i = 1, 2), G3 ∈ Q[x]+ and

mx

ax + b = 1

G1(x)
+ 1

G2(x)
+ x

(ax + b)G3(x)
.

IfG3 �∈ Q+ all three terms on the right hand side are greater than or equal to their limits for
x → ∞, while the left hand side is less than the limit, a contradiction. HenceG3 = g ∈ Q+
and

(m− 1/g)x

ax + b = 1

G1
+ 1

G2
,

which contradicts G1G2(−b/a) �= 0.

Case (16). Here F1 = xG1, F2 = x(ax + b)G2, where G1 ∈ Z[x]+, G2 ∈ Q[x]+ and

(17)
mx

ax + b = 1

G1
+ 1

(ax + b)G2
+ x

F3
.

If degF3 = 0 we take the limit for x → ∞ and obtain m/a = ∞, a contradiction.
If degF3 > 1, when x → ∞ the left hand side of (17) is less than its limit, while all

three terms on the right hand side are greater than or equal to their limits, which gives a
contradiction. Thus

(18) degF3 = 1, F3 = cx + d, where c ∈ Z+, d/c �= b/a.
We consider four subcases:

degG1 > 1;(i)
degG1 = 1, G1/F3 �∈ Q;(ii)
degG1 = 1, G1/F3 ∈ Q;(iii)
degG1 = 0.(iv)

Subcase (i). Taking the limit for x → ∞ we infer from (17) and (18) that a = cm and

(19)

mx

cmx + b = 1

G1
+ 1

(cmx + b)G2
+ x

cx + d ;
x(md − b)
cx + d = cmx + b

G1
+ 1

G2
,

hence md − b > 0, d > 0. When x → ∞ the left hand side of (18) is less than its limit,
while both terms on the right hand side are greater than or equal to their limits, which gives
a contradiction.

Subcase (ii). As in the subcase (i) we havemd − b > 0, d > 0. LetG1 = ex + f , e > 0,
f/e �= b/a, d/c. It follows from (19) that

G2 = g−1(cx + d)(ex + f ), g ∈ Q+

and substituting x = 0 we obtain

0 = b

f
+ g

df
; g = −bd < 0,

a contradiction.
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Subcase (iii). Let G1 = e−1(cx + d), e ∈ Q+. We obtain from (17) and (18)

mx

ax + b = 1

(ax + b)G2
+ x + e
cx + d ,

hence either G2 = f−1(cx + d), f ∈ Q+ and substituting x = 0c

0 = f

bd
+ e

d
; f = −be < 0,

a contradiction, or e = d/c, G2 = −c/b, a contradiction again.c

Subcase (iv). LetG1 = g. It follows from (17) and (18) thatG2 = e−1(cx+ d), e ∈ Q+,

mx

ax + b = 1

g
+ e

(ax + b)(cx + d) +
x

cx + d
and multiplying both sides by g(ax + b)(cx + d)c

(cgm− ac − ag)x2 + (dgm− bg − ad − bc)x − bd − eg = 0.c

Hence

(20) cgm− ac − ag = 0,

(21) dgm− bg − ad − bc = 0,

(22) bd + eg = 0,c

which is impossible, since (20) gives gm − a = ag/c > 0, and (21) gives
d = (bg + bc)/(gm− a) > 0, contrary to (22). ��
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[8] G. Palamà, Su di una congettura di Sierpiński relativa alla possibilità in numeri naturali della
5/n = 1/x1 + 1/x2 + 1/x3. Boll. Un. Mat. Ital. (3) 13 (1958), 65–72.

[9] J. W. Sander, Egyptian fractions and the Erdős–Straus conjecture. Nieuw Arch. Wisk. (4) 15
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On equations y2 = xn + k in a finite field

with M. Skałba (Warszawa)

Summary. Solutions of the equations y2 = xn + k (n = 3, 4) in a finite field are given almost
explicitly in terms of k.

Let F be a finite field. It follows easily from Hasse’s theorem on the number of points
on an elliptic curve over F that each of the curves

(1) y2 = xn + k (n = 3, 4; k ∈ F)
has a point (x, y) in F 2, except for n = 4, F = F5, k = 2. The aim of the present paper
is to indicate such a point almost explicitly in terms of k. Note that if charK = 2, then
(1) is satisfied by y = (xn + k)cardF/2, and if charK = 3, n = 3 then (1) is satisfied by
x = (y2 − k)cardF/3. We shall prove

Theorem 1. Let char F > 3 and k ∈ F . Set

y1 =
{

12 if k + 72 = 0,
k

12 + 3 if k2 − 72k + 722 = 0,

and if k3 + 723 �= 0, set

y1 = − 2−93−5k3 + 2−63−3k2 − 2−3k − 3,

y2 = 2−83−6k3 − 2−53−3k2 + 2−23−1k + 2,

y3 = k6 − 288k5 + 46656k4 − 3732480k3

2835(k + 72)3

+ 134369280k2 − 11609505792k + 139314069504

2835(k + 72)3
,

y4 = k9 − 504k8 + 124416k7 − 17915904k6 + 1558683648k5

21035(k2 − 72k + 722)3

+ −69657034752k4 + 5851190919168k3

21035(k2 − 72k + 722)3

+ 20061226008576k2 + 2166612408926208k + 51998697814228992

21035(k2 − 72k + 722)3
.

Then for at least one j � 4 the equation y2
j = x3 + k is solvable in x ∈ F .
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Theorem 2. Let char F �= 2 and k ∈ F ∗. If k − 2 = 0 and char F �= 5, set

u1 = −5

8
, u2 = 2, u3 = 5;

if char F = 5 and α ∈ F \ F5, set

u1 = 4α

1 + α2 , u2 = 2 − 2α2

1 + α2 , u3 = 4α(2 − 2α2)

(1 + α2)2
;

if k2 − 4k − 4 = 0 and k3 − 8 �= 0, set

u1 = −k6 − 16k3 + 64

16k4 , u2 = 1

k
, u3 = −k6 − 16k3 + 64

k(k3 − 8)2
;

if k2 − 4k − 4 = k3 − 8 = 0, set

u1 = u2 = u3 = −1;
and if (k − 2)(k2 − 4k − 4) �= 0, set

u1 = k2 − 4k − 4

16
, u2 = k

4
, u3 = k(k2 − 4k − 4)

4(k − 2)2
.

Then uj ∈ F ∗ (1 � j � 3) and for at least one j � 3 the equation(4u2
j + k
4uj

)2

= x4 + k

is solvable in x ∈ F .

The proof of Theorem 1 is based on the following

Lemma 1. Let A,B,C,D be in F and

z1 = A, z2 = B, z3 = ABC3, z4 = AB2D3.

Then for at least one j � 4 the equation x3 = zj is solvable in x ∈ F .

Proof. If ABCD = 0 the assertion is clear and if ABCD �= 0 it follows from the fact that
the multiplicative group of F is cyclic and for all a, b in Z at least one of the numbers
a, b, a + b, a + 2b is divisible by 3. ��

Proof of Theorem 1. If k+ 72 = 0 or k2 − 72k+ 722 = 0 we have y2
1 − k = 63 or (−3)3,

respectively. If k3 + 723 �= 0 we put in Lemma 1

A = y2
1 − k, B = y2

2 − k, C = 2634(k + 72)−2, D = 21038(k2 − 72k + 722)

and verify that

y3 = y1y2 + k
y1 + y2

, y2
3 − k = ABC3,

y4 = y1y
2
2 + ky1 + 2ky2

y2
2 + 2y1y2 + k

, y2
4 − k = AB2D3. ��
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The proof of Theorem 2 is based on the following

Lemma 2. Let uj be as in Theorem 2. Then uj ∈ F ∗ and

(2)
√

4u3
j − kuj ∈ F for at least one j � 3.

Proof. If k − 2 = 0 and charK �= 5, then u1u2u3 �= 0 and (2) holds because

(4u3
1 − ku1)(4u

3
2 − ku2) = (4u3

3 − ku3)(1/8)
2.

If k − 2 = 0 and charK = 5, α ∈ F \ F5, then clearly u1u2u3 �= 0 and (2) holds as

(4u3
1 − ku1)(4u

3
2 − ku2) = (4u3

3 − ku3)2
2.

If k2 −4k−4 = 0 and k3 −8 �= 0, then u1u2u3 �= 0, since otherwise k6 +16k3 −64 = 0,
while char F �= 2 implies

(k2 − 4k − 4, k6 + 16k3 − 64) = 1.

Also (2) holds in view of the identity

(4u3
1 − ku1)(4u

3
2 − ku2) = (4u3

3 − ku3)

(
k3 − 8

2k2

)6

(1/4)2.

If k2 − 4k − 4 = k3 − 8 = 0, then char F = 7, k = 1, u1u2u3 �= 0 and

4u3
1 − ku1 = 22.

If (k − 2)(k2 − 4k − 4) �= 0, then clearly u1u2u3 �= 0 and (2) holds since

(4u3
1 − ku1)(4u

3
2 − ku2) = (4u3

3 − ku3)

(
k − 2

4

)6

22. ��

Proof of Theorem 2. We have the identity(4u2
j + k
4uj

)2

− k =
(4u2

j − k
4uj

)2

and by Lemma 2 for at least one j � 3 we have
√
(4u2

j − k)/4uj ∈ F . ��

The following problem related to the proof of Lemma 2 remains open.

Problem. Let f ∈ Z[x] have the leading coefficient positive and assume that the congru-
ence f (x) ≡ y2 (modm) is solvable for every natural number m. Do there exist an odd

integer k > 0 and integers x1, . . . , xk such that
k∏
i=1
f (xi) is a square?
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by Eugène Dubois

For a polynomial, f (n), assuming only integral values for integers n, we denote by
[b0, b1, . . . , bh−1, bh, . . . , bh+k−1] the expansion of

√
f (n) into continued fraction and

by lp
(√
f (n)

)
the minimal period length k.

If f has odd degree or if f (n) = a0x
2p + . . . + a2p where the ai are rational, a0

not a square, A. Schinzel proves, in B1, that lim
n→∞ lp

(√
f (n)

) = +∞. When f (n) =
a2n2 + bn+ c, he finds a set E such that

(1) lim
n∈CE,n→∞ lp

(√
f (n)

) = ∞ and lim
n∈E,n→∞ lp

(√
f (n)

)
<∞,

where CE is the complementary set to E.
This problem grew out of a result of H. Schmidt [10] in the case f (n) = n2 + h.

Later, explicit lower bounds for lp
(√
f (n)

)
, n ∈ E, were given by S. Louboutin [8] and

by A. Farhane [4].
For other polynomials a2n2p+ . . .+a0 (a �= 0), A. Schinzel in B2 reduces the problem

to the existence of an expansion
√
f (n) = [u0(n), u1(n), . . . , uK(n)] where ui(x) are

polynomials with rational coefficients. If such an expansion exists then A. Schinzel finds a
setE for which 1 holds. Later, E. Dubois and R. Paysant-Le Roux using “formal continued
fraction” gave a method to get explicit lower bound of lp

(√
f (n)

)
.

The conjecture about points of finite order on elliptic curves ascribed in B2 to Nagell
has been earlier in an equivalent form proposed by B. Levi [7] and it has been finally
proved by B. Mazur [9], see also J. H. Davenport [2].

In B3, A. Schinzel proves a conjecture of P. Chowla and S. Chowla [1] and generalises
another one.

IfD is a non-square positive integer, we denote by [b0, b1, . . . , bk] the continued frac-
tion expansion of

√
D with k minimal and we consider the alternating sum of the partial

quotients �D = bk − bk−1 + . . . + (−1)k−1b1. If k is even, 3 /| D, A. Schinzel proves

that �D ≡ 0 mod 3. For the congruence mod 2, the conjecture was that (−1)�pq =
(p
q

)
wherep, q are prime,p ≡ 3 mod 4 and q ≡ 5 mod 8.A. Schinzel proves a more general re-
sult: namely that�D ≡ v mod 2 whereu, v is the least non trivial solution ofu2−Dv2 = 1.
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From this he get �pα ≡ 1 mod 2 where α is odd and (−1)�pαqβ =
(p
q

)
where α, β are

odd.
The results of B3 have been generalized by H. Lang [6] and C. Friesen [5].
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On some problems of the arithmetical theory
of continued fractions

1.

For a given quadratic surd ξ let us denote by

[b0, b1, . . . , bh−1, bh, bh+1, . . . , bh+k−1]
its expansion into an arithmetical continued fraction, by lp ξ—the length of the shortest
period of this expansion, by lap ξ—the number of terms before the period. For some
polynomials f (n) assuming only integral values (so-called integer-valued polynomials)
there are known formulae for the expansion of

√
f (n) into continued fractions such that

the partial quotients are also integer-valued polynomials and lp
√
f (n) is independent of n

(cf. [3], [5]). Recently H. Schmidt has proved ([3], Satz 10) that

If h is an integer �= 0, ±1, ±2, ±4, then for each n0 the set of all integers � n0 cannot
be decomposed into a finite number of classes, so that the relation√

n2 + h = [p0(n), p1(n), . . . , pk(n)], n � n0, n ∈ K,
holds for each classK (pν are polynomials assuming integral values for n ∈ K , k depends
only upon K).

This theorem suggests the following problem P.

P. Decide for a given integer-valued polynomial f (n) whether

lim lp
√
f (n) <∞.

An investigation of this problem is the main aim of the present paper.
In §2 we investigate the relation between lp ξ and lp

(
(pξ+r)/(qξ+s)), wherep, q, r, s

are integers.
In §3 we give a negative solution of the problem P for polynomials of odd degree and

for a large class of polynomials of even degree.
In §4 after more accurate study of the behaviour of the function lp

√
n2 + h and on the

base of the results of §2 we give a complete solution of the problem P for polynomials of
the second degree.
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We shall use the following notation: ξ, ξ ′, ξ ′′ will denote either rational numbers or qua-
dratic surds; in the latter case η, η′, η′′ will be corresponding conjugate numbers. Putting

ξ = [b0, b1, b2, . . . ]
we shall assume simultaneously

(1)
A−1 = 1, A0 = b0, Aν = bνAν−1 + Aν−2,

B−1 = 0, B0 = 1, Bν = bνBν−1 + Bν−2,

(whence [b0, b1, . . . , bn] = An/Bn) and

ξν = [bν, bν+1, bν+2, . . . ]
(cf. [2], p. 24 and 34). For rational ξ we put lp ξ = 0 and

lap ξ =
{

1 if ξ is an integer,

h if ξ = [b0, b1, . . . , bh−1], bh−1 > 1

(the so-called normal expansion).

2.

Lemma 1. Let b > 1, h and s be positive integers.
If

(2′) ξ = [b0, b1, . . . , bh−1]
or

(2′′) ξ = [b0, b1, . . . , bh−1, bh, bh+1, . . . , bh+k−1],
where

(3) bi < b (1 � i � h− 1),

then

(4) i < Bi � bi (0 � i � h− 1).c

Moreover, if for some integers p and r

(5) ξ ′ = (pξ + r)/s,
then

(6) lap ξ ′ < 2sbh.

Proof. Formula (4) follows by easy induction from (1) and (2). Hence for rational ξ we
immediately get the remaining part of the lemma.

In fact, putting

ξ ′ = [b′0, b′1, . . . , b′h′−1] =
A′
h′−1

B ′
h′−1

,
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we have in view of (5)

A′
h′−1

B ′
h′−1

= pAh−1 + rBh−1

sBh−1
;

then lap ξ ′ = h′ � B ′
h′−1 � sBh−1 � sbh−1 < 2sbh.

In the case p = 0 we have likewise

A′
h′−1

B ′
h′−1

= r

s
, whence lap ξ ′ = h′ � B ′

h′−1 � s < 2sbh.

One can therefore assume that ξ is irrational and p �= 0. It follows from (2′′) that

ξ = [b0, b1, . . . , bh−1, ξh];
ξh, which has a pure period in its expansion, is by a well-known theorem, a reduced surd,
i.e.

(7) ξh > 1, 0 > ηh > −1.

On the basis of well-known formulae (cf. [2], §13, (7)) we have:

ξ = Ah−1

Bh−1
+ (−1)h−1

Bh−1(Bh−1ξh + Bh−2)
,

η = Ah−1

Bh−1
+ (−1)h−1

Bh−1(Bh−1ηh + Bh−2)
,

whence

|ξ − η| = |1 − ηh/ξh|
|Bh−1 + Bh−2/ξh| · |Bh−1ηh + Bh−2| .

Since, in view of (7),

0 < −ηh/ξh, 0 < Bh−1 + Bh−2/ξh < Bh−1 + Bh−2 � Bh,
−Bh−1 < Bh−1ηh + Bh−2 < Bh−2 < Bh−1,

we get by (4)

|ξ − η| > 1/Bh−1Bh > 1/b2h−1

and by (5)

|ξ ′ − η′| = |p|
s

|ξ − η| > 1

sb2h−1 .

If ξ ′ > η′, we assume h′ = 2sbh − 2. Therefore, in view of (4),

(8) B ′
h′−1B

′
h′−2 � h′(h′ − 1) = (2sbh − 2)(2sbh − 3) � sb2h−1 >

1

|ξ ′ − η′| .

We shall prove that ξ ′
h′ is a reduced surd. It follows from the formula

η′ = A′
h′−1

B ′
h′−1

+ (−1)h
′−1

B ′
h′−1(B

′
h′−1η

′
h′ + B ′

h′−2)
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that

B ′
h′−1(B

′
h′−1η

′
h′ + B ′

h′−2) =
(−1)h

′

A′
h′−1/B

′
h′−1 − η′

.

Since h′ = 2sbh − 2 is even, we have

A′
h′−1/B

′
h′−1 − η′ > ξ ′ − η′ > 0.

The last two formulae together give

1

ξ ′ − η′ > (B
′
h′−1η

′
h′ + B ′

h′−2)B
′
h′−1 > 0.

We then get, on the one hand,

0 < B ′
h′−1η

′
h′ + B ′

h′−2, whence η′h′ > −B ′
h′−2/B

′
h′−1 > −1;

on the other hand, in view of (8),

B ′
h′−1B

′
h′−2 > B

′
h′−1(B

′
h′−1η

′
h′ + B ′

h′−2), whence η′h′ < 0.

Therefore 0 > η′
h′ > −1 and since ξ ′

h′ > 1, the surd ξ ′
h′ is reduced (for h′ = 2sbh−2).

In the case η′ > ξ ′ we prove similarly that the surd ξ ′
h′ is reduced for h′ = 2sbh − 1.

Since a reduced surd gives in its expansion a pure period, we have in both cases

lap ξ ′ = h′ < 2sbh. ��
Remark. Inequalities (4) and (6) can be greatly improved; however, it is without any
importance for the applications intended.

In the following we shall profit by a theorem used in the investigation of Hurwitz’s
continued fractions and due toA. Hurwitz andA. Châtelet.We quote this theorem according
to Perron’s monograph ([2], Satz 4.1) with slight changes in his notation to avoid confusion
with ours.

H. Let [b0, b1, b2, . . . ] be the arithmetical continued fraction for a quadratic surd ξ0,
Aλ,Bλ—the numerators and denominators of its convergents, and ξλ—its complete quo-
tients. Further, let

ξ ′ = p0ξ + r0
s0

(p0, r0, s0—integers, p0 > 0, s0 > 0, p0s0 = d > 1).

For any index ν (� 1) the number

p0[b0, b1, . . . , bν−1] + r0
s0

= p0Aν−1 + r0Bν−1

s0Bν−1

can be developed in an arithmetical continued fraction [d0, d1, . . . , dμ−1] and besides the
number of its terms can be chosen so that μ ≡ ν (mod 2); let Cλ,Dλ be the numerators
and denominators of its convergents, so that in particular

p0Aν−1 + r0Bν−1

s0Bν−1
= Cμ−1

Dμ−1
.
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Then there exist three uniquely determined integers p1, r1, s1 such that the formula(
p0 r0
0 s0

)(
Aν−1 Aν−2
Bν−1 Bν−2

)
=
(
Cμ−1 Cμ−2
Dμ−1 Dμ−2

)(
p1 r1
0 s1

)
holds and besides

p1 > 0, s1 > 0, p1s1 = d, −s1 � r1 � p1,

ξ ′ = [d0, d1, . . . , dμ−1, ξ
′
μ], where ξ ′μ = p1ξν + r1

s1
.

The theorem quoted obviously preserves its validity for d = 1 as well as for rational ξ ;
in the latter case under the condition ν � lap ξ .

On the basis of Lemma 1 and theorem H we shall show

Theorem 1. For arbitrary positive integersm and d there exists a numberM = M(m, d)
such that if lap ξ � m and

(9) ξ ′ = p0ξ + r0
s0

(p0, r0, s0—integers, p0, s0 > 0, p0s0 = d)

then lap ξ ′ � M .

Proof. We shall prove it by induction with respect to m. For m = 1 the theorem follows
immediately from Lemma 1, whence after the substitution b = 2, h = 1 (assumption (3)
being satisfied in emptiness), p = p0, r = r0, s = s0 we get

lap ξ ′ < 4s0.

Assume now that the theorem is valid for m = h− 1 (h > 1); we shall show that it is
valid for m = h.

By hypothesis there exists a number M(h − 1, d) such that if lap ξ � h − 1 and
ξ ′ = (pξ + r)/s (p, r, s—integers, p > 0, s > 0, ps = d), then

lap ξ ′ � M(h− 1, d).

LetM = 2M(h − 1, d) + 2h+1dh+1. The proof will be complete if we show that for
any ξ such that lap ξ � h the number ξ ′ defined by (9) satisfies the inequality

lap ξ ′ � M.

SinceM(h− 1, d) < M , we can assume that lap ξ = h and that ξ is given by one of the
formulae (2).

If for each positive i < h is bi < 2d , then putting in Lemma 1 b = 2d, p = p0, r = r0,c

s = s0, we get

lap ξ ′ � 2s0(2d)
h � 2h+1dh+1 � M.

It remains to consider the case where for some positive ν < h: bν � 2d. We then havec

(10) ξ = [b0, b1, . . . , bν−1, ξν], ξν � bν � 2d.
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In virtue of theorem H there exist integers p1, r1, s1 such that

p1 > 0, s1 > 0, p1s1 = d, −s1 � r1 � p1,(11)

p0[b0, b1, . . . , bν−1] + r0
s0

= [d0, d1, . . . , dμ−1],(12)

ξ ′ = p0ξ + r0
s0

= [d0, d1, . . . , dμ−1, ξ
′
μ], ξ ′μ = p1ξν + r1

s1
.(13)

From (10) and (11) we get

ξ ′μ � ξν/s1 − 1 � ξν/d − 1 � 1,

which together with formula (13) proves that numbers d0, d1, . . . , dμ−1 are the initial
partial quotients of the number ξ ′. Hence

(14) lap ξ ′ � μ+ lap ξ ′μ.

Meanwhile, by (12)

μ � 1 + lap
p0[b0, b1, . . . , bν−1] + r0

s0

and since lap[b0, b1, . . . , bν−1] � ν < h, we have in virtue of the inductive assumption

(15) μ � 1 +M(h− 1, d).

On the other hand, since lap ξν = lap ξ − ν < h, we have

(16) lap ξ ′μ � M(h− 1, d)

and finally by (14), (15), (16) we get

lap ξ ′ � 1 + 2M(h− 1, d) � M. ��
Corollary. For any positive integerm and arbitrary integers d and q there exists a number
M = M(m, d, q) such that if

lap ξ � m, ξ ′ = pξ + r
qξ + s (p, r, s—integers, qξ + s �= 0)

and ps − qr = d , then lap ξ ′ � M .

Proof. The case d = 0 is trivial; thus let d �= 0. It is easy to verify the equality (cf. [2],
p. 56):

−[b0, b1, b2, b3, . . . ] =
{
[−(b0 + 1), 1, b1 − 1, b2, b3, . . . ] for b1 > 1,

[−(b0 + 1), b2 + 1, b3, b4, . . . ] for b1 = 1,

whence

(17) lap(−ξ) � 3 + lap ξ.

If q = 0, then s �= 0 and we have

ξ ′ = sgnp

sgn s
· |p|ξ + r sgnp

|s| ;
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the corollary follows therefore directly from Theorem 1 and formula (17).
If q �= 0, then

ξ ′ = sgn q · ζ
−1 + p
|q| , ζ = − sgn q

sgn d
· |q|ξ + s · sgn q

|d| ,

and we obtain the corollary applying Theorem 1 successively to the numbers ζ and ξ ′,
using formula (17) and the obvious inequality

lap ζ−1 � 1 + lap ζ. ��

Lemma 2. Let b, k, p and s be positive integers. If ξ is given by (2′′) and ξ ′ by (5) and if

(18) bi < b (h � i � h+ k − 1),

then lp ξ ′ � 8(ps)2b2k .

Proof. It follows from (2′′) that

ξh = [bh, bh+1, . . . , bh+k−1, ξh];
the number ξh satisfies therefore the equation

(19) Bk−1,hx
2 + (Bk−2,h − Ak−1,h)x − Ak−2,h = 0,

where numbers Aλ,h and Bλ,h are respectively the numerator and the denominator of the
λth convergent of [bh, bh+1, . . . ].

Denoting by Δ the discriminant of the equation (19) we have

Δ = (Bk−2,h − Ak−1,h)
2 + 4Bk−1,hAk−2,h = (Ak−1,h + Bk−2,h)

2 + 4(−1)k−1,

and since from (18) easily follows

Ak−1,h < b
k, Bk−2,h < b

k,

we get

(20) Δ � 4b2k.

It follows from the formulae

ξ ′ = pξ + r
s

, ξ = Ah−1ξh + Ah−2

Bh−1ξh + Bh−2

and from equation (19) for ξh that the number ξ ′ satisfies the equationc

(21) Ax2 + Bx + C = 0,

where integers A,B,C are defined by the formula

(22)

(
2A B

B 2C

)
=
(
s 0
−r p

)(
Bh−2 −Bh−1
−Ah−2 Ah−1

)

×
(

2Bk−1,h Bk−2,h − Ak−1,h
Bk−2,h − Ak−1,h −2Ak−2,h

)(
Bh−2 −Ah−2
−Bh−1 Ah−1

)(
s −r
0 p

)
.

c
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On the other hand, as can easily be seen from Lagrange’s proof of his well-known
theorem about periodical expansions of quadratic surds (cf. [2], pp. 66–68), if ξ ′ is a root
of equation (21), then

lp ξ ′ � 2Δ′,

where Δ′ is the discriminant of that very equation. But, as follows from (22),

Δ′ = −
∣∣∣∣2A B

B 2C

∣∣∣∣ = (ps)2(Ah−1Bh−2 − Bh−1Ah−2)
2Δ = (ps)2Δ.

The last two formulae together with (20) finally give

lp ξ ′ � 8(ps)2b2k. ��
Theorem 2. For arbitrary integers n > 0 and d, there exists a numberN = N(n, d) such
that if

(23) lp ξ � n, ξ ′ = pξ + r
qξ + s (p, q, r, s—integers, qξ + s �= 0) and ps − qr = d,

then lp ξ ′ � N .

Proof. The case of ξ—rational or d = 0 is trivial; let ξ be a quadratic surd, d �= 0.
On the basis of Theorem 1 there exists a number M(n, |d|) � (d + 1)2 such that, ifc

p, r, s—integers, p > 0, s > 0, ps = |d| and lap ζ � n, then

lap
pζ + r
s

� M(n, |d|).
c

Let N = M(n, |d|)(|d| + 1)2 + 22n+3d2n+2. We shall show that if conditions (23) hold,
then

lp ξ ′ � N.
Put

β = q/(p, q), δ = −p/(p, q).
Since (β, δ) = 1, there exist integers α and γ such that

(24) αδ − βγ = sgn d.

Putting

(25) ξ ′′ = αξ ′ + γ
βξ ′ + δ

we get

ξ ′′ = p0ξ + r0
s0

,

where the integers p0, r0, s0 are defined by the formula(
p0 r0
0 s0

)
=
(
α γ

β δ

)(
p r

q s

)
;

thus p0s0 = (αδ − βγ )(ps − qr) = d sgn d = |d|.
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In view of formulae (24) and (25), the surds ξ ′ and ξ ′′ are equivalent, whence

lp ξ ′ = lp ξ ′′ = lp
p0ξ + r0
s0

.

Changing, if necessary, the signs of p0, r0, s0 we can therefore assume that

ξ ′ = p0ξ + r0
s0

, p0 > 0, s0 > 0, p0s0 = d > 0.

Let ξ be given by formula (2′′), where k � n. If for each i such that h � i � h + k − 1
we have bi < 2d , then, putting in Lemma 2 b = 2d, p = p0, s = s0, we get

lp ξ ′ � 8(p0s0)
2(2d)2k � 8d2(2d)2n = 22n+3d2n+2 � N.

It remains to consider the case, where for some ν � h holds bν � 2d. We then have

ξ = [b0, b1, . . . , bν−1, bν, bν+1, . . . , bν+k−1, bν, bν+1, . . . , bν+k−1, . . . ].
Using theorem H we get

p0[b0, b1, . . . , bν−1] + r0
s0

= [d0, . . . , dμ1−1],

ξ ′ = [d0, . . . , dμ1−1, ξ
′
μ1
], ξ ′μ1

= p1ξν + r1
s1

,(26)

p1 > 0, s1 > 0, p1s1 = d, −s1 � r1 � p1,(27)

and for all i � 1

pi[bν, . . . , bν+k−1] + ri
si

= [dμi , . . . , dμi+1−1],(28)

ξ ′μi = [dμi , . . . , dμi+1−1, ξ
′
μi+1

], ξ ′μi+1
= pi+1ξν + ri+1

si+1
,(29)

pi+1 > 0, si+1 > 0, pi+1si+1 = d, −si+1 � ri+1 � pi+1.(30)

In view of the inequality ξν > bν � 2d , it follows from (27) and (30) that ξμi > 1
(i = 1, 2, . . . ); the number ξ ′ has therefore the following expansion into an arithmetical
continued fraction;

ξ ′ = [d0, . . . , dμ1−1, dμ1 , . . . , dμ2−1, dμ2 , . . . , dμ3−1, dμ3 , . . . ].
It follows from (27) and (30) that the number of all possible different systems (pi, ri , si)
does not exceed d(d + 2). Thus, among the systems (pi, ri , si) (i = 1, 2, . . . , (d + 1)2)
there must be at least two identical ones; there exist therefore positive integers
g < j � (d + 1)2 such that

pg = pj , rg = rj , sg = sj .
On the basis of (26) and (29) it follows hence that

ξ ′μj = ξ ′μg ;
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thus

lp ξ ′ � μj − μg =
j−1∑
i=g
(μi+1 − μi).

On the other hand, in virtue of formula (28), the definition of the number M(n, |d|) and
the condition k � n,

μi+1 − μi � 1 + lap
pi[bν, . . . , bν+k−1] + ri

si
� M(n, |d|)+ 1.

c

In view of j − g < (d + 1)2 � M(n, |d|), we thus getc

lp ξ ′ � (j − g)(M(n, |d|)+ 1
)

� (d + 1)2M(n, |d|) � N. ��c

Remark. As can easily be seen, we use in the proof given above only a special case of
Theorem 1. We proved it in full generality only for a more complete characterization of
the relation between continued fractions and rational homographic transformations.

3.

Lemma 3. If ξ (n) → ζ (ξ (n) are quadratic surds, ζ an arbitary irrational number) and

(31) ξ (n) �= ζ,
then

(32) lim
(
lap ξ (n) + lp ξ (n)

) = ∞.

Proof. If formula (32) does not hold, the sequence ξ (n) contains a subsequence for which

(33) lap ξ (n) + lp ξ (n) � L <∞.
Proving Lemma 3 by reduction to absurdity we can therefore assume at once that

inequality (33) holds. Let

ξ (n) = [b(n)0 , b
(n)
1 , . . . , b

(n)
hn−1, b

(n)
hn
, b
(n)
hn+1, . . . , b

(n)
hn+kn−1

]
,

hn = lap ξ (n), kn = lp ξ (n), ζ = [b0, b1, . . . ].
Since ζ is irrational, we have

lim b(n)i = bi (i = 0, 1, 2, . . . );
thus for every i there exists an ni such that

(34) b
(n)
i = bi (n � ni).

By (33) we have hn + kn � L. Putting K = L! we have, for every n, hn � L, kn |K ,
whence

(35) b
(n)
i = b(n)i+Kt (i � L, n � 1, t � 0).
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LetM = max(n0, n1, . . . , nK+L−1). We shall show that, contrary to assumption (31), for
n � M , ξ (n) = ζ .

In fact, by (34) we have for n � M

(36) b
(n)
i = bi (0 � i < L+K).

Assume now that j � L+K . We obviously have j = tK + i, where t is an integer � 0,
L < i < L+K and according to (35)

(37) b
(n)
j = b(n)i (n � 1).

Put m = max(M, nj ). By (36) we have

(38) b
(n)
i = b(m)i (0 � i < L+K, n � M).

Applying successively formulae (37), (38), (37) and (34) we get for n � Mc

b
(n)
j = b(n)i = b(m)i = b(m)j = bj (j � L+K),

whence by (36) it follows at last that for n � M
ξ(n) = ζ. ��

Remark. One can easily deduce from the lemma proved above Satz 11 and Satz 12 of [3].
There is no inverse implication, but the argumentation given above is a direct generalization
of the method used by Schmidt in his proofs.

Theorem 3. Let f (x) = a0x
p+a1x

p−1 + . . .+ap be an integer-valued polynomial with
a0 > 0. If

1. p ≡ 1 (mod 2) or
2. p ≡ 0 (mod 2) and a0 is not a rational square,

then

lim lp
√
f (n) = ∞.

Proof. In view of Lemma 3 and the equality lap
√
f (n) = 1, it is sufficient to show that the

set F of all residues mod 1 of numbers
√
f (n), n = 1, 2, . . . , has at least one irrational

point of accumulation. We shall prove more: that the set F is dense in (0, 1).
In case 1 put p = 2m+1,m � 0. As can easily be seen, we have in the neighbourhoodc

of ∞
dk

√
f (x)

dxk
∼ √

a0

(
m+ 1

2
k

)
k! xm−k+1/2.

On the other hand, by a well-known theorem of the theory of finite differences (cf. [4],
p. 229, th. 221), we have

Δkg(x) = Δxkg(k)(x +ΘkΔx), 0 < Θ < 1,

where g(x) is an arbitrary real function with the kth derivative continuous in the interval
(x, x + kΔx). Putting

g(x) = √f (x), Δx = 1,
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we obtain by a comparison of the preceding two formulae

Δk
√
f (x) ∼ √

a0

(
m+ 1

2
k

)
k! xm−k+1/2,

whence for sufficiently large x

Δm
√
f (x) ∼ √

a0

(
m+ 1

2
m

)
m! x1/2,

Δm+1
√
f (x) ∼ √

a0

(
m+ 1

2
m+ 1

)
(m+ 1)! x−1/2;

thus

Δm
√
f (x)→ ∞, Δm+1

√
f (x)→ 0.

The density of the set F follows immediately in virtue of a theorem of Csillag
([1], p. 152).

In case 2, we have, as can easily be seen,

(39′) f (x) = u2(x)+ v(x),
where u and v are polynomials with coefficients from Q(

√
a0) andc

(39′′) degree v < degree u = 1
2 degree f, u(∞) = ∞.

Putting p = 2m, u(x) = a0x
m + a1x

m−1 + . . .+ am, we find from formulae (39) that
α2

0 = a0, whence according to the assumption about a0 it follows that α0 is irrational. In
virtue of a well-known theorem of Weyl, the set of all the residues mod 1 of numbers u(n)
(n = 1, 2, . . . ) is dense in (0, 1). Since, in view of (39)

lim
(√
f (x)− u(x)) = 0,

the set F has the same property. ��

Remark. In both cases, 1 and 2, it is easy to give examples of polynomials f (x) such that

(40) lim lp
√
f (n) <∞.

It suffices to assume f1(x) = x, f2(x) = 2x2. The proof of inequality (40) for the
polynomial f1(x) is immediate; for the polynomial f2(x)we use the fact that for an infinite
sequence of positive integers xk is f2(xk) = y2

k + 1 (yk—integers), whence in view of the
expansion √

y2 + 1 = (y, 2y)
it follows that

lp
√
f2(xk) = 1.
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4.

Lemma 4. Let f (n) be an integer-valued polynomial and let

(41)
√
f (n) = u0(n)+ 1

u1(n)
+ 1

u2(n)
+ . . .+ 1

uj (n)
+ 1

w(n)

where ui are polynomials of a positive degree with rational coefficients and

(42) lim
n→∞w(n) = ∞.

Put

T−1(n) = 1, T0(n) = u0(n), Tν(n) = uν(n)Tν−1(n)+ Tν−2(n),

U−1(n) = 0, U0(n) = 1, Uν(n) = uν(n)Uν−1(n)+ Uν−2(n),
(43) √

f (n) = ξ = [b0, b1, b2, . . . ], bi—positive integers.(44)

Then, for every j and n > n0(j), there exists a k = k(j, n) such that

Ak

Bk
= Tj (n)

Uj (n)
,(45)

ξk+1(n) = (−1)j−k
U2
j (n)

B2
k

w(n)+ (−1)j−kUj (n)Uj−1(n)− BkBk−1

B2
k

.(46)

Proof. Since the polynomials ui have rational coefficients, there exists a positive integerm
such that

(47) Tj (n) = P(n)/m, Uj (n) = Q(n)/m,
where P(n),Q(n) are polynomials with integral coefficients.

From formulae (41) and (43) we get

(48)
√
f (n) = Tj (n)

Uj (n)
+ (−1)j

Uj (n)
(
Uj(n)w(n)+ Uj−1(n)

) ,
whence in view of (47)∣∣∣∣√f (n)− P(n)Q(n)

∣∣∣∣ = 1

Q2(n)

∣∣∣∣ m2

w(n)+ Uj−1(n)/Uj (n)

∣∣∣∣.
Since in view of (42) and (43)

w(n)+ Uj−1(n)/Uj (n)→ ∞,
we have for sufficiently large n∣∣∣∣√f (n)− P(n)Q(n)

∣∣∣∣ < 1

2Q2(n)
.

In virtue of a well-known theorem (cf. [2], Satz 2.14), P(n)/Q(n) is therefore equal
to some convergent of expansion (44). Then, for some k, equality (45) holds and since√

f (n) = Ak

Bk
+ (−1)k

Bk[Bkξk+1 + Bk−1] ,
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we get also (46) in view of (48).

Definition. For a given prime p and a given rational number r �= 0 we shall denote by
exp(p, r) the exponent with which p comes into the canonical expansion of r .

Lemma 5. Suppose we are given a prime p and integers n and h, both �= 0. Let then

(49)
P−1 = h, P0 = n, Pν = 2nPν−1 + hPν−2,

Q−1 = 0, Q0 = 1, Qν = 2nQν−1 + hQν−2.

If exp(p, h) > 2 exp(p, 2n), then for every integer ν � 0

(50)
exp(p, Pν) = exp(p, n)+ ν exp(p, 2n),

exp(p,Qν) = ν exp(p, 2n).

Proof by induction with respect to ν. For ν = 0 the lemma follows directly from formulae
(49).

For ν = 1 we have P1 = 2n2 + h, Q1 = 2n; thus exp(p,Q1) = exp(p, 2n). Since,
by hypothesis,

exp(p, h) > 2 exp(p, 2n) � exp(p, 2n2),

it follows that

exp(p, P1) = exp(p, 2n2) = exp(p, n)+ exp(p, 2n)

and formulae (50) hold also for ν = 1.
Assume now that the lemma is right for the numbers ν− 2 and ν− 1 (ν � 2); we shall

show its validity for ν.
It follows easily from the inductive assumption that

e1 = exp(p, 2nPν−1) = exp(p, n)+ ν exp(p, 2n),

e2 = exp(p, hPν−2) = exp(p, n)+ (ν − 2) exp(p, 2n)+ exp(p, h),

e3 = exp(p, 2nQν−1) = ν exp(p, 2n),

e4 = exp(p, hQν−2) = (ν − 2) exp(p, 2n)+ exp(p, h).

In view of the inequality exp(p, h) > 2 exp(p, 2n)we therefore have e1 < e2, e3 < e4,
whence it follows by (49) that

exp(p, Pν) = e1 = exp(p, n)+ ν exp(p, 2n),

exp(p,Qν) = e3 = ν exp(p, 2n). ��

Theorem 4. Suppose we are given an integer h �= 0. Denote by E the set of all integers
n such that h | 4n2. We have

lim
n→∞
n/∈E

lp
√
n2 + h = ∞,(51)

lim
n→∞
n∈E

lp
√
n2 + h <∞.(52)
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Proof. We begin with a proof of equality (51). Choose an arbitrary g; we shall show that
for sufficiently large n /∈ E

lp
√
n2 + h � g.c

It is easy to verify the identity√
n2 + h = n+ 1

2n/h
+ 1

n+√
n2 + h ,

from which we immediately obtain

(53)
√
n2 + h = n+ 1

2n/h
+ 1

2n
+ . . .+ 1

2n/h
+ 1

n+√
n2 + h .

Put in Lemma 4 u0 = n,c

uν =
{

2n/h (ν odd � 2g − 1),

2n (ν even < 2g − 1).

Comparing polynomials Tν ,Uν determined by these uν by formulae (43) and polynomialsc

Pν ,Qν defined by (49), we find by an easy induction

(54) Tν = Pνh−[(ν+1)/2], Uν = Qνh−[(ν+1)/2],

whence

(55)
Tν

Uν
= Pν

Qν
.

Assume now that n /∈ E, n so large that
√
n2 + h is irrational, and

(56)
√
n2 + h = ξ = [b0, b1, . . . ].

In virtue of Lemma 4 for sufficiently large n for each i � g there exists a ki such that

Aki

Bki
= T2i−1

U2i−1
,(57)

ξki+1 = (−1)ki−1 U
2
2i−1

B2
ki

(
n+
√
n2 + h)+ (−1)ki−1U2i−1U2i−2 − BkiBki−1

B2
ki

.(58)

Since n /∈ E, there exists a prime p such that

(59) exp(p, h) > 2 exp(p, 2n)

and in virtue of Lemma 5

exp(p, P2i−1) = exp(p, n)+ (2i − 1) exp(p, 2n),

exp(p,Q2i−1) = (2i − 1) exp(p, 2n).(60)

In view of (55) and (57), we therefore have

exp

(
p,
Aki

Bki

)
= exp

(
p,
P2i−1

Q2i−1

)
= exp(p, n)
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and since the fraction Aki /Bki is irreducible, it follows that

exp(p, Bki ) = 0.

On the basis of (54) and (60) we get hence

exp

(
p,
U2i−1

Bki

)
= exp(p,U2i−1) = (2i − 1) exp(p, 2n)− i exp(p, h)

= − exp(p, 2n)− i(exp(p, h)− 2 exp(p, 2n)
)
.

Then, in view of inequality (59), the numbers exp(p,U2i−1/Bki ) are for i = 1, 2, . . . , g
all different; since

√
n2 + h is irrational and (58) holds, the numbers ξki+1 have the same

property. Since ki +1 � 1 = lap
√
n2 + h, at least g different complete quotients occur in

the period of expansion (56); we then have lp ξ � g, which completes the proof of (51).
In order to prove formula (52) we shall use Theorem 2. From that theorem follows the

existence of a number N = N(h) such that if for positive integers D1,D2 and l√
D2 = 1

2 l
√
D1, 0 < l � |h| and lp

√
D1 � 12,

then lp
√
D2 � N .

We shall show that for sufficiently large n ∈ E
(61) lp

√
n2 + h � N.

In fact, since n ∈ E, h |4n2, there exist—as can easily be seen—integers α, β �= 0 and
positive integer x such that

2n = αβx, h = αβ2.

We obviously have

(62)
√
n2 + h = 1

2 |β|
√
(αx)2 + 4α, |β| � |h|.

On the other hand, as can be verified, the following expansions hold for x � 5:

α > 0, x—even√
(αx)2 + 4α = [αx, 1

2x, 2αx];
α > 0 even, x—odd√
(αx)2 + 4α = [αx, 1

2 (x − 1), 1, 1, 1
2 (αx − 2), 1, 1, 1

2 (x − 1), 2αx];
α > 0 odd, x—odd√
(αx)2 + 4α = [αx, 1

2 (x − 1), 1, 1, 1
2 (αx − 1), 2x, 1

2 (αx − 1), 1, 1, 1
2 (x − 1), 2αx];

α < 0, x—even√
(αx)2 + 4α = [|α|x − 1, 1, 1

2 (x − 4), 1, 2|α|x − 2];
α < 0 even, x—odd√
(αx)2 + 4α = [|α|x − 1, 1, 1

2 (x − 3), 2, 1
2 (|α|x − 2), 2, 1

2 (x − 3), 1, 2|α|x − 2];
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α < 0 odd, x—odd√
(αx)2 + 4α = [|α|x − 1, 1, 1

2 (x − 3), 2, 1
2 (|α|x − 3), 1, 2x − 2, 1,c

1
2 (|α|x − 3), 2, 1

2 (x − 3), 1, 2|α|x − 2].
Thus, we always have lp

√
(αx)2 + 4α � 12 and formula (61) follows immediately

from (62) and the definition of N . ��

Theorem 5. Let f (n) = α2n2 + bn+ c, α, b, c—integers, α > 0, Δ = b2 − 4α2c �= 0.
The inequality

(63) lim lp
√
f (n) <∞

holds if and only if

(64) Δ |4(2α2, b)2.

Proof. We obviously have √
f (n) = 1

2α

√
(2α2n+ b)2 −Δ

and in virtue of Theorem 2 inequality (63) is equivalent to the following

lim lp
√
(2α2n+ b)2 −Δ <∞.

But in virtue of Theorem 4 the last inequality holds if and only if for some n0

(65) Δ |4(2α2n+ b)2 for n > n0.

We have

4(2α2n+ b)2 = 4(2α2, b)2
(

2α2

(2α2, b)
n+ b

(2α2, b)

)2

.

Since the arithmetical progression

2α2

(2α2, b)
n+ b

(2α2, b)
(n = 0, 1, . . . )

whose first term and difference are relatively prime, contains infinitely many numbers
coprime withΔ, divisibility (64) is a necessary and sufficient condition of (65) and therefore
also of (63). ��

Theorems 3 and 5 give together a complete solution of the problem P for polynomials
of the second degree (the case Δ = 0 is trivial).

In order to obtain by a similar method a complete solution for polynomials of higher
degree, it would be necessary to have for

√
f (n) an expansion analogous to (53), i.e. an

expansion of form (41) and then to know whether it is periodical.
Now, for polynomials f (n) of the form

α2n2m + a1n
2m−1 + . . .+ a2m
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an expansion of form (41) is uniquely determined. In fact, let√
f (n) = u0(n)+ 1

u1(n)
+ 1

u2(n)
+ . . .+ 1

uj (n)
+ 1

wj+1(n)

and put for i � j

wi(n) = ui(n)+ 1

ui+1(n)
+ . . .+ 1

uj (n)
+ 1

wj+1(n)
.

Since u0(n) is the unique polynomial g such that lim
n→∞

(√
f (n) − g(n)) = 0, we

have u0(n) = u(n), where u(n) is defined by formulae (39). Suppose now that we have
determined polynomials u0(n), . . . , ui−1(n); we easily findc

wi(n) =
√
f (n)+ pi(n)
qi(n)

where pi, qi are polynomials with rational coefficients, and then ui(n) is uniquely deter-
mined by the conditions

u(n)+ pi(n) = qi(n)ui(n)+ ri(n), degree ri < degree qi.

The construction of the sequence ui(n) is therefore easy, but the decision whether the
sequence thus determined ui is periodical presents a considerable difficulty even for poly-
nomials of degree 4.

Thus, the investigation of the problem P has led us to the following problem P1:

P1. To decide whether for a given polynomial f (n) of the form

α2n2m + a1n
2m−1 + . . .+ a2m (m, α, ai are integers, m � 2, α �= 0)

there exist polynomials ui of positive degree with rational coefficients such that√
f (n) = u0(n)+ 1

u1(n)
+ 1

u2(n)
+ . . .+ 1

uk(n)

(the bar denotes period).c
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1.

In the preceding paper [5], I considered the following two problems

P. Decide for a given integer-valued polynomial f (n) whether

lim lp
√
f (n) <∞.

(lp
√
f (n) denotes the length of the shortest period of the expansion of

√
f (n) into an

arithmetic continued fraction).

P1. Decide whether for a given polynomial f (n) of the form

(1) α2n2μ + a1n
2μ−1 + . . .+ a2μ (μ, α, ai—integers, μ � 2, α �= 0)

there exist polynomials ui of positive degree with rational coefficients such that

(2)
√
f (n) = u0(n)+ 1

u1(n)
+ 1

u2(n)
+ . . .+ 1

uK(n)

(the bar denotes the period).c

I indicated a connection between them. Now I prove (in §2) that for polynomials f
of the form (1) problem P can be completely reduced to problem P1. The proof follows
the ideas of H. Schmidt [6] rather than those of paper [5]. Since for polynomials f not of
form (1) problem P is solved (negatively) by Theorem 3 [5], one can limit oneself to the
investigation of problem P1. In §3 I show how problem P1 can be reduced to the case where
the polynomial f (n) has no multiple factors. Finally (§4), I discuss the results concerning
problem P1 which I have found in papers about pseudo-elliptic integrals (they contain in
fact a complete solution of problem P1 for polynomials f of degree 4 without multiple

* This paper was written when the author was Rockefeller Foundation Fellow at Uppsala University.
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factors) and I generalise some of them to the hyperelliptic case (μ > 2). The connec-
tion between problem P1 and the theory of Abelian integrals was already established by
Abel [1], who also proved that the answer to P1 is positive if and only if the equation

X2 − f Y 2 = const

is solvable in polynomials X, Y where Y �= 0. Furthermore, if X, Y is a solution of the

above equation and
X

Y
(∞) = ∞, then

X

Y
is necessarily equal to one of the convergents

c

of expansion (2). I shall make frequent use of these theorems.
As to notation, I shall follow [5]; in particular, I shall denote throughout by

[b0(n), b1(n), . . . ] the expansion of
√
f (n) into an arithmetic continued fraction, by

Ai(n)/Bi(n) the corresponding convergents. Besides, I shall put LP
√
f = K if K isc

the smallest number � 0 for which (2) holds, and LP
√
f = ∞ if such a number does not

exist. Putting √
f = u0 + 1

u1
+ 1

u2
+ . . .

I shall assume simultaneously

T−1 = 1, T0 = u0, Tν = uνTν−1 + Tν−2,

U−1 = 0, U0 = 1, Uν = uνUν−1 + Uν−2.

[q] and (q) will denote the integral the fractional part of q, respectively, Φn(x)—the n-th
cyclotomic polynomial.

2.

Lemma 1. For every polynomial f of form (1) which is not a perfect square and ev-
ery k � 0 there exists a finite set of sk systems of polynomials with rational coefficients
[b(j)0 , b

(j)
1 , . . . , b

(j)
k ] (1 � j � sk) such that integers > n0(k) can be divided into sk

classesK1,K2, . . . , Ksk so that if n ∈ Kj then bi(n) = b(j)i (n) (0 � i � k, 1 � j � sk).

Proof by induction with respect to k. To avoid the repetition of the argument, we shall start
the induction from k = −1, where for all n we can assume b−1(n) = 0 and no division
into classes is necessary. Suppose now that the theorem is proved for k−1 (k � 0), and let
K1,K2, . . . , Ks be corresponding classes and [b(j)0 , b

(j)
1 , . . . , b

(j)
k−1] (j � s) corresponding

systems of polynomials. For n ∈ Kj we have√
f (n) = [b(j)0 (n), b

(j)
1 (n), . . . , b

(j)
k−1(n), ξk(n)],

where evidently ξk(n) =
(√
f (n)+ r(n))/s(n), r(n) and s(n) being polynomials with ra-

tional coefficients completely determined by the classKj (this is true also for k = 0). Now
√
f (n)+ r(n)
s(n)

= q(n)+ �(n),
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where q(n) is a polynomial with rational coefficients, �(n) = o(1) and, for sufficiently
large n, �(n) has a fixed sign. Therefore for n > n0(k)

bk(n) =
⎧⎨⎩q(n)− 1 if q(n) is integral and

1

�
(∞) = −∞,

[q(n)] otherwise.

Put q(n) = Q(n)/m, whereQ(n) is a polynomial with integral coefficients and m a pos-
itive integer. If n ≡ r (modm), we have [q(n)] = q(n) − (q(r)). Therefore, putting forc

0 � r < m

b
(j,r)
k (n) =

⎧⎨⎩q(n)− 1 if
(
q(r)
) = 0 and

1

�
(∞) = −∞,

q(n)− (q(r)) otherwise,

we have for n ∈ Kj , n > n0(k), n ≡ r (modm),

bk(n) = b(j,r)k (n).

This determines the required subdivision of the class Kj into a finite number of classes
and completes the proof. ��

Theorem 1. If LP
√
f = ∞, then lim lp

√
f (n) = ∞.

Proof. Let k be an arbitrary integer � 0. For all classes K1,K2, . . . , Ksk whose existence
is stated in Lemma 1, we form polynomials Ai,j (n), Bi,j (n) defined by the formulae
(0 � i � k, 1 � j � sk)

(3)
A−1,j (n) = 1, A0,j (n) = b(j)0 (n), Ai,j (n) = b(j)i (n)Ai−1,j (n)+ Ai−2,j (n),

B−1,j (n) = 0, B0,j (n) = 1, Bi,j (n) = b(j)i (n)Bi−1,j (n)+ Bi−2,j (n).

Since LP
√
f = ∞, among the polynomials Ai,j (n), Bi,j (n) there is no pair satisfying

identically the equation

A2
i,j (n)− f (n)B2

i,j (n) = const.

It follows that if n > n1(k), we have for all i � k, j � sk:
A2
i,j (n)− f (n)B2

i,j (n) �= ±1.

On the other hand, by Lemma 1, for n > n0(k), bi(n) = b
(j)
i (n) for some j � sk and

all i � k, and thus Ai(n) = Ai,j (n) and Bi(n) = Bi,j (n). The last inequality implies
therefore that for all n > max

(
n0(k), n1(k)

)
A2
i (n)− f (n)B2

i (n) �= ±1 (0 � i � k),
whence lp

√
f (n) > k. ��

Lemma 2. If R(n) is any rational function with rational coefficients, then

lim lapR(n) <∞.
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Proof. We shall prove it by induction with respect to the degree d of the denominator
of R(n) in its irreducible form. If d = 0, we have R(n) = P(n)/m, where P(n) is a
polynomial with integral coefficients and m is a positive integer. Obviouslyc

lapR(n) � max
0�r<m

lapR(r).

Suppose now that the lemma is valid for all rational functions with denominators of
degree < d and let R(n) = P(n)/Q(n) where P,Q are polynomials and the degree ofQ
is equal to d. We have

R(n) = q(n)+ r(n)

Q(n)
,

where q, r are polynomials and r is of degree< d . Putting q(n) = q1(n)/m, where q1(n)

is a polynomial with integral coefficients and m is a positive integer, we have for n ≡ rc

(modm)

lapR(n) = lap
(q1(r)

m
+ r(n)

Q(n)

)
= lap

(q1(r)ξ(n)+m
mξ(n)

)
,

where ξ(n) = Q(n)/r(n). Since by the inductive assumption: lim lap ξ(n) <∞, it follows
immediately from Theorem 1 [5] that lim lapR(n) <∞, which completes the proof. ��

Theorem 2. If LP
√
f = K > 0 and√
f = u0 + 1

u1
+ 1

u2
+ . . .+ 1

uK
,

denote by E the set of all integers n such that 2TK−1(n) is integral, and by CE its com-
plement. Then

lim
n→∞
n∈CE

lp
√
f (n) = ∞,(4)

lim
n→∞
n∈E

lp
√
f (n) <∞.(5)

Proof. We begin with a proof of equation (4). Let k be an arbitrary integer> 0, and define
Kj , Ai,j (n), Bi,j (n) (0 � i � k, 0 � j � sk) as in the proof of Theorem 1. Suppose that
for some i, j we have Kj ∩ CE �= ∅ and identicallyc

A2
i,j (n)− f (n)B2

i,j (n) = ±1.

Since the continued fraction expansion furnishes the fundamental solution TK−1(n),
UK−1(n) of the Pell equation X2 − f (n)Y 2 = ±1, we must have, for some l and suitably
chosen signs, identically

±Ai,j (n)±
√
f (n)Bi,j (n) = TlK−1 +

√
f (n)UlK−1 = (TK−1 +

√
f (n)UK−1

)l
[this is not always true, for the correct statement and the necessary addition to the followingc

argument see corrigendum on page 160].
Now let n0 ∈ Kj ∩ CE. Since n0 ∈ Kj , √f (n0) is irrational; Ai,j (n0) = Ai(n0),c

Bi,j (n0) = Bi(n0) are integers, whence ±Ai,j (n0) ± √
f (n0) Bi,j (n0) is an integer
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of the field Q
(√
f (n0)

)
. On the other hand, since 2TK−1(n0) is not a rational integer,c

TK−1(n0)+√
f (n0) UK−1(n0) and therefore also

(
TK−1(n0)+√

f (n0) UK−1(n0)
)l can-

not be an integer of the field Q
(√
f (n0)

)
.c

The contradiction obtained proves that, for all j such thatKj ∩CE �= ∅ and all i � k,c

A2
i,j (n)− f (n)B2

i,j (n) = ±1

does not hold identically. There exists therefore a number n1(k) such that for all n > n1(k)

A2
i,j (n)− f (n)B2

i,j (n) �= ±1.

Thus if n > max
(
n0(k), n1(k)

)
, n ∈ CE, then

A2
i (n)− f (n)B2

i (n) �= ±1

for all i � k, whence lp
√
f (n) > k, which completes the proof of (4).

To prove inequality (5) put UK−1(n) = W(n)/m, where W(n) is an integer-valued
polynomial and m is an integer and consider all rational functions

TlK−1

UlK−1
,
T3lK−1

U3lK−1
(l = 1, 2, . . . , m2).

By Lemma 2, there exists a numberM such that for all i � 3m2

lap ε
TiK−1

UiK−1
� M (ε = 1 or − 1).

We shall prove (5) by showing that for all n ∈ E
lp
√
f (n) � M + 2.

In fact, if n ∈ E, 2TK−1(n) is an integer. If TK−1(n) is itself an integer, then it follows
from the equation

T 2
K−1 − f (n)U2

K−1 = (−1)K

that f (n)U2
K−1(n) is also an integer. Therefore if mn |m is the denominator of UK−1(n)

represented as an irreducible fraction, the number f (n)/m2
n must be integral. The equation

TlK−1(n)+
√
f (n)

m2
n

mnUlK−1(n) =
(
TK−1(n)+

√
f (n)

m2
n

mnUK−1(n)

)l
implies that TlK−1(n) andmnUlK−1 are integers and, a fortiori, TlK−1(n) andmUlK−1(n)

are integers.

Consider therefore all systems
(
TlK−1(n),mUlK−1(n)

)
reduced modm. Since the

number of all systems (a, b) different modm ism2, we have for some 1 � i < j � m2+1

TiK−1(n) ≡ TjK−1(n) (modm),

mUiK−1(n) ≡ UjK−1(n) (modm).
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Hence

TK(j−i)−1(n)+
√
f (n)UK(j−i)−1 = (TKj−1(n)TKi−1(n)− f (n)UKj−1UKi−1

)
+

√
f (n)

m

(
TKj−1mUKj−1 − TKi−1mUKj−1

)
.

Since

TKj−1mUKj−1 − TKi−1mUKj−1 ≡ 0 (modm),

the number UK(j−1)−1 is an integer.
Since the numbers TK(j−i)−1(n) and UK(j−i)−1(n) form an integral solution of the

equation

x2 − f (n)y2 = ±1,

the number

∣∣∣∣ TK(j−i)−1(n)

UK(j−i)−1(n)

∣∣∣∣ must be a convergent of the arithmetic continued fraction for
c √
f (n), and if lp

√
f (n) = k, we must have∣∣∣∣ TK(j−i)−1(n)

UK(j−i)−1(n)

∣∣∣∣ = Akt−1

Bkt−1
,

whence

k � kt � lap

∣∣∣∣ TK(j−i)−1(n)

UK(j−i)−1(n)

∣∣∣∣+ 2 � M + 2.

If 2TK−1(n) is an integer but TK−1(n) is not, then it is evident from the formula

T3K−1 = TK−1
(
4T 2
K−1 − 3(−1)K

)
that T3K−1(n) is an integer. Mutatis mutandis, the whole previous argument applies. ��

Theorem 2 immediately implies

Theorem 3. If LP
√
f = K <∞ and formula (2) holds, then lim lp

√
f (n) <∞ if and

only if 2TK−1(n) is an integer-valued polynomial.

Theorems 2 and 3 generalise Theorems 4 and 5 of [5]. Their proofs furnish also inde-
pendent proofs of the latter theorems.

In view of Theorem 3 [5], problem P is now completely reduced to problem P1.

3.

Theorem 4. If f (x) = g2(x)h(x) where h(x) has no multiple roots, then LP
√
f < ∞

implies LP
√
h < ∞. Furthermore, if g(x) = g

α1
1 (x)g

α2
2 (x) · · · gαss (x), where gi are

distinct irreducible polynomials of degree γi respectively, LP
√
h < ∞ and T ,U is the

fundamental solution of the Pell equation

(6) X2 − h(x)Y 2 = 1,
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then LP
√
f <∞ if and only if for each i � s we have

(i) U ≡ 0 (mod gαii ) if gi |hU ,
(ii)

∏
r

gi (r)=0

[x2−2T (r)x+1] = Φn(x)2γi/ϕ(n) for some n satisfying ϕ(n) |2γi and T ′ ≡ 0

(mod gαi−1
i ) if gi /| hU .

Proof. If polynomials X0, Y0 satisfy the equation

(7) X2 − f (x)Y 2 = 1,

then polynomials X0, g(x)Y0 satisfy equation (6) and thus LP
√
f < ∞ implies

LP
√
h <∞.

In order to prove that conditions (i)–(ii) are necessary, let us observe that for some l
and suitably chosen signs we must have

(8) ±X0 ±
√
h gY0 = (T +√

hU
)l
.

Ifgi |hU , we have (T , gi) = 1 because polynomialsT ,U satisfy (6). On the other hand,

±gY0 =
∑
i�0

(
l

2i + 1

)
T l−2i−1hiU2i+1,

and thus gi divides gY0 in exactly the same power as it divides lT lU . Hence condition (i).
If gi /| hU , let r be any of the roots of gi . Since polynomials X0, Y0 satisfy (7),

X2
0 ≡ 1

(
mod (x − r)2αi ),

whence for some ε = ±1 we have

(9) X0 ≡ ε (mod (x − r)2αi ).
From (8) and (9) it follows first of all that T (r)+√

h(r) U(r) = ζ satisfies the cyclo-
tomic equationΦn(x) = 0 for somen |2l. SinceT 2−hU2 = 1,T (r)−√

h(r) U(r) = ζ−1

satisfies the same equation. Therefore

(x − ζ )(x − ζ−1) = x2 − 2T (r)x + 1 |Φn(x)
and the same divisibility holds for each root r of gi . Since both polynomials gi andΦn are
irreducible,

∏
gi(r)=0

(
x2 − 2T (r)x + 1

)
must be a power of Φn(x).

By comparing the degrees we obtain∏
r

gi (r)=0

(
x2 − 2T (r)x + 1

) = Φn(x)2γi/ϕ(n),
i.e. the first part of condition (ii).

Further it follows from (9) that

X
(j)
0 (r) = 0 (j = 1, 2, . . . , 2αi − 1),

and since g(j)(r) = 0 (j = 1, 2, . . . , αi − 1), h(r) �= 0, we have[
dj

dxj

(±X0(x)±
√
h(x) g(x)Y0(x)

)]
x=r

= 0 (j = 1, 2, . . . , αi − 1).
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It follows from (8) by easy induction that[
dj

dxj

(
T (x)+√h(x)U(x))]

x=r
= 0 (j = 1, 2, . . . , αi − 1),

and hence T (j)(r) = 0 (j = 1, 2, . . . , αi − 1), i.e.

T ′(x) ≡ 0
(
mod (x − r)αi−1).

Since the last divisibility holds for each root r of gi , we have

T ′ ≡ 0
(
mod gαi−1

i

)
,

i.e. the second part of condition (ii).
It remains to prove that conditions (i)–(ii) are sufficient. Suppose therefore that they

are fulfilled.
If gi /| hU , denote by n(i) the index of the cyclotomic polynomial that occurs in condi-

tion (ii) and let m be the least common multiple of all numbers n(i). Define polynomials
V,W by the identity

(10) V +√
hW = (T +√

hU
)m
.

In view of (ii) we have for each root r of gi /| hU(
T (r)±√h(r) U(r))n(i) = 1,

and thus for each root r of each gi /| hU :c

V (r)±√h(r)W(r) = 1, W(r) = 0

and

(11) W(x) ≡ 0
(

mod
∏
gi /|hU

gi

)
.

Now since for all gi /| hU , T ′ ≡ 0 (mod gαi−1
i ), we have T (j)(r) = 0 for each root r

of gi (gi /| hU , 1 � j � αi − 1). This, in view of T 2 − hU2 = 1, gives also[
dj

dxj

(
h(x)U2(x)

)]
x=r

= 0 (j = 1, 2, . . . , αi − 1),

and since h(r)U(r) �= 0,[
dj

dxj

(√
h(x)U(x)

)]
x=r

= 0 (j = 1, 2, . . . , αi − 1).

By identity (10) we get[
dj

dxj

(√
h(x)W(x)

)]
x=r

= 0 (j = 1, 2, . . . , αi − 1),

which, in view of (11) and since h(r) �= 0, gives

W(x) ≡ 0
(

mod
∏
gi /|hU

g
αi
i

)
.
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On the other hand, it follows from condition (i) and identity (10) that

W(x) ≡ 0
(

mod
∏
gi |hU

g
αi
i

)
,

so thatW(x) ≡ 0
(
mod g(x)

)
and equation (7) has the solution V (x),W(x)/g(x), which

completes the proof. ��

Corollary. If h �= 0, LP(x − a)√x2 − h < ∞ holds if and only if a = 0 or h = 4
3a

2,
2a2 or 4a2.

Proof. We have here T (x) = 1−2x2/h,U(x) = −2x/h. Conditions (i)–(ii) take the shape

h �= a2

and

a = 0 or x2 − 2
(

1 − 2a2

h

)
x + 1 = Φ2

1 (x), Φ
2
2 (x) or Φ3(x), Φ4(x), Φ6(x).

The last identity gives 1 − 2a2/h = ±1, ± 1
2 or 0, which leads to the four cases stated

in the corollary. ��

4.

Now we shall make some remarks about problem P1 in the really important case where
the polynomial f has no multiple factors. Suppose that LP

√
f = K and (2) holds, so that

T 2
K−1 − f (x)U2

K−1 = (−1)K,

and let TK−1 be of degree λ.
Applying the theorem of Abel to the function

TK−1(x)+ yUK−1(x)

on the Riemann surface S defined by equation y2 = f (x), we find

λ

∫ P2

A

w dx − λ
∫ P1

A

w dx = a period,

where
∫
w dx is any integral of the first kind on S, A is an arbitrary place and P1, P2 are

two places in infinity on S. Taking A = P1 we get

λ

∫ P2

P1

w dx = a period,

which means that

If LP
√
f <∞, then the value of

∫ P2
P1
w dx is commensurable with the periods of the

integral
∫
w dx, w being any integrand of the first kind.

For polynomials f of degree 4, the inverse of the above statement is also true, which
has been known for a very long time ([2], Vol. II, p. 592). Furthermore, if r is the smallest
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integer such that

r

∫ P2

P1

dx√
f (x)

= a period,

then LP
√
f = r − 1 or 2(r − 1). More precisely, r is the smallest integer � 2 such that

T 2
r−2(x)− f (x)U2

r−2(x) = C = const

and LP
√
f = r − 1 or 2(r − 1) if C = (−1)r−1 or not, respectively(1). According to

Abel ([1], p. 213), if r is odd, we have necessarily C = 1 and LP
√
f = r − 1.

These statements in themselves do not form a solution of problem P1 for polynomi-
als of degree 4, since they do not supply any method of deciding whether the value of∫ P2

P1

dx√
f (x)

is commensurable with the periods or not.

A method of deciding that was given by Chebyshev [8], and its justification was later
furnished by Zolotarev [9].

Now, after the theory of rational points on curves of genus 1 has been developed, an-
other method can be indicated, actually based on the same idea but leading to the end more
rapidly. Without loss of generality we can assume that

f (x) = x4 + 6α2x
2 + 4α3x + α4.

According to Halphen ([2], Vol. I, p. 120 and Vol. II, p. 591),

r

∫ P2

P1

dx√
f (x)

= a period

if and only if

rν = a period,

where if ℘ is the function of Weierstrass,

g2 = 3α2
2 + α4, g3 = α2α4 − α3

2 − α2
3; ℘(ν; g2, g3) = −α2, ℘′(ν; g1, g3) = α3.

This means that the point (−α2, α3) is exceptional of the order r on the cubic y2 =
4x3 − g2x − g3. Now, a method has been given by T. Nagell [3] which permits us not
only to decide whether a given point is exceptional or not but also to find all exceptional
points on a given cubic of Weierstrass. This method seems to work more rapidly than the
method of Chebyshev, however, it is noteworthy that, with the use of completely different
terminology, the first problem concerning exceptional points mentioned above was already
solved by Chebyshev.

From known results regarding exceptional points further conclusions may be drawn
regarding the functional LP

√
f , f of degree 4. It follows in particular that LP

√
f can

take the values 1, 2, 3, 4, 6, 8, 10, 14, 18, 22 and possibly also 5, 7, 9, 11 (I have not verified
this) and, if the conjecture of Nagell [4] is true, no other values.

For polynomials f of degree> 4 I do not know any method which would always lead
to the solution of problem P1. However, the following rule solves the problem for almost
all (in an adequate sense) polynomials f .

(1) For a modern treatment see the paper [c1], in particular Corollary 3.
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If LP
√
f <∞, then f is reducible in a certain quadratic field.

The proof given below does not differ essentially from Chebyshev’s proof [7] of an
analogous theorem for polynomials f of degree 4.

Suppose that LP
√
f <∞, (2) holds and s is the smallest integer � 0 such that

T 2
s − f (x)U2

s = C.

Since Ts, Us have rational coefficients, C is rational. We have

f (x)U2
s = T 2

s − C = (Ts −√
C
)(
Ts +

√
C
)
.

If f (x) were irreducible in the field Q
(√

C
)
, we should havec

(12)

f (x) |Ts − ε
√

C (ε = 1 or − 1), whence

Ts − ε
√

C = f (x)W 2, Ts + ε
√

C = V 2 and

V 2 − f (x)W 2 = 2ε
√

C.

In virtue of the theorem quoted in §1, one of the fractions V/W and −V/W must be
a convergent of expansion (2), and thus we have, for some r � 0: ±V/W = Tr/Ur ,c

T 2
r − fU2

r = const ,

and the degree of Tr , equal to the degree of V , is less than the degree of Ts by (12). Since
this is incompatible with the definition of s, f (x) must be reducible in the field Q

(√
C
)
,c

which completes the proof. ��
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Corrigendum*

Miss M. Lozach has pointed out an error in the proof of Theorem 2. Contrary to what
is stated on the bottom of p. 152 the fundamental solution of the polynomial Pell equation
X2 − f (x)Y 2 = ±1 may be furnished not by the shortest period of the continued fraction
expansion of

√
f (x), but the shortest pseudoperiod. To be precise, if k is the least non-

negative integer such that Tk/Uk is a convergent of the expansion of
√
f (x) and for somec

constant c we have T 2
k − f (x)U2

k = c then the fundamental solution of the polynomial
Pell equation is given by Tk/

√|c|, Uk/√|c|, even though k + 1 is not the length K of
the shortest period of the said expansion. M. Lozach has proved (see [c1], Appendice,
pp. 93–95) that in such a caseK = 2(k+1). This however has no influence on the validity
of Theorem 2. Indeed we have then

TK−1 + UK−1
√
f (x) =

(
Tk + Uk√f (x)√

c

)2

hence

2TK−1 = 2T 2
k + 2U2

k f (x)

c
= 4T 2

K − 2c

c
= ±
(

2Tk√|c|
)2

− 2

and if 2TK−1(n) is not a rational integer, 2Tk/
√|c| also is not. The argument given in the

paper applies.
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On two conjectures of P. Chowla and S. Chowla
concerning continued fractions

To Professor Beniamino Segre on his 70-th birthday

Summary. The alternating sum of the partial quotients in the primitive period of a continued fraction
expansion of

√
D is determined mod 2 and mod 3.

Let D be a non-square positive integer and set

√
D = b0 + 1

b1
+ . . .+ 1

bk
= [b0, b1, . . . , bk],

where the bar denotes the primitive period,

�D = bk − bk−1 + . . .+ (−1)k−1b1.

P. Chowla and S. Chowla [1] have made among others the following conjectures:

if D ≡ 3 mod 4, 3 /| D then �D ≡ 0 mod 3,

if p, q are primes, p ≡ 3 mod 4, q ≡ 5 mod 8 then

(−1)�pq =
(p
q

)
.

The aim of this paper is to prove two theorems which generalize the above conjectures
(note that D ≡ 3 mod 4 implies k ≡ 0 mod 2).

Theorem 1. If k is even, 3 /| D then �D ≡ 0 mod 3.

Theorem 2. �D ≡ v mod 2, where u, v is the least non-trivial solution ofU2−DV 2 = 1.
Moreover, let 2 /| D, k(D) be the square-free kernel of D and C any divisor of 2k(D)
different from 1 and −k(D) such thatU2 −k(D)V 2 = C is soluble. If eitherC ≡ 1 mod 2
or each prime factor of D divides k(D) then �D ≡ C + 1 mod 2.

Remark. If both conditions given in Theorem 2 for oddD are violated the conclusion may
fail, e.g. for D = 147 = 3 · 72 we have �D = 16 ≡ 0 mod 2, although u2 − 3v2 = −2 is
soluble.

Corollary 1. If D �≡ 0, 3, 7 mod 8 then �D ≡ 0 mod 2.

Corollary 2. If p is a prime, p ≡ 3 mod 4, α is odd then �pα ≡ 1 mod 2.
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Corollary 3. If p, q are primes, p ≡ 3 mod 4, q ≡ 5 mod 8, α, β are odd then

(−1)�pαqβ =
(p
q

)
.

Proof is based on several known facts from the classical theory of continued fractions
which we quote below in form of lemmata from the book of Perron [4]. First however
we must recall Perron’s notation. For a given regular continued fraction [b0, b1, . . . , bn]
the Muir symbol K

(
1, 1, . . . , 1

b0, b1, b2, . . . , bn

)
denotes its numerator An computed from the

formulae

A−1 = 1, A0 = b0, Aν = bνAν−1 + Aν−2.

Then we set

Aν,λ = K
(

1, . . . , 1

bλ, bλ+1, . . . , bλ+ν

)
, Aν,0 = Aν,

Bν,λ = K
(

1, . . . , 1

bλ+1, bλ+2, . . . , bλ+ν

)
, Bν,0 = Bν.

Lemma 1. The following formulae hold

Aν,λ = bν+λAν−1,λ + Aν−2,λ,(1)

Bν,λ = Aν−1,λ+1,(2)

Aν,λ = bλAν−1,λ+1 + Bν−1,λ+1,(3)

Aν,λBν−1,λ − Aν−1,λBν,λ = (−1)ν−1.(4)

Proof. (1) follows directly from the definition of Aν,λ. For the remaining formulae see [4]
p. 15, formulae (25) and (29); p. 17, formula (35). ��

Lemma 2. If for all positive λ < k, bλ = bk−λ then for all λ � k/2
(5) Bk−2λ,λ = Ak−2λ−1,λ.

Proof. We have by definition

Bk−2λ,λ = K
(

1, . . . , 1

bλ+1, bλ+2, . . . , bk−λ

)
, Ak−2λ−1,λ = K

(
1, . . . , 1

bλ, bλ+1, . . . , bk−λ−1

)
and the lemma follows from the symmetry property of the Muir symbol ([4], p. 12). ��

Lemma 3. The symmetric part of the continued fraction

ξ0 = [b0, b1, b2, . . . , b2, b1, 2b0]
with period of length k being given, the necessary and sufficient condition for ξ0 to be a
quadratic root of an integer is that b0 should have the form

(6) b0 = mAk−2,1 − (−1)kAk−3,1Bk−3,1

2
,
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where m is an integer. Then

ξ0 = √
D =

√
b2

0 +mAk−3,1 − (−1)kB2
k−3,1 .

Proof. See [4], p. 98, Satz 17. ��

Proof of Theorem 1. If D �≡ 0 mod 3 then in the notation of Lemma 3

(7) mAk−2,1 ≡ Ak−3,1Ak−2,1 mod 3.

Indeed, it is clear if Ak−2,1 ≡ 0 mod 3, otherwise we have

D ≡ (−mAk−2,1 + Ak−3,1Bk−3,1)
2 +mAk−3,1 − B2

k−3,1

≡ m2 − 2mAk−2,1Ak−3,1Bk−3,1 + A2
k−3,1B

2
k−3,1 +mAk−3,1 − B2

k−3,1 mod 3

and since by (4) and (5), for λ = 1, ν = k − 2,

Ak−2,1Bk−3,1 = A2
k−3,1 − 1

it follows

D ≡
{
m2 − 1 mod 3 if Ak−3,1 ≡ 0 mod 3,

m2 +mAk−3,1 mod 3 if Ak−3,1 �≡ 0 mod 3.

Thus DAk−2,1 �≡ 0 mod 3 implies m ≡ Ak−3,1 mod 3 and a fortiori the congruence (7).
Since

�D = 2b0 − 2b1 + . . .+ (−1)k/2−12bk/2−1 + (−1)k/2bk/2,

in view of (6) and (7) it remains to show that

(8) 1
2Ak−3,1(Ak−2,1 − Bk−3,1)

≡ b1 − b2 + . . .+ (−1)k/2bk/2−1 + (−1)k/2bk/2 mod 3.

This we prove by induction with respect to k. For k = 2

Ak−3,1 = 1, Bk−3,1 = 0, Ak−2,1 = b1

and (8) takes the form −b1 ≡ −b1 mod 3. Assume (8) is true for any symmetric sequence
of positive integers b1, . . . , bk−3 (k even � 4). We have by (1), (3) and (5)

Ak−3,1 = b1Ak−4,2 + Bk−4,2 = b1Ak−4,2 + Ak−5,2,

Ak−2,1 = bk−1Ak−3,1 + Ak−4,1 = b1(b1Ak−4,2 + Ak−5,2)+ b1Ak−5,2 + Bk−5,2

= b2
1Ak−4,2 + 2b1Ak−5,2 + Bk−5,2;
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by (2) Bk−3,1 = Ak−4,2. Hence

1
2Ak−2,1(Ak−2,1 − Bk−3,1)

= 1
2 (b1Ak−4,2 + Ak−5,2)(b

2
1Ak−4,2 + 2b1Ak−5,2 + Bk−5,2 − Ak−4,2)

= 1
2 (b

3
1A

2
k−4,2 + 3b2

1Ak−4,2Ak−5,2 + b1Ak−4,2Bk−5,2

− b1A
2
k−4,2 + 2b1A

2
k−5,2 + Ak−5,2Bk−5,2 − Ak−4,2Ak−5,2)

≡ b1(−Ak−4,2Bk−5,2 + A2
k−5,2)+ Ak−5,2(Ak−5,2 − Bk−5,2)mod 3.

However, by (4) and (5)

b1(−Ak−4,2Bk−5,2 + A2
k−5,2) ≡ b1(−1)k−4 ≡ b1 mod 3,c

by the inductive assumption applied to the sequence b2, . . . , bk−2

Ak−5,2(Ak−4,2 − Bk−5,2) ≡ 2(b2 − b3 + . . .) ≡ −b2 + b3 − . . .+ (−1)k/2bk/2 mod 3c

and (8) follows. ��

Lemma 4. If
√
D = [b0, b1, . . . , bν−1, ξν] then

ξν =
√
D + Pν
Qν

,

where Pν,Qν are positive integers

(9) D − P 2
ν+1 = QνQν+1

and for ν = 1, . . . , k − 1

(10) 2 � Qν � 2b0.

Proof. See [4] p. 83, formula (5); p. 33, formulae (4), (5). ��

Lemma 5. If k is even, k = 2r then

(11) 2Pr = brQr,
(121) 2Ar−1 = (Br−1br + 2Br−2)Qr,

(122) B2r−1 = Br−1(Br−1br + 2Br−2),

Qr is a divisor of (2Ar−1, 2D) and

(13) Qr

(2Ar−1

Qr

)2 − 2D

Qr
· 2B2

r−1 = (−1)r4.

Proof. See [4] p. 107, formulae (9) and (10); p. 115, the third formula from below. ��

Lemma 6. If D is square-free there are exactly two values of C which divide 2D such
that C �= 1,−D and U2 − DV 2 = C is soluble. The product of these two values of C
equals −4D when D is odd and C is even, in all other cases the product equals −D.
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Proof. See [3] p. 12, Theorem 11 part 3. ��

Proof of Theorem 2. If k is odd then U2 − DV 2 = −1 is soluble, v ≡ 0 mod 2 and
C ≡ 1 mod 2. On the other hand �D = 2b0 thus �D ≡ v ≡ C + 1 mod 2.

If k is even, k = 2r thenc

�D = 2b0 − 2b1 + . . .+ (−1)r−12br−1 + (−1)rbr ≡ br mod 2.

We have clearly v = B2r−1 and we first prove br ≡ B2r−1 mod 2. Indeed, if br ≡
0 mod 2 we have B2r−1 ≡ 0 mod 2 by (122). If br ≡ 1 mod 2 then by (11)Qr ≡ 0 mod 2.
If we had Br−1 ≡ 0 mod 2, (121) would give 2Ar−1/Qr ≡ 0 mod 2 and the left hand
side of (13) would be divisible by 8. Therefore, Br−1 ≡ 1 mod 2 and by (122) B2r−1 ≡
br mod 2.

We now assume that D is odd.
If Qr ≡ 0 mod 2 then by (9) applied for ν = r − 1 it follows that Pr ≡ 1 mod 2 and

by (11) br ≡ 1 mod 2. IfQr ≡ 1 mod 2 then br ≡ 0 mod 2. Thus

(14) �D ≡ Qr + 1 mod 2.

LetQr = q2k(Qr). By Lemma 5Qr |2D hence q is odd, k(Qr) |2k(D). By (13)

(Ar−1/q)
2 − (D/q2)B2

r−1 = (−1)rk(Qr),

thus U2 − k(D)V 2 = (−1)rk(Qr) is soluble. By Lemma 6 we have the following possi-
bilities

(−1)rk(Qr) = 1,(15)

(−1)rk(Qr) = −k(D),(16)

(−1)rk(Qr) = C,

(−1)rk(Qr) =
{
−k(D)C−1 if C ≡ 1 mod 2,

−4k(D)C−1 if C ≡ 0 mod 2.

If C ≡ 1 mod 2 then

(17) Qr ≡ k(Qr) ≡ C mod 2.

If each prime factor ofD divides k(D) then (15) and (16) are impossible. Indeed, then eachc

odd prime factor of Qr divides k(D) hence if Qr = q2 it divides also D/Qr . In view of
(13) this impliesQr = 1, contrary to (10). Also each odd prime factor of 2D/Qr divides
k(D) hence ifQr = q2k(D) it divides alsoQr . In view of (13) this impliesQr = D > 2b0
again contrary to (10). Since

C ≡
{
−k(D)C−1 mod 2 if C ≡ 1 mod 2,

−4k(D)C−1 mod 2 if C ≡ 0 mod 2,

we obtain again the congruence (17). The theorem follows from (14) and (17). ��

Proof of Corollary 1. IfD �≡ 0, 3, 7 mod 8 then u2−Dv2 ≡ 1 mod 8 implies v ≡ 0 mod 2
thus �D ≡ v ≡ 0 mod 2. ��
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Proof of Corollary 2. IfD = pα where p is a prime, p ≡ 3 mod 4, α ≡ 1 mod 2 then each
prime factor of D divides k(D) = p. The only divisors of 2p besides 1 and −p are −1,
±2, p and ±2p. However the equations

U2 − pV 2 = −1, U2 − pV 2 = p
are impossible mod p and p2, respectively, because (−1/p) = −1.

Thus C = ±2 or ±2p and �D ≡ C + 1 ≡ 1 mod 2. ��

Proof of Corollary 3. If D = pαqβ where p, q are primes, p ≡ 3 mod 4, q ≡ 5 mod 8,
α ≡ β ≡ 1 mod 2 then each prime factor of D divides k(D) = pq. The only divisors of
2pq besides 1 and −pq are −1, ±2, ±p, ±2p, ±q, ±2q, pq, ±2pq.

The equations

U2 − pqV 2 = −1, U2 − pqV 2 = pq
are impossible mod p and p2, respectively, because (−1/p) = −1.

The equations

U2 − pqV 2 = ±2, U2 − pqV 2 = ±2pq

are impossible mod q and q2, respectively, because (±2/q) = −1.
If (p/q) = 1 the equations

U2 − pqV 2 = ±2p, U2 − pqV 2 = ±2q

are impossible mod q and q2, respectively, because (±2p/q) = −1.
Then C = ±p or ±q and �D ≡ C + 1 ≡ 0 mod 2.
If (p/q) = −1 the equations

U2 − pqV 2 = ±p, U2 − pqV 2 = ±q
are impossible mod q and q2, respectively.

Then C = ±2p or ±2q and �D ≡ C + 1 ≡ 1 mod 2. ��

Remark. The congruence �D ≡ v mod 2 has been suggested to me by H. Lang, who
established a similar congruence for the relevant Dedekind sums (see his forthcoming
paper [2]).
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Commentary on C: Algebraic numbers

by David W. Boyd and D. J. Lewis

C1, C6, C10
If α is an algebraic integer of degree d , with conjugates α = α1, α2, . . . , αd , define

α = max
i

|αi |, M(α) =
∏

max(1, |αi |) � α d,

known as the “house” and “Mahler measure” of α, respectively.
In C1, the authors proved that there is no α having 2s > 0 complex conjugates for

which

1 < α < 1 + 4−s−2

and no totally real α for which

2 < α < 2 + 4−2d−3.

Implicitly they asked if there existed an absolute constant c > 0 such that, if α is not a
root of unity, then

α > 1 + c/d.
An affirmative answer to this question has come to be known as the Schinzel–Zassenhaus
conjecture.

This is related to a question of D. H. Lehmer [17] who asked if there is an absolute
constant C > 1 such that

M(α) > C,

for every non-zero algebraic integer α, not a root of unity. An affirmative answer to this
question has come to be known as Lehmer’s conjecture. It is clear that Lehmer’s conjecture
implies the Schinzel–Zassenhaus conjecture (with c = logC), but not conversely.

An extensive literature has been developed seeking to answer these two questions and
related ones. R. Breusch [4] proved Lehmer’s conjecture forαwhich are non-reciprocal, i.e.
α andα−1 are not conjugate, showing thatM(α) � c0 for suchα, where c0 = 1.1796 . . . is
the positive zero of the polynomial x3 − x2 − 1/4. Lehmer had already given an example
of a reciprocal α of degree 10 for which M(α) = σ0 = 1.1762 . . . which combines
with Breusch’s result to show that the extremal examples for Lehmer’s conjecture must be
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reciprocal. C. Smyth [27] proved a sharp form of Lehmer’s conjecture for non-reciprocal α
by proving M(α) � θ0, where θ0 = 1.3247 . . . is the positive zero of the polynomial
x3 − x − 1.

Computational evidence obtained by Boyd [3] strongly suggests that, in contrast to
Lehmer’s question, the extremal examples for the Schinzel–Zassenhaus question are non-
reciprocal and indeed that for d = 3k the minimum of α is attained for a root of
x3k + x2k − 1, suggesting that the Schinzel–Zassenhaus conjecture is true with the best
possible constant being (3/2) log θ0 = 0.4217 . . . . Smyth’s inequalityM(α) � θ0 implies
that α � 1 + log θ0/d , for non-reciprocal α, where log θ0 = 0.2811 . . . . A. Dubickas [9]
has improved the constant to 0.3096 . . . for sufficiently large d.

For reciprocal α, the best results concerning either conjecture are elaborations on the
fundamental result of E. Dobrowolski [7] who showed that there is a explicit constant
a > 0 such that if α is not a root of unity and of degree d, then

M(α) > 1 + a
(

log log d

log d

)3

.

R. Louboutin [20] has shown that for sufficiently large d, a = 9/4−ε suffices. This would
imply that

α > 1 + a
d

(
log log d

log d

)3

,

with a = 9/2− ε. A. Dubickas [8] has improved the constant in this latter inequality from
9/2 = 4.5 to 64/π2 = 6.4845 . . . .

If P(x) is the minimal polynomial of α then one defines M(P) = M(α). Then
Smyth’s inequality states that for non-reciprocal polynomials with integral coefficients,
M(P) � θ0. In paper C6, Schinzel generalizes Smyth’s inequality to polynomials P(x)
with coefficients in a totally real number field K . He shows that if k = [K : Q] and
P(x) = P1(x), . . . , Pk(x) are the conjugates of the non-reciprocal polynomial P(x) then

max
1�j�k

M(Pj ) � θ0.

Furthermore, one has ∏
1�j�k

M(Pj ) �
(

1 +√
5

2

)k/2
.

He applies this to give an upper bound for the number of non-reciprocal, irreducible factors
of a polynomial with coefficients in a totally real algebraic number field or a totally complex
extension of such a field.

The Mahler measure β = M(α) is an algebraic integer. It is an interesting question to
decide for a given algebraic integer β whether or not it is of the form M(α) for some α.
The definitive work on this question is the recent paper by J. Dixon and A. Dubickas [6].
Among the questions that they were unable to answer in their paper was whether or not
β = 3(3 +√

5)/2 is the Mahler measure of some α. In the paper C10, Schinzel answers
this and other questions raised in the paper of Dixon and Dubickas. He shows that if
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p is a prime then p(3 + √
5)/2 is a Mahler measure if and only if p = 2, p = 5 or

p ≡ ±1(mod 5).

C2, C3, C5
In [5], H. Davenport, D. J. Lewis andA. Schinzel made use of a theorem of M. Bauer [1]

to prove: If K is a normal extension of Q and N ={NK/Q(ω) |ω∈K} and f (x) ∈ Q[x]
has the property that every arithmetic progression in Z contains an integer a such that
f (a) ∈ N , then f (x) = NK/Q(ϕ(x)), for some ϕ ∈ K[x].

If K is a number field, let P (K) denote the set of rational primes which have a first
degree prime ideal of K as a factor. The theorem of Bauer asserts: If K,H are number
fields such that P (H) ⊂ P (K) with possibly a finite number of exceptions, and if K is
normal, thenK ⊂ H . IfK is not normal, the conclusion need not hold, indeed F. Gassmann
[10] exhibited two non-conjugate fields H,K of degree 180 for which P (H) = P (K).

Schinzel had observed that it was sufficient for the proof of the polynomial problem to
know that a conjugate ofK lie inH . He definedK to be a Bauerian field if P (H) ⊂ P (K),
with possibly a finite number of exceptions, implies some conjugate Kσ of K lie in H .
These three papers provide various criteria for a field to be Bauerian and then prove various
theorems when the set of values of a polynomial, in one or more variables, might determine
the shape of the polynomial.

J. Wójcik [31] extended the class of fields that are Bauerian to include quasi-normal
fields, i.e. fields whose normal closure is the composite of any two of its conjugates.

C4
Let β be a cyclotomic integer so that β is representable as a sum of roots of unity. In this

paper, Schinzel answers a question of R. M. Robinson [25], by showing that a cyclotomic
integer of degree d is a sum of n roots of unity only if it is a sum of n roots of unity all of
common degree less than an explicitly given function c(d, n) of d and n only. In a footnote
to this paper Schinzel indicates that one could obtain a better estimate by use of a theorem
of Henry Mann [22]. This was done by J. H. Loxton [21].

Timo Ojala [24] refines Corollary 5, showing that if β 2 < 6, then β is the sum of at
most 3 roots of unity or belongs to one of three infinite sets of equivalent numbers (α ∼ β
if αβ−1 = root of identity) or one of a finite set.

C7
A finite extension L/K is a radical extension provided there is a group C and integer

n such thatK× ⊂ C ⊂ L×, Cn ⊆ K× for some n, and L = K(C). Further, ifK contains
the n-th roots of unity and (n, char K) = 1, then L/K is a Kummer extension and

[C : K×] = [L : K] = [Cn : Kn]
and further the groups C/K× and Gal(L/K) are isomorphic and there exists a bijection
between the subgroups of C/K× and the subfields of L containing K . These conditions
fail for most radical extensions.

In this paper, Schinzel gave necessary and sufficient conditions for radical extensions
to have [C : K×] = [L : K]. See also Kneser [14]. Schinzel’s paper [26] should be
viewed as an extension of this paper. F. Halter-Koch [11] gave necessary and sufficient
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conditions for a radical extension to satisfy [L : K] = [Cn : Kn]. The essential ingredient
in these papers is the location of the roots of unity with respect to K . In [12] Halter-Koch
explored conditions for radical extensionsL/K that imply ifL ⊃ E ⊃ K then there exists
a subgroup C1 ⊂ C such that E is conjugate to K(C1).

C8
For a finite abelian group A denote by r2(A) the 2-rank of A, i.e. the number of cyclic

direct summands of the Sylow 2-subgroup of A. Let OF be the ring of integers of the
number field F and let K2 denote the functor of Milnor. The authors provide an explicit
formula for r2(K2OF ) in the case when F is a quadratic field. If F = Q(

√
D), where D

square-free has t odd prime factors and 2s is the number of elements of the set {±1,±2}
that are norms of an element of F , then they proved that

r2(K2OF ) =
{
t + s, if D ≥ 2,
t + s − 1, if D ≤ −1.

Browkin and Schinzel derived from the obtained formulas some results on the structure of
the Sylow 2-subgroup of K2OF and gave an explicit form of elements of order 2 in this
group. The formula has been used extensively in many papers concerning the Sylow 2-
subgroup ofK2(OF ) as well as it was generalized and extended in many ways. In particular,
results of the paper C8 implied the correctness of the Birch–Tate formula for the order of
K2OF for infinitely many real quadratic fields; e.g. J. Hurrelbrink [13], M. Kolster [15]
and J. Urbanowicz [29]. The Birch–Tate conjecture asserts for a totally real field E,

card(K2OE) = 2 |ζE(−1)|
∏
p

pn(p),

where ζE is the Dedekind zeta function forE and n(p) is the largest integer n ≥ 0 such that
Q(ζpn)

+ ⊂ E. See B. J. Birch [2] and J. Tate [28]. B. Mazur and A. Wiles [23] (see also
A. Wiles [30]) have shown that the Birch–Tate conjecture is true for totally real abelian E.
The Birch–Tate conjecture is a special case of the conjecture of S. Lichtenbaum [18].

C9
I. Korec [16] defined aK-system to be a vector (α1, . . . , αm)of positive real numbers for

which there are nonnegative integers cijk satisfyingαiαj =
m∑
k=1
cijkαk for all 1 � i, j � m.

He called α a K-number if there is a K-system and nonnegative integers ak such that

α =
m∑
k=1
akαk . Korec proved thatK-numbers are algebraic integers. Here Schinzel proves

that a nonnegative real number α is aK-number if and only if it is an algebraic integer and
it is not less in absolute value than any of its conjugates. In Lemma 4, he shows that if α
is a K-number there is an exponent e for which αe is a Perron number, that is a positive
algebraic integer which is strictly larger than the absolute value of any other conjugate. The
terminology is due to D. Lind [19], who showed that these algebraic integers are exactly
those occurring as the spectral radii of irreducible non-negative integral matrices.
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A refinement of two theorems of Kronecker

with H. Zassenhaus (Columbus)

Kronecker [1] proved in 1857 that if an algebraic integer α different from zero is not
a root of unity, then at least one of its conjugates has absolute value greater than 1. He
proved also that if α is a totally real algebraic integer and α �= 2 cos ρπ (ρ rational), then
at least one of its conjugates has absolute value greater than 2. The aim of this paper is to
refine the above statements as follows.

Theorem 1. If an algebraic integer α �= 0 is not a root of unity, and if 2s among its
conjugates αi (i = 1, . . . , n) are complex, then

(1) max
1�i�n

|αi | > 1 + 4−s−2.

Theorem 2. If a totally real algebraic integer β is different from 2 cos ρπ (ρ rational),
and {βi} (i = 1, . . . , n) is the set of its conjugates, then

(2) max
1�i�n

|βi | > 2 + 4−2n−3.

It would be possible to improve 4−s−2 and 4−2n−3 on the right hand side of inequalities
(1) and (2) by constant factors. This, however, seems of no interest, since probably the
order of magnitude of

max
1�i�n

|αi | − 1 and max
1�i�n

|βi | − 2

is much greater than that given by (1) and (2), respectively. In fact, for α satisfying the
assumptions of Theorem 1, we cannot disprove the inequality

(3) max
1�i�n

|αi | > 1 + c

n
,

where c > 0 is an absolute constant.
Such a disproof would give an affirmative answer to a question of D. H. Lehmer

([2], p. 476), open since 1933, namely, whether to every ε > 0 there corresponds an
algebraic integer α such that

1 <
n∏
i=1

max
(
1, |αi |

)
< 1 + ε.
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Inequality (3), if true, is the best possible, as the example α = 21/n shows. Concerning
inequality (2), we observe that there exist totally real algebraic integers, not of the form
2 cos ρπ (ρ rational), for which

max
1�i�n

{|βi | − 2
}

is arbitrarily small. This follows from a theorem of R. M. Robinson [3], according to
which there are infinitely many systems of conjugate totally real algebraic integers in
every interval of length greater than 4, in particular, in [−2 + ε, 2 + 2ε], for every ε > 0.

In the subsequent proof of Theorem 1 we make frequent use of the following inequal-
ities, valid for all positive integers m:

(1 + x)m < 1

1 −mx
(

0 < x <
1

m

)
,(4) (

1 + 1

y

)1/m
> 1 + 1

m(y + 1)
(0 < y).(5)

Proof of Theorem 1. Let αi be real for i = 1, . . . , r and complex for i = r + 1, . . . ,
. . . , r + 2s = n with αi = αi+s (i = r + 1, . . . , r + s). Let

|αμ| = max
1�i�n

|αi | � 1.

Suppose first that μ � r . If |α2
i − 1| � 1 for some i � r , then α2

i � 2, hence

|αμ| � |αi | �
√

2 � 1 + 4−s−2.

If |α2
i −1| < 1, for all i � r , then, noting that |α2

μ−1| = |αμ|2−1 and |α2
i −1| � |αμ|2+1c

(r < i � r + 2s), we deduce from (4) that either
n∏
i=1

|α2
i − 1| �

(|αμ|2 − 1
)(|αμ|2 + 1

)2s
c

�
(|αμ|2 − 1

)
22s
(

1 + |αμ|2 − 1

2

)2s
� 22s |αμ|2 − 1

1 − s(|αμ|2 − 1
)

or

s
(|αμ|2 − 1

)
� 1.

In the second case, (5) implies that

|αμ| �
(

1 + 1

s

)1/2
> 1 + 1

2(s + 1)
> 1 + 4−s−2.

Since no αi is a root of unity,
∏n
i=1 |α2

i − 1| is a positive integer. Thus in the first case
s
(|αμ|2 − 1

)
� 1, and so

1 − s(|αμ|2 − 1
)

� 22s(|αμ|2 − 1
)
.

But then by (5)

|αμ| �
(

1 + 1

s + 22s

)1/2
> 1 + 1

2(s + 22s + 1)
> 1 + 4−s−2.



C1. A refinement of two theorems of Kronecker 177

Next, suppose r < μ � r + s. Let αμ = |αμ|e2πiθ . By Dirichlet’s approximation
theorem, there exist integers p and q such that

(6) |2θq − p| < 1

9 · 2s−1 and 1 � q � 9 · 2s−1.

Hence

|4qθπ − 2πp| < 2π

9 · 2s−1 < 2−s+1/2

and

cos 4qθπ > cos 2−s+1/2 > 1 − 1
2 (2

−s+1/2)2 = 1 − 2−2s .

This gives the estimate

(7)

∣∣(α2q
μ − 1)(α2q

μ+s − 1)
∣∣ = |αμ|4q − (α2q

μ + α2q
μ )+ 1

= |αμ|4q − 2|αμ|2q cos 4qθπ + 1

� |αμ|4q − 2|αμ|2q(1 − 2−2s)+ 1.

If |α2q
i − 1| � 1, for some i � r , then |αμ|2q � |αi |2q � 2. Hence, by (5) and (6),

|αμ| � 21/2q � 2−9·2s � 1 + 9−12−s−1 > 1 + 4−s−2.

If |α2q
i − 1| < 1, for all i � r , we use (4) and (7) and obtain the inequality

n∏
i=1

|α2q
i − 1| �

{|αμ|4q − 2|αμ|2q(1 − 2−2s)+ 1
}(|αμ|2q + 1

)2s−2

�
{|αμ|4q − 2(1 − 2−2s)|αμ|2q + 1

} 22s−2

1 − (s − 1)
(|αμ|2q − 1

) ,
or

(s − 1)
(|αμ|2q − 1

)
� 1.

In the second case, using (5) and (6), we obtain the estimate

|αμ| � 1 + 1

2qs
� 1 + 1

9s · 2s
> 1 + 4−s−2.

If the second case does not occur, then 1 − (s − 1)
(|αμ|2q − 1) > 0. Since no αi is a

root of unity,
∏n
i=1 |α2q

i − 1| is a positive integer. Thus

22s−2{|αμ|4q − 2(1 − 2−2s)|αμ|2q + 1
}

� 1 − (s − 1)
(|αμ|2q − 1

)
,

hence

|α2q
μ |2 − |αμ|2q

(
2 − 2s − 1

22s−1

)
+
(

1 − s

22s−2

)
� 0.

Since |α2q
μ | � 1 and

1 −
(

2 − 2s − 1

22s−1

)
+
(

1 − s

22s−2

)
= −2−2s+1 < 0,
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it follows that

|αμ|2q � 1 − (2s − 1)2−2s +
√{

1 − (2s − 1)2−2s
}2 − (1 − s · 2−2s+2)

= 1 + 1

s − 1
2 +
√

22s−1 + (s − 1
2

)2 .
Now (6) implies that

2q
(
s + 1

2 +
√

22s−1 + (s − 1
2

)2) � 9 · 2s
(
s + 1

2 +
√

22s−1 + (s − 1
2

)2)
< 4s+2.

It follows from (5) and the last two inequalities that

|αμ| � 1 + 1

2q
(
s + 1

2 +
√

22s−1 + (s − 1
2

)2) > 1 + 4−s−2.

This completes the proof of Theorem 1. ��

Proof of Theorem 2. Let β be a totally real algebraic integer satisfying the assumptions of
the theorem, and put

α = β/2 +
√
(β/2)2 − 1 .

Then α is an algebraic integer and α2 − βα + 1 = 0. All the conjugates of α are zeros of
polynomials gi(x) = x2 −βix+1 (i = 1, 2, . . . , n). At most 2n−2 of them are complex,
since otherwise |βi | � 2, contrary to the original theorem of Kronecker. Thus α is not a
root of unity, and by Theorem 1,

max
1�j�2n

|α(j)| � 1 + 4−n−1.

The complex conjugates of α have absolute value 1. It follows that for some i � n,

|βi |/2 +
√
|βi/2|2 − 1 > 1 + 4−n−1 > |βi |/2 −

√
|βi/2|2 − 1 ,

hence gi
(
sgn βi(1 + 4−n−1)

)
< 0. But then

|βi | > (1 + 4−n−1)+ 1

1 + 4−n−1 > 1 + 4−n−1 + 1 − 4−n−1 + 4−2n−3 = 2 + 4−2n−3.

This completes the proof. ��
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On a theorem of Bauer
and some of its applications

1.

For a given algebraic number field K let us denote by P(K) the set of those rational
primes which have a prime ideal factor of the first degree in K . M. Bauer [1] proved in
1916 the following theorem.

If K is normal, then P(Ω) ⊂ P(K) implies Ω ⊃ K (the converse implication is
immediate).

In this theorem inclusion P(Ω) ⊂ P(K) can be replaced by a weaker assumption
that the set of primes P(Ω) − P(K) is finite, which following Hasse [5] I shall denote
by P(Ω) � P(K). An obvious question to ask is whether on omitting the assumption
that K is normal it is true that P(Ω) � P(K) implies Ω contains a conjugate of K . This
question was answered negatively by F. Gassmann [3] in 1926 when he gave an example
of two non-conjugate fields Ω and K of degree 180 such that P(Ω) = P(K). The two
fields found by Gassmann have the even more remarkable property PA(Ω) = PA(K) for
every A, where PA(K) denotes the set of those rational primes which decompose into
prime ideals in K in a prescribed way A.

The first aim of this paper is to characterize all fields K for which the extension of
Bauer’s theorem mentioned above is nevertheless true. Such fields will be called Bauerian.
It follows easily from the definition that if K1,K2 are two Bauerian fields and |K1K2| =
|K1| |K2|, then K1K2 is also Bauerian (| | denotes the degree). We have

Theorem 1. LetK,Ω be two algebraic number fields,K the normal closure of K , G—its
Galois group, H and J subgroups of G belonging to K and Ω ∩ K , respectively, and
H1,H2, . . . ,Hn all the subgroups of G conjugate to H. P(Ω) � P(K) is equivalent to

J ⊂
n⋃
i=1

Hi .

The field K is Bauerian if and only if every subgroup of G contained in
n⋃
i=1

Hi is

contained in one of the Hi .

Text corrected following Corrigenda, Acta Arith. 12 (1967), 425, and Acta Arith. 22 (1973),
231.
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The second part of this theorem enables us to decide for any given field in a finite
number of steps whether it is Bauerian or not. A fieldK is said to be solvable if the Galois
group of its normal closure is solvable. We obtain in particular

Theorem 2. Every cubic and quartic field and every solvable field K , such that(|K|/|K|, |K|) = 1, is Bauerian. Fields K of degree n � 5 such that the Galois group
of K is the alternating group An or the symmetric group Gn are not Bauerian.

Theorem 2 gives complete information about fields of degree � 5. For such fields,
Bauerian fields coincide with solvable ones. The following example which I owe to Pro-
fessor H. Zassenhaus shows that this is no longer true for fields of degree six. Let K be
any field with group A4 (such fields exist, cf. §5) and let K belong to a subgroup H of
order two. Here

⋃
Hi is itself a subgroup (the four-group) and clearly is not contained in

any of the Hi . Taking Ω to be the field corresponding to
⋃

Hi we see that Ω is normal
and Ω ⊂ K , thus in this case

P(Ω) = P(K) but Ω �= K and |Ω| �= |K|.
This shows that the condition P(Ω) = P(K) is much weaker than the condition

PA(Ω) = PA(K) for every A. The latter according to Gassmann [3] implies that Ω = K
and |Ω| = |K|.

The theorem of Bauer has been applied in [2] to characterize polynomials f (x) with
the property that for a given normal field K in every arithmetical progression there is an
integer x such that f (x) is a norm of an element of K . The same method combined with
Theorem 2 gives

Theorem 3. (i) Let K be a cubic or quartic field or a solvable field such that(|K|/|K|, |K|) = 1 and letNK/Q denote the norm fromK to the rational field Q. Let f (x)
be a polynomial with rational coefficients, and suppose that every arithmetical progression
contains an integer x such that

f (x) = NK/Q(ω) for some ω ∈ K.
If either n = |K| is square-free or the multiplicity of every zero of f (x) is relatively prime
to n, then f (x) = NK/Q

(
ω(x)

)
identically for some ω(x) ∈ K[x].

(ii) Let K be a field of degree n � 5, n �= 6 such that the Galois group of K is
alternating An or symmetric Gn. Then there exists an irreducible polynomial f (x) such
that for every integer x and someω ∈ K ,f (x) = NK/Q(ω) butf (x) cannot be represented
as NK/Q

(
ω(x)

)
for any ω(x) ∈ K[x].

Since every group of square-free order is solvable, we get immediately from Theo-
rem 3(i)

Corollary. Let K be a field such that |K| is square-free and let f (x) be a polynomial
with rational coefficients. If every arithmetical progression contains an integer x such
that f (x) = NK/Q(ω) for some ω ∈ K , then f (x) = NK/Q

(
ω(x)

)
identically for some

ω(x) ∈ K[x].
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If f (x) is to be represented only as a norm of a rational function, not of a polynomial,
the conditions on the field K can be weakened. We have

Theorem 4. Let K be a field of degree n = p or p2 (p prime) and let g(x) be a rational
function over Q with the multiplicity of each zero and pole prime to n/p(1). If in everyc

arithmetical progression there is an integer x such that

g(x) = NK/Q(ω) for some ω ∈ K,
then

g(x) = NK/Q
(
ω(x)

)
for some ω(x) ∈ K(x).

There exist fields of degree 6 for which an analogue of Theorem 4 does not hold. We
have in fact

Theorem 5. Let K = Q
(√

2 cos 2
7π
)
, f (x) = x3 + x2 − 2x − 1. For every integer x,

f (x) is a norm of an integer in K , but f (x) cannot be represented as NK/Q
(
ω(x)

)
for

any ω(x) ∈ K(x).

The proofs of Theorems 1 and 2 are given in §2, those of Theorems 3, 4 and 5 in §3, 4
and 5, respectively.

I shall like to express my thanks to Professors D. J. Lewis, H. Zassenhaus and
Dr. R. T. Bumby for their valuable suggestions and to Dr. Sedarshan Sehgal whom I owe
the proof of Lemma 3.

2.

Proof of Theorem 1. This proof follows easily from a generalization of Bauer’s theorem

given by Hasse [5], p. 144. For a given prime p, let

(
K

p

)
be the Artin symbol (the class

of conjugate elements of G, to which p belongs). The theorem in question can be stated
in our notation in the following way. C being any class of conjugate elements in G, the set{
p ∈ P(Ω) :

(
K

p

)
= C

}
is infinite if and only if C ⊂

m⋃
j=1

Jj , where Jj (j = 1, 2, . . . , m)

are all the subgroups of G conjugate to J.
Suppose now that P(Ω) � P(K) and let C be any class of conjugate elements of G

such that C ⊂
m⋃
j=1

Jj . By the theorem of Hasse, the set

{
p∈P(Ω) :

(
K

p

)
=C

}
is infinite

and since P(Ω) � P(K) the same applies to

{
p ∈ P(K) :

(
K

p

)
= C

}
. Applying the

(1) Without the last assumption the theorem is false, as the example (1) of [2] shows.
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theorem in the opposite direction and with K instead of Ω we infer that C ⊂
n⋃
i=1

Hi . The

set
m⋃
j=1

Jj consists of the union of full conjugate classes. Hence
m⋃
j=1

Jj ⊂
n⋃
i=1

Hi and a

fortiori J ⊂
n⋃
i=1

Hi .

In order to prove the converse implication, let us notice that according to [5], p. 144,
the symmetric difference

(1) P(K) .−
{
p :
(
K

p

)
⊂

n⋃
i=1

Hi

}
is finite

and similarly

(2) P(Ω ∩K) .−
{
p :
(
K

p

)
⊂

m⋃
j=1

Jj

}
is finite.

Hence if J ⊂
n⋃
i=1

Hi we get
m⋃
j=1

Jj ⊂
n⋃
i=1

Hi and by (1) and (2) P(Ω ∩K) � P(K) and a

fortiori P(Ω) � P(K).
This completes the proof of the first part of Theorem 1. The second part follows imme-

diately from the first after taking into account that every subgroup of G belongs to some
field and this field can be set as Ω . ��

Proof of Theorem 2. Suppose first that the Galois group of K is solvable and(|K|/|K|, |K|) = 1. Let H be the subgroup of G belonging to K and let Π be the set

of all primes dividing |H|, i.e. the order of H. If for a subgroup J, J ⊂
n⋃
i=1

Hi , then clearly

J is aΠ -group. Since H is a maximalΠ -group by a theorem of P. Hall (cf. [4], Th. 9.3.1),
J must be contained in one of Hi . This shows according to Theorem 1 that field K is
Bauerian. In particular every cubic field and every quartic field K having A4 as Galois
group ofK is Bauerian. It remains to consider quartic fieldsK such that Galois group ofK
is either dihedral group of order 8 or S4. In the first case

⋃4
i=1 Hi consists of 3 elements

and does not contain any subgroup except the Hi and the identity group. In the second case
Hi (i = 1, 2, 3, 4) is the ith stability group and

⋃4
i=1 Hi contains besides the Hi and the

identity group only cyclic subgroups of order two or three. These are clearly contained in
one of the Hi . Thus every quartic field is Bauerian.

In order to prove that fields K of degree n � 5 such that An or Sn is Galois group
of K are not Bauerian we consider the following subgroups of An:

(3)

{
(123), (12)(45)

}× An−5 for n = 5 or n � 8,{
(12)(34), (12)(56)

}
for n = 6,{

(12345), (1243)(67)
}

for n = 7.

They are contained in the union of stability subgroups of Sn but not in any one of them,
and the desired result follows immediately from the second part of Theorem 1. ��
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3.

Lemma 1. Suppose that the hypotheses of Theorem 3(i) hold. Let

(4) f (x) = cf1(x)
e1f2(x)

e2 · · · fm(x)em
where c �= 0 is a rational number and f1(x), f2(x), . . . , fm(x) are coprime polynomialsc

with integral coefficients each irreducible over Q and where e1, e2, . . . , em are positive
integers. For any j , let q be a sufficiently large prime for which the congruence

(5) fj (x) ≡ 0 (mod q)c

is solvable.
If (ej , n) = 1, then q ∈ P(K). If n is square-free then q ∈ P(Kj ), where Kj is any

subfield of K of degree n/(ej , n). (Such subfields exist.)

Proof. Put F(x) = f1(x)f2(x) · · · fm(x). Since the discriminant of F(x) is not zero, there
exist polynomials ϕ(x), ψ(x) with integral coefficients such that

(6) F(x)ϕ(x)+ F ′(x)ψ(x) = D
identically, where D is a non-zero integer.

Let q be a large prime for which the congruence (5) is soluble and let x0 be a solution.
By (6) we have F ′(x0) �≡ 0 (mod q), whencec

F(x0 + q) �≡ F(x0) (mod q2).c

By choice of x1 as either x0 or x0 + q, we can ensure that

fj (x1) ≡ 0 (mod q), F (x1) �≡ 0 (mod q2),

whence

fj (x1) �≡ 0 (mod q2) and fi(x1) �≡ 0 (mod q) for i �= j.
By the hypothesis of Theorem 3, there exists x2 ≡ x1 (mod q2) such that

(7) f (x2) = NK/Q(ω) for some ω ∈ K.
From the preceding congruences we have

fj (x2) ≡ 0 (mod q), fj (x2) �≡ 0 (mod q2),

fi(x2) �≡ 0 (mod q) for i �= j.
Hence

(8) f (x2) ≡ 0 (mod qej ), f (x2) �≡ 0 (mod qej+1).

If n = 4 and q does not belong to P(K) then q remains prime in K or factorizes into two
prime ideals of degree two. In either case q divides NK/Q(ω) for any ω ∈ K in an even
power. In view of (4) and (8) this contradicts the assumption that (ej , n) = 1.

If K is solvable and
(|K|/|K|, |K|) = 1, let

(9) q = q1q2 · · · qg
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be the prime ideal factorization of q in K; the factors are distinct since q is supposed to
be sufficiently large. We note that g divides |K| because K is a normal field and thatc

(10) NK/Qqi = q |K|/g.c

Write the prime ideal factorization of ω in K in the form

(ω) = q
α1
1 q

α2
2 · · · qαgg ab−1,

where a, b are ideals in K which are relatively prime to q. Then

(11) NK/Q(ω) = ±qn(α1+α2+...+αg)/gNK/Qa(NK/Qb)−1

and NK/Qa, NK/Qb are relatively prime to q. It follows from (7), (8) and (11) that

n(α1 + α2 + . . .+ αg)/g = ej ,
whence

n

(ej , n)
divides g.

If (ej , n) = 1 we get that n divides g. Let Gs be the splitting group of the ideal q1. We

have [G : Gs] = g, thus |Gs | divides
|G|
n

, that is the order of the group H belonging to

field K . Since (
n,

|G|
n

)
=
(
n,

|K|
n

)
= 1

it follows from the theorem of Hall that Gs is contained in one of the conjugates of H.c

Therefore the splitting field Fs of q1 contains a conjugate of K and since q ∈ P(Fs),
q ∈ P(K).

Suppose now that n is square-free and let Gs and Fs have the same meaning as before.
Since ( |G|

n
(ej , n),

n

(ej , n)

)
= 1

there exist in G, by the theorem of Hall, subgroups of order
|G|
n
(ej , n) and they are all

conjugate. Moreover since |Gs |
∣∣∣ |G|
n
(ej , n), Gs must be contained in one of them, thus

c

Fs must contain a subfield K ′ of K of degree
n

(n, ej )
.

Since all such fields are conjugate, and since q ∈ P(Fs) it follows that q ∈ P(Kj ),
where Kj is any subfield of K of degree

n

(n, ej )
. Such fields exist again by the theorem

of Hall since
( |G|
n
, (ej , n)

)
= 1. ��

Proof of Theorem 3(i). Lemma 1 being established the proof does not differ from the
proof of Theorem 2 of [2]. Instead of Lemma 3 of that paper which was the original Bauer
theorem one uses Theorem 2. ��
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Proof of Theorem 3(ii). Let the Galois group of K be represented as the permutation
group on the n fields conjugate to K: K1,K2, . . . , Kn. Consider a subfield Ω of K be-
longing to a subgroup Jn of An defined by formula (3). It is clear that if Hni denotes the
subgroup of G belonging to Ki , then

(12)

|Jn|
|Jn ∩ Hni | =

⎧⎪⎨⎪⎩
3 for i = 1, 2, 3,

2 for i = 4 or 5,

n− 5 for i = 6, . . . , n

(n = 5 or n � 8),

|Jn|
|Jn ∩ Hni | =

{
5 for i � 5,

2 for i = 6 or 7
(n = 7).

We have
|Jn|

|Jn ∩ Hni | =
|KiΩ|
|Ω|

and the equalities (12) mean that F(x)—the polynomial generating K factorizes over Ωc

into irreducible factors of degrees 3, 2 and n−5 (n = 5 or n � 8) or 5 and 2 (n=7).
It follows by the theorem of Kronecker and Kneser (cf. [7], p. 239) that f (x)—the poly-

nomial generatingΩ factorizes inK into irreducible factors of degrees 3
|Ω|
n

, 2
|Ω|
n

and

(n − 5)
|Ω|
n

(n = 5 or n � 8) or 5
|Ω|
n

and 2
|Ω|
n

(n = 7). The norms of these factors

with respect toK are f 3(x), f 2(x), f n−5(x) (n = 5 or n � 8) and f 5(x), f 2(x) (n = 7).c

None of them is f (x), thus f (x) cannot be represented as a norm of a polynomial overK .
On the other hand f (x) = f 3(x)/f 2(x) = f 5(x)/

(
f 2(x)

)2, whence it follows by the
multiplicative property of the norm that f (x) is a norm of a rational function over K and
so for every integer x, f (x) = NK/Q(ω) for some ω ∈ K . ��

4.
Lemma 2. Suppose that the hypotheses of Theorem 4 hold. Let

(13) g(x) = cf1(x)
e1f2(x)

e2 · · · fm(x)em
where c �= 0 is a rational number and f1(x), f2(x), …, fm(x) are coprime polynomialsc

with integral coefficients each irreducible over Q and where e1, e2, . . . , em are integers
relatively prime to n. For any j , let q be a sufficiently large prime for which the congruence

fj (x) ≡ 0 (mod q)

is soluble. Then q factorizes in K into a product of ideals, whose degrees are relatively
prime.

Proof. We infer as in the proof of Lemma 1 that there exists an integer x2 with the following
properties

g(x2) = NK/Q(ω) for some ω ∈ K,(14)

g(x2) = qej ab−1, where a, b are integers and (ab, q) = 1.(15)
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Let q = p1p2 · · · pl be the factorization of q in K , the factors are distinct since q is
sufficiently large and let NK/Qpi = qfi . Clearly

(16)
l∑
i=1

fi = n.

Write the prime ideal factorization of ω in K in the form

(ω) = p
α1
1 p

α2
2 · · · pαll ab−1,

where (ab, q) = 1. Then

(17) NK/Q(ω) = ±qα1f1+α2f2+...+αlflNK/Qa(NK/Qb)−1

and NK/Qa, NK/Qb are relatively prime to q. It follows from (14), (15) and (17) that

α1f1 + α2f2 + . . .+ αlfl = ej .
Thus (f1, f2, . . . , fl) | ej and by (16) (f1, f2, . . . , fl) |n. Since (ej , n) = 1,
(f1, f2, . . . , fl) = 1. ��

Lemma 3. Let J be a group of permutations of n letters, where n = p or p2 (p—prime).
If the lengths of orbits of J are not relatively prime there exists in J a permutation whosec

disjoint cycles are of lengths λ1, λ2, . . . , λ� where (λ1, λ2, . . . , λ�) �= 1.

Proof (due to Sedarshan Sehgal). Let the lengths of orbits of J be l1, l2, . . . , lr . Since
l1 + l2 + . . . + lr = n, if (l1, l2, . . . , lr ) �= 1, we must have p | li (i = 1, 2, . . . , r). Thus
the order of group J is divisible by p and it contains a Sylow subgroup Sp. Moreover, the
lengths of orbits of Sp are again divisible by p (cf. [8], Theorem 3.4). The number of these
orbits r ′ is � n/p � p. Permutations of Sp leave on the average r ′ letters fixed (ibid.c

Theorem 3.9). Since the identity fixes n letters there must be a permutation in Sp which
fixes less than p letters. Since |Sp| has no prime factor less than p, the permutation in
question leaves no letter fixed and all its disjoint cycles must have lengths divisible by p.��

Remark. If n �= p, p2, there exist groups of degree n for which the lemma does not hold,
as shown by the following construction. Let n = pq, where p—prime and q > p. We put

J = {Pα,β,γ }α=1,2,...,p
β=1,2,...,p
γ=1,2,...,p(q−p−1)

,

where

Pα,β,γ = (1, 2, . . . , p)α
p∏
k=1

(
kp + 1, . . . , (k + 1)p

)kα+β
(p2 + p + 1, . . . , pq)γ .

The orbits here are (1, 2, . . . , p), …, (p2 + 1, . . . , p2 + p), (p2 + p + 1, . . . , pq),
their lengths are therefore all divisible by p. On the other hand, for every triple α, β, γ
either α = p or there exists a k such that 1 � k � p and kα + β ≡ 0 (mod p). In eitherc

case Pα,β,γ leaves at least p letters fixed.
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Proof of Theorem 4. Let the Galois group G ofK be represented as a permutation group on
the n fields conjugate to K . Let fj (x) be any one of irreducible factors of g(x) as in (13),
Ωj be a field generated by a root of fj (x) and Jj be a subgroup of G belonging to field
Ωj∩K . By the theorem of Hasse quoted in the proof of Theorem 1 for every class C ⊂⋃ J

(summation over all conjugates of Jj ), there exist infinitely many primes q ∈ P(Ωj ) such

that
(K
q

)
= C. If such a prime is sufficiently large, we infer by the principle of Dedekind

and Lemma 2 that q factorizes in K into prime ideals of relatively prime degrees. The
degrees in question are equal to the lengths of the cycles in the decomposition of class C.
Thus in every permutation of Jj , the lengths of the cycles are relatively prime. By Lemma 3
this implies that the lengths of the orbits of Jj are relatively prime.

Let k(x) be an irreducible polynomial over Q, whose root generatesK . Jj is the Galois
group of the equation k(x) = 0 over Ωj . The lengths of the orbits of Jj are equal to the
degrees of irreducible factors of k(x) over Ωj . Thusc

k(x) = kj1(x)kj2(x) · · · kjrj (x)
where kji is a polynomial irreducible over Ωj of degree |kji | and

(18)
(|kj1|, |kj2|, . . . , |kjrj |

) = 1.

By the theorem of Kronecker and Kneser it follows that

fj (x) = cjfj1(x)fj2(x) · · · fjrj (x), where cj ∈ Q,

fji ∈ K[x] and NK/Qfji(x) =
(fj (x)
cj

)|kji |
.(19)

In view of (18), there exist integers ai (i = 1, 2, . . . , rj ) such that

(20)

rj∑
i=1

ai |kji | = 1.

We get from (19) and (20)

(21) fj (x) = cjNK/Q
rj∏
i=1

f
ai
ji (x).

It follows from (13), (21) and the multiplicative property of the norm that

g(x) = aNK/Qh(x), where h(x) ∈ K(x).
By the hypothesis of the theorem taking x to be a suitable integer, we infer that

a = NK/Q(α), where α ∈ K . Putting ω(x) = αh(x) we obtain g(x) = NK/Q
(
ω(x)

)
,

identically. ��

Lemma 4. The class number of theK = Q
(√

2 cos 2
7π
)

is one and the rational primes p

factorize inK in the same way, as the polynomial f (x2) factorizes mod p, f being defined
in Theorem 5.
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Proof. The field Ω = Q(2 cos 2
7π) is a cyclic field of discriminant 72. 2 remains a prime

in this field, hence 2 cos 2
7π = (2 cos 8

7π
)2 − 2 is in Q a quadratic non-residue mod 4.

Since 2 cos 2
7π is a unit, it follows by the conventional methods that 1,

√
2 cos 2

7π is an

integral basis for K over Ω , thus dK/Ω equals (8 cos 2
7π) and for the discriminant of K

we obtain the value

dK/Q = d2
Ω/QNΩ/Q(dK/Ω) = 26 · 74.

This number coincides with the discriminant of f (x2), which has
√

2 cos 2
7π as one of its

zeros. Therefore, by the principle of Dedekind the factorization of primes inK is the same
as factorization of f (x2)mod p. In particular we have

(2) = P2
1, NP1 = 8,

(3) = P2P3, NP2 = NP3 = 33,

(5) = P4P5, NP4 = NP5 = 53,

(7) = P3
6P

3
7, NP6 = NP7 = 7.

Now, by the theorem of Minkowski, in every class of ideals ofK there is an ideal with
norm not exceeding ( 4

π

)2 6!
66

√
dK/Q < 11.

If therefore the field K had class number greater than 1, then there would be a non-
principal ideal with a norm < 11. This is however impossible since

(2) = (2 cos 8
7π +

√
2 cos 8

7π
)2
,

(7) = (1 + 2 cos 8
7π +

√
2 cos 2

7π
)3(1 + 2 cos 8

7π −
√

2 cos 2
7π
)3
. ��

Proof of Theorem 5. Since the degree of f (x) is not divisible by 6, f (x) cannot be
represented as NK/Q

(
ω(x)

)
, where ω(x) ∈ K(x). It remains to show that for every

integer x, f (x) = NK/Q(ω) for some integer ω ∈ K . Let

(22) f (x) = ±pα1
1 p

α2
2 · · ·pαkk

where αi are positive integers. Since the discriminant ofΩ = Q
(
2 cos 2

7π
)

coincides with
the discriminant of f (x), by the principle of Dedekind each prime pi has a prime ideal
factor Pi of first degree in Ω . Since(

2 cos 2
7π
)(

2 cos 4
7π
)(

2 cos 8
7π
) = 1,

at least one of the factors on the left hand side is a quadratic residue mod Pi . It follows
that for some x0 ∈ Ω

f (x2
0 ) =

(
x2

0 − 2 cos 2
7π
)(
x2

0 − 2 cos 4
7π
)(
x2

0 − 2 cos 8
7π
) ≡ 0 (mod Pi ).

Since Pi is of first degree, there exists a rational integer x1 such that x1 ≡ x0 (mod Pi )

and we get f (x2
1 ) ≡ 0 (mod pi). By Lemma 4, pi ∈ P(K) and since every ideal of K
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is principal,

(23) pi = ±NK/Qωi,
where ωi is an integer of K . Since

−1 = NK/Q
(√

2 cos 2
7π
)
,

the conclusion follows from (22), (23) and the multiplicative property of the norm.

Remark. In connection with Theorem 5 let us remark that the theorem of Bauer gives
an answer to a question of D. H. Lehmer ([6], p. 436) concerning possible types of ho-
mogeneous polynomials F(x, y) of degree 1

2ϕ(n) such that when (x, y) = 1, the prime
factors of F(x, y) either divide n or are of the form nk± 1. (If f (x) = x3 + x2 − 2x − 1,
then y3f (x/y) is an example of such polynomial for n = 7.) The answer is that all such

polynomials must be of the form A
ϕ(n)/2∏
i=1

(x − αiy), where αi runs through all conjugates

of a primitive element of the field Q
(
2 cos 2

n
π
)

and A is a rational integer.

Note added in proof. In connection with Theorem 2 a question arises whether solvable fields of
degree p2 (p prime) are Bauerian. J. L. Alperin has proved that the answer is positive if the field
is primitive and p > 3. P. Roquette has found a proof for the case where the Galois group of the
normal closure is a p-group (oral communication).
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1.

For a given algebraic number field K let us denote by P(K) the set of those rational
primes which have a prime ideal factor of the first degree in K . M. Bauer [1] proved in
1916 the following theorem.

If K is normal, then P(Ω) ⊂ P(K) implies Ω ⊃ K (the converse implication is
immediate).

In this theorem, inclusion P(Ω) ⊂ P(K) can be replaced by a weaker assumption
that the set of primes P(Ω)− P(K) is finite, which following Hasse we shall denote by
P(Ω) � P(K).

In the preceding paper [8], one of us characterized all the fields K for which P(Ω) �
P(K) implies that Ω contains one of the conjugates of K and has called such fields
Bauerian. The characterization is in terms of the Galois group of the normal closure K
ofK and is not quite explicit. Examples of non-normal Bauerian fields given in that paper

are the following: fields K such that K is solvable and

( |K|
|K| , |K|

)
= 1(1), fields of

degree 4. The aim of the present paper is to exhibit a class of Bauerian fields that contains
all normal and some non-normal fields. We say that a fieldK has property (N) if there exists
a normal field L of degree relatively prime to the degree of K such that the composition
KL is the normal closure of K . We have

Theorem 1. If K and Ω are algebraic number fields and K has property (N) then
P(Ω) � P(K) implies that Ω contains one of the conjugates of K .

Not all fields K such that K is solvable and

( |K|
|K| , |K|

)
= 1 possess property (N).

* This paper was written while the first author received support from the National Science
Foundation.

(1) We let | | denote both the degree of the field over Q and the order of the group.
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We have however

Theorem 2. IfK is a number field such that

( |K|
|K| , |K|

)
= 1 and the Galois group ofK

is supersolvable, then K has property (N).

In particular K can be any field of prime degree such that K is solvable or any field
generated by n

√
a, where a, n are rational integers and

(
n, ϕ(n)

) = 1. The field Q
( 6
√

2
)

does not possess property (N), it is however Bauerian. (It follows from a theorem of
Flanders (cf. [7], Th. 167) and results of the preceding paper that Q

(
n
√
a
)

is Bauerian
if n �≡ 0 (mod 8).) We have no example of non-normal field K with property (N), such
that K is non-solvable however one could construct such a field provided there are fields
corresponding to every Galois group.

The original Bauer’s theorem has been applied in [2] to characterize polynomials f (x)
with the property that in every arithmetical progression there is an integer x such that f (x)
is a norm of an element of a given number fieldK . The method used in [2] can be modified
in order to obtain

Theorem 3. LetK be a field having property (N) and letNK/Q(ω) denote the norm fromK
to the rational field Q. Let f (x) be a polynomial over Q such that the multiplicity of each
zero of f (x) is relatively prime to |K|. If in every arithmetical progression there is an
integer x such that

f (x) = NK/Q(ω) for some ω ∈ K,
then

f (x) = NK/Q
(
ω(x)

)
for some ω(x) ∈ K[x].

The proofs of Theorems 1–3 given in §3 are independent of the preceding paper [8]
and assume only the original Bauer’s theorem. They are preceded in §2 by some lemmata
of seemingly independent interest. Theorems 1 and 3 could be proved by the methods
and results of [8]. We retain the present proofs since they use, as do the statements of the
theorems, only the language of field theory. We refer to [8] for examples showing that an
extension of the theorems to an arbitrary field K is impossible.

2.

Lemma 1. Let fields K and L have the following properties: L is normal,
(degreeK, degreeL) = 1, KL is normal. Then for any field Ω the inclusion

(1) ΩL ⊃ KL
implies that Ω contains one of the conjugates of K .

Proof. It follows from (1) that

(2) ΩKL = ΩL.
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Since KL is normal and L is normal, we have

|ΩKL| = |Ω| |KL|
|Ω ∩KL| ,(3)

|ΩL| = |Ω| |L|
|Ω ∩ L| .(4)

(Cf. [6], §19.5, Satz 1.)
Since clearly |KL| = |K| |L|, we get from (2), (3) and (4)

(5) |Ω ∩KL| = |K| |Ω ∩ L|.
Let G be the Galois group of KL. And let H, J, N be subgroups of G corresponding

to K , Ω ∩KL and L, respectively.
In view of (5)

[G : H] ∣∣ [G : J], thus |J| ∣∣ |H| and
(|J|, |N|) = 1.

On the other hand, since HN = G, and N is normal, it can be easily shown that

JN = (JN ∩ H)N.

Thus J and JN∩H are two representative subgroups of JN over N and by Theorem 27
([9], Chapter IV) they are conjugate. The theorem in question had been deduced from the
conjecture now proven [3] that all groups of odd orders are solvable. It follows that J is
contained in a certain conjugate of H, thus Ω ∩ KL contains a suitable conjugate of K
and the same applies to Ω . ��

The first two assumptions of Lemma 1 are necessary as shown by the following exam-
ples

1. K = Q
(
e2πi/3

)
, L = Q

( 3
√

2
)
, Ω = Q

(
e2πi/3 3

√
2
)
(2),

2. K = Q(i), L = Q
(√

2
)
, Ω = Q

(√−2
)
.

As to the third assumption, namely thatKL is normal, we can show that it is necessary
provided that there exists a field with Galois group G, where G is the wreath product of S4
acting on 4 isomorphic copies of the simple group G168. Then in the counterexample,K is
a field of degree 74 corresponding to the wreath product of S4 acting on 4 isomorphic
copies of a subgroup H of G168 of index 7, L is a normal field of degree 24 corresponding
to the product of 4 copies of G168. The construction ofΩ and the proof that it furnishes a
counterexample is complicated and will be omitted.

Lemma 2. In any supersolvable group G for each setΠ of primes either there is a normal
Π -subgroup �= 1 or there is a normal Hall (3) Π̂ -group �= 1 (Π̂ is the set of all prime
divisors of |G| not contained in Π).

Proof. If this lemma would be false, then there would be a supersolvable group G �= 1 of
minimal order for which it would be false.

(2) We owe this example to Mr. Surinder Sehgal.
(3) A Hall subgroup is a subgroup whose order and index are relatively prime.
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If Π or Π̂ are empty then the statement is trivial. Let Π and Π̂ be non-empty. Since
G �= 1, there is a maximal normal subgroup M �= G. Since G is solvable [G : M]
is a prime p. If M contains a normal Π -subgroup N �= 1, then

〈
NG
〉

is a normal Π -
subgroup �= 1 of G, a contradiction. Hence M contains no normalΠ -subgroup. Since M,
a subgroup of a supersolvable group, itself is supersolvable, it follows from the minimal
property of G that M contains a normal Hall Π̂ -group J. A normal Hall subgroup of a
solvable group is the unique subgroup of its order (cf. [4], Th. 9.3.1). Therefore J must
be a characteristic subgroup of M and hence a normal subgroup of G. If p ∈ Π then J is
normal Hall Π̂ -group of G, a contradiction. Hence p ∈ Π̂ . It follows that

(6) the index of every maximal normal subgroup of G

is a prime number belonging to Π̂.

Now let N �= 1 be a minimal normal subgroup of G. Since G is supersolvable, it
follows that N is of prime order, say q. Since we have assumed G does not have a normal
Π -subgroup, q ∈ Π̂ . Suppose G/N contains a normalΠ -subgroup H/N �= 1. Since H is
solvable it contains a q-complement J �= 1. The group J is a Hall Π -subgroup of H. If J
is normal in H, it follows (cf. [4], Th. 9.3.1) that J is a characteristic subgroup of H and
hence J �= 1 would be a normal Π -subgroup of G contrary to hypothesis. It follows that
J is not normal in H. In particular J does not commute elementwise with N. Thus J is not
contained in ZN the centralizer of N.

The group ZN is normal in G. It follows that the index [G : ZN] is divisible by a prime
r ∈ Π .

On the other hand, the factor group of the normalizer over the centralizer satisfies

NN/ZN
∼= G/ZN

so that it is isomorphic to a subgroup of the automorphism group of the cyclic group N.
Hence G/ZN is abelian and therefore contains a normal subgroup M1/ZN of index r .
Hence G contains a maximal normal subgroup M1, of prime index r , where r ∈ Π ,
contrary to (6). It follows that G/N does not contain a non-trivial normal Π -subgroup.

Since G/N is also supersolvable, it follows from the minimal property of G that G/N
contains a normal Hall Π̂ -subgroup, say H/N. But then H is a normal Hall Π̂ -subgroup
of G, contrary to hypothesis. ��

Not all solvable groups possess the property enunciated in the lemma, e.g. S4. On the
other hand groups possessing this property need not be solvable, e.g. the direct product of
A5 and Z30. We have not found another well known class of finite groups which possess
the property besides supersolvable groups.

Lemma 3. Let G(x) be a polynomial with integral coefficients, irreducible over Q and
let G(θ) = 0. Let J be any subfield of Q(θ). Then

G(x) = aNJ/Q
(
H(x)

)
identically, where H(x) is a polynomial over J .

Proof. See [2], Lemma 2. ��
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3.

Proof of Theorem 1. Let L be a normal field such that
(|K|, |L|) = 1 and KL = K .

Assume that P(Ω) � P(K). We have

(7) P(ΩL) ⊂ P(Ω) ∩ P(L) � P(K) ∩ P(L).
Let q be a large prime, q ∈ P(K) ∩ P(L) and let

q = q1q2 · · · qg
be its factorization in K . Since K is normal we have

NK/Q(qi ) = q |K|/g.

Now, let p be the prime ideal factor of q of degree 1 in L. We have

(8) NK/Qp = NL/QNKL/Lp = q |K|.

On the other hand,

p = qi1qi2 · · · qis ,
whence

(9) NK/Qp =
s∏
j=1

NK/Qqij = q |K|s/g.

It follows from (8) and (9) that

|K| = |K|
g
s = |K| |L|

g
s;

hence

(10) |L| ∣∣g.
In the proof the fact that L is normal has not been used, thus by symmetry

|K| ∣∣g.
Since

(|K|, |L|) = 1, |K| |L| ∣∣g, thus g = |KL| = |K| and q ∈ P(KL). This shows that
P(K) ∩ P(L) � P(KL) and we get from (7)

P(ΩL) � P(KL).
By the theorem of Bauer it follows that ΩL ⊃ KL and by Lemma 1, Ω contains a
conjugate of K . ��

Proof of Theorem 2. Let G be the Galois group ofK , H the subgroup of G belonging toK ,
Π the set of primes dividing the order of H. Since |G| = nm, with (n,m) = 1, H is a Hall
Π -subgroup of G and hence (cf. [4], Th. 9.3.1) any normalΠ -subgroup of G is a subgroup
of H. By Lemma 2 either there is in G a normalΠ -subgroup �= 1 or there is a normal Hall
Π̂ -subgroup. The first case is impossible since then H would contain a non-trivial normal
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subgroup of G, thus there would be a normal field between K and K . Therefore, there is
in G a normal subgroup N such that |N| |H| = |G|. Let L be the field belonging to N.
ClearlyL is normal,

(|K|, |L|) = 1,KL = K and therefore the fieldK has property (N).��

Proof of Theorem 3. Let

(11) f (x) = cf1(x)
e1f2(x)

e2 · · · fr(x)er ,
where c �= 0 is a rational number and f1(x), f2(x), . . . , fr (x) are coprime polynomials
with integral coefficients, each irreducible over Q, and where e1, e2, . . . , er are non-zero
integers. Put

F(x) = f1(x)f2(x) · · · fr(x).
Since the discriminant ofF(x) is not zero, there exist polynomialsA(x), B(x)with integral
coefficients such that

(12) F(x)A(x)+ F ′(x)B(x) = D
identically, where D is a non-zero integer.

Let θ be a zero of some fj (x) and set Ω = Q(θ). Let L be a normal field postulated
by the assumption that K has property (N) and let q ∈ P(ΩL) be a large prime. Clearly
q ∈ P(Ω) and by the theorem of Dedekind, the congruence

fj (x) ≡ 0 (mod q)

is soluble. Let x0 be a solution. By (12) we have F ′(x0) �≡ 0 (mod q), whence

F(x0 + q) �≡ F(x0) (mod q2).

By choosing x1 to be either x0 or x0 + q, we can ensure that

fj (x1) ≡ 0 (mod q), F (x1) �≡ 0 (mod q2),

whence fj (x1) �≡ 0 (mod q2) and fi(x1) �≡ 0 (mod q) for i �= j . By the hypothesis of the
theorem there exists x2 ≡ x1 (mod q2) such that

(13) f (x2) ≡ NK/Q(ω) for some ω ∈ K.
From the preceding congruences we have

(14) f (x2) ≡ 0 (mod qej ), f (x2) �≡ 0 (mod qej+1).

Let the prime ideal factorization of q in K = KL be

q = q1q2 · · · qg.
Since K is normal, we have

NK/Qqi = q |K|/g.

Write the prime ideal factorization of ω in K in the form

(ω) = q
α1
1 q

α2
2 · · · qαgg AB−1,
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where A,B are ideals in K relatively prime to q. Then

(15) NK/Q(ω) = q |K|(α1+α2+...+αg)/gNK/Q(A)NK/Q(B)−1

and NK/Q(A), NK/Q(B) are relatively prime to q.
It follows from (13), (14) and (15) that

|K|(α1 + α2 + . . .+ αg)/g = ej , thus |K| ∣∣ ejg.
However, we assumed

(|K|, ej
) = 1, whence |K| ∣∣g. On the other hand q ∈ P(L) and

so by the argument in the paragraph culminating with (10), |L| ∣∣g. Since
(|K|, |L|) = 1,

|K| |L| ∣∣g, thus g = |KL| and q ∈ P(KL). This shows that P(ΩL) � P(KL). By the
theorem of Bauer it follows that ΩL ⊃ KL and by Lemma 1, Ω contains a conjugate
of K , say K ′. Applying Lemma 3 with G(x) = fj (x), J = K ′ we conclude that

fj (x) = ajNK ′/Q
(
Hj(x)

)
,

where Hj(x) is a polynomial over K ′. Clearly

fj (x) = ajNK/Q
(
H ′
j (x)
)
,

where H ′
j (x) is a conjugate of Hj with coefficients in K .

By (11) and the multiplicative property of the norm, we get

f (x) = aNK/Q
(
h(x)
)
,

where h(x) is a polynomial over K . By the hypothesis of the theorem, taking x to be a
suitable integer, we infer that a is the norm of an element α of K . Putting ω(x) = αh(x),
we obtain f (x) = NK/Q

(
ω(x)

)
, identically. ��
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On sums of roots of unity
(Solution of two problems of R. M. Robinson)

To Professor Viggo Brun on his 80th birthday

R. M. Robinson ([4]) proposed the following problem:

“How can we tell whether a given cyclotomic integer can be expressed as a sum of a
prescribed number of roots of unity?”

An answer to this problem follows as Corollary 1 from the theorem below.

Theorem 1. Let
k∑
i=1
aiζ

αi
N = ϑ , where the ai are rational integers, ζN = e2πi/N . Suppose

that ϑ is an algebraic integer of degree d and that (N, α1, α2, . . . , αk) = 1. Then either
there is a non-empty set I ⊂ {1, 2, . . . , k} such that∑

i∈I
aiζ

αi
N = 0

or

N < d(2 log d + 200k2 log 2k)20k2
.

Corollary 1. An algebraic integer of degree d is a sum of k roots of unity only if it is a
sum of k roots of unity of common degree less than d(2 log d + 200k2 log 2k)20k2

.

Corollary 2. An algebraic integer �= 0 is a sum of k roots of unity in infinitely many
ways if and only if it is a sum of k − 2 roots of unity.

Corollary 3. If 1+
k∑
i=1
ζ
αi
N = 0, and (N, α1, . . . , αk) = 1 then either there is a non-empty

set I ⊂ {1, 2, . . . , k} such that
∑
i∈I
ζ
αi
N = 0 or N < (200k2 log 2k)20k2

.

The proofs of Theorem 1, Corollary 1 and 2 are given later, Corollary 3 follows imme-
diately from the theorem and is stated with the purpose of asking the question how much
the inequality for N can be improved.

There is a statement in the literature ([2], p. 228) from which it would follow that
(200k2 log 2k)20k2

can be replaced by k + 2. This is true for k < 5 but false for k = 5 as
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the following example due to Robinson shows

1 + ζ30 + ζ 7
30 + ζ 13

30 + ζ 19
30 + ζ 20

30 = 0.

Robinson made a conjecture ([4], §4) about the numbers
√

5 cos(π/M)+ i sin(π/M).
I prove this conjecture as the following

Theorem 2. The number
√

5 cos(π/M) + i sin(π/M) is a sum of three roots of unity if
and only if M = 2, 3, 5, 10, or 30.

According to Robinson two algebraic integers ξ and η are equivalent if for a suitable
conjugate ξ ′ of ξ , η/ξ ′ is a root of unity. Theorem 2 implies

Corollary 4 (Conjecture 3 from [4]). The numbers 1+2i cos(π/M) and
√

5 cos(π/M)+
i sin(π/M) are equivalent only forM = 2, 10 or 30.

Corollary 5. There exist infinitely many inequivalent cyclotomic integers which lie with
all their conjugates in the circle |z| < 3 and are not sums of three roots of unity.

The last corollary, which follows immediately from the fact that the numbers√
5 cos(π/M) + i sin(π/M) for different M have different absolute values, disproves

a conjecture made by Robinson at Boulder 1959 (cf. [4], §4). An analogous conjecture for
the circle |z| < 2 is still unproved (l. c. Conjecture 1).

I conclude this introduction by expressing my thanks to Professor Robinson who let me
have his manuscript before publication, to Professor Davenport who kindly supplied the
proof of Lemma 2 and to Dr. A. Białynicki-Birula and Professor D. J. Lewis who discussed
the subject with me and read my manuscript.

In the sequel Q denotes the rational field, [K2 : K1] the degree of a field K2 over a
field K1, and |K| = [K : Q]. The empty sums are 0, the empty products 1.

Lemma 1. For all positive integers h and N � 3 there exists an integer D satisfying the
conditions

1 � D � (logN)20h,(1)

(iD + 1, N) = 1 for i = 1, 2, . . . , h.(2)

Proof. For h = 1 we can takeD = q− 1, where q is the least prime not dividingN . Since
in that case

∑
p�D

logp � logN , we get from [5], Theorem 10

D � 100 or 0.84D � logN.

On the other hand D � N , which implies D � (logN)20 for all N � 3.
Therefore we can assume h � 2. Since D = N satisfies the condition (2) we can

assume further N > (logN)20h, which implies

(3) logN > 107h, log logN > 5.c
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Let A be the product of all primes not exceeding 10h, and let p1 < p2 < . . . < pr be
all the other primes dividing N . Let P(A,X, p1, . . . , pr) be the number of all integers x
satisfying the conditions

1 � x � X, x ≡ 0 (mod A),

ix + 1 �≡ 0 (mod pj ) (1 � i � h, 1 � j � r).

The second condition above is equivalent to h conditions of the form x �≡ aij (mod pj ).
Thus by Brun’s method ([1], cf. [6], Lemma 7) for any given sequence of integers r =
r0 � r1 � . . . � rt = 1 we have

(4) P(A,X, p1, . . . , pr) >
E

A
X − R,

where

E = 1 − h
r∑
α=1

1

pα
+ h2

r∑
α=1

∑
α1�r
α1<α

1

pαpα1

− h3
r∑
α=1

∑
α1�r
α1<α

∑
β1�r
β1<α1

1

pαpα1pβ1

+ . . .+
r∑
α=1

∑
α1�r1
α1<α

∑
β1�r1
β1<α1

· · ·
∑

αt−1�rt−1
αt−1<βt−2

∑
βt−1�rt−1
βt−1<αt−1

∑
αt�rt
αt<βt−1

1

pαpα1 · · ·pαt

and

(5) R � (1 + hr)
t∏
n=1

(1 + hrn)2.

Denote by rn (1 � n � t) the least positive integer such that

πn =
∏

rn<s�rn−1

(
1 − h

ps

)
� 1

1.3

and choose t so that

πt =
∏
s�rt−1

(
1 − h

ps

)
� 1

1.3
.

It follows hence (cf. [6], formulae (18) and (32))

(6) πn � 10

9
· 1

1.3
= 1

1.17
<

8

9
and

(7) E > 0.5
r∏
s=1

(
1 − h

ps

)
.

We shall show that

(8) log
r∏
s=1

(
1 − h

ps

)
> −h log logN

e log eh
> −0.22h log logN.

c
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Indeed, since p1 > 10h we have by [5] (formula at the bottom of p. 87)

r∑
s=1

1

p2
s

� 2.04

10h log 10h
.

Hence

(9) log
r∏
s=1

(
1 − h

ps

)
+ log

r∏
s=1

(
1 − 1

ps

)−h
� −

r∑
s=1

∞∑
m=2

1

m

( h
ps

)m
� −1

2

r∑
s=1

( h
ps

)2 1

1 − h/ps � −5

9
h2

r∑
s=1

1

p2
s

� − 0.2h

log 10h
.

On the other hand, by [5], Theorem 15

(10)
A

ϕ(A)

r∏
s=1

(
1 − 1

ps

)−1 = AN

ϕ(AN)
< eC log logAN + 2.51

log logAN
.

Since by [5], Theorem 9, and by (3)

(11) logA < 11h <
11

107
logN

c

we get

eC log logAN + 2.51

log logAN
< eC log logN + 11eC

107
+ 2.51

5
< eC (log logN + 0.4) .

c

Further by [5], Theorem 8

A

ϕ(A)
> eC log 10h

(
1 − 1

2 log2 10h

)
> eC(logh+ 2.1).

Since by (3) log logN > log 10h we get from (9), (10) and the last two inequalities

(12) log
r∏
s=1

(
1 − h

ps

)
> −h

(
log(log logN + 0.4)− log(logh+ 2.1)+ 0.2

log 10h

)
> −h(log log logN − log log eh).

Clearly, log x− log a = 1+ log(x/ae) � x/ae. Thus (12) implies (8). Now by (6) and (8)

(t − 1) log 1.17 � h log logN

e log eh
<
h log logN

e log(h+ 1)
,

hence

(13) (2t + 1) log(h+ 1) < 3 log(h+ 1)+ 2h log logN

e log 1.17

< 3 log(h+ 1)+ 4.7h log logN.

This inequality permits to estimate R. The estimation of R given in [6] is not quite correct
and not applicable under the present circumstances. Since ps is certainly greater than the
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sth prime, we have by [5], Corollary to Theorem 3, ps > s log s. Hence

logπn =
∑

rn−1�s>rn
log
(

1 − h

ps

)
> −10

9

∑
rn−1�s>rn

h

ps

> −10

9
h

∫ rn−1

rn

dt

t log t
= −10

9
h log

log rn−1

log rn
.

It follows by (6)

log rn
log rn−1

<
( 1

1.17

)9/10h
<
(

1 + 9

10h
log 1.17

)−1
� (1 + 0.141h−1)−1,

and by induction

(14)
log rn
log r

< (1 + 0.141h−1)−n (1 � n � t − 1).

On the other hand

logN �
r∑
s=1

logps > r log 10h � r log 20,

thus log r < log logN − 1.
It follows from (5), (13) and (14) that

logR � (2t + 1) log(h+ 1)+ log r + 2
t−1∑
n=1

log rn

< 3 log(h+ 1)+ 4.7h log logN + (log logN − 1)
(

2
∞∑
n=0

(1 + 0.141h−1)−n − 1
)

< 3 log(h+ 1)+ 4.7h log logN + (log logN − 1)(14.2h+ 1)

< 19.4h log logN − 11h− 1.

Since by (11) logA < 11h, we have

(15) logR < 19.4h log logN − logA− 1.

It follows from (7), (8) and (15) that

log
(E
A
(logN)20h

)
> logR

thus by (4)

P
(
A, (logN)20h, p1, . . . , pr

)
> 0

and by the definition of P there exists an integer D satisfying (1) and (2). ��

Lemma 2. Let fj (x1, . . . , xn) (1 � j � n) be polynomials of degrees m1, . . . , mn
respectively, with coefficients in a number field K . If

fj (ξ1, . . . , ξn) = 0 (1 � j � n)
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and

(16)
∂(f1, . . . , fn)

∂(x1, . . . , xn)
(ξ1, . . . , ξn) �= 0

then

[K(ξ1, . . . , ξn) : K] � m1m2 · · ·mn.

Proof (due to H. Davenport). Let ϕ1(x1, . . . , xn), . . . , ϕn(x1, . . . , xn) be complete poly-
nomials of degrees m1, . . . , mn respectively, with arbitrary complex coefficients which
differ by less than ε in absolute value from the corresponding coefficients of f1, . . . , fn.
By Bezout’s theorem, the equations ϕ1 = 0, …, ϕn = 0 have exactly m1m2 · · ·mn dis-
tinct solutions for “general” values of all the coefficients. We shall prove that one of these
solutions tends to ξ1, . . . , ξn as ε→ 0.

This will suffice to prove the result. Indeed, the equations fj (x1, . . . , xn) = 0 (j =
1, . . . , n) define a union of algebraic varieties over K . If the point (ξ1, . . . , ξn) were on a
variety of positive dimension, defined by the equations gi(x1, . . . , xn) = 0 (i = 1, . . . , N),
where gi = fi for i � n, then by a known theorem ([3], p. 84) the rank of the matrix[

∂gi

∂xj
(ξ1, . . . , ξn)

]
would be less than n, contrary to (16). Hence (ξ1, . . . , ξn) is an isolated point, and there-
fore the ξi are algebraic over K . Now consider the points

(
ξ
(ν)
1 , . . . , ξ

(ν)
n

)
which are

algebraically conjugate to (ξ1, . . . , ξn) over K . These are distinct and their number is
[K(ξ1, . . . , ξn) : K]. Also each of them satisfies the equations fj = 0 and the condition
∂(f1, . . . , fn)

∂(x1, . . . , xn)
�= 0.

Hence it will follow from the result stated above that near each of them there is one of
the solutions of ϕ1 = 0, . . . , ϕn = 0 and so their number is at most m1m2 · · ·mn.

The value of ϕj (ξ1, . . . , ξn), or of any derivative of ϕj (x1, . . . , xn) at (ξ1, . . . , ξn),
differs from the corresponding value for fj (ξ1, . . . , ξn) by an amount that isO(ε). Hence

ϕj (ξ1 + η1, . . . , ξn + ηn)

= εj +
n∑
i=1

(λij + εij )ηi +
n∑
i1=1

n∑
i2=1

(
λi1i2j + εi1i2j

)
ηi1ηi2 + . . . ,

where all εj , εij , . . . areO(ε) and where the numbers λij , λi1i2j , . . . are partial derivatives
of fj at (ξ1, . . . , ξn) and so are independent of ε. Also

det λij = ∂(f1, . . . , fn)

∂(x1, . . . , xn)
(ξ1, . . . , ξn) �= 0.

It follows from the well known process for the inversion of power series (e.g. by iteration)
that the equations

ϕj (ξ1 + η1, . . . , ξn + ηn) = 0 for j = 1, . . . , n

have a solution with η1, . . . , ηn = O(ε). Hence the result. ��
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Remark. The above proof fails if K has characteristic different from 0. However, Mr.
Swinnerton-Dyer tells me that the lemma is still valid and can be proved by using Weil’s
theory of intersections.

Proof of Theorem 1. The theorem clearly holds for N < 3. Assume that N � 3,

(17)
k∑
i=1

aiζ
αi
N = ϑ, |Q(ϑ)| = d, (N, α1, . . . , αk) = 1.

Let D be an integer whose existence is ensured by Lemma 1 for h = k − 1. Among
the numbers αi let there be exactly n that are distinct modN1 = N/(N,D). By a suitable
permutation of the terms in (17) we can achieve that αs1 , αs2 , . . . , αsn are all distinct
modN1, 0 = s0 < s1 < . . . < sn = k and

(18) αi ≡ αsν (modN1) if sν−1 < i � sν (1 � ν � n).
Let us choose numbers γν , such that

(19) γν ≡ αsν (modN1), (γν,N) = (αsν , N1) (1 � ν � n).
It follows from elementary congruence considerations that such choice is possible.

We write equation (17) in the form

(20)
n∑
ν=1

ζ
γν
N Sν = ϑ,

where

Sν =
s∑

i=sν−1+1

aiζ
αi−γν
N (1 � ν � n).

By (18) and (19)

Sν ∈ Q(ζD) (1 � ν � n).

By (2) (N, jD − D + 1) = 1 thus ζ jD−D+1
N is for each positive j � k a conjugate

of ζN . Clearly

ζ
(αi−γν)(jD−D+1)
N = ζ αi−γνN (sν−1 < i � sν).

Substituting ζ jD−D+1
N for ζN in (20) we get

n∑
ν=1

ζ
γν(jD−D+1)
N Sν = ϑj (1 � j � n),

where ϑj is a suitable conjugate of ϑ . Since Q(ϑ) is an Abelian field, ϑj ∈ Q(ϑ).
In Lemma 2 we take:

fj (x1, . . . , xn) =
n∑
ν=1

xjD−D+1
ν Sν − ϑj (1 � j � n),

K = Q(ζD, ϑ), ξν = ζ γνN (1 � ν � n).
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Hence

(21)
∂(f1, . . . , fn)

∂(x1, . . . , xn)
(ξ1, . . . , ξn)

=
n∏
j=1

(jD −D + 1)
n∏
ν=1

Sν
∏

1�ν′′<ν′�n

(
ζ
γν′D
N − ζ γν′′DN

)
.

If Sν = 0 for some ν � n then
sν∑

i=sν−1+1

aiζ
αi
N = 0

c

and the theorem holds with I = {sν−1 + 1, . . . , sν}.
If Sν �= 0 for all ν � n, then by (21) and the choice of γν we have

∂(f1, . . . , fn)

∂(x1, . . . , xn)
(ξ1, . . . , ξn) �= 0.

Therefore, by Lemma 2

(22)
∣∣Q(ζ γ1

N , ζ
γ2
N , . . . , ζ

γn
N

)∣∣ � ∣∣Q(ζD, ϑ)∣∣ n−1∏
j=0

(jD + 1) < n!Dnd � k!Dkd.

On the other hand by (18) and (19)

(N, γν) =
(
N1, αsν

) = (N1, αsν−1+1, . . . , αsν
)
,

hence

(N, γ1, . . . , γn) = (N1, α1, . . . , αk) = 1

and ∣∣Q(ζ γ1
N , . . . , ζ

γn
N

)∣∣ = ϕ(N).
It follows now from (22) and (1) (applied with h = k − 1)

(23) ϕ(N) � k!(logN)20k(k−1)d.

If N < (200k2 log 2k)20k2
the theorem certainly holds.

If N � (200k2 log 2k)20k2
> 1042, it follows from [5], Theorem 15, that

(24) ϕ(N) >
N

logN
.

Also, if N � (200k2 log 2k)20k2

(25) k! < (logN)k.

It follows from (23), (24) and (25) that

N(logN)−20k2 � d.
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Taking N0 = d(2 log d + 200k2 log 2k
)20k2

we find that

N0(logN0)
−20k2 = d

(
2 log d + 200k2 log 2k

log d + 20k2 log(2 log d + 200k2 log 2k)

)20k2

> d,

because 200k2 log 2k > 20k2 log(400k2 log 2k).c

Since the function N(logN)−20k2
is increasing for N > e20k2

it follows that N < N0.
The proof is complete. ��

Proof of Corollary 1. Assume that

ϑ =
k∑
i=1

ζ
αi
N .

Let I be a set contained in {1, 2, . . . , k} saturated with respect to the property that∑
i∈I
ζ
αi
N = 0. We have ϑ = ∑

i∈I
ζ
αi
N and by the choice of I and Theorem 1

N

(N,GCD
i∈I αi)

< d(2 log d + 200k2 log 2k)20(k−κ)2 ,

where κ is the number of elements in I . If κ = 0 we have the desired conclusion, if κ > 0
then κ � 2 and

ϑ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∑
i∈I
ζ
αi
N +

κ/2∑
j=1

1 +
κ/2∑
j=1

(−1), κ even,

∑
i∈I
ζ
αi
N + ζ3 + ζ−1

3 +
(κ−1)/2∑
j=1

1 +
(κ−3)/2∑
j=1

(−1), κ odd � 3.

The least common degree of all k roots of unity occurring in the above representation of ϑ
does not exceed

6d(2 log d + 200k2 log 2k)20(k−κ)2 < d(2 log d + 200k2 log 2k)20k2
,

which completes the proof. ��

Proof of Corollary 2. The sufficiency of the condition is immediate since

k−2∑
i=1

ζ
αi
N =

k−2∑
i=1

ζ
αi
N + ζM − ζM,

whereM is arbitary. On the other hand, if ϑ has infinitely many representations as the sum
of k roots of unity, then there must be among them a representation

ϑ =
k∑
i=1

ζ
αi
N , (N, α1, . . . , αk) = 1

not satisfying the inequality

N < d(2 log d + 200k2 log 2k)20k2
.
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By Theorem 1 there is a non-empty set I ⊂ {1, 2, . . . , k} such that
∑
i∈I
ζ
αi
N = 0 and

denoting by κ the number of elements in I we have k > κ � 2. Since

1 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

κ/2∑
j=1

1 +
(κ−2)/2∑
j=1

(−1), κ even,

ζ6 + ζ−1
6 +

(κ−3)/2∑
j=1

1 +
(κ−3)/2∑
j=1

(−1), κ odd � 3,

we can replace one of the k − κ terms in the sum
∑
i∈I
ζ
αi
N = ϑ by a sum of κ − 1 roots of

unity, thus obtaining a representation of ϑ as the sum of k − 2 roots of unity. ��

Proof of Theorem 2. Suppose that

(26)
√

5 cos
π

M
+ i sin

π

M
= ζα1

m1
+ ζ α2

m2
+ ζ α3

m3
, where (αi,mi) = 1.

Put N = 5 [2M,m1,m2,m3], α = N

2M
, β = Nα1

m1
, γ = Nα2

m2
, δ = Nα3

m3
. Then

(27) (α, β, γ, δ) = 5.

Since 1
2

(√
5 − 1

) = ζ5 + ζ−1
5 = ζN/5N + ζ−N/5N (26) can be written in the form

(28)
(
ζ
N/5
N + ζ−N/5N

)(
ζ αN + ζ−αN

)+ ζ αN = ζ βN + ζ γN + ζ δN .
Now we distinguish two cases according as 3 |N and 3 /| N . In the first case at least

one of the numbers ± 1
3N + 1 is relatively prime to N . Hence one of the numbers ζ±1

3 ζN
is conjugate to ζN . Denote it for simplicity by �ζN and substitute for ζN into (28). Since
�N/5 = 1, we get

(29)
(
ζ
N/5
N + ζ−N/5N

)(
�αζαN + �−αζ−αN

)+ �αζαN = �βζβN + �γ ζ γN + �δζ δN .
By taking complex conjugates of (28) and (29) and substituting afterwards

y = ζ βN , z = ζ γN , t = ζ δN ;
A = 1

2 (
√

5 + 1)ζ2M + 1
2 (
√

5 − 1)ζ−1
2M, B = 1

2 (
√

5 − 1)ζ2M + 1
2 (
√

5 + 1)ζ−1
2M,

C = 1
2 (
√

5 + 1)�αζ2M + 1
2 (
√

5 − 1)�−αζ−1
2M,(30)

D = 1
2 (
√

5 − 1)�αζ2M + 1
2 (
√

5 + 1)�−αζ−1
2M,

we get the following system of equations

A = y + z+ t,(31)

B = y−1 + z−1 + t−1,(32)

C = �βy + �γ z+ �δt,(33)

D = �−βy−1 + �−γ z−1 + �−δt−1.(34)

If β ≡ γ ≡ δ (mod 3) it follows from (31) and (33) that C = �βA. Hence by (30)

(35) 1
2 (
√

5 + 1)(�α − �β)ζ2M + 1
2 (
√

5 − 1)(�−α − �β)ζ−1
2M = 0.
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The coefficients of ζ2M and ζ−1
2M do not both vanish, since that would give α ≡ β ≡ 0

(mod 3) and α ≡ β ≡ γ ≡ δ ≡ 0 (mod 3) contrary to (27). Thus they have different
absolute values, and (35) is impossible.

Consider now the case when exactly two among the numbers β, γ, δ are congruent
mod 3, e.g. β ≡ γ �≡ δ (mod 3). Eliminating y, z and t from the equations (31) to (34) we
get

(36) (C − �βA)(D − �−βB) = |�δ − �β |2 = 3.

Substituting the values for A,B,C,D from (30) we obtain

(37) (�α − �β)(�α − �−β)ζM + 1
2

(
3 +√

5
)|�α − �β |2

+ 1
2

(
3 −√

5
)|�−α − �β |2 − 3 + (�−α − �β)(�−α − �−β)ζ−1

M = 0.

If β ≡ ±α (mod 3), we get 1
2

(
3 ∓ √

5
)∣∣�∓α − �β ∣∣2 − 3 = 0, which is impossible.

Hence β �≡ ±α (mod 3) and (37) takes the form

3ζM + 6 + 3ζ−1
M = 0, if β �≡ 0 (mod 3);(38)

−3�αζM + 6 − 3�−αζ−1
M = 0, if β ≡ 0 �≡ α (mod 3).(39)

It follows from (38) that ζM = −1,M = 2 and from (39) �αζM = 1,M = 3.
Consider next the case when β, γ, δ are all different mod 3. We can assume without

loss of generality that β ≡ 0 (mod 3), γ ≡ 1 (mod 3), δ ≡ 2 (mod 3).
If α ≡ 0 (mod 3), then C = A and it follows from (31) and (33) that

A− y = z+ t = �z+ �2t,

hence t = �z and

(40) A = y − �2z, B = y−1 − �z−1.

Since y and z are roots of unity, |y − �2z| � 2. On the other hand by (30)

|A| = ∣∣√5 cos(π/M)+ i sin(π/M)
∣∣ = √5 − 4 sin2(π/M) .

It follows that

5 − 4 sin2(π/M) � 4, |sin(π/M)| � 1
2 ,

and 6 � M > 1. Further, by (40)

−�2yz = A

B
=

√
5 cos(π/M)+ i sin(π/M)√
5 cos(π/M)− i sin(π/M)

.

It can easily be verified that forM = 3, 4 or 6 the quotient on the right hand side is not an
algebraic integer, hence the only possible values forM here areM = 2 or 5.

If α �≡ 0 (mod 3), then eliminating y, z and t from (31) to (34) we get

A3 − C3 = 3yzt (AB − CD) and (AB − CD)2 − 1
9 (A

3 − C3)(B3 −D3) = 0.

The substitution of the values for A,B,C,D from (30) gives

−3�−αζ 2
M + 3�αζM − 3 + 3�−αζ−1

M − 3�αζ−2
M = 0.
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Hence

(�αζM)
4 − (�αζM)3 + (�αζM)2 − (�αζM)+ 1 = 0, �αζM = ζ ε10,

where (ε, 10) = 1 and ζM = �−αζ ε10. This givesM = 30.
It remains to consider the case when 3 /| N . In this case ζ 3

N is a conjugate of ζN and
substituting it for ζN in the equation (28) we get

(41)
(
ζ

3N/5
N + ζ−3N/5

N

)(
ζ 3α
N + ζ−3α

N

)+ ζ 3α
N = ζ 3β

N + ζ 3γ
N + ζ 3δ

N .

Now,

ζ
3N/5
N + ζ−3N/5

N = 1
2 (−

√
5 − 1).

By taking the complex conjugate of (41) and substituting afterwards

(42) E = 1
2 (−

√
5 + 1)ζ 3

2M + 1
2 (−

√
5 − 1)ζ−3

2M,c

F = 1
2 (−

√
5 − 1)ζ 3

2M + 1
2 (−

√
5 + 1)ζ−3

2M

we get the following system of equations

A = y + z+ t,
B = y−1 + z−1 + t−1,

E = y3 + z3 + t3,
F = y−3 + z−3 + t−3.

Eliminating y, z and t we obtain

A3 − E = 3yzt (AB − 1) and (AB − 1)2 − 1
9 (A

3 − E)(B3 − F) = 0.

The substitution of the values of A,B,E, F from (30) and (42) gives

−ζ 3
M − ζ 2

M − ζ−2
M − ζ−3

M = 0.

Hence

ζ 6
M + ζ 5

M + ζM + 1 = (ζM + 1)(ζ 5
M + 1) = 0,

ζM = −1 or ζ 5
M = −1, and M = 2 orM = 10.

This completes the proof that the only values M for which ηM = √
5 cos(π/M) +

i sin(π/M) can be a sum of three roots of unity are 2, 3, 5, 10, or 30. On the other hand,
it is easy to verify that

η2 = 1 + ζ2 + ζ4, η3 = ζ5 + ζ−1
5 + ζ6, η5 = ζ6 + ζ−1

6 + ζ10,

η10 = ζ20 + ζ 3
20 + ζ−3

20 , η30 = ζ−1
12 + ζ−1

20 + ζ 11
60 . ��

Proof of Corollary 4. Since 1+2i cos(π/M) = 1+i(ζ2M+ζ−1
2M), any number equivalent to

1+2i cos(π/M) is a sum of three roots of unity. It follows by Theorem 2 that the numbers
ξM = 1 + 2i cos(π/M) and ηM = √

5 cos(π/M) + i sin(π/M) can be equivalent only
forM = 2, 3, 5, 10 or 30.

If the numbers ξ3 and η3 or ξ5 and η5 were equivalent then since ξ3 = 1 + i and
η5 = 1 + ζ10, η3 or ξ5 would be a sum of two roots of unity. However if ϑ �= 0 is such
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a sum and ϑ is its complex conjugate, then ϑ/ϑ is a root of unity. Since neither of the
numbers η3/η3 and ξ5/ξ5 is an algebraic integer, the proof is complete.

Added in proof. 1. H. B. Mann has proved in [3a] that under the assumptions of Corollary 3,
N divides the product of all primes � k + 1. This leads to a much better estimation of N than
that stated in the corollary. Mann’s method could also be used to solve both Robinson’s problems
considered in this paper.

2. In connection with Lemma 1 the question arises how much inequality (1) can be improved.
Y. Wang has proved by Brun’s method in a manuscript kindly placed at my disposal that for
N > N0(h) one can replace (logN)20h by c(h)(logN)4h+3. According to H. Halberstam (written
communication), there is a possibility of reducing the exponent 4h+3 to 2h+1 by Selberg’s method.
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On a theorem of Bauer
and some of its applications II

The aim of this paper is to extend to polynomials in many variables the results of papers
[1] and [6]. It is convenient to first restate these results in a concise form.

LetK be an algebraic number field, |K| its degree,K its normal closure. We denote by
P(K) the set of primes which have in K at least one prime ideal factor of the first degree,
and by NK/Q the norm from K to the rational field Q. We say that K has property (P) if
for all but finitely many primes q and for every ω ∈ K (ordq NK/Q(ω), |K|) = 1 implies
q ∈ P(K). A field K is called Bauerian if for every Ω , P(Ω) � P(K) implies that Ω
contains one of the conjugates of K (P(Ω) � P(K) means that P(Ω) \ P(K) is finite).

Several types of Bauerian fields have been described in [6], it happens so that all those
fields have property (P). For some of them (cubic and quartic fields, solvable fieldsK with( |K|
|K| , |K|

)
= 1) this has been established in the course of proof of Lemma 1 ([6]), for

the others (certain solvable fields of degree p2) it follows from Lemma 3 and Theorem 4
below. For normal fields the fact is obvious and for Bauerian fields of the types described
in [4] (fields with property (N), fields Q

(
n
√
A
)

with n �≡ 0 (mod 8)) it is also true (see
Corollary 2 and p. 219). In Theorem 5 I give a new class of Bauerian fields (normal
extensions of quadratic fields) which need not have property (P).

Apart from the description of Bauerian fields, from Theorem 1 of [1] which has been
generalized in [5] and various counterexamples the results of papers [1] and [6] can be
summarized as follows.

Theorem A. If K is a cyclic field or a solvable field such that |K| is square-free and( |K|
|K| , |K|

)
= 1, f (x) ∈ Q[x] and in every arithmetic progression there is an integer x

such that

f (x) = NK/Q(ω), ω ∈ K,
then

f (x) = NK/Q
(
ϕ(x)
)
, where ϕ(x) ∈ K[x].

Theorem B. If K is a Bauerian field with property (P), f (x) ∈ Q[x], the multiplicity of
each zero of f is relatively prime to |K| and in every arithmetic progression there is an
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integer x such that

f (x) = NK/Q(ω), ω ∈ K,
then

f (x) = NK/Q
(
ϕ(x)
)
, where ϕ(x) ∈ K[x].

Theorem C. IfK is any field of degreep orp2 (p prime), f (x) ∈ Q(x), the multiplicity of
each zero and pole of f is relatively prime to |K|p−1 and in every arithmetic progression
there is an integer x such that

f (x) = NK/Q(ω), ω ∈ K,
then

f (x) = NK/Q
(
ϕ(x)
)
, where ϕ(x) ∈ K(x).

The proof of all these theorems passes through the same stage which we formulate
below as

Lemma 1. Let K and the multiplicities of the factors of f satisfy the assumptions of
Theorems A, B or C. If for every integer x and every prime q there exists ω ∈ K such that

ordq f (x) = ordq NK/Q(ω)

(provided the left hand side is defined) and f1 is an irreducible factor of f then

f1(x)
e = αNK/Q

(
ϕ(x)
)
,

where α ∈ Q, ϕ(x) ∈ K[x] and e = ordf1 f in case A, B,
(
e, |K|) = (ordf1 f, |K|) in

case C.

We generalize Theorems A, B and C as follows.

Theorem 1. If K is a cyclic field or a solvable field such that |K| is square-free and(
|K|, |K|

|K|
)

= 1, f ∈ Q[x1, . . . , xk] and for any arithmetic progressions P1, . . . , Pk

there are integers x1, . . . , xk , such that xi ∈ Pi (1 � i � k),c

f (x1, . . . , xk) = NK/Q(ω), ω ∈ K,
then

f (x1, . . . , xk) = NK/Q
(
ϕ(x1, . . . , xk)

)
, ϕ(x1, . . . , xk) ∈ K[x1, . . . , xk].

Theorem 2. IfK is a Bauerian field with property (P), f ∈ Q[x1, . . . , xk], the multiplicity
of each irreducible factor off is relatively prime to |K| and for any arithmetic progressions
P1, . . . , Pk there are integers x1, . . . , xk such that xi ∈ Pi ,

f (x1, . . . , xk) = NK/Q(ω), ω ∈ K,
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then

f (x1, . . . , xk) = NK/Q
(
ϕ(x1, . . . , xk)

)
, ϕ ∈ K[x1, . . . , xk].

Theorem 3. If K is any field of degree p or p2 (p prime), f ∈ Q(x1, . . . , xk), thec

multiplicity of each irreducible factor of f is relatively prime to |K|p−1 and for any
arithmetic progressions P1, . . . , Pk there are integers x1, . . . , xk , such that xi ∈ Pi
(1 � i � k),

f (x1, . . . , xk) = NK/Q(ω), ω ∈ K,
then

f (x1, . . . , xk) = NK/Q
(
ϕ(x1, . . . , xk)

)
, ϕ(x) ∈ K(x1, . . . , xk).

All the three theorems can be deduced from Lemma 1 by means of Hilbert’s Irreducibil-
ity Theorem. The idea of using Hilbert’s theorem in this connection is due to H. Davenport.

We prove first a generalization of Lemma 1.

Lemma 2. Let K and the multiplicities of the factors of f satisfy the assumptions of
Theorems 1, 2 or 3. If for any integers x1, . . . , xk and every prime q there exists ω ∈ K
such that

ordq f (x1, . . . , xk) = ordq NK/Q(ω)c

(provided the left hand side is defined) and f1 is an irreducible factor of f then

f1(x1, . . . , xk)
e = αNK/Q

(
ϕ(x1, . . . , xk)

)
,

where α ∈ Q, ϕ ∈ K[x1, . . . , xk] and e = ordf1 f in case 1 and 2,
(
e, |K|) =(

ordf1 f, |K|) in case 3 (1, 2 and 3 refer to numbers of the theorems).

Proof. Let

(1) f = cf e11 f
e2
2 · · · f emm

and

(2) f1 = c1ϕε11 ϕ
ε2
2 · · ·ϕεnn

by the factorization of f and f1 into irreducible factors over Q and K respectively. We
have

(3) NK/Qϕl(x1, . . . , xk) = γlf1(x1, . . . , xk)
δl .

We may assume without loss of generality that xk really occurs in f1. Denote the coef-
ficient of the highest power of xk in f1 by h(x1, . . . , xk−1) �= 0 and the discriminant of
f1f2 · · · fm with respect to xk by D(x1, . . . , xk−1). By Hilbert’s Irreducibility Theorem
there exist integers x′i (1 � i < k) such that h(x′1, . . . , x′k−1)D(x

′
1, . . . , x

′
k−1) �= 0,

fj (x
′
1, . . . , x

′
k−1, xk) are irreducible over Q andϕl(x′1, . . . , x′k−1, xk) are irreducible overK
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as polynomials in xk (1 � j � m, 1 � l � n). Therefore by (1), in case 2 or 3 the multiplic-
ity of each factor of f (x′1, . . . , x′k−1, xk) is relatively prime to |K| or |K|p−1, respectively.
On the other hand, for every integer xk and every prime q there exists ω ∈ K such that

ordq f (x
′
1, . . . , x

′
k−1, xk) = ordq NK/Q(ω)

(provided the left hand side is defined). By Lemma 1 we infer

(4) f1(x
′
1, . . . , x

′
k−1, xk)

e = α′NK/Q
(
ϕ′(xk)

)
,

where α′ ∈ Q, ϕ′ ∈ K[xk] and e = ordf1 f in case 1 and 2,
(
e, |K|) = (ordf1 f, |K|) in

case 3. In virtue of (2) and of the choice of x′i (1 � i < k) we have for some nonnegative
integers η1, . . . , ηn and some β ∈ K

(5) ϕ′(xk) = β
n∏
l=1

ϕl(x
′
1, . . . , x

′
k−1, xk)

ηl .

It follows from (3), (4) and (5) that

(6) f1(x
′
1, . . . , x

′
k−1, xk)

e = α′NK/Q(β)
n∏
l=1

γ
ηl
l f1(x

′
1, . . . , x

′
k−1, xk)

δlηl .

Since h(x′1, . . . , x′k−1) �= 0, f1(x
′
1, . . . , x

′
k−1, xk) is not constant and (6) implies

n∑
l=1
δlηl = e, which proves the lemma with ϕ =

n∏
l=1
ϕ
ηl
l . ��

Proof of Theorems 1, 2 and 3. Let

f (x1, . . . , xk) = g(x1, . . . , xk)

h(x1, . . . , xk)
,

where the polynomials g andh have integer coefficients and (g, h) = 1. Take any k integers
x1, . . . , xk such that h(x1, . . . , xk) �= 0. If

g(x1, . . . , xk) = 0

we have for any prime q

ordq f (x1, . . . , xk) = ∞ = ordq NK/Q(0).

If g(x1, . . . , xk) �= 0 set

ordq g(x1, . . . , xk) = μ, ordq h(x1, . . . , xk) = ν.
By the assumptions there exist integers t1, . . . , tk such that

f (x1 + qμ+ν+1t1, . . . , xk + qμ+ν+1tk) = NK/Q(ω), ω ∈ K.
Hence

NK/Q(ω) = ordq g(x1 + qμ+ν+1t1, . . . , xk + qμ+ν+1tk)

− ordq h(x1 + qμ+ν+1t1, . . . , xk + qμ+ν+1tk)

= ordq g(x1, . . . , xk)− ordq h(x1, . . . , xk) = ordq f (x1, . . . , xk).
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Let (1) be the factorization of f into irreducible factors over Q. By Lemma 2 we havec

for each j � m

fj (x1, . . . , xk)
e′j = αjNK/Q

(
ϕj (x1, . . . , xk)

)
,

where αj ∈ Q, ϕj ∈ K[x1, . . . , xk] and e′j = ej in case 1 and 2,
(
e′j , |K|) = (ej , |K|) in

case 3. In the last case there exist integers aj and bj such that

e′j aj − |K|bj = ej .
It follows

fj (x1, . . . , xk)
ej = αajj NK/Q

(
ϕj (x1, . . . , xk)

aj fj (x1, . . . , xk)
−bj )

and we obtain from (1)

f (x1, . . . , xk)

=

⎧⎪⎪⎨⎪⎪⎩
c
m∏
j=1
αjNK/Q

( m∏
j=1
ϕj (x1, . . . , xk)

)
in case 1 and 2,

c
m∏
j=1
α
aj
j NK/Q

( m∏
j=1
ϕj (x1, . . . , xk)

aj fj (x1, . . . , xk)
−bj
)

in case 3.

Choosing x1, . . . , xk so that f (x1, . . . , xk) = NK/Q(ω) �= 0 we infer that c
m∏
j=1
αj or

c
m∏
j=1
α
aj
j in case 1 and 2 or 3 respectively, is a norm of an element of K and the theorems

follow. ��

It seems more difficult to generalize to polynomials in many variables the results of [2].
In particular I do not know whether the solubility in rationals x, y of an equation

a(t, u)x2 + b(t, u)y2 = 1

for all integer values of t, u implies the existence of rational functions ϕ(t, u), ψ(t, u)
such that identically

a(t, u)ϕ2(t, u)+ b(t, u)ψ2(t, u) = 1.

Now we shall prove a result on fields of degree p2 announced in the introduction. We
show first

Lemma 3. Let the Galois group G of K be represented as permutation group on the
conjugates of K . The field K has property (P) if and only if every permutation of G for
which the lengths of cycles are relatively prime fixes at least one element.

Proof. Necessity. Suppose that a permutationσ ofGhas the cycles of lengthsf1, . . . , fk and
(f1, . . . , fk) = 1. By Chebotarev’s density theorem there exist infinitely many primes q

not dividing the discriminant of K such that

(
K

q

)
is the class of σ . By the well known

Artin’s result (see [3], p. 126) these primes factorize in K into prime ideals of degrees
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f1, . . . , fk . Let q = q1 · · · qk , where qi is of degree fi . Since (f1, . . . , fk) = 1 there exist
integers α1, . . . , αk such that

α1f1 + . . .+ αkfk = 1,

there exists also an ideal a relatively prime to q such that the ideal q
α1
1 · · · qαkk a is principal

equal to (ω), say. Then

ordq NK/Q(ω) = 1

and by the assumption at least one of the numbers f1, . . . , fk is 1.

Sufficiency. Suppose that q does not divide the discriminant of K and

(7)
(
ordq NK/Q(ω), |K|) = 1.

Let q1, q2, . . . , ql be all the prime ideal factors of q in K and let

(ω) = q
α1
1 · · · qαll ab−1,

where (ab, q) = 1. If qi is of degree fi we have

ordq NK/Q(ω) = α1f1 + . . .+ αlfl
and since f1 + . . .+ fl = |K|, by (7)

(8) (f1, . . . , fl) = 1.

ByArtin’s theorem quoted above, any permutationσ of G belonging to

(
K

q

)
factorizes

into cycles of lengths f1, . . . , fl . By (8) and the assumption one of these lengths is 1, thus
q ∈ P(K).

Corollary 1. Every fieldK with the Galois group of K being a p-group has property (P).

Proof. It is clear that the lengths of cycles of the permutations in question can only be
powers of p. ��

Corollary 2. Every pure field K = Q
(
m
√
A
)

has property (P).

Proof. The Galois group ofK can be represented by permutations of residue classes modm
given by σ(x) ≡ ax + b (modm). Suppose that for some f : σf (x) = x. Then

af − 1

a − 1

(
(a − 1)x + b) ≡ 0 (modm)

and

(a − 1,m) |b a
f − 1

a − 1
.

If the lenghts of the cycles of σ : f1, . . . , fk are relatively prime then

(a − 1,m) |b a
fi − 1

a − 1
(i = 1, . . . , k)
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implies

(a − 1,m) |b,
and σ(x) = x is soluble. ��

Corollary 1 establishes property (P) for one class of Bauerian fields of degree p2 found
by P. Roquette and mentioned in [6]. For the other class found by L. Alperin (primitive
solvable fields of degree p2, p > 3) the same holds in virtue of

Theorem 4. LetK be a field of degree pk (p prime) and assume that the Galois group G

of K represented as a permutation group on the points of Fkp consists of affine transfor-
mations. ThenK has property (P) and if k � 2 or k = 3, p = 2, it is Bauerian. For k � 3,
p � 3 or k � 4 there are non-Bauerian fields of this type.

Proof. Let σ be a permutation of the points of Fkp given by an affine transformation. If
the lengths of cycles of σ are relatively prime, one of them is not divisible by p. Let the
relevant cycle be (p1, . . . , pl). Then

(9) σ
(
l−1

l∑
i=1

pi

)
= l−1

l∑
i=1

σ(pi) = l−1
l∑
i=1

pi,

thus σ has a fixed point.
Assume now that k � 2 and J is a subgroup of G contained in the union of stability

groups. If the lengths of orbits of J were not relatively prime then by Lemma 3 of [6]c

there would exist in J a permutation with the lengths of cycles not relatively prime, againstc

the assumption. Therefore the lengths of orbits are relatively prime and one of them is notc

divisible byp. Let the relevant orbit be (p1, . . . , pl). Then for any σ from J the formula (9)

holds and J is contained in the stabilizer of l−1
l∑
i=1
pi . It follows by Theorem 1 of [6] that

K is a Bauerian field.
Now, let k = 3, p = 2 and let J have its former meaning. If the lengths of orbits of J

are relatively prime the former argument applies. Otherwise all lengths are even and byc

Theorem 3.4 of [8], a Sylow 2-subgroup S of J has also all orbits of even length. Since
S is contained in the union of stability subgroups it is not cyclic and does not contain any
translation. It follows that S is of order 4 or 8. The computation shows that all groups of
order 8 of affine transformations of F3

2 without translations are of the form σ 〈σ1, σ2〉 σ−1,
where

σ1(x) =
⎡⎣1 1 0

0 1 1
0 0 1

⎤⎦ x +
⎡⎣ab
c

⎤⎦ , σ2(x) =
⎡⎣1 0 0

0 1 1
0 0 1

⎤⎦ x +
⎡⎣ d

b + c
0

⎤⎦ .
c

If σ−1Sσ contains σ 2
1 and σ2 then the existence of fixed points of these transformations

implies that c = d = 0 and S has the fixed point σ(0, a, b). Otherwise σ−1Sσ is the groupc
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of order 4 generated by σ 2
1 and σ2σ1, where

σ2σ1(x) =
⎡⎣1 1 1

0 1 0
0 0 1

⎤⎦ x +
⎡⎣a + b + c + dc

c

⎤⎦ .
c

We infer again that c = 0 and S has the fixed point σ(0, a + d, b). The contradictionc

obtained shows that K is a Bauerian field.
If k � 3, p � 3 consider the group J = {σi,j }, where

σi,j : y1 = x1 + jx2 +
((
j
2

)+ i)x3 + i, y2 = x2 + jx3, yi = xi (3 � i � k).

(We have σi1,j1σi2,j2 = σi1+i2,j1+j2 .) All fixed points of σi,j are given by x2 = −ij−1,
x3 = 0 if j �= 0 and x3 = −1 if j = 0, thus J has no fixed point. Taking for G the group
generated by J and all the translations we get corresponding to a stability subgroup of G
a solvable field of degree pk which is not Bauerian.

If k � 4 consider the group J = {1, σ1, σ2, σ3}, where σi are the following affine
transformations of Fk2:
σ1: y1 = x1 + x2 + x3 + 1, yi = xi (2 � i � k),
σ2: y1 = x1 + x4, y2 = x3, y3 = x2, yi = xi (4 � i � k),
σ3: y1 = x1 + x2 + x3 + x4 + 1, y2 = x3, y3 = x2, yi = xi (4 � i � k).
Each σi has fixed points but there is none in common.
Taking for G the group generated by J and all the translations, we get corresponding

to a stability subgroup of G a solvable field of degree 2k which is not Bauerian. ��

Remark. The assertion of Theorem 4 concerning property (P) is a special case of the
following theorem due to Professor H. Wielandt (written communication). If a permutation
group G of prime power degree pk has a regular normal subgroup (regular means that
it is transitive and stabilizer of any point is trivial) then every element of G whose cycle
lengths are relatively prime has a fixed point.c

Corollary 3. Every primitive solvable field of degree pk (p prime) has property (P) and
if k � 2 or k = 3, p = 2, it is Bauerian.

Proof. IfK is a primitive solvable field of degreepk then the Galois group ofK represented
as a permutation group on Fkp consists of affine transformations (see [7], p. 364). ��

Imprimitive solvable fields of degreep2 need neither be Bauerian nor have property (P).
It is shown by the example of a field K of degree 9 with the Galois group of K being the
wreath product of S3 acting on three isomorphic copies of S3. It remains unsettled whether
every primitive solvable field is Bauerian.

Theorem 5. Every normal extension of a quadratic field is Bauerian. There are fields of
this type without property (P).

Proof. LetK be a normal extension of a quadratic field L andK the normal closure ofK .
We can assume that K �= K . Let G be the Galois group of K and H,N the subgroups
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of G corresponding to K and L, respectively. By the assumption H is a normal subgroup
of N, and since N is of index two in G there is only one subgroup of G conjugate to H and
different from it; let us denote it by H′. If the fieldK were not Bauerian then by Theorem 1
of [6] one could find a subgroup J of G such that

(10) J ⊂ H ∪ H′, J �⊂ H, J �⊂ H′.

On taking

j1 ∈ J \ H ⊂ H′, j2 ∈ J \ H′ ⊂ H

one obtains

j1j2 ∈ J \ H \ H′

which contradicts (10).
Consider now a group G consisting of the following permutations σa,b of residue

classes mod 12:

σa,b(2n) ≡ 2n+ a (mod 12), σa,b(2n+ 1) ≡ 2n+ 1 + b (mod 12) (0 � n � 5),

where (a, b) runs through all pairs of residues mod 12 of the same parity. This group is
transitive and it has an abelian subgroup of index two namely N = {σa,b : a ≡ b ≡ 0
(mod 2)}. Therefore there exists an algebraic number field Ω with G as its Galois group.
The stability subgroups

H = {σa,0 : a ≡ 0 (mod 2)} and H′ = {σ0,b : b ≡ 0 (mod 2)}
are normal subgroups of N. Thus the subfieldK ofΩ corresponding to H is Bauerian. On
the other hand it does not possess property (P) since

σ4,6 = (0, 4, 8)(1, 7)(2, 6, 10)(3, 9)(5, 11);
the lengths of cycles are relatively prime but none of them is 1. ��

Finally we prove that for fields K without property (P) Theorem B and a fortiori
Theorem 2 does not hold.

Theorem 6. If a field K does not possess property (P) then there exists an irreducible
polynomial f (x) such that, for every integer x, f (x) = NK/Q(ω) with ω ∈ K but for no
polynomial ϕ(x) ∈ K[x]
(11) f (x) = NK/Q

(
ϕ(x)
)
.

Proof. Let G be the Galois group of K represented as the permutation group on the
conjugates of K and H be the subgroup of G corresponding to K . Let σ ∈ G have the
cycles of lengths f1, . . . , fk , where (f1, . . . , fk) = 1 and fi > 1 (1 � i � k). To the
group J generated by σ there corresponds a field Ω , say.

LetΩ = Q(ϑ) and f be the minimal polynomial of ϑ . Assume (11). Then for a certain
τ ∈ G we have ϕ(τ)(ϑ) = 0 and for a suitable i � k∣∣J ∩ τHτ−1

∣∣ = |J|
fi
.
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Hence

|ΩK(τ)|
|K(τ)| = |H|

|J ∩ τHτ−1| =
|H|
|J| fi =

|Ω|
|K| fi

and it follows that ϕ(τ)(x) is of degree
|Ω|
|K| fi . By comparison of degrees we get

NK/Q
(
ϕ(x)
) = f (x)fi ,

which contradicts (11) since fi > 1. On the other hand, since (f1, . . . , fk) = 1 there exist
integers a1, . . . , ak such that

a1f1 + . . .+ akfk = 1.

Hence

NK/Q
(
ϕi(x)

ai
) = f (x),

which proves that for every integer x, f (x) = NK/Q(ω) for some ω ∈ K . ��

It follows by Theorem 3 of [4] that property (N) implies property (P).

Note added in proof. 1. Theorem 4 suggests the following question about the family FΩ of groups
of affine transformations of Ω2, where Ω is a field: If every element of G ∈ FΩ has a fixed point,
is there a fixed point for the whole G? If Ω = Fp the answer is affirmative by the said theorem.
If Ω is not simple the answer is negative and a counterexample is given by the abelian group
G0 = {σa : a ∈ Ω}, where

σa(x) =
[

1 a
0 1

]
x +
[
f (a)

0

]
and where f is a nontrivial solution of the equation f (x+y) = f (x)+f (y) inΩ . In the remaining
case Ω = Q the answer is again negative and a more recondite counterexample is given by

G1 =
〈[

23
35

]
x,

[
21
11

]
x +
[

1
0

]〉
.

G1 clearly has no fixed point. The existence of fixed points for all elements of G1 follows from the

fact kindly communicated to the writer by Professor R. A. Rankin that the group

〈[
23
35

]
,

[
21
11

]〉
is

free without parabolic elements. On the other hand, J. Browkin has shown that there is no abelian
counterexample.

2. It can be verified using the explicit determination of all primitive solvable groups of degree p4

by G. Bucht (Arkiv f. Mat. 11 (1916)) and of degree pq (q prime) by D. Suprunenko [6a] that all
primitive solvable fields of the above degrees are Bauerian.
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On the product of the conjugates
outside the unit circle of an algebraic number

To Professor Carl Ludwig Siegel

C. J. Smyth [7] has recently proved the following theorem.

IfP(x) �= x is a monic non-reciprocal irreducible polynomial with integral coefficients,
then ∏

|αj |>1

|αj | � θ0,

where αj are the zeros of P(x) and θ0 is the real root of the equation θ3 = θ + 1.
(A polynomial P of degree |P | is called reciprocal if x|P |P(x−1) = ±P(x).)

This theorem is a far reaching generalization of Siegel’s theorem [6] about the least
Pisot–Vijayaraghvan number being θ0. On the other hand, it has interesting applications to
the arithmetic of polynomials. The aim of this paper is to prove two extensions of Smyth’s
result to polynomials with coefficients in an algebraic number field and to apply one of
them to reducibility questions. For a given polynomial F we denote by |F | its degree, by
C(F) its content and by ‖F‖ the sum of squares of the absolute values of the coefficients.
Q denotes the rational field and NK/Q the norm from a number field K to Q. ζm is a
primitive mth root of unity.

Theorem 1. Let K be a totally real algebraic number field, P a monic non-reciprocal
polynomial with coefficients integers in K and P(0) �= 0. Then

(1) max
i=1,...,|K|

∏
|αij |>1

|αij | � θ0,

where |K| is the degree of K , P (i) (i = 1, . . . , |K|) the polynomials conjugate to P(z)
and αij the zeros of P (i)(z).

Theorem 2. LetK be a totally real algebraic number field or a totally complex quadratic
extension of such a field and P ∈ K[z] a polynomial with the leading coefficient p0 such

Text corrected following the Addendum, Acta Arith. XXVI (1975), 329–331.
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that z|P |P(z−1) �= const P(z), P(0) �= 0. Then in the notation of Theorem 1

(2)
|K|∏
i=1

∏
|αij |>1

|αij |

�

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1 +√

5

2

)|K|/2(
NK/Q

C(P )

(p0)

)(1+√
5)/2(

NK/Q

(
P(0)

)
C(P )

)(1−√
5)/2

if |P(0)| �= |p0|,(
1 +√

17

4

)|K|(
NK/Q

C(P )

(p0)

)1/
√

17

if |P(0)| = |p0| and
(
P(0)

)
C(P ) = (p0)C(P ),(

1 +√
17

4

)|K|/2(
NK/Q

C(P )

(p0)

)1/
√

17

if |P(0)| = |p0|, and P is irreducible,c

where the equality can hold only if
√

5 ∈ K ,C(P ) = (p0) and |P(0)/p0| = (±1+√
5)/2.

(The bar denotes the complex conjugation.)

Corollary 1. If z|P |P(z−1) �= const P(z), P(0) �= 0 thenc

|K|∏
i=1

∏
|αij |>1

|αij | >
(

1 +√
17

4

)|K|/2
NK/Q

C(P )

(p0)
.

It seems likely that the equality in (2) holds if and only if P(z)/p0 is a product of

cyclotomic factors and of a binomial zj − 1 ±√
5

2
ζi . (This has just been proved by

A. Bazylewicz.) It is also conjectured that in Corollary 1 (1 +√
17)/4 can be replaced by

(1 +√
5)/2 provided the equality is allowed(1).

Theorem 3. LetK satisfy the assumptions of Theorem 2,L be a subfield of K , f (z) ∈ L[z]
and f0 be the leading coefficient of f . The number n of irreducible overK factors P of fc

such that z|P |P(z−1) �= const P(z), P(0) �= 0, counted with their multiplicities satisfies
the inequality

(31) n <
log
(
NL/Q‖f ‖N−2

L/Q
C(f )

)
|L| log 1+√

17
4

.

If all prime ideal factors p of
(
f0, f (0)

)
C(f )−1 in K satisfy p = p then the following

stronger inequality holds

(32)
(1 +√

5

2

)n|L| + (1 +√
5

2

)−n|L|
� NL/Q‖f ‖N−2

L/Q
C(f )

(1) See the Addendum, p. 235.
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with the equality attained if and only if either L = Q, f (z) = c
(
z|f | ± 1

)
or K ⊃

Q(
√

5, ζm), L = Q,

(4) z|f |f (z)f
(1

z

)
= c
(
z4lm −

[(1 +√
5

2

)2m +
(1 −√

5

2

)2m
]
z2lm + 1

)
,

l, m integers, m odd.

Corollary 2. If K satisfies the assumptions of Theorem 2 then

ϕ(x) = xp + εxq + η (ε = ±1, η = ±1)

divided by its largest cyclotomic factor is irreducible in K except when
√

5 ∈ K and

ϕ(x) = x2q ± xq − 1 =
(
xq ± 1 +√

5

2

)(
xq ± 1 −√

5

2

)
.

The constant (1 +√
17)/4 occurring in the first assertion of Theorem 3 can probably

be replaced by (1 + √
5)/2 (2). Further improvement is impossible since for every pair

l, m (m odd) there exists a polynomial f (z) satisfying (4) namely

f (z) = z2lm ±
[(1 +√

5

2

)m +
(1 −√

5

2

)m]
zlm − 1.

(There are also other instances of such polynomials, e.g. for l = 1, m = 3

f (z) = z6 − 2z5 + 2z4 − 2z2 − 2z− 1.)

The major problem is to find an estimate analogous to that given in Theorem 3 for the
number of all non-cyclotomic factors of f .

Corollary 2 for K = Q has been proved by W. Ljunggren [4] and H. Tverberg [8] by
different methods and by Smyth on the same lines two years ago (in a letter to the writer).

Proofs are based on two lemmata both essentially due to Smyth. Formula (5) of
Lemma 1 is due to F. Wiener, see [1a]. (I owe this reference to Prof. E. Bombieri.)c

Lemma 1. Let f (z) =
∞∑
i=0
eiz
i be holomorphic in an open disc containing |z| � 1, and

satisfy |f (z)| � 1 on |z| = 1. Then

(5) |ei | � 1 − |e0|2 (i = 1, 2, . . . )

and if ei are real (i = 0, 1, . . . ), e0 �= 0, then

(6) −
(

1 − e2
0 − e2

i

1 + e0

)
� e2i � 1 − e2

0 − e2
i

1 − e0
(i = 1, 2, . . . ).

(2) See the Addendum, p. 235.
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Proof. To prove (5) we exclude the trivial case e0 = 0, apply Parseval’s Formula to
f (z)(β + zi) and obtain

|e0β|2 + |e1β|2 + . . .+ |ei−1β|2 + |e0 + eiβ|2 + . . .

= 1

2π

∫ 2π

0
|f (z)(β + zi)|2 dϕ (z = eiϕ)

c

� 1

2π

∫ 2π

0
|β + zi |2 dϕ = |β|2 + 1.

So

|e0β|2 + |e0 + eiβ|2 � 1 + |β|2.
Putting β = |ei |/ē0ei (this choice of β was suggested by Dr. H. Iwaniec; Smyth considered
only real ei) we get ∣∣∣∣e0 + |ei |

ē0

∣∣∣∣ � |e0|−1

and hence (5) holds. The proof of (6) is given by Smyth [7], p. 170. ��

Lemma 2. If P(z) is a polynomial with the leading coefficient p0, |P(0)| = |p0|,Q(z) =
z|P |P(z−1) �= const P(z) then

P(0)P (z)

p0Q(z)
= f (z)

g(z)

where f (z) and g(z) are holomorphic in an open disc containing |z| � 1, have absolute
value 1 on |z| = 1 and f (0) = g(0) = ± ∏

|αj |>1
α−1
j where αj runs over the zeros of P .

Moreover if P(z) has real coefficients then the Taylor coefficients of f and g are also
real, f (0) = g(0) is positive.

Proof. We set

f (z) = ± p0

P(0)

∏
|αj |<1

( z− αj
1 − αjz

)
, g(z) = ±

∏
|αj |>1

(1 − αjz
z− αj

)
c

and verify directly all the statements of the lemma, but the last one. To see the latter notice
that for P with real coefficients the sequence {αj } is a permutation of {αj }, hence

f (z) = f (z), g(z) = g(z);
f (0) > 0 can be achieved by a suitable choice of the sign ±. ��

Proof of Theorem 1 follows closely Smyth’s proof of his own theorem. We set

Λ = max
i=1,2,...,n

∏
|αij |>1

|αij |,
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and denote the zeros of P by αj . Since
√

2 > θ0 we are entitled to assume that Λ <
√

2.
First of all we must have P(0) = ±1 for otherwise by a theorem of Kronecker [3] about
the conjugates of a totally real algebraic integer

Λ � |P(0)| �
√

2

(|α| denotes the maximum absolute value of the conjugates of α). Secondly
P(z)

Q(z)
is non-

constant. Accordingly, put

(7)
P(0)P (z)

Q(z)
= 1 + akzk + alzl + . . .

where k, l are the first two indices for which the corresponding a’s are non-zero. Since
ak, al are totally real algebraic integers we have by the theorem of Kronecker |al | � 1 and
either |ak| �

√
2 or ak = ±1. If |ak| �

√
2 we may assume that |ak| �

√
2, otherwise if

|a(i)k | �
√

2 we replace P(z) by P (i)(z), which does not affect the value of Λ.
Now by Lemma 2

(8)
P(0)P (z)

Q(z)
= f (z)

g(z)
= c + c1z+ c2z

2 + . . .
d + d1z+ d2z2 + . . .

where f (z) = c+c1z+c2z2+ . . ., g(z) = d+d1z+d2z
2+ . . . are functions holomorphic

in an open disc containing |z| � 1, have real coefficients and

|f (z)| = |g(z)| = 1 for |z| = 1,(9)

c = d =
∏

|αj |>1

|αj |−1.(10)

On comparing the series in (7) and (8) we obtainc

ci = di (i = 1, 2, . . . , k − 1);{
akc + dk = ck,
akdi + dk+i = ck+i (i = 1, 2, . . . , l − k − 1);(11)

alc + akdl−k + dl = cl.(12)

Now if |ak| �
√

2, max
(|ck|, |dk|) � c/

√
2 by (11) and so from (5), c/

√
2 � 1− c2. This

gives by (10) Λ � c−1 �
√

2 a contradiction. Therefore ak = ±1. We may assume that
ak = 1; otherwise, by interchanging the roles of P(z) and Q(z) (this does not affect the
value ofΛ), we may replace 1+ akzk + alzl + . . . by its formal reciprocal, and so change
the sign of ak .

Further, we may assume that |al | � 1, otherwise if
∣∣a(i)l ∣∣ � 1 we replace P(z) by

P (i)(z) which affects neither the value of Λ nor ak = 1. It follows from (11) that

(13) |ck| + |dk| = c
for otherwise we would have max

(|ck|, |dk|) � c � c/
√

2 and again Λ �
√

2. Thus
max
(|ck|, |dk|) � c/2 and from (5) c/2 � 1− c2, c �

(√
17− 1

)
/4. Since by (10) c−1 isc
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an algebraic integer

(14) c <
(√

17 − 1
)
/4.

The argument now divides into two cases.

The case l < 2k. Following Smyth [7], pp. 172–173, we get from (9), (11), (12) and
ak = 1 that for all real β, γ

(15) E = 5

4
c2 + (cl−k + γ c)2 + (alc + cl−k

2

)
+
(γ c

2
− cl−k + βc

)2

� 2 + γ 2 + β2.

E−γ 2−β2 is a quadratic polynomial, say,F(β, γ, cl−k). The matrix of the corresponding

quadratic form t2F
(β
t
,
γ

t
,
cl−k
t

)
is⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c2 − 1
c2

2
− c

2

alc
2

2
c2

2

5

4
c2 − 1

3

4
c

alc
2

4

− c
2

3

4
c

5

4
−alc

4
alc

2

2

alc
2

4
−alc

4

alc
2

4
+ 5

4
c2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The diagonal minors satisfy in virtue of (14) and of |al | � 1

(16)
M1 = c2 − 1 < 0, M2 = c4 − 9

4
c2 + 1 > 0, M3 = 5

4
− 2c2 > 0,

M4 = 25

16
c2 − 5

2
c4 + c

2a2
l

4
� 29

16
c2 − 5

2
c4.

It follows (cf. [1], p. 160) that

F
(
β, γ, cl−k

) = M1(β + . . .)2 + M2

M1
(γ + . . .)2 + M3

M2
(cl−k + . . .)2 + M4

M3

and by (15)

M4

M3
= min
cl−k

max
β,γ
F (β, γ, cl−k) � 2,

which gives by (16)

40c4 − 93c2 + 40 � 16(2M3 −M4) � 0

and (cf. [7], p. 174)

Λ � c−1 > θ0.

The case l � 2k. It follows from (11), (12) and ak = 1 that

(17) a2kc + dk + d2k = c2k.
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We now apply (6) to f and g, and obtain

−
(

1 − c2 − c2
k

1 + c
)

� c2k � 1 − c2 − c2
k

1 − c ,

−
(

1 − c2 − d2
k

1 − c
)

� −d2k � 1 − c2 − d2
k

1 + c .
Adding these inequalities, and using (17), we have

(18) −2(1 − c2)+ d2
k

1 − c +
c2
k

1 + c � a2kc + dk � 2(1 − c2)−
( d2

k

1 + c +
c2
k

1 − c
)
.

Now from (5) and (13) we know that

1 − c2 � |dk| � c2 + c − 1.

If l = 2k, a2k � 1 we use the right hand side inequality of (18) and obtain

c2 + c − 1 � c − |dk| � 2(1 − c2)−
( d2

k

1 + c +
c2
k

1 − c
)

� M,

where

M = max
c2+c−1�x�1−c2

(
2(1 − c2)− x2

1 + c −
(c − x)2

1 − c
)
.

If l = 2k, a2k � −1 we use the left hand side inequality of (18) and obtain

c2 + c − 1 � c − |dk| � 2(1 − c2)−
( d2

k

1 − c +
c2
k

1 + c
)

� M.

If l > 2k the inequality c2 + c − 1 � M follows at once from (18). However as Smyth
has shown ([7], p. 175) this inequality implies 1 − c − c3 � 0, thus Λ � c−1 � θ0. The
proof is complete. ��

Lemma 3. The following inequalities hold:

(19)
n∏
i=1

(yi − 1) �
(
(y1 · · · yn)1/n − 1

)n
for yi > 1,

with the equality attained only if y1 = y2 = . . . = yn;
(20) y +

√
c + y2 �

(
1 +√

c + 1
)
y1/

√
c+1 (c > 0, y > 0)

with the equality attained only for y = 1.

Proof. We have

d2

dx2 log(ex − 1) = −ex
(ex − 1)2

< 0,

d2

dx2 log
(
ex +

√
c + e2x

) = cex(
c + e2x

)3/2 > 0.
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The inequality (19) as well as the subsequent statement follows by the substitution y = ex
from the concavity of log(ex−1). The inequality (20) and the subsequent statement follow
by the same substitution from the Taylor expansion of log

(
ex +√

c + e2x
)

at x = 0.

Proof of Theorem 2. Note first that if a ∈ K then ā ∈ K and

(21) ā(i) = a(i), |a(i)|2 = (|a|2)(i).c

Since the conditions on P and the inequality (2) are invariant with respect to multi-
plication of P by a constant factor we assume that the coefficients of P are integers. If
|P(0)| �= |p0| we consider the product

(22)

|K|∏
i=1

∣∣|P (i)(0)|2 − |p(i)0 |2∣∣ = ∣∣NK/Q(|P(0)|2 − |p0|2
)∣∣

� NK/Q
(
C(P )C(P )

) = NK/Q(C(P ))2.
Let Π =

|K|∏
i=1

max
(∣∣P (i)(0)/p(i)0

∣∣, 1) have k factors equal to
∣∣P (i)(0)/p(i)0

∣∣ corresponding
c

to i = 1, . . . , k and set NK/Q(p0)=N0, NK/Q
(
P(0)

)=N1, NK/Q
(
C(P )

)=N2.
We have the identities

|K|∏
i=1

∣∣∣|P (i)(0)|2 − |p(i)0 |2
∣∣∣ = N2

1

Π2

k∏
i=1

∣∣∣∣∣∣∣∣P (i)(0)
p
(i)
0

∣∣∣∣2 − 1

∣∣∣∣ · |K|∏
i=k+1

∣∣∣∣∣∣∣∣ p(i)0

P (i)(0)

∣∣∣∣2 − 1

∣∣∣∣,
k∏
i=1

∣∣∣∣P (i)(0)
p
(i)
0

∣∣∣∣ · |K|∏
i=k+1

∣∣∣∣ p(i)0

P (i)(0)

∣∣∣∣ = Π2
∣∣∣N0

N1

∣∣∣.
Hence by (21), (22) and (19)

(23) N2
2 � N2

1

Π2

(
Π4/|K||N0N

−1
1 |2/|K| − 1

)|K| = ((ΠN0)
2/|K| − |N1|2/|K|Π−2/|K|)|K|;

c

N
2/|K|
2 � (ΠN0)

2/|K| − |N1|2/|K|Π−2/|K|;

Π2/|K| �
N

2/|K|
2 +

√
4|N0N1|2/|K| +N4/|K|

2

2N2/|K|
0

.

Thus by (20) with c = 4, y = |N2
2 /N0N1|

(24) Π2/|K|
∣∣∣N0

N1

∣∣∣1/|K|
� 1 +√

5

2

∣∣∣∣ N2
2

N0N1

∣∣∣∣1/|K|√5

,

Π �
(1 +√

5

2

)|K|/2∣∣∣N2

N0

∣∣∣1/2+1/2
√

5∣∣∣N1

N2

∣∣∣1/2−1/2
√

5

c

and since
∏

|αij |>1
|αij | � max

(|P (i)(0)/p(i)0 |, 1) the inequality (2) follows.
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The equality is possible only if we have equality in (23) and (24) hence by Lemma 3
only if

(25)

∣∣∣∣P (i)(0)|
p
(i)
0

∣∣∣∣ =
{|P (1)(0)/p(1)0 | for i = 1, . . . , k,

|P (1)(0)/p(1)0 |−1 for i = k + 1, . . . , |K|;c

N2
2 = |N0N1|.

Since N2 |N0 and N2 |N1 the last equality implies |N0| = |N1| = N2 and C(P ) = (p0).
Moreover by (25) the equality in (24) gives∣∣∣∣P (1)(0)

p
(1)
0

∣∣∣∣2k = (1 +√
5

2

)|K|

hence
√

5 ∈ K . Besides by (25)

∣∣∣∣P (i)(0)
p
(i)
0

∣∣∣∣2k =
⎧⎪⎪⎨⎪⎪⎩
(1 +√

5

2

)|K|
for i = 1, . . . , k,(1 −√

5

2

)|K|
for i = k + 1, . . . , |K|,

which implies k = |K|/2, |P(0)/p0| = ±1 +√
5

2
.

In this way the theorem is proved in full for the case where |P(0)| �= |p0|. If
|P(0)| = |p0| then by Lemma 2

(26)
P (i)(0)P (i)(z)

p
(i)
0 Qi(z)

= fi(z)

gi(z)
,

where Qi(z) = z|P |P (i)(z−1); fi(z), gi(z) are holomorphic in an open disc containing
|z| � 1, have absolute value 1 on |z| = 1 and

(27) fi(0) = gi(0) = ±
∏

|αij |>1

α−1
ij .

However by (21) P (i)(0) = P(0)(i),Qi(z) = Q(i)(z), thus

(28)
P (i)(0)P (i)(z)

p
(i)
0 Qi(z)

= 1 + a(i)k zk + . . .

where a(i)k is the first non-zero coefficient. Setting

fi(z) = ci0 + ci1z+ ci2z2 + . . . ,
gi(z) = di0 + di1z+ di2z2 + . . . ,

we get from (27) and (28)

a
(i)
k ci0 + dik = cik.



230 C. Algebraic number theory

By (5)

|cik| � 1 − |ci0|2, |dik| � 1 − |di0|2,
hence

|a(i)k | |ci0| � 2 − 2|ci0|2,
and by (20) with c = 16, y = |a(i)k |

|ci0|−1 �
|a(i)k |

4
+
√

1 +
( |a(i)k |

4

)2

� 1 +√
17

4
|a(i)k |1/

√
17.

Hence by (27)

(#)
|K|∏
i=1

∏
|αij |>1

|αij | =
|K|∏
i=1

|ci0|−1 �
(

1 +√
17

4

)|K|∣∣NK/Qa(1)k ∣∣1/√17
.

Now, if
(
P(0)

)
C(P ) = (p0)C(P ) then by (28) p(i)0 a

(i)
k is an integer divisible byc

C(P
(i)
), thusc ∣∣NK/Qa(1)k ∣∣ � NK/QC(P )(p0)

and

|K|∏
i=1

∏
|αij |>1

|αij | �
(

1 +√
17

4

)|K|(
NK/Q

C(P )

(p0)

)1/
√

17

.

The equality is impossible here since it implies by Lemma 3 that a(i)k = 1 and C(P ) =
(p0), but then the left hand side is an algebraic integer while the right hand side is not.

It remains to consider the case where |P(0)| = |p0| and P is irreducible.

Let m be the greatest integer such that P(z) = R(z2m) with R ∈ K[z]. Then R(z) �=
R(−z). Since P and R have the same leading coefficients, R(0) = P(0), C(R) = C(P )
and both sides of (2) have the same value for P and for R we may assume at once that
P(z) �= P(−z). Also P(z) �= −P(−z) since P(0) �= 0 and we can choose ε = ±1 such
that z|P |P(z−1) �= const P(εz).

Consider now the polynomial S(z) = P(z)P (εz). It satisfies the condition

z|S|S(z−1) �= const S(z),

since the irreducible factor z|P |P(z−1) of the left hand side is not proportional to either
factor of the right hand side. Moreover the leading coefficient s0 of S equals ±|p0|2 =
±|P(0)|2 = ±S(0), C(S) = C(P )C(P ) and

(
S(0)
)
C(S) = (s0)C(S).

Applying to S the part of (2) already proved and using the fact that the zeros of S
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coincide in absolute value with those of P we get

|K|∏
i=1

( ∏
|αij |>1

|αij |
)2

>

(
1 +√

17

4

)|K|(
NK/Q

C(S)

(s0)

)1/
√

17

,

hence

|K|∏
i=1

∏
|αij |>1

|αij | �
(

1 +√
17

4

)|K|/2(
NK/Q

C(P )

(p0)

)1/
√

17

and the proof is complete. ��

Proof of Corollary 1. Since z|P |P(z−1) �= const P(z) at least one irreducible factor of P ,
say R, satisfies z|R|R(z−1) �= constR(z). Denoting the leading coefficient of R by r0 and
the zeros of R(i) by βij we have

|K|∏
i=1

∏
|αij |>1

|αij | �
|K|∏
i=1

∏
|βij |>1

|βij |

� min

{(
1 +√

5

2

)|K|/2(
NK/Q

C(R)

(r0)

)1/2+1/2
√

5

,
c (

1 +√
17

4

)|K|/2(
NK/Q

C(R)

(r0)

)1/
√

17}

�
(

1 +√
17

4

)|K|/2
NK/Q

C(P )

(p0)
,

since by the multiplicative property of the content (p0)C(P )
−1 is divisible by (r0)C(R)−1.

In the above sequence of inequalities at least one must be strict, which proves the corollary.��

Lemma 4. If f is a monic polynomial with complex coefficients and the zeros zj then

(29)
∏

|zj |>1

|zj |2 +
∏

|zj |<1

|zj |2 � ‖f ‖

(empty products denote 1) with the equality attained only if

z|f |f (z)f (z−1) = f (0)z2|f | + ‖f ‖z|f | + f (0).

Proof. The inequality (29) is due to J. V. Gonçalves [2], it is only the last assertion of the
lemma, which requires the proof. This is obtained easily from Ostrowski’s proof of (29).
Ostrowski [5] shows namely that ‖f ‖ = ‖g‖, where

g(z) =
∏

|zj |>1

(z− zj )
∏

|zj |<1

(1 − zzj ) = z|f |
∏

|zj |<1

(−zj )+ . . .+
∏

|zj |>1

(−zj ).
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Therefore equality in (23) implies that

g(z) = z|f |
∏

|zj |<1

(−zj )+
∏

|zj |>1

(−zj ),

whence

z|f |f (z)f (z−1) = f (0)z2‖f ‖ + ‖f ‖z|f | + f (0). ��

Proof of Theorem 3. Since the inequalities (3) are invariant with respect to multipli-
cation of f by a constant factor we may assume that f is monic. Let the conjugates
of K be numbered so that all different conjugates of f occur equally often among f (i)

(i = 1, . . . , |L|).
Let zij be the zeros of f (i). Let finally

f = P0P1 · · ·Pn,
where Pν are monic and for ν > 0 satisfy z|Pν |P ν(z−1) �= const Pν(z). We have

NK/Q
(
C(P0)

)
� 1 and

n∏
ν=0

C(Pν) = C(f ).

Hence by Corollary 1

( |L|∏
i=1

∏
|zij |>1

|zij |
)|K|/|L|

=
|K|∏
i=1

∏
|zij |>1

|zij | =
n∏
ν=0

|K|∏
i=1

∏
P
(i)
ν (zij )=0
|zij |>1

|zij |

�
(

1 +√
17

4

)|K|n/2 n∏
ν=0

NK/Q
(
C(Pν)

) = (1 +√
17

4

)|K|n/2
NL/Q

(
C(f )

)|K|/|L|

and

(301) Π =
|L|∏
i=1

∏
|zij |>1

|zij | �
(

1 +√
17

4

)|L|n/2
NL/Q

(
C(f )

)
.

If all prime ideal factors p of
(
1, f (0)

)
C(f )−1 in K satisfy p = p then in view of the

divisibility (
1, Pν(0)

)
C(Pν)

−1
∣∣ (1, f (0))C(f )−1

we have
(
1, Pν(0)

)
C(Pν)

−1 = (1, Pν(0))C(Pν)−1 = aν . Hence either |Pν(0)| �= 1 or(
Pν(0)

)
C(Pν) =

(
Pν(0)

)(
1, Pν(0)

)
a−1
ν

= (Pν(0), |Pν(0)|2)a−1
ν = (Pν(0), 1)a−1

ν = C(Pν)
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and using Theorem 2 instead of Corollary 1 we get

(302) Π =
|L|∏
i=1

∏
|zij |>1

|zij | �
(1 +√

5

2

)|L|n/2
NL/Q

(
C(f )

)
.

On the other hand, by Lemma 4

(31)
∏

|zij |>1

|zij |2 +
∏

|zij |<1

|zij |2 � ‖f (i)‖ (i = 1, . . . , |L|),

hence

(32)
|L|∏
i=1

∏
|zij |>1

|zij |2 +
|L|∏
i=1

∏
|zij |<1

|zij |2 � NL/Q‖f ‖.

However

(33)
|L|∏
i=1

∏
|zij |<1

|zij |2 = Π−2NL/Q|f (0)|2 � Π−2N4
L/Q

(
C(f )

)
for NL/Q

(
C(f )

)
� min

(
1, |Nf (0)|). Thus

Π2 +N4
L/Q

(
C(f )

)
Π−2 � NL/Q‖f ‖

and by (30) the inequalities (3) follow. The equality in (32) implies the equality in (302),
(31), (32) and (33). The equality in (31) and (32) imply that |L| = 1. The equality in (33)
implies C(f ) = |f (0)| = 1. By Lemma 4 the equality in (31) implies

(34) z|f |f (z)f
(1

z

)
= ±z2|f | +

[(1 +√
5

2

)n + (1 +√
5

2

)−n]
z|f | ± 1.

Since
(1 +√

5

2

)n + (1 +√
5

2

)−n
is an integer, n must be even, n = 2m. If n = 0 then

z|f |f (z)f
(1

z

)
= ±(z|f | ± 1

)2
and since all cyclotomic polynomials are reciprocal

z|f |f
(1

z

)
= ±f (z); f (z)2 = (z|f | ± 1)2; f (z) = z|f | ± 1.

If n > 0 then the equality in (302) implies in virtue of Theorem 2 that
√

5 ∈ K and

|Pν(0)| = 1 +√
5

2
for ν = 1, 2, . . . , n.

Now, the right hand side of (34) equals

±
(
z|f | ±

(1 +√
5

2

)2m
)(
z|f | ±

(1 −√
5

2

)2m
)

henceg(z)= z|f |±
(1 +√

5

2

)2m
has inK 2mmonic factorsP such that |P(0)| = 1 +√

5

2
.
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Since the zeros of g(z) have absolute value
(1 +√

5

2

)2m/|f |
it follows that the degree of

each factor is |f |/2m, hence |f | = 2lm, l integer. Let α = ord2m + 1
2 ± 1

2 , where the
sign is that occurring in (34). We have

g1(z) = z2αl +
(1 +√

5

2

)2α
∣∣∣∣ g(z).

By Capelli’s theorem g1(z) is irreducible in Q(
√

5) hence by (34)

g1(z)
∣∣f (z) or g1(z)

∣∣ z|f |f (1

z

)
.

Assuming without loss of generality the first possibility we get

z2αl +
(1 −√

5

2

)2α
∣∣∣∣ f (z),

z2αl + (−1)2
α
(1 +√

5

2

)2α
∣∣∣∣ z|f |f (1

z

)
and if α > 0

g1(z)
2
∣∣ ± z2|f | +

[(1 +√
5

2

)2m +
(1 +√

5

2

)−2m
]
z|f | ± 1,

which is impossible. Therefore α = 0, the sign is lower and m is odd. It remains to show
that K ⊃ Q

(√
5, e2πi/m

)
. Assume that any of the considered factors of g(z) in K is not

binomial. Then it has a coefficient of the form c
(1 +√

5

2

)k/l
, where 0 < k < l, c �= 0

and c ∈ Q(ζ2lm). It follows that(1 +√
5

2

)k/l ∈ K(ζ2lm),
which is impossible since the field K(ζ2lm) satisfies again the assumptions of Theorem 2

and
(1 +√

5

2

)k/l
has some real and some complex conjugates. Thus the required factor-

ization of g(x) in K is

z2lm −
(1 +√

5

2

)2m =
2m−1∏
j=0

(
zl − 1 +√

5

2
ζ
j
2m

)
and K ⊃ Q

(√
5, ζm

)
. Conversely, if K ⊃ Q

(√
5, ζm

)
, L = Q and f satisfies (4) then

z|f |f (z)f (z−1) has 4m factors inK , f (z) has 2m factors and the equality holds in (32).��

Proof of Corollary 2. ϕ(z) satisfies the conditions of (32). If z|P |P(z−1) = const P(z)
and P(z) |ϕ(z) then P(z) | z|ϕ|ϕ(z−1), thus

P(z) | (zp + εzq + η)− (zp + εηzp−q + η) = εzq − εηzp−q
and P is cyclotomic. Therefore, it remains to consider the case where n occurring in (32)
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for f = ϕ, L = Q equals 2. Then (32) becomes an equality and by Theorem 3
√

5 ∈ K ,

zpϕ(z)ϕ
(1

z

)
= c(z2p − 3zp + 1).

It follows that ϕ(z) = z2q ± zq − 1. ��

Addendum

The aim of this Addendum is to formulate two theorems which go further than The-
orems 2 and 3 and have been practically proved above, but the fact has been overlooked
by the writer. The notation is retained. In particular for a given polynomial F we denote
by |F | its degree, byC(F) its content and by ‖F‖ the sum of squares of the absolute values
of the coefficients.

Theorem 2′. LetK be a totally real algebraic number field or a totally complex quadratic
extension of such a field and P ∈ K[z] a polynomial with the leading coefficient p0 such
that z|P |P(z−1) �= const P(z), P(0) �= 0.

Let |K| be the degree of K , P (i) (i = 1, . . . , |K|) the polynomials conjugate to P(z)
and αij the zeros of P (i)(z). Then

|K|∏
i=1

∏
|αij |>1

|αij |

�

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1 +√

5

2

)|K|/2(
NK/Q

C(P )

(p0)

)(1+√
5)/2(

NK/Q

(
P(0)

)
C(P )

)(1−√
5)/2

if |P(0)| �= |p0|,(
1 +√

17

4

)|K|(
NK/Q

(
P(0)C(P ), p0C(P )

)
(p0p0)

)1/
√

17

if |P(0)| = |p0|.

Corollary 1′. If z|P |P(z−1) �= const P(z), P(0) �= 0 then

|K|∏
i=1

∏
|αij |>1

|αij | �
(

1 +√
5

2

)|K|/2
NK/Q

C(P )

(p0)
.

Theorem 3′. LetK satisfy the assumptions ofTheorem 2′,Lbe a subfield of K ,f (z)∈L[z].
The number n of irreducible over K factors P of f such that z|P |P(z−1) �= const P(z),
P(0) �= 0, counted with their multiplicities satisfies the inequality

(∗)
(1 +√

5

2

)n|L| + (1 +√
5

2

)−n|L|
� NL/Q‖f ‖N−2

L/Q
C(f )
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with the equality attained only if either L = Q, f (z) = c(z|f | ± 1
)

or K ⊃ Q
(√

5, ζm
)
,

L = Q,c

(∗∗) z|f |f (z)f
(1

z

)
= c
(
z4lm −

[(1 +√
5

2

)2m +
(1 −√

5

2

)2m
]
z2lm + 1

)
,

l, m integers, m odd.

Corollary 2′. The number n occurring in Theorem 3′ satisfies the inequality

n <
log
(
NL/Q‖f ‖N−2

L/Q
C(f )

)
|L| log((1 +√

5)/2)

where the constant log((1 +√
5)/2) is best possible.

To see Theorem 2′ it is enough to note that by (28) p(i)0 p
(i)
0 a

(i)
k is an integer divisiblec

by (
P (i)(0)C(P (i)), p(i)0 C(P

(i)
)
)
.

(In particular if P(0)C(P ) = (p0)C(P ) then p(i)0 a
(i)
k is divisible by C(P

(i)
).) Hence

|NK/Qa(1)k | � NK/Q
(
P(0)C(P ), p0C(P )

)
(p0p0)

and the assertion of Theorem 2′ in the case |P(0)| = |p0| follows from formula (#) on
page 230. The case |P(0)| �= |p0| has been settled in the main part of the paper.

To see Corollary 1′ it is enough to note that

(1 +√
17

4

)|K|
NK/Q

((P(0)C(P ), p0C(P )
)

(p0p0)

)1/
√

17

>
(1 +√

5

2

)|K|/2(
NK/Q

C(P )

(p0)

)2/
√

17
.

Theorem 3′ follows from Corollary 1′ in the same way as Theorem 3 from Theorem 2
under the assumption about prime ideal factors of

(
f0, f (0)

)
C(f )−1, where f0 is the

leading coefficient of f .

Corollary 2′ follows directly from (∗) and the existence of polynomials satisfying (∗∗),
e.g.

f (z) = z2lm ±
[(1 +√

5

2

)m +
(1 −√

5

2

)m]
zlm − 1.

Note that the bound given in Corollary 2′ is independent of K .
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On linear dependence of roots

In memory of Professor L. J. Mordell

L. J. Mordell [4] proved in 1953 the following theorem. LetK be an algebraic number
field, α1, . . . , αk elements of K , n1, . . . , nk positive integers, ξnii = αi (1 � i � k).

If
k∏
i=1
ξ
xi
i ∈ K implies xi ≡ 0 mod ni and either the numbers ξi are real or K contains

ni th roots of unity (1 � i � k) then the degree of the extension K(ξ1, . . . , ξk) over K is
n1 · · · nk . This theorem has been recently extended by C. L. Siegel [7] and M. Kneser [3].

The latter obtained the following purely algebraic result. Let K be any field,
K(ξ1, . . . , ξk) a separable extension ofK andK∗ 〈ξ1, . . . , ξk〉 the multiplicative group gen-
erated by ξ1, . . . , ξk , all of finite order, overK∗. The degree [K(ξ1, . . . , , ξk) : K] is equal
to the index [K∗ 〈ξ1, . . . , ξk〉 : K∗] if and only if for every prime p, ζp ∈ K∗ 〈ξ1, . . . , ξk〉
implies ζp ∈ K and 1 + ζ4 ∈ K∗ 〈ξ1, . . . , ξk〉 implies ζ4 ∈ K , where ζq is a primitive qth
root of unity.

We shall use Kneser’s theorem to get a necessary and sufficient condition for the field
K(ξ1, . . . , ξk) to be of degree n1 · · · nk over K .

Theorem 1. Let K be any field. Assume that the characteristic of K does not divide
n1 · · · nk and ξnii = αi ∈ K∗. [K(ξ1, . . . , ξk) : K] = n1 · · · nk if and only if, for
all primes p,

∏
p |ni

α
xi
i = γ p implies xi ≡ 0 mod p (p |ni) and

∏
2|ni
α
xi
i = −4γ 4,

nixi ≡ 0 mod 4 (2 |ni) implies xi ≡ 0 mod 4 (2 |ni)(1).

The above theorem can be regarded as a generalization of Capelli’s theorem which
corresponds to the case k = 1. It should however be noted that Capelli’s theorem holds
without any condition on the characteristic ofK (see [5], Theorem 428) while Theorem 1
does not, as it is shown by the example K = Z2(t), n1 = n2 = 2, α1 = t , α2 = t + 1.

We have further

Theorem 2. Assume that the characteristic of K does not divide n1 · · · nk . If either ζ4 ∈
K or nixi ≡ 0 mod 4 (2 |ni) implies

∏
2|ni
α
xi
i �= −γ 4,−4γ 4 then there exist elements

ξ1, . . . , ξk such that ξnii = αi and

(1) [K(ξ1, . . . , ξk) : K] = [K∗ 〈ξ1, . . . , ξk〉 : K∗].
(1) (p | ni) means here “for all i such that p | ni”.
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It follows from Kneser’s theorem that if ζ4 /∈ K and for somexi ,nixi ≡ 0 mod 4 (2 |ni),∏
2|ni
α
xi
i = −4γ 4 then for no choice of ξ1, . . . , ξk satisfying ξnii = αi the equality (1) holds.

The example K = Q, n1 = n2 = 8, α1 = −1, α2 = −16 shows that the converse is not
true. Indeed for any choice of ξ1, ξ2 we get

[K(ξ1, ξ2) : K] = 8 < [K∗ 〈ξ1, ξ2〉 : K∗] = 16.

It seems difficult to give a simple necessary and sufficient condition for the existence of
ξ1, . . . , ξk satisfying (1). On the other hand Theorem 1 combined with some results of [6]
leads to a necessary and sufficient condition for the following phenomenon: each of the
fields K(ξ1, . . . , ξk) contains at least one η with ηn = β (β and n fixed, ni |n). Condition
given in [6] was necessary but not always sufficient. We shall prove even a more precise
result.

Theorem 3. Let τ be the largest integer such that ζ2τ + ζ−1
2τ ∈ K , if there are only finitely

many of them, otherwise τ = ∞. Let n1, . . . , nk be positive integers, α1, . . . , αk non-zero
elements of K . There exist elements ξ1, . . . , ξk with ξnii = αi (1 � i � k) such that
for all n divisible by n1, . . . , nk , but not by the characteristic of K and for all β ∈ K:
if K(ξ1, . . . , ξk) contains at least one η with ηn = β then at least one of the following
three conditions is satisfied for suitable rational integers l1, . . . , lk, q1, . . . , qk and suitable
γ, δ ∈ K .

(i) β
k∏
i=1
α
qin/ni
i = γ n,

(ii) n �≡ 0 mod 2τ ,
∏

2|ni
α
li
i = −δ2, β

k∏
i=1
α
qin/ni
i = −γ n,

(iii) n ≡ 0 mod 2τ ,
∏

2|ni
α
li
i = −δ2, β

k∏
i=1
α
qin/ni
i = (−1)n/2

τ (
ζ2τ + ζ−1

2τ + 2
)n/2
γ n.

Conversely if any of the above conditions is satisfied then each of the fieldsK(ξ1, . . . , ξk)
where ξnii = αi contains at least one η with ηn = β.

If ζ4 ∈ K the conditions (ii), (iii) imply (i); if τ = 2 (ii) implies (i) for not necessarily
the same q1, . . . , qk and γ .

This theorem can be regarded as an extension of the classical result concerning Kummer
fields ([2], p. 42).

Let us write for two irreducible polynomials f and g overK: f ∼ g if f (α1) = 0 and
g(α2) = 0 where K(α1) = K(α2). The relation ∼ introduced by Gerst [1] is reflexive,
symmetric and transitive.

Theorem 3 implies

Corollary. Two polynomials f (x) = xn − α and g(x) = xn − β irreducible over K
satisfy f ∼ g if and only if either βαr = γ n or n ≡ 0 mod 2τ+1, α = −δ2

1 , β = −δ2
2 and

βαr = (ζ2τ + ζ−1
2τ + 2

)n/2
γ n with γ, δ1, δ2 ∈ K .
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This is a generalization of Theorem 5 of Gerst [1] corresponding to the case K = Q.
(Note that the irreducibility of g implies (r, n) = 1.)

For the proof we need several lemmata.

Lemma 1. If (ai, bi) = 1 and bi |m (1 � i � k) then(
m
a1

b1
, . . . , m

ak

bk

)
= m (a1, . . . , ak)

[b1, . . . , bk] .

Proof (by induction with respect to k). For k = 1 the formula is obvious, for k = 2 we
have (

m
a1

b1
,m
a2

b2

)
= m

b1b2
(a1b2, a2b1) = m

b1b2
(a1, a2)(b1, b2) = m (a1, a2)

[b1, b2] .

Now assume that the lemma holds for k terms. Then if bi |m (1 � i � k+ 1) we have(
m
a1

b1
, . . . , m

ak+1

bk+1

)
=
(
m
(a1, . . . , ak)

[b1, . . . , bk] ,m
ak+1

bk+1

)
= m (a1, . . . , ak, ak+1)

[b1, . . . , bk+1] ,

and the proof is complete. ��

Proof of Theorem 1. Necessity. Suppose that for a certain prime p, a certain γ ∈ K and
some xi ,

∏
p |ni

α
xi
i = γ p, but, for a certain i, p |ni , p /| xi .

Then for a suitable j

(2)
∏
p |ni

ξ
xini/p
i = ζ jpγ,

ζ
j
p ∈ K∗ 〈ξ1, . . . , ξk〉 and by Kneser’s theorem either ζ jp ∈ K or [K(ξ1, . . . , ξk) : K] <
[K∗ 〈ξ1, . . . , ξk〉 : K∗].

In the former case, by (2), [K∗ 〈ξ1, . . . , ξk〉 : K∗] < n1 · · · nk , in both cases
[K(ξ1, . . . , ξk) : K] < n1 · · · nk .

Suppose now that, for some xi and a certain γ ∈ K ,
∏

2|ni
α
xi
i = −4γ 4, nixi ≡

0 mod 4 (2 |ni) but, for a certain i, 2 |ni , 4 /| xi . Then for a suitable j

(3)
∏
2|ni
ξ
xini/4
i = ζ j4 (1 + ζ4)γ,

1 + ζ4 ∈ K 〈ξ1, . . . , ξk〉 (note that ζ4(1 + ζ4) = −2(1 + ζ4)−1) and by Kneser’s theorem
either ζ4 ∈ K or [K(ξ1, . . . , ξk) : K] < [K∗ 〈ξ1, . . . , ξk〉 : K∗].

In the former case by (3) [K∗ 〈ξ1, . . . , ξk〉 : K∗] < n1 · · · nk , in both cases
[K(ξ1, . . . , ξk) : K] < n1n2 · · · nk .

Sufficiency. Suppose that for a certain prime p and a γ ∈ K

ζp = γ
k∏
i=1

ξ
xi
i .
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Let m = [n1/(n1, x1), . . . , nk/(nk, xk)]. If p |m we get

k∏
i=1

α
mxi/ni
i = (γ−m/p)p

and by the assumption mxi/ni ≡ 0 mod p (1 � i � k). This gives by Lemma 1(
x1/(n1, x1), . . . , xk/(nk, xk)

) ≡ 0 mod p, and for an i � k:
xi

(ni, xi)
≡ ni

(ni, xi)
≡ 0 mod p,

a contradiction.
If p /| m we have

ζmp = γm
k∏
i=1

α
mxi/ni
i ∈ K, ζp ∈ K.

Suppose now that for a γ ∈ K

(4) 1 + ζ4 = γ
k∏
i=1

ξ
xi
i

and again m = [n1/(n1, x1), . . . , nk/(nk, xk)]. If 4 |m then

(−4)m/4 = γm
k∏
i=1

α
xim/ni
i

and by the assumption xim/ni ≡ 0 mod 2 (1 � i � k). This gives by Lemma 1(
x1/(n1, x1), . . . , xk/(nk, xk)

) ≡ 0 mod 2 and for an i � k:
xi

(ni, xi)
≡ ni

(ni, xi)
≡ 0 mod 2,

a contradiction.
If 4 /| m then (4) gives

(2ζ4)
m/(2,m) = γ [m,2]

k∏
i=1

α
[m,2]xi/ni
i ∈ K; ζ4 ∈ K.

Thus by Kneser’s theorem [K(ξ1, . . . , ξk) : K] = [K∗ 〈ξ1, . . . , ξk〉 : K∗]. Suppose now
that

k∏
i=1

ξ
xi
i = γ ∈ K and m = [n1/(n1, x1), . . . , nk/(nk, xk)] �= 1.

Then for a certain prime p, p |m and

k∏
i=1

α
xim/ni
i = (γm/p)p
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thus by the assumption mxi/ni ≡ 0 mod p (1 � i � k). This as before leads to a con-
tradiction. Therefore m = 1, xi ≡ 0 mod ni and we infer that [K∗ 〈ξ1, . . . , ξk〉 : K∗] =
n1 · · · nk , which completes the proof. ��

Lemma 2. Let g be 0 or a power of 2, G a subgroup of K∗ containing K∗g . If nixi ≡
0 mod g (1 � i � k) implies−

k∏
i=1
α
xi
i /∈ G then there exist elements ξ1, . . . , ξk, η1, . . . , ηl

and positive integers m1, . . . , ml such that

ξ
ni
i = αi (1 � i � k), η

mj
j = βj ∈ K∗ (1 � j � l),

〈ξ1, . . . , ξk〉 = 〈η1, . . . , ηl〉 ,
[m1, . . . , ml] | [n1, . . . , nk],(5) ∏

p |mj
β
xj
j = γ p implies xj ≡ 0 mod p (p |mj)(6)

for all primes p and

(7) mjyj ≡ 0 mod g (1 � j � l) implies −
l∏
j=1

β
yj

j /∈ G (2).

Proof. Assume first that all ni are powers of the same prime q. Consider all systems
η1, . . . , ηk,m1, . . . , mk satisfying the following conditions: for suitable ξi and integral eij

(8)
ξ
ni
i = αi, ξi =

k∏
j=1

η
eij
j , η

mj
j = βj ∈ K∗;

det[eij ] = ±1, mj |nieij
and

(9) mjyj ≡ 0 mod g (1 � j � k) implies −
k∏
j=1

β
yj
j /∈ G .

Such systems do exist, e.g. ηj = ξj , where ξ
nj
j = αj , mj = nj ; we take one with the

least product m1 · · ·mk and assert that it has the required property. We note that by (8)

mj

∣∣∣ k∑
i=1

max
1�i�k

ni

ni
nieijEij = ± max

1�i�k
ni,

Eij being the algebraic complement of eij , hence (5) holds and each mj is a power of q.
We can assume without loss of generality that m1 � m2 � . . . � mk . The only prime p
for which (6) needs verification is p = q.

(2) a ≡ 0 mod 0 means a = 0.
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Suppose that
∏
p |mj

β
xj
j = γ p but for some j p |mj , p /| xj . Let s be the greatest such j

and let t satisfy the congruence

txs ≡ 1 mod p.

Then

(10)
s−1∏
j=1

β
txj
j · βs = δp.

Consider first the case p = q = 2. If ms ≡ 0 mod 2g there exists an ε = ±1 such that for
every choice of zj satisfying zs ≡ 1 mod 2, mjzj ≡ 0 mod g (j > s) we have

−(εδ)zs
∏
j �=s
β
zj
j /∈ G .

Indeed if

zs ≡ 1 mod 2, mj zj ≡ 0 mod g (j > s), −δzs
∏
j �=s
β
zj
j ∈ G

and

z′s ≡ 1 mod 2, mj z
′
j ≡ 0 mod g (j > s), −(−δ)z′s

∏
j �=s
β
z′j
j ∈ G

then

zs − z′s ≡ 0 mod 2, −δzs−z′s
∏
j �=s
β
zj−z′j
j ∈ G

and by (10)

−
s−1∏
j=1

β
txj (zs−z′s )/2+zj−z′j
j β

(zs−z′s )/2
s

k∏
j=s+1

β
zj−z′j
j ∈ G

which contradicts (9) since

mj ≡ 0 mod g (j � s), mj (zj − z′j ) ≡ 0 mod g (j > s).

Let us choose a root of unity ζ rms so that

η′s = ζ rms ηs
s−1∏
j=1

η
txjmj /ms
j

satisfies

(11) η′s
ms/2 = β ′s =

{
δ if ms �≡ 0 mod 2g,

εδ otherwise,
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and set m′
s = ms/2,

η′j = ηj , m′
j = mj , β ′j = βj (j �= s);(12)

e′ij =
⎧⎨⎩eij − eis txj

mj

ms
if j < s,

eij if j � s;
(13)

(14) ξ ′i =
k∏
j=1

η′j
e′ij .

We find

ξ ′i = ξiζ reisms
and ξ ′i

ni = αi (1 � i � k)c

because of (8).
The conditions det[e′ij ] = ±1 and m′

j |nie′ij follow also from (8) since by (13)

[e′ij ] = [eij ]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 . . . 0 0 . . . 0 0
0 1 . . . 0 0 . . . 0 0

. . . . . .
. . . . . . . . . . . . . . . . . .

0 0 . . . 1 0 . . . 0 0

−tx1
m1

ms
−tx2

m2

ms
. . . −txs−1

ms−1

ms
1 . . . 0 0

. . . . . . . . . . . . . . .
. . . . . . . . .

0 0 . . . 0 0 . . . 1 0
0 0 . . . 0 0 . . . 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

c

det[e′ij ] = det[eij ] and mj |nie′ij .
Finally suppose that m′

j yj ≡ 0 mod g (1 � j � k) and −
k∏
j=1
β ′j
yj ∈ G .

If ys ≡ 0 mod 2 we have by (10), (11) and (12)

−
s−1∏
j=1

β
txj ys/2+yj
j β

ys/2
s

k∏
j=s+1

β
yj
j ∈ G

which contradicts (9) since

mj
ys

2
= mj

ms
m′
sys ≡ 0 mod g (j � s) and mjyj ≡ 0 mod g (j > s).

If ys ≡ 1 mod 2 we have ms ≡ 0 mod 2g and by (11) and (12)

−(εδ)ys
∏
j �=s
β
yj
j ∈ G

contrary to the choice of ε.
Thus η′1, . . . , η′k,m′

1, . . . , m
′
k satisfy all conditions imposed on η1, . . . , ηk ,m1, . . . , mk

and m′
1 · · ·m′

k < m1 · · ·mk , a contradiction.
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Consider next the case p = q > 2. Let us choose a root of unity ζ rms so that

η′s = ζ rms ηs
s−1∏
j=1

η
txjmj /ms
j satisfies η′s

ms/p = δ.

Setm′
s = ms/p and define η′j , m′

j (j �= s), e′ij , ξ ′i by the formulae (12), (13), (14). We find

as before that ξ ′i
ni = αi (1 � i � k), det[e′ij ] = ±1 andm′

j |nie′ij . If nowm′
j yj ≡ 0 mod g

(1 � j � k) then yj ≡ 0 mod g (1 � j � k) and sinceK∗g ⊂ G , −
k∏
j=1
β ′j
yj ∈ G implies

−1 ∈ G which is impossible by (9). Since m′
1 · · ·m′

k < m1 · · ·mk we get a contradiction.

Consider now the general case. Let ni =
H∏
h=1
p
rhi
h (1 � i � k), where p1, . . . , pH

are distinct primes. By the already proved case of the lemma for each h � H there exist
ξhi, ηhi and mhi (1 � i � k) such that

ξ
p
rhi
h

hi = αi, η
mhi
hi = βhi,

〈ξh1, . . . , ξhk〉 = 〈ηh1, . . . , ηhk〉 ,
[mh1, . . . , mhk] |pmax rhi

h ,(15) ∏
ph |mhi

β
xi
hi = γ ph implies xi ≡ 0 mod ph (ph |mhi)(16)

and

(17) mhyi ≡ 0 mod g implies −
k∏
i=1

β
yi
hi /∈ G .

We get

〈η11, . . . , η1k, η21, . . . , η2k, . . . , ηH1, . . . , ηHk〉
= 〈ξ11, . . . , ξ1k, ξ21, . . . , ξ2k, . . . , ξH1, . . . , ξHk〉 ,

[m11, . . . , m1k,m21, . . . , m2k, . . . , mH1, . . . , mHk] | [n1, . . . , nk].

Let us choose integers thi so that
1

ni
=

H∑
h=1

thi

p
rhi
h

. Then

( H∏
h=1

ξ
thi
hi

)ni = αi, ξji =
( H∏
h=1

ξ
thi
hi

)ni/prjij
(1 � i � k),

hence

〈η1, . . . , ηHk〉 =
〈 H∏
h=1

ξ
th1
h1 , . . . ,

H∏
h=1

ξ
thk
hk

〉
.
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Moreover ∏
p |mh

β
xhi
hi = γ p

implies by (15) and (16) xhi ≡ 0 mod p (p |mhi). Finally mhiyhi ≡ 0 mod g implies
yhi ≡ 0 mod g unless ph = 2. Since G ⊃ K∗g the conditions

mhiyhi ≡ 0 mod g (1 � h � H, 1 � i � k) and −
H∏
h=1

k∏
i=1

β
yhi
hi ∈ G

imply for ph = 2

−
k∏
i=1

β
yhi
hi ∈ G

which contradicts (17). The proof is complete. ��

Remark. It is possible but not worthwhile to obtain l = k in the general case.

Proof of Theorem 2. We apply Lemma 2 with g = 0, G = {1} if ζ4 ∈ K; with g = 4,
G = K∗4 ∪ 4K∗4 otherwise and find that for suitable ξ1, . . . , ξk, η1, . . . , ηl

ξ
ni
i = αi, η

mj
j = βj (1 � i � k, 1 � j � l), 〈ξ1, . . . , ξk〉 = 〈η1, . . . , ηl〉 ,∏
p |mj

β
xj
j = γ p implies xj ≡ 0 mod p (p |mj)(18)

and if ζ4 /∈ K

mjyj ≡ 0 mod 4 (1 � j � k) implies
k∏
j=1

β
yj
j �= −γ 4,−4γ 4.

If ζ4 /∈ K we see at once that the conditions of Theorem 1 are satisfied; if ζ4 ∈ K they are
also satisfied since then by (18)∏

2|ni
β
xi
i = −4γ 4, nixi ≡ 0 mod 4 (2 |ni) implies

∏
2|ni
β
xi
i = (2ζ4γ 2)2,

xi ≡ 0 mod 2,
∏

2|ni
β
xi/2
i = ±2ζ4γ 2 = ((1 ± ζ4)γ

)2, xi/2 ≡ 0 mod 2, xi ≡ 0 mod 4

(1 � i � k).
By Theorem 1 we have [K(η1, . . . , ηl) : K] = m1 · · ·ml = [K∗ 〈η1, . . . , ηl〉 : K∗],

hence the theorem. ��

Lemma 3. If n1, . . . , nl, m1, . . . , ml satisfy the conditions of Lemma 2 with g = 2, G =
K∗2; δ ∈ K∗ and

√
δ ∈ K(η1, . . . , ηl) then

√
δ ∈ K∗ 〈η1, . . . , ηl〉 and δ �= −1.
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Proof. If
√
δ ∈ K(η1, . . . , ηl) but

√
δ /∈ K∗ 〈η1, . . . , ηl〉 then

[K∗〈√δ, η1, . . . , ηl
〉 : K∗] > [K∗ 〈η1, . . . , ηl〉 : K∗]

� [K(η1, . . . , ηl) : K] = [K(√δ, η1, . . . , ηl
) : K]

thus by Kneser’s theorem we have for a certain prime p

ζp ∈ K∗〈√δ, η1, . . . , ηl
〉
, ζp /∈ K,

or

1 + ζ4 ∈ K∗〈√δ, η1, . . . , ηl
〉
, ζ4 /∈ K.

However ζp = γ√δx0
l∏
j=1
η
xj
j , γ ∈ K , gives

√
δ ∈ K∗ 〈η1, . . . , ηl〉

unless x0 ≡ 0 mod 2. In the latter case let

m = [m1/(m1, x1), . . . , ml/(ml, xl)].
If p |m we get

l∏
j=1

β
mxj /mj
j = (γ−m/pδ−(m/p)(x0/2)

)p
and by the assumption

mxj

mj
≡ 0 mod p (1 � j � l).

This gives by Lemma 1
(
x1/(m1, x1), . . . , xl/(ml, xl)

) ≡ 0 mod p and, for a j � l,
xj /(mj , xj ) ≡ mj/(mj , xj ) ≡ 0 mod p, a contradiction.

If p /| m we have

ζmp = (γ δx0/2
)m l∏
j=1

β
mxj /mj
j ∈ K; ζp ∈ K.

Suppose now that γ ∈ K ,

(19) 1 + ζ4 = γ√δx0

l∏
j=1

η
xj
j or ζ4 = γ

l∏
j=1

η
xj
j

and set again m = [m1/(m1, x1), . . . , ml/(ml, xl)].
If 4 |m then

(−4)m/4 = γmδx0m/2
l∏
j=1

β
xjm/mj
j or 1 = γm

l∏
j=1

β
xjm/mj
j

and by the assumption xjm/mj ≡ 0 (mod 2) (1 � j � l). This gives by Lemma 1
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x1/(m1, x1), . . . , xl/(ml, xl)

) ≡ 0 mod 2 and for a j � l
xj

(mj , xj )
≡ mj

(mj , xj )
≡ 0 mod 2,

a contradiction.
If 4 /| m then (19) gives

(2ζ4)
m/(m,2) = γ [m,2]δx0m/(m,2)

l∏
j=1

β
xj [m,2]/mj
j ∈ K; ζ4 ∈ K,

or

(−1)m/(m,2) = γ [m,2]
l∏
j=1

β
xj [m,2]/mj
j ;

∏
2|mj

β
xj [m,2]/mj
j = −δ2

1 .

The contradiction obtained completes the proof. ��

Lemma 4. LetK be an arbitrary field,na positive integer not divisible by the characteristic
of K , mj divisors of n and β1, . . . , βl, β non-zero elements of K . If each of the fields
K(η1, . . . , ηl), where η

mj
j = βj (1 � j � l) contains at least one η with ηn = β then for

any choice of ηj and η and for suitable exponents r0, r1, . . . , rl

ζ r0n ηη
r1
1 · · · ηrll ∈ K(ζ4).

Proof. This is an immediate consequence of Lemma 6 of [6]. ��

Lemma 5. Let K be an arbitrary field of characteristic different from 2 and τ be defined
as in Theorem 3. # ∈ K is of the form ϑn, where ϑ ∈ K(ζ4) if and only if at least one of
the following three conditions is satisfied for a suitable γ ∈ K:

# = γ n,
n �≡ 0 mod 2τ , # = −γ n,

n ≡ 0 mod 2τ , # = (−1)n/2
τ (
ζ2τ + ζ−1

2τ + 2
)n/2
γ n.

If ζ4 ∈ K the last two conditions imply the first.

Proof. Necessity follows at once from Lemma 7 of [6]. Sufficiency of the first condition
is obvious. In order to prove sufficiency of the other two note that if n �≡ 0 mod 2τ and
qn ≡ 2τ−1 mod 2τ then

−1 = (ζ q2τ )n
and if n ≡ 0 mod 2τ then

(−1)n/2
τ (
ζ2τ + ζ−1

2τ + 2
)n/2 = (ζ2τ + 1

)n
.

On the other hand since ζ2τ + ζ−1
2τ ∈ K ,

ζ2τ = 1
2

(
ζ2τ + ζ−1

2τ
)± 1

2ζ4
(
ζ 1−2τ−2

2τ + ζ−1+2τ−2

2τ
) ∈ K(ζ4).

The last assertion of the lemma is obvious. ��
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Proof of Theorem 3. Let us assume first that for all li

(20)
∏
2|ni
α
li
i �= −δ2.

Then by Lemma 2 applied with g = 2, G = K∗2 there exist ξ1, . . . , ξk , η1, . . . , ηl ,
m1, . . . , ml such that

ξ
ni
i = αi (1 � i � k), η

mj
j = βj ∈ K (1 � j � l),

〈ξ1, . . . , ξk〉 = 〈η1, . . . , ηl〉 ,(21)

[m1, . . . , ml] | [n1, . . . , nk],(22) ∏
p |mj

β
xj
j = γ p implies p |xj (p |mj)

for all primes p and

(23)
∏

2|mj
β
yj
j �= −γ 2 for any choice of yj .

By Theorem 1 [K(η1, . . . , ηl) : K] = m1 · · ·ml and thus all fields K(η1, . . . , ηl), where
η
mj
j = βj are conjugate over K . If now K(ξ1, . . . , ξk) = K(η1, . . . , ηl) contains an η

with ηn = β then each fieldK(η1, . . . , ηl) contains such an η and by Lemma 4, Lemma 5,
(22) and (23) we have either

(24) β

l∏
j=1

β
rj n/mj
j = γ n

or

(25) n ≡ 0 mod 2τ+1 and β

l∏
j=1

β
rj n/mj
j = (ζ2τ + ζ−1

2τ + 2
)n/2
γ n

for suitable integers r1, . . . , rl and a suitable γ ∈ K . Indeed, if n ≡ 0 mod 2,

β
l∏
j=1
β
rj n/mj
j = −γ n, or n ≡ 2τ mod 2τ+1, β

l∏
j=1
β
rj n/mj
j = −(ζ2τ + ζ−1

2τ + 2
)n/2
γ n, we

c

get on taking square roots ζ4 ∈ K(η, η1, . . . , ηl) = K(η1, . . . , ηl) contrary to Lemma 3.
The condition (21) implies that

(26)
l∏
j=1

β
rj n/mj
j =

k∏
i=1

α
qin/ni
i

for suitable integers q1, . . . , qk . Hence (24) leads to (i).
It remains to consider (25). If L = K(η1, . . . , ηl) contains an η with ηn = β then by

(25) it contains ζ rn

√
ζ2τ + ζ−1

2τ + 2 for a certain r .
If n/(n, 2r) ≡ 1 mod 2 then L contains

ζ
rn/(n,2r)
n

√
ζ2τ + ζ−1

2τ + 2 = ±
√
ζ2τ + ζ−1

2τ + 2 ;
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if n/(n, 2r) ≡ 2 mod 4 then L contains

ζ
rn/2(n,2r)
n

√
ζ2τ + ζ−1

2τ + 2 = ±
√
−(ζ2τ + ζ−1

2τ + 2
) ;

if n/(n, 2r) ≡ 0 mod 4 then L contains ζ rn/2(n,2r)n = ±ζ4.
By Lemma 3 the last case is impossible and in the first two cases√

±(ζ2τ + ζ−1
2τ + 2

) ∈ K∗ 〈η1, . . . , ηl〉 = K∗ 〈ξ1, . . . , ξk〉 .
Hence we obtain

(
ζ2τ + ζ−1

2τ + 2
)n/2 = ϑn

k∏
i=1

α
sin/ni
i , ϑ ∈ K,

which together with (25) and (26) gives again (i).
Assume now that for some l1, . . . , lk∏

2|ni
α
li
i = −δ2, δ ∈ K.

Then we apply Lemma 2 for the fieldK(ζ4)with g = 0, G = {1} and we infer the existence
of ξ1, . . . , ξk, η1, . . . , ηl, m1, . . . , ml such that

ξ
ni
i = αi (1 � i � k), η

mj
j = βj ∈ K(ζ4) (1 � j � l),

〈ξ1, . . . , ξk〉 = 〈η1, . . . , ηl〉 ,(27)

[m1, . . . , ml] | [n1, . . . , nk],∏
p |mj

β
xj
j = γ p, γ ∈ K(ζ4) implies p |xj (p |mj)

for all primes p.
By Theorem 1

[
K(ζ4, η1, . . . , ηl) : K(ζ4)

] = m1 · · ·ml (see the end of the proof of

Theorem 2) and thus all fields K(ζ4, η1, . . . , ηl), where η
mj
j = βj , are conjugate over

K(ζ4).
If now K(ξ1, . . . , ξk) ⊂ K(ζ4, η1, . . . , ηl) contains an η with ηn = β then each field

K(ζ4, η1, . . . , ηl) contains such an η and by Lemma 4 we have

β

l∏
j=1

β
rj n/mj
j = ϑn, ϑ ∈ K(ζ4).

The condition (27) implies that

l∏
j=1

β
rj n/mj
j =

k∏
i=1

α
qin/ni
i

for suitable integers q1, . . . , qk . Hence ϑn ∈ K and using Lemma 5 we get one of the
cases (i)–(iii).
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Conversely if (i) is satisfied then any fieldK(ξ1, . . . , ξk), where ξnii = αi (1 � i � k),

contains η = γ
k∏
i=1
ξ
−qi
i with ηn = β.

If (ii) or (iii) is satisfied then by Lemma 5

β

k∏
i=1

α
qin/ni
i = ϑn

where ϑ ∈ K(ζ4). On the other hand, the equality
∏

2|ni
α
li
i = −δ2 implies

ζ4 = ± ∏
2|ni
ξ
ni li/2
i δ−1.

c

Thus ϑ ∈ K(ξ1, . . . , ξk) and K(ξ1, . . . , ξk) contains η = ϑ
k∏
i=1
ξ
−qi
i with ηn = β.

The last assertion of the Theorem if ζ4 ∈ K follows from the last assertion of Lemma 5.
If τ = 2 and n �≡ 0 mod 2τ we have either n ≡ 1 mod 2, in which case

−γ n = (−γ )n, or n ≡ 2 mod 4. In the latter case we get from (ii)

β

k∏
i=1

α
qin/ni
i

∏
2|ni
α
lin/2
i = (γ δ)n

which leads to (i). The proof is complete. ��

Proof of Corollary. If the irreducible polynomials f (x) = xn − α and g(x) = xn − β
satisfy the relation f ∼ g we have by Theorem 3 the following five possibilities

α
n= βt , β

n= αs;(28)

n �≡ 0 mod 2τ , α = −δ2 n= βt , β
n= −αs;(29)

n ≡ 0 mod 2τ , α = −δ2 n= βt , β
n= εωαs;(30)

n �≡ 0 mod 2τ , α = −δ2
1
n= −βt , β = −δ2

2
n= αs;(31)

n ≡ 0 mod 2τ , α = −δ2
1
n= εωβt , β = −δ2

2
n= εωαs,(32)

and two other possibilities obtained by the permutation of α and β in (29) and (30). Here
γ
n= δ means that γ /δ is an nth power in K , ε = (−1)n/2

τ
and ω = (ζ2τ + ζ−1

2τ + 2
)n/2.

Moreover in (29) to (32) it is assumed that n ≡ 0 mod 2, ζ4 /∈ K . Now, (29) givesc

t ≡ 1 mod 2, α
n= −αst , αst−1 n= −1, β

n= αs+st−1.

(30) gives t ≡ 1 mod 2, α
n= εωαst , αst−1 n= εω, β

n= αs+st−1.
(31) gives s ≡ t ≡ 0 mod 2. Indeed, if for instance t ≡ 1 mod 2 then

−δ2
1
n= −βt n= δ2t

2 and ζ4 ∈ K.c

If s ≡ t ≡ 0 mod 2 then

α
n= −αst , αst−1 n= −1, β

n= αs+st−1.
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(32) with ε = −1 gives like (31) that s ≡ t ≡ 0 mod 2. In that case

α
n= −ωαst , αst−1 n= −ω, β

n= αs+st−1.

Thus in any case we have either β
n= αr or n ≡ 0 mod 2τ+1, α = −δ2, β = ωαr . On the

other hand if at least one of these conditions is satisfied then by Theorem 3 each of the
fields K(ξ) with f (η) = 0 contains an η with g(η) = 0 and since f and g are irreducible
and of the same degree K(ξ) = K(η).
Note added in proof. Theorem 3 is incompatible with Theorem 2 of [4a], p. 63. However already
the special case of the latter theorem given by Nagell as his Theorem 3 is not valid in general, as
shown by the example Ω = Q, n = 8, a = −1, b = −16 contained in Theorem 6 of Gerst [1].
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On Sylow 2-subgroups of K2OF

for quadratic number fields F

with J. Browkin (Warsaw)

1. Introduction

LetOF be the ring of integers of a number field F . For a finite abelian group A denote
by A2 its Sylow 2-subgroup, and by r2(A)—the 2-rank of A, i.e. the number of cyclic
direct summands of A2.

H. Garland [2] proved that the groupK2OF is finite, whereK2 is the functor of Milnor.
It is also known [1] that

(1) r2(K2OF ) = r1 + g(2)− 1 + r,
where r1 is the number of real embeddings of the field F , g(2) is the number of distinct
prime ideals of OF dividing (2), and r = r2

(
Cl(F )/Cl2(F )

)
, where Cl(F ) is the group

of ideal classes of the field F , and Cl2(F ) is its subgroup generated by classes containing
prime ideals dividing (2).

In the present paper we investigate the Sylow 2-subgroup of the group K2OF for
quadratic number fields F = Q(

√
d), where d is a square-free integer.

For real quadratic fields F it follows from (1) that

r2(K2OF ) = g(2)+ 1 + r � 2.

We determine all real quadratic fields F with (K2OF )2 = Z/2Z⊕Z/2Z. On the other
hand we prove that for every n there exists such a real quadratic field F that in (K2OF )2
there is an element of order � n.

For imaginary quadratic fields F it follows from (1) that

r2(K2OF ) = g(2)− 1 + r � 0.

Hence r2(K2OF ) = 0 if g(2) = 1 and r = 0, i.e. d �≡ 1 mod 8 and the Sylow 2-
subgroup of the class group of F is generated by classes containing divisors of 2. This
has been proved by J. Tate [7]. He proved also that for r = 0 and d ≡ 1 mod 8 we have
(K2OF )2 = Z/2Z.

We extend these results and prove that for d ≡ 1 mod 8 the 2-rank of the Hilbert kernel
of K2OF is by 1 less than r2(K2OF ) (for d �≡ 1 mod 8 the two ranks are equal).
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2. Notations

For a normalized discrete valuation v of the field F let (a, b)v be the tame symbol
defined by the formula

(a, b)v = (−1)v(a)v(b)av(b)b−v(a) mod v for a, b ∈ F ∗.

The tame symbol induces a homomorphism of the Milnor group K2F onto the multi-
plicative group of the residue class field F ∗

v of the valuation v, defined by

{a, b}  → (a, b)v for a, b ∈ F ∗.

It is known (see e.g. [5] or [6]) that K2OF = Ker τ , where τ : K2F →⊕
v

F ∗
v is the

homomorphism defined by the tame symbols and the sum is extended over all discrete
valuations v of F .

For a non-complex valuation v of the field F let [a, b]v be the corresponding Hilbert
symbol, and let

η : K2F →
⊕
v

μv

be the homomorphism defined by Hilbert symbols, where the sum is extended over all
non-complex valuations v of F , and μv is the group of roots of unity in the completion Fv
of the field F at v. Denote the Hilbert kernel Ker η by K2F . It is a subgroup ofK2OF ; the
factorgroup K2OF/K2F for every algebraic number field F has been determined in [1].

Let en be the number of cyclic components of K2OF of order divisible by n. Put
Δ = {a ∈ F ∗ : {−1, a} = 1

}
. We have 2 ∈ Δ, because {−1, 2} = 1. J. Tate [6] proved

that
(
Δ : F ∗2) = 21+r2 for every algebraic number field, where r2 is the number of

complex valuations of F . Consequently

Δ = F ∗2 ∪ 2F ∗2

for every totally real field not containing
√

2.

3. Real quadratic fields

Theorem 1. LetF = Q(
√
d), d > 2 square-free have t odd prime factors. Then e2 = s+t ,

where 2s is the number of elements of the set {±1,±2} that are norms of an element of F .

Proof. Let H0(F ) be the group of narrow classes of ideals in F , A be the narrow class
containing the ideal

(√
d
)

and B the narrow class containing a prime ideal dividing 2. Put
H2(F ) = 〈A,B〉, the group generated by A and B. We have

Cl(F ) = H0(F )/〈A〉, Cl2(F ) = H2(F )/〈A〉,
hence

Cl(F )/Cl2(F ) = H0(F )/H2(F ).
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If r is the 2-rank of H0(F )/H2(F ) then 2r is the number of classes C ∈ H0(F )

satisfying the condition C2 ∈ H2(F ) and distinct modH2(F ).
If N0 is the number of solutions of C2 ∈ H2(F ) then

2r · |H2(F )| = N0,

on the other hand

N0 = ∣∣H2(F ) ∩H0(F )
2
∣∣ · 2r2(H0(F )).

Hence

2r2(H0(F ))−r = (H2(F ) : H2(F ) ∩H0(F )
2).

Now e2 = g(2)+ r + 1,

r2
(
H0(F )

)+ g(2) = {t + 1 if d �≡ 5 mod 8,

t if d ≡ 5 mod 8.

Thus e2 = s + t is equivalent to the formula

(2) q = (H2(F ) : H2(F ) ∩H0(F )
2) = {22−s if d �≡ 5 mod 8,

21−s if d ≡ 5 mod 8.

In order to prove this formula observe that by Gauss’s theorem the class of an ideal a
belongs toH0(F )

2 if and only ifNa = Nc for some c ∈ F , which we shall denote simpler
Na ∈ NF .

Therefore
A ∈ H0(F )

2 if and only if −1 ∈ NF ,

B ∈ H0(F )
2 if and only if either d ≡ 5 mod 8, or 2 ∈ NF ,

AB ∈ H0(F )
2 if and only if either d ≡ 5 mod 8, −1 ∈ NF , or 2 ∈ NF .

If A ∈ 〈B〉 then either A ∈ H0(F )
2, or AB ∈ H0(F )

2, thus −1 ∈ NF or −2 ∈ NF .
On the other hand

q = (〈B〉 : 〈B〉 ∩H0(F )
2) = {1 if d ≡ 5 mod 8 or 2 ∈ NF,

2 if d �≡ 5 mod 8 and 2 /∈ NF,
which confirms (2).

If B is of odd order then B ∈ H0(F )
2 thus either d ≡ 5 mod 8 or 2 ∈ NF . On the

other hand

q = |〈A〉| · |〈B〉|∣∣〈A〉 ∩H0(F )2
∣∣ · |〈B〉| =

{
1 if − 1 ∈ NF,
2 if − 1 /∈ NF,

which confirms (2).
Finally ifA /∈ 〈B〉 andB is of even order 2k then d �≡ 5 mod 8 and we have the disjoint

decomposition

〈A,B〉 =
k−1⋃
i=0

B2i{1, A, B,AB}.
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Hence

q =
∣∣{1, A, B,AB}∣∣∣∣{1, A, B,AB} ∩H0(F )2

∣∣ = 22−s ,

which proves (2). ��

Theorem 2. Let F = Q
(√
d
)
, d > 2 square-free have t odd prime factors, and let K2F

be the Hilbert kernel. We have
if d �≡ 1 mod 8, then

e4 � r2(K2F) =
{
t − 1 if 2 /∈ NF,
t if 2 ∈ NF,

if d ≡ 1 mod 8, then

e4 � r2(K2F) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
t − 2 if − 1 /∈ NF, 2 /∈ NF,
t if − 1 ∈ NF, d = u2 − 2w2, u > 0,

u ≡ 1 mod 4, w ≡ 0 mod 4,

t − 1 otherwise.

Proof. We proceed to write out all 2s+t elements {−1, a} of order � 2 in K2OF . Let
c1 = 1, ci ∈ {−1, 2,−2}, ci ∈ NF (2 � i � 2s) and be distinct. By the reciprocity
for the norm residue symbols we have d ∈ NQ(

√
ci) and since Z[√ci] is the unique

factorization domain d ∈ NZ[√ci], d = u2
i − ciw2

i , ui > 0 (2 � i � 2s), ui ≡ 1 mod 2
for d ≡ 1 mod 4. If d ≡ 1 mod 4, ci = 2 one can always assume that wi ≡ 0 mod 4.

Consider now all elements {−1, γiδ}, where γ1 = 1 and for 2 � i � 2s

γi =
{

1
2 (ui +

√
d) if d ≡ 1 mod 4,

ui +
√
d if d ≡ 2 or 3 mod 4,

and δ is an odd divisor of d positive or negative but not divisible by a fixed odd prime
factor p of d. The number of relevant pairs 〈i, δ〉 is 2s+t . The elements themselves belong
to Ker τ since (γiδ) = a ·q2, where a |2. Moreover to different pairs 〈i, δ〉 there correspond
elements distinct modΔ = F ∗2 ∪ 2F ∗2.

Indeed, suppose that γiδ/γj δ′ ∈ Δ and 〈i, δ〉 �= 〈j, δ′〉. If i �= j , we take norms and
get Nγi/Nγj ∈ Q∗2, i.e. ci/cj ∈ Q∗2, which is impossible. If i = j , then δ �= δ′ and
δ/δ′ ∈ Δ is impossible, since δ, δ′ are not divisible by p.

Therefore 2r2(K2F) is the number of elements {−1, γiδ} in question that belong to K2F ,
i.e. satisfy [−1, γiδ]v = 1 for every non-complex valuation v of F . Taking for v the real
valuations we infer that γiδ is totally positive, hence δ > 0, i = 1 or ci = 2 and

γ = γi =

⎧⎪⎨⎪⎩
1 if 2 /∈ NF, i.e. d �= u2 − 2w2,

1 or u+√
d if d = u2 − 2w2, u > 0, d ≡ 2 or 3 mod 4,

1 or 1
2 (u+

√
d) if d = u2 − 2w2, u > 0, d ≡ 1 mod 4.

If v is a discrete valuation induced by a prime ideal p ofF andmv is the number of roots
of unity contained in the completion Fv , then eithermv = Np− 1 or p |3, d ≡ −3 mod 9,
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mv = 6 or p |2,

mv =
{

2(Np − 1) if d �≡ −1 mod 8,

4 if d ≡ −1 mod 8.

In the first case [−1, γ δ]v = (−1, γ δ)v = 1. In the second case [−1, γ δ]3v =
(−1, γ δ)v = 1 and since also [−1, γ δ]2v = 1 we get [−1, γ δ]v = 1.

In the third case if d �≡ 1 mod 8 there is only one prime ideal p of F dividing 2. By the
product formula for Hilbert symbols we get [−1, γ δ]mv/2v = 1 which for d �≡ −1 mod 8
gives [−1, γ δ]3v = 1 and again [−1, γ δ]v = 1.

Thus if d �≡ ±1 mod 8, {−1, γ δ} ∈ K2F if and only if γ δ " 0, which gives

2r2(K2F) =
{

2t−1 if 2 /∈ NF,
2t if 2 ∈ NF.

Moreover since the Hilbert symbols for which [−1, γ δ]v happened to be −1 were real
and so quadratic, we have

e4 � r2(K2F).

If d ≡ 1 mod 8 there are two valuations corresponding to prime ideal factors of 2 in F .
An easy computation shows that [−1, γ δ]v = 1 is equivalent to

(3) γ δ ≡ 1 mod
4

(2, γ )2
.

If −1 /∈ NF then d has prime factors of the form 4k+ 3 and at least two of them since
d ≡ 1 mod 8. Hence the number of positive δ’s in each residue class ±1 mod 4 is 2t−2 and
we get

2r2(K2F) =
{

2t−2 if 2 /∈ NF,
2t−1 if 2 ∈ NF.

If −1 ∈ NF then all 2t−1 positive δ’s are of the form 4k + 1 and the condition (3)
takes the form

γ ≡ 1 mod
4

(2, γ )2
.

This gives either γ = 1 or

γ = u+√
d

2
≡ 1 mod

(
2,
u−√

d

2

)2

.

In the latter case since w ≡ 0 mod 4 we have

u+√
d

2

u−√
d

2
= w2

2
≡ 0 mod

(
2,
u−√

d

2

)2

.

Hence

u−√
d

2
≡ 0 mod

(
2,
u−√

d

2

)2
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and by addition, u ≡ 1 mod

(
2,
u−√

d

2

)2

, and since u ∈ Z, u ≡ 1 mod 4. Therefore

2r2(K2F) =
{

2t if 2 ∈ NF,
2t−1 otherwise.

This completes the proof for d ≡ 1 mod 8 since Hilbert symbols used in the proof are
quadratic.

If d ≡ −1 mod 8, then (2) = p2 in F and if v is the valuation induced by p we have
to consider Hilbert symbol [a, b]v of exponent 4, connected with the biquadratic residue
symbol for the field Q2(i) in which F can be embedded.

Let for an element a of F , ā be its image in Q2(i) and v̄ be the valuation of Q2(i)

corresponding to v, so that [a, b]v = [ā, b̄]v̄ . If ā is a v̄-adic unit then

[−1, ā]v̄ = (−1)(Nā−1)/4

depends only on the residue of ā mod 4 (see H. Hasse [4], p. 86).
For every odd rational integer δ we have

[−1, δ]v = [−1, δ]v̄ = (−1)(δ
2−1)/4 = 1.

It remains to compute [−1, u+√
d]v . Since

√
d ≡ i d − 1

2
mod 8,

we have (u+√
d)/(1 − i) ≡ 2u− d + 1

4
+ i 2u+ d − 1

4
mod 4 and the number on the

right hand side is a v̄-adic unit. Hence

[−1, u+√
d]v = [−1, u+√

d]v̄ = [i, u+√
d]2v̄

= [i, 1 − i]2v̄ ·
[
i,

2u− d + 1

4
+ i 2u+ d − 1

4

]2
v̄
= (−1)(M−1)/4,

where

M =
(2u− d + 1

4

)2 +
(2u+ d − 1

4

)2 = u2

2
+ (d − 1)2

8
.

Since d = u2 − 2w2, we have d − 1 ≡ u2 − 3 mod 16, (d − 1)2 ≡ (u2 − 3)2 mod 64
and

M ≡ u2

2
+ (u

2 − 3)2

8
= 1 + (u

2 − 1)2

8
≡ 1 mod 8,

thus [−1, γ ]v = 1. We get the same inequality as for d �≡ ±1 mod 8. ��

Corollary 1. If d �≡ ±1 mod 8, d > 2, then |(K2OF )2| � 8 unless d = p or 2p,
p ≡ ±3 mod 8 a prime, in which case (K2OF )2 = Z/2Z ⊕ Z/2Z.

Proof. If d �≡ ±1 mod 8 we have
(
K2OF/K2F

)
2 = Z/2Z⊕Z/2Z by the result of [1], on

the other hand r2(K2F) � 1 unless d = p or 2p, p ≡ ±3 mod 8 a prime. ��
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Corollary 2. If d ≡ ±1 mod 8, then |(K2OF )2| � 16 unless d = pq, p ≡ q ≡ 3 mod 8
primes or d = p = u2 − 2w2, u > 0, u ≡ 3 mod 4, w ≡ 0 mod 4 in which case

(K2OF )2 = Z/2Z ⊕ Z/2Z ⊕ Z/2Z.

Proof. If d ≡ ±1 mod 8 we have |K2OF/K2F | � 8 by the result of [1]. On the other hand
r2(K2F) � 1 unless d = pq, p ≡ q ≡ 3 mod 8 primes or d = p = u2 − 2w2, u > 0,
u ≡ 3 mod 4, w ≡ 0 mod 4, and then we apply [1] again. ��

Corollary 3. e4 � 1 provided either −1 /∈ NF , −2 /∈ NF ,
or −1 ∈ NF , −2 /∈ NF , d ≡ 1 mod 8,
or −1 ∈ NF , −2 ∈ NF , d = u2 − 2w2, u > 0, u ≡ 1 mod 4, w ≡ 0 mod 4.

Proof. In these cases r2(K2OF ) < r2(K2OF/K2F)+ r2(K2F). ��

Corollary 4. e8 � 1 provided d = pq, p ≡ −q ≡ 3 mod 8 primes or p ≡ −1 mod 8, a
prime.

Proof. In both cases r2(K2OF )=2,
∣∣(K2OF )2

∣∣�16 by Corollary 2, and e4 �1. ��

Corollary 5. Sylow 2-subgroup of K2OF is generated by symbols if and only if d = 2, p
or 2p, p ≡ −3 mod 8 a prime.

Proof. The only symbols in K2OF are 1, {−1,−1}, {−1, ε}, {−1,−ε}, where ε is the
fundamental unit in F . Thus from Corollaries 1 and 2 it follows that ifK2OF is generated
by symbols, then d = 2, p or 2p, p ≡ −3 mod 8 a prime.

Evidently {−1,−1} �= 1 and in the case p ≡ −3 mod 8 we have ±2 /∈ NF . Conse-
quently 2ε /∈ F ∗2, ε /∈ Δ, {−1, ε} �= 1.

If d = p or 2p,p ≡ 3 mod 8, then−2 ∈ NF . Since 2 ramifies inF , we have ε ∈ 2F ∗2,
i.e. {−1, ε} = 1 and there are only two symbols in K2OF . ��

Theorem 3. If the fundamental unit ε = α+β√d of F satisfiesNε = 1, α, β ∈ Z, α±1
is not the square of an integer, and

(4) α = 2k·2r−1−1 · c2r for some positive integers k, r, c,

then in K2OF there is an element of order 2r+1.

Proof. Suppose that 2ε ∈ F ∗2. Then 2 ramifies in F and we have d ≡ 2 or 3 mod 4.
Hence 2α + 2β

√
d = (γ + δ√d)2 for some γ, δ ∈ Z. Consequently 2α = γ 2 + δ2d,

4 = (γ 2 − δ2d)2, ±2 = γ 2 − δ2d , α ± 1 = γ 2 contrary to the assumption.
It follows that 2ε /∈ F ∗2, and hence ε /∈ Δ, i.e. {−1, ε} �= 1.
Evidently ε = α+ β√d satisfies ε2 − 2αε+ 1 = 0. Hence 1 = −ε2 + 2αε. From the

properties of symbols {x, y} it follows that {−1, 2} = 1, {ε2, ε} = {ε, ε}2 = {ε,−1}2 = 1.
Consequently

1 = {−ε2, 2αε} = {−1, ε} {−1, α} {ε2, 2α}
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and hence

{−1, ε} = {−1, α} {ε2, 2α}.
Now from (4) it follows that {−1, α} = {−1, 2}s {−1, c}2r = 1 where s = k ·2r−1−1,

and

{ε2, 2α} = {ε2, 2k·2r−1 · c2r } = {ε, 2}k·2r {−ε2, c}2r ,

because {−1, c2r } = 1.
Moreover {ε, 2} {−ε2, c} ∈ Ker τ , because −ε2 = 1 − 2αε ≡ 1 mod α and hence

−ε2 ≡ 1 mod c. It follows that every tame symbol (−ε2, c)v is trivial.
Therefore

(5) {−1, ε} = ({ε, 2k} {−ε2, c})2r .
Since the element {−1, ε} has order 2, from (5) it follows that the element

{ε, 2k} {−ε2, c} ∈ K2OF

has order 2r+1. ��

The next Lemma enables us to give examples of fields satisfying assumptions of Theo-
rem 3.

Lemma. A unit of the form 2ah + √
22ah2 − 1, where a � 1, h � 1, is fundamental in

its field provided h < 22a+2 − 3.

Proof. Suppose that

2ah+
√

22ah2 − 1 = (u+ v√d)n,
where n > 1, u, v ∈ Z, u, v > 0. Clearly n is odd and u2 − dv2 = 1. It follows that
u |2ah, v2d | 22ah2 − 1. Hence vd ≡ 1 mod 2, u ≡ 0 mod 2. If u = 2sm, m odd, then

2ah = 1

2

[(
u+ v√d)n + (u− v√d)n] ≡ 2s mod 2s+1,

thus s � a, and u � 2s � 2a . We have

2ah = 1

2

[(
u+ v√d)n + (u− v√d)n] � 1

2

[(
u+ v√d)3 + (u− v√d)3]

= u3 + 3uv2d = 4u3 − 3u � 23a+2 − 3 · 22.

Hence h � 22a+2 − 3, a contradiction. ��

Corollary 6. If 〈a1, h1〉 �= 〈a2, h2〉, h1, h2 odd, hi < 22ai+2 − 3, then the fields

Q
(√

22ai · h2
i − 1

)
are different.

Corollary 7. If F = Q
(√

4a − 1
)
, a = 2r−1−1, r � 4, then inK2OF there is an element

of order 2r+1.
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Proof. Taking in Lemma h = 1 we infer that the unit 2a +√
4a − 1 is fundamental in F .

It satisfies the assumptions of Theorem 3 provided 2a ± 1 is not the square of an integer.
The latter condition is equivalent in virtue of an old theorem of Gerono to a �= 1, 3, which
holds for r � 4. ��

4. Imaginary quadratic fields

Theorem 4. Let F = Q
(√
d
)
, d < −2 square-free have t odd prime factors. Then

e2 =
{
t if 2 ∈ NF,
t − 1 if 2 /∈ NF,(6)

e4 � r2(K2F) =
{
e2 if d �≡ 1 mod 8,

e2 − 1 if d ≡ 1 mod 8.
(7)

Proof. If r is the 2-rank of Cl(F )/Cl2(F ), then 2r is the number of classes C ∈ Cl(F )
satisfying the condition C2 ∈ Cl2(F ) and distinct mod Cl2(F ).

If N1 is the number of solutions of C2 ∈ Cl2(F ), then

2r · |Cl2(F )| = N1,

on the other hand

N1 =
∣∣∣Cl2(F ) ∩ Cl(F )2

∣∣∣ · 2r2(Cl(F )).

Hence

2r2(Cl(F ))−r = (Cl2(F ) : Cl2(F ) ∩ Cl(F )2
)
.

Now e2 = g(2)+ r − 1,

r2
(
Cl(F )

)+ g(2) = {t + 1 if d �≡ 5 mod 8,

t if d ≡ 5 mod 8.

Thus (6) is equivalent to the formula

(8) q = (Cl2(F ) : Cl2(F ) ∩ Cl(F )2
) = {2 if d �≡ 5 mod 8, 2 /∈ NF,

1 otherwise.

In order to prove this formula observe that by Gauss’s theorem the class of an ideal a

belongs to Cl(F )2 if and only if Na ∈ NF . Therefore Cl2(F ) ⊂ Cl(F )2 if and only if
either d ≡ 5 mod 8 (then Cl2(F ) is trivial) or 2 ∈ NF . This confirms (8).

In order to prove (7) we proceed to write out all elements {−1, a} of order � 2 in
K2OF .

If 2 ∈ NF , by the reciprocity law for the norm residue symbols we have d ∈ NQ(
√

2)
and since Z[√2] is the unique factorization domain d ∈ NZ[√2], d = u2 − 2w2.
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Consider now all elements {−1, γ δ}, where

γ =

⎧⎪⎨⎪⎩
1 if 2 /∈ NF,
1 or u+√

d if d = u2 − 2w2, u > 0, d ≡ 2 or 3 mod 4,

1 or 1
2 (u+

√
d) if d = u2 − 2w2, u > 0, d ≡ 1 mod 4,

and δ is an odd divisor of d positive or negative, but not divisible by a fixed prime factor
of d.

The number of such elements is 2t+1 if 2 ∈ NF , 2t if 2 /∈ NF , that is 2e2+1. They
belong to Ker τ since (γ δ) = aq2, where a |2. Moreover, different elements γ δ are distinct
mod F ∗2 ∪ 2F ∗2. Since F ∗2 ∪ 2F ∗2 is a subgroup of index 2 inΔ, the set of numbers γ δ
can contain at most two elements from each class of equivalence modΔ. But the number
of equivalence classes is 2e2 , hence among numbers γ δ each equivalence class modΔ
is represented exactly twice. Therefore 2r2(K2F)+1 is the number of elements {−1, γ δ} in
question that belong to K2F , i.e. satisfy

[−1, γ δ]v = 1 for every non-complex valuation v of F.

SinceF is imaginary there are no real valuations. If v is a discrete valuation then we infer
in the same way as for real quadratic fields in the proof of Theorem 2 that [−1, γ δ]v = 1

if either d �≡ 1 mod 8 or d ≡ 1 mod 8, γ δ ≡ 1 mod
4

(2, γ )2
.

If d ≡ 1 mod 8 and γ δ �≡ 1 mod
4

(2, γ )2
then there exists a discrete valuation v and a

quadratic Hilbert symbol such that

(9) [−1, γ δ]v �= 1.

Hence if d �≡ 1 mod 8 we have r2(K2F) = e2. If d ≡ 1 mod 8 the number of δ’s (positive
or negative) in each residue class ±1 mod 4 is 2t−1. Hence

2r2(K2F)+1 = 2e2 , r2(K2F) = e2 − 1.

Moreover since the symbol [−1, γ δ]v that satisfies (9) is quadratic, we have
e4 � r2(K2F). The proof is complete. ��

Corollary 8.
∣∣(K2OF )2

∣∣ � 2 unless d = −1, −2, −p or −2p, p ≡ ±3 mod 8 a prime,
in which case |K2OF | is odd.

Proof. |K2OF | odd is equivalent in virtue of Theorem 4 to t = 1, 2 /∈ NF . ��

Corollary 9. If d ≡ 1 mod 8, then
∣∣(K2OF )2

∣∣ � 4 unless d = −p (p ≡ −1 mod 8
a prime) or d = −pq (p ≡ −q ≡ 3 mod 8 primes), in which case (K2OF )2 = Z/2Z.

Proof.
∣∣(K2OF )2

∣∣ < 4 implies e2 = 0 or 1. The first case is excluded by Corollary 8, the
second case gives t = 1, 2 ∈ NF or t = 2, 2 /∈ NF . Together with d ≡ 1 mod 8
this condition is equivalent to d = −p, p ≡ −1 mod 8 a prime or d = −pq, p, q
primes satisfying p ≡ −q ≡ 3 mod 8. However by (7) e4 = 0, hence in these cases
(K2OF )2 = Z/2Z. ��
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Added in proof. In view of recent results of B. Mazur and A. Wiles, and
J. Hurrelbrink it can be deduced from Corollary 5 that K2OF is generated by symbols
iff d = 2, 5 or 13.
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A class of algebraic numbers

To Władysław Narkiewicz on his sixtieth birthday

Abstract. It is shown that a nonnegative real number is aK-number in the sense of Korec [2] if and
only if it is an algebraic integer not less in absolute value than any of its conjugates.

I. Korec [2] has introduced a class of K-numbers defined as follows.
AK-system is a vector 〈α1, . . . , αm〉 ∈ Rm+ such that for all i � m and j � m we have

(1) αiαj =
m∑
k=1

cijkαk, where cijk ∈ N0,

(R+ is the set of positive real numbers, N0 the set of nonnegative integers);
α is a K-number if there exists a K-system 〈α1, . . . , αm〉 such that

α =
m∑
k=1

akαk, ak ∈ N0.

It follows that α ∈ R+ ∪ {0}.
Korec proved that all K-numbers are algebraic integers and asked several questions

about them, e.g., if 3 −√
2 is a K-number. The following characterization of K-numbers

allows one to decide whether a given algebraic integer is a K-number.

Theorem. A nonnegative real number is a K-number if and only if it is an algebraic
integer and it is not less in absolute value than any of its conjugates.

The proof presented here depends only on Dirichlet’s approximation theorem.

Lemma 1. If

(2) α =
m∑
k=1

akαk, where 〈α1, . . . , αm〉 is a K-system, ak ∈ N0

then α is an algebraic integer and for each l ∈ N we have

(3) αl =
m∑
k=1

aklαk, akl ∈ N0.
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Proof. The formula (1) shows that αi is a characteristic root of the matrix (cijk)jk . Thus αi
is a zero of a polynomial over Z with the leading coefficient ±1, hence αi is an algebraic
integer for all i � m and so is α by (2).

To prove (3) we proceed by induction on l. For l = 1, (3) follows from (2) with
akl = ak . Assume that (3) holds for an exponent l. Then by (2) and (1)

αl+1 =
( m∑
i=1

aiαi

)( m∑
j=1

ajlαj

)
=

m∑
i,j=1

(aiajl)αiαj

=
m∑

i,j=1

aiajl

m∑
k=1

cijkαk

and (3) holds for the exponent l + 1 with

ak,l+1 =
m∑

i,j=1

aiajlcijk. ��

Lemma 2. Let k1, k2 ∈ N0,

fj (x) =
{
x + aj for j � k1,

x2 + ajx + bj for k1 < j � k1 + k2,

where aj ∈ R+, bj ∈ R+ and let

k1+k2∏
j=1

fj (x) =
l∑
λ=0

Aλx
l−λ.

Then A0 = 1 and for λ < l we have

(4) 0 <
Aλ+1

Aλ
�
k1+k2∑
j=1

max{aj , bj /aj },

where here and below maximum applies only to terms that are defined.

Proof. We proceed by induction on k2. For k2 = 0, (4) follows from the inequality

τλ+1(a1, . . . , ak1) � τλ(a1, . . . , ak1)(a1 + . . .+ ak1),

where τλ is the λ-th fundamental symmetric function. Assume that (4) holds for arbitrary
k1, and k2 replaced by k2 − 1 (k2 � 1). Thus

k1+k2−1∏
j=1

fj (x) =
m∑
μ=0

Bμx
m−μ,

where

0 <
Bμ+1

Bμ
�
k1+k2−1∑
j=1

max{aj , bj /aj }.
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Thus l = m+ 2 and putting k1 + k2 = κ we have

A0 = 1, A1 = B1 + aκ, Aλ = Bλ + aκBλ−1 + bκBλ−2 (2 � λ � l − 2),

Al−1 = aκBl−2 + bκBl−3, Al = bκBl−2.

Hence

A1

A0
= B1

B0
+ aκ �

κ−1∑
j=1

max{aj , bj /aj } + aκ �
κ∑
j=1

max{aj , bj /aj }

A2

A1
� max

{B2

B1
,
B1

B0

}
+ bκ
aκ

�
κ−1∑
j=1

max
{
aj ,
bj

aj

}
+ bκ
aκ

c

�
κ∑
j=1

max
{
aj ,
bj

aj

}
and if 2 � λ < l

Aλ+1

Aλ
� max

{Bλ+1

Bλ
,
Bλ

Bλ−1
,
Bλ−1

Bλ−2

}
�
κ−1∑
j=1

max
{
aj ,
bj

aj

}

�
κ∑
j=1

max
{
aj ,
bj

aj

}
which completes the inductive proof. ��

Lemma 3. Let βj ∈ C and #βj < 0 (2 � j � k). For infinitely many ν ∈ N0 we have

#βν+1
j � 1

2 |βj |ν#βj (2 � j � k).

Proof. Let βj = |βj | exp(2πiϕj ) (2 � j � k). By the assumption we have

‖ϕj‖ > 1
4 (2 � j � k).

Here ‖x‖ = min
{{x}, 1 − {x}}, where {x} is the fractional part of x. By Dirichlet’s

approximation theorem there exist infinitely many ν ∈ N0 such that

‖ϕjν‖ � 1
2 ‖ϕj‖ − 1

8 (2 � j � k).

Hence

‖ϕj (ν + 1)‖ � ‖ϕj‖ − ‖ϕjν‖ � 1
2‖ϕj‖ + 1

8

which gives

cos 2πϕj (ν + 1) � cosπ(‖ϕj‖ + 1
4 ) =

1√
2
(cosπ‖ϕj‖ − sin π‖ϕj‖)

= 1√
2

cos 2π‖ϕj‖
cosπ‖ϕj‖ + sin π‖ϕj‖ � 1

2

#βj
|βj | ,
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and thus

#βν+1
j = ‖βj‖ν+1 cos 2πϕj (ν + 1) � 1

2 |βj |ν#βj (2 � j � k). ��
Lemma 4. Let α ∈ R+ be an algebraic number, α1 = α, α2, . . . , αn be all its conjugates.
If α � |αi | (1 � i � n), then there exists a positive integer e such that for all i either
αe > |αei | or αe = αei .
Proof. Put

β =
n∏
i=1|αi |=α

α2
i .

We have β ∈ R+, because in the above product every non-real αi appears together with
its complex conjugate. Hence we have

β =
n∏
i=1|αi |=α

|αi |2 = αe, e = 2#{1 � i � n : |αi | = α}.

On the other hand, if σ is any isomorphism of Q(α1, . . . , αn) we have

αe � |ασ |e
and

αe = |ασ |e
implies

β = αe =
∣∣∣∣ n∏
i=1|αi |=α

(ασi )
2
∣∣∣∣ = |βσ |.

Since |ασi | � α, it follows that |ασi | = α whenever |αi | = α and thus

{αi : |αi | = α} = {ασi : |αi | = α}, β = βσ . ��
Remark. This lemma follows easily from a theorem of Boyd [1], however, the above proof
is shorter than Boyd’s proof.

Lemma 5. Let α, α1, . . . , αn have the meaning of Lemma 4. If α > 1, α � |αi |
(1 � i � n), then there exist positive integers l and L such that for each i

(5) either αl − L > |αli − L| and #(αli − L) < 0 or αli = αl.
Proof. Using Lemma 4 and replacing, if necessary, α by αe, and n by the number of
conjugates of αe, we may assume that n > 1, α > |αi | (2 � i � n). Since also α > 1,
there is a positive integer l such that(

α

max
2�i�n

|αi |
)l
> 4 and αl � 8.
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Then

1

2

(
αl − max

2�i�n
|αi |l
)
− max

2�i�n
|αi |l > α

l

8
� 1

and there exists a positive integer L such that

1

2

(
αl − max

2�i�n
|αi |l
)
> L > max

2�i�n
|αi |l .

The numbers l and L satisfy the conditions of the lemma, because for each i > 1

αl − L > L+ max
2�i�n

|αi |l � |αli − L|

and

#(αli − L) = #αli − L � max
2�i�n

|αi |l − L < 0. ��

Proof of the Theorem. We begin by proving the necessity of the condition.
Assume that α is a K-number and (2) holds. By Lemma 1, α is an algebraic integer.

Suppose thatα is less in absolute value thanασ , whereσ is an embedding of Q(α1, . . . , αm)

into C. Clearly α �= 0. Choose l so large that( |ασ |
α

)l
> max

1�k�m
|ασk |
αk
.

Then from (3) we get a contradiction. Indeed,

(ασ )l =
m∑
k=1

aklα
σ
k

and since α �= 0, at least one akl is positive, hence it follows that

|ασ |l �
m∑
k=1

akl |ασk | <
m∑
k=1

aklαk

( |ασ |
α

)l
= αl
( |ασ |
α

)l
= |ασ |l .

The obtained contradiction shows that α � |ασ | for all embeddings σ of Q(α) into C.

We proceed to prove the sufficiency of the condition. Let α1 = α, α2, . . . , αn be all the
conjugates of α. Assume that α is an algebraic integer and α � |αi | (1 � i � n). If n = 1,
α clearly is a K-number. If n > 1, we have α �= 1 and since α < 1 would imply

0 <

∣∣∣∣ n∏
i=1

αi

∣∣∣∣ < 1,

which contradicts
n∏
i=1
αi = NQ(α)/Qα ∈ Z, we have α > 1. By Lemma 5 there exist

c

positive integers l and L such that for each i � n, (5) holds. Let β = αl − L, β2, . . . , βk
be all conjugates of β different from it. By (5) we have

β > |βj | and #βj < 0 (2 � j � k).
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We may assume without loss of generality that βj is real for j � r , and complex for
r < j � r + 2s = k, βr+s+j = βr+j . By Lemma 3 there exists a ν ∈ N such that

(6) #βνj � 1
2 |βj |ν−1#βj < 0 (2 � j � k)

and, moreover,

(7)

(
β

max
2�j�k

|βj |
)ν

�
r+s−1∑
j=1

max

{
2,

|βj+1|
−#βj+1

}
.

Now we apply Lemma 2 with k1 = r − 1, k2 = s
fj (x) = x − βνj+1 (1 � j � r − 1),

fj (x) = (x − βνj+1)(x − βνj+s+1)

= (x2 − 2#βνj+1x + |βj+1|2ν
)

(r � j � r + s − 1).

By (6), the assumptions of Lemma 2 are satisfied and we infer that

r+s−1∏
j=1

fj (x) =
k−1∑
λ=0

Aλx
k−1−λ,

where A0 = 1 and for λ < k − 1

(8) 0 <
Aλ+1

Aλ
�
r+s−1∑
j=1

max

{
−2#βνj+1,

|βj+1|2ν
−2#βνj+1

}
.

However, by (6)

max

{
−2#βνj+1,

|βj+1|2ν
−2#βνj+1

}
� |βj+1|ν max

{
2,

|βj+1|
−#βj+1

}
,

hence by (7) and (8)

0 <
Aλ+1

Aλ
� βν.

It follows that all coefficients of the polynomial

F(x) = xk − (x − βν)
r+s−1∏
j=1

fj (x) =:
k−1∑
j=0

cj x
j

are nonnegative. On the other hand, since α is an algebraic integer, so is βν and

(x − βν)
r+s−1∏
j=1

fj (x) = NQ(β,x)/Q(x)(x − βν) ∈ Z[x].
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Therefore, cj ∈ N0 (0 � j < k),

(9) (βν)k =
k−1∑
j=0

cj (β
ν)j .

We shall show that the vector

〈1, α, . . . , αl−1, β, βα, . . . , βαl−1, . . . , βkν−1, βkν−1α, . . . , βkν−1αl−1〉
=: 〈γ1, . . . , γklν〉

is a K-system. Indeed, we have by (9)

αγi =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
γi+1 if i �≡ 0 mod l,

Lγi−l+1 + γi+l if i ≡ 0 mod l, i �= klν,
Lγklν−l+1 +

k−1∑
j=0
cj γjlν+1 if i = klν;

βγi =

⎧⎪⎨⎪⎩
γi+l if i � klν − l,
k−1∑
j=0
cj γjlν+l{(i−1)/ l}+1 if i > klν − l,

hence by induction on i + j :

αiβj is a combination of γp with coefficients in N0 for all i, j ∈ N0,

and thus γiγj is such a combination for all i, j � klν. It follows that α is a K-number. ��

Corollary 1. If α �= 0 is aK-number, it is an element of aK-system consisting of elements
of Z[α].

Proof. This follows from the construction of aK-system in the second part of the proof of
Theorem. ��

Corollary 2. If α, β are K-numbers then Q(α + β) = Q(α, β).

Proof. Let α1 = α, α2, . . . , αn be all the conjugates of α, β1 = β, β2, . . . , βp be all the
conjugates of β. By the Theorem, α � |αi |, β � |βj |, hence if α + β = αi + βj , we
have |αi | = α, |βj | = β. However, since α, β are real, we have also #αi = α, #βj = β,
thus αi = α, βj = β. This shows that [Q(α + β) : Q] = [Q(α, β) : Q], and since
α + β ∈ Q(α, β), it follows that Q(α + β) = Q(α, β). ��

Corollary 3. If α, β are K-numbers and αβ ∈ N, then there exists an e ∈ N such that
αe ∈ N, βe ∈ N.

Proof. Since αβ ∈ N, we have for every embedding σ of Q(α, β) in C: ασβσ = αβ, and
because by the Theorem α � |ασ |, β � |βσ |, it follows that α = |ασ |, β = |βσ |. By
Lemma 4 there exists an exponent e ∈ N such that αe = |ασ |e implies αe = (αe)σ , andc
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βe = |βσ |e implies βe = (βe)σ . Hence αe ∈ Q, βe ∈ Q and since α, β are positive
algebraic integers, Q can be replaced by N. ��

Remark. Corollaries 2 and 3 establish the conjectures made by Korec (cf. [3]).
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On values of the Mahler measure
in a quadratic field

(solution of a problem of Dixon and Dubickas)

To Robert Tijdeman at the occasion of his 60th birthday

For an algebraic number α, let M(α) be the Mahler measure of α and let M =
{M(α) |α ∈ Q}. No method is known to decide whether a given algebraic integer β
is in M. Partial results have been obtained by Adler and Marcus [1], Boyd [2]–[4],
Dubickas [6]–[8] and Dixon and Dubickas [5], but the problem has not been solved even
for β of degree two. The following theorem, similar to, but not identical with Theorem 9
of [5], is an easy consequence of [7].

Theorem 1. A primitive real quadratic integer β is in M if and only if there exists a
rational integer a such that β > a > |β ′| and a |ββ ′, where β ′ is the conjugate of β. If the
condition is satisfied, then β = M(β/a) and a = N(a, β), where N denotes the absolute
norm.

There remain to be considered quadratic integers that are not primitive. The following
theorem deals with the simplest class of such numbers.

Theorem 2. Let K be a quadratic field with discriminant Δ > 0, β, β ′ be conjugate
primitive integers of K and p a prime. If

(1) pβ ∈ M,

then either there exists an integer r such that

(2) pβ > r > p
∣∣β ′∣∣ and r |ββ ′, p /| r

or

(3) β ∈ M and p splits in K.

Conversely (2) implies (1), while (3) implies (1) provided either

(4) β > max

{
−4β ′,

(1 +√
Δ

4

)2
}

or

(5) p >
√
Δ.
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Remark 1. (2) implies β > pβ|β ′|/r � p.

Theorem 2 answers two questions raised in [5].

Corollary 1. For all primes p we have p 3+√
5

2 ∈ M if and only if either p = 2, or p = 5,
or p ≡ ±1 (mod 5).

Corollary 2. For every real quadratic fieldK there is an irreducible polynomial f ∈ Z[x],
basal in the sense of [5], such thatM(f ) ∈ K , but the zeros of f do not lie in K .

Corollary 3. In every real quadratic field K there are only finitely many integers pβ,
where p is prime, while β is primitive and totally positive, for which the condition pβ ∈ M
is not equivalent to the alternative of (2) and (3).

Proof of Theorem 1. Necessity. Let β = M(α), let f be the minimal polynomial of α
over Z, a > 0 its leading coefficient,D its degree, andα1, . . . , αD all its zeros. By Lemma 2
of [7] applied with d = 2,

(6) ββ ′ = a2
D∏
i=1

αi = (−1)Daf (0).

Moreover, by formula (3) of [7], D = 2s, where s is the number of i � D with |αi | > 1.
Without loss of generality we may assume that |αi | > 1 precisely for i � s. For some
η ∈ {1,−1} we have

(7)
s∏
i=1

αi = ηβ/a,

hence, by (6),

(8)
D∏

i=s+1

αi = ηβ ′/a,

which gives

(9) β > a >
∣∣β ′∣∣ .

Also, by (6),

(10) a |ββ ′.
Sufficiency. Assume the existence of an integer a satisfying (9) and (10) and consider

the polynomial

g(x) = ax2 − (β + β ′)x + ββ ′/a.
If g is not primitive, there exists a primep such thatp |a,p |β+β ′ andp |ββ ′/a. However,
then p2 |ββ ′ and β/p is a zero of the polynomial x2 − β+β ′

p
x + ββ ′

p2 belonging to Z[x],
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contrary to the assumption that β is primitive. Therefore, g is the minimal polynomial of
β/a over Z and β = M(β/a). Also,

(a) | (a2, aβ, aβ ′, ββ ′) | (a2, a(β + β ′), ββ ′) = (a),
hence

(a) = (a2, aβ, aβ ′, ββ ′) = (a, β)(a, β ′). ��
The proof of Theorem 2 is based on three lemmas.

Lemma 1. If an integer β of K is the Mahler measure of an algebraic number whose
minimal polynomial over Z has leading coefficient a, then a is the norm of an ideal of K .

Proof. In the notation of the proof of Theorem 1 (necessity part) we have (7) and (8).
Since ηβ ′/a is the only conjugate of ηβ/a, every automorphism of the splitting field of f
that sends an αi (i � s) to an αj (j > s) sends the set {α1, . . . , αs} onto {αs+1, . . . , αD}
(compare the proof of Lemma 2 in [7]). Hence {α1, . . . , αs} and {αs+1, . . . , αD} are blocks
of imprimitivity of the Galois group of f and the coefficients of the polynomials

P(x) =
s∏
i=1

(x − αi), P ′(x) =
D∏

i=s+1

(x − αi)

belong to a quadratic field, which clearly is K . Let the contents of P and P ′ be a−1 and
a′−1, where a and a′ are conjugate ideals of K . Since f is primitive, we have

(1) = cont f = cont(aPP ′) = (a)/aa′

and, since a > 0, a = Na. ��

Lemma 2. If the dash denotes conjugation in K , δ, ε are elements of K such that

δ > 1 > δ′ > −1/2,(11)

(1, δ) | ε, ε �= ε′,(12)

|ε − ε′| + 1 < 4
√
δ,(13)

while p is an ideal of K , then there exists γ ∈ K such that

(1, γ, δ) = (1, δ)

p
,(14)

|γ | < 2
√
δ,
∣∣γ ′∣∣ < 1 + δ′.(15)

Proof. Take an integer α of K divisible by p(1, δ)−1. Applying Theorem 74 of [9] with

a = (α)(1, δ)

p
, b = p

(1, δ)

we find an integer ω of K , such that (α, ω) = a, hence

(16)
(

1,
ω

α

)
= (1, δ)

p
.



C10. Mahler measure in a quadratic field 275

Taking

b =
⌊(ω
α
− ω

′

α′
)
/(ε − ε′)+ 1

2

⌋
, a =

⌊
ω′

α′
− bε′ + 1

2

⌋
we find

(17)
∣∣∣ω
α
− ω

′

α′
− b(ε − ε′)

∣∣∣ � |ε − ε′|
2

,

∣∣∣ω′
α′

− a − bε′
∣∣∣ � 1

2
< 1 + δ′,

hence on addition, by (13),

(18)
∣∣∣ω
α
− a − bε

∣∣∣ � |ε − ε′|
2

+ 1

2
< 2

√
δ

and for γ = ω/α − a − bε, (14) follows from (16), while (15) from (17) and (18). ��

Lemma 3. If, in the notation of Lemma 2, p is a prime ideal dividing a rational prime p,
then the conclusion of the lemma holds, provided

(19) p >
N(1, δ)

√
Δ

min
{
N(1, δ), 2

√
δ(1 + δ′)} .

Proof. Let the ideal (1, δ) considered as a module over Z have the basis [η, ζ ]. The system
of inequalities

|c| < p,
∣∣∣c ω
α
− aη − bζ

∣∣∣ < 2
√
δ,

∣∣∣c ω′
α′

− aη′ − bζ ′
∣∣∣ < min

{
N(1, δ)

2
√
δ
, 1 + δ′

}
has a non-zero integer solution by Minkowski’s theorem (Theorem 94 of [9]), since by
Theorem 76 of [9], which applies also to fractional ideals (see §31, formula (47))

|ηζ ′ − η′ζ | = N(1, δ)√Δ < min
{
N(1, δ), 2

√
δ(1 + δ′)}p.

If in this solution we had c = 0 it would follow that aη + bζ �= 0 and

N(1, δ) �
∣∣N(aη + bζ )∣∣ < 2

√
δ
N(1, δ)

2
√
δ

= N(1, δ),

a contradiction. Therefore c �= 0, c �≡ 0 (mod p) and γ = cω
α
− aη− bζ has the required

properties. ��

Proof of Theorem 2. Assume first that (1) holds and let f be the minimal polynomial of
α over Z, a > 0 its leading coefficient, and D its degree. By (6) and (7) with β replaced
by pβ, we have

p2ββ ′ = (−1)Daf (0),(20)

pβ > max
{
a, |f (0)|} � min

{
a, |f (0)|} > p|β ′|.(21)

Let pμ ‖a, pν ‖ββ ′. If μ = 0 or μ = ν + 2, then (2) follows with r = a or r = |f (0)|,
respectively. Therefore, assume

(22) 1 � μ � ν + 1.
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Let a = pμb. By (20) and (22),

pμ−1b |ββ ′,
while by (21),

β > pμ−1b > |β ′|.
By Theorem 1 we have β ∈ M. If ν > 0, then p |ββ ′ and since β is primitive, p splits
in K . If ν = 0 we have, by (22), μ = 1 and since, by Lemma 1, a is the norm of an ideal
of K , p splits in K . This proves (3).

In the opposite direction, (2) implies pβ = M(pβ/r) ∈ M. Indeed, the minimal
polynomial of pβ/r is rx2 −p(β + β ′)x + ββ ′/r , where (r, β + β ′, ββ ′/r) = 1, since β
is primitive (see the proof of Theorem 1). Assume now that (3) holds. By Theorem 1 we
have β = M(β/b), where

(23) b ∈ N, β > b > |β ′|, b = N(b, β).
Replacing b by β|β ′|/b, if necessary, we may assume

(24) b �
√
β|β ′|.

First, assume (4). Since β is primitive all prime ideal factors of (b, β) are of degree one
and no two of them are conjugate. Hence there exists c ∈ Z such that

(25) ω := Δ+√
Δ

2
≡ −c (mod (b, β)).

We put δ = β/b, ε = (c + ω)/b. In order to apply Lemma 2 we have to check the
assumptions. Now, (11) follows from (23), (24) and β > −4β ′, (12) follows from (25),
and (13) is equivalent to the inequality

√
Δ/

√
b +√

b < 4
√
β.

The left hand side considered as a function of b on the interval [1, β] takes its maximum
at an end of the interval. We have

√
Δ + 1 < 4

√
β by (4) and

√
Δ/

√
β + √

β < 4
√
β

since β � (1 +√
Δ)/2.

The assumptions of Lemma 2 being satisfied there exists γ ∈ K such that

(26) (1, γ, δ) = (b, β)

(b)p
= 1

(b, β ′)p
, |γ | < 2

√
δ, |γ ′| < 1 + δ′.

Let us consider the polynomial

P(x) = x2 + γ x + δ.
The discriminant of P , γ 2 − 4δ, is negative, hence P is irreducible over the real field K ,
moreover its zeros are equal to

√
δ > 1 in absolute value. On the other hand, the zeros of

the polynomial

P ′(x) = x2 + γ ′x + δ′
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are less than 1 in absolute value. This is clear if γ ′2 − 4δ′ < 0, since |δ′| < 1 and if
γ ′2 − 4δ′ � 0 the inequality

|γ ′| +
√
γ ′2 − 4δ′

2
< 1

follows from the condition |γ ′| < 1 + δ′. Taking for α a zero of P we obtain, by (23)
and (26),

M(α) = M(PP ′)
N cont P

= δN(b, β ′)Np = β

b
· bp = pβ.

Now, assume (5) and let again δ = β/b. In order to apply Lemma 3 we have to
check (19).

Consider first the case

(27) β �∈
{

1 +√
4e + 1

2
: e ∈ N

}
.

Then

(28) β − |β ′| � 2, β � 1 +√
2

and by (24),

R := 2
√
δ(1 + δ′)
N(1, δ)

= 2

√
β

b
(b + β ′) � 2

√
β
(

4
√
β|β ′| + sgn β ′ 4

√
|β ′|3/β).

If β ′ > 0 we clearly have R > 1, if β ′ < 0 we have, by (26),

R = 2 4
√
β|β ′|(√β −√|β ′|) � 4 4

√
β|β ′|/(√β +√|β ′|).

If
√|β ′| � 1

2

√
β, it follows that

R � 4
√
β|β ′|√β > 1,

while if
√|β ′| > 1

2

√
β, it follows that

R >
4√
2

√
β

2
√
β

= √
2 > 1;

thus (27) implies

min
{
N(1, δ), 2

√
δ(1 + δ′)} = N(1, δ)

and (19) follows from (5).
Consider now the case

β = 1 +√
4e + 1

2
.

By (23), b2+b > e > b2−b, b | e, which implies e = b2. On the other hand, 4e+1 = f 2Δ
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for some f ∈ N. The inequality

p >
√
Δ =

√
4b2 + 1

f

implies by a tedious computation

p � 2b + 1

f
>

√
Δ

2
√
β
b
(b + β ′)

= N(1, δ)
√
Δ

min
{
N(1, δ), 2

√
δ(1 + δ′)} ,

hence (19) holds.
The assumptions of Lemma 3 being satisfied there exists γ ∈ K satisfying (26) and

arguing as before we obtain

pβ = M(α),
where α is a zero of x2 + γ x + δ. ��

Proof of Corollary 1. For β = (3 + √
5)/2 the condition (4) is satisfied. Now, (2) is

fulfilled by p = 2 only, and (3) is fulfilled by p = 5 and p ≡ ±1 (mod 5) only. ��

Proof of Corollary 2. Take a totally positive unit ε > 1 ofK and a prime p > ε that splits
in K . Then by Theorem 2, pε ∈ M. Assume that the basal irreducible polynomial f of
pε has all its zeros in K . Hence

f (x) = a
(
x ± pε

a

)(
x ± pε

′

a

)
, pε > a > pε′, a ∈ N

and the condition p2/a ∈ Z together with p > ε imply a = p. However, for a = p, f is
not primitive. ��

Example 1. For K = Q(
√

2) we can take

pε = 21 + 14
√

2 = M(7x4 + 2x3 + 41x2 + 22x + 7).

Proof of Corollary 3. There are only finitely many totally positive integers β ofK , which
are Perron numbers, but do not satisfy (4). ��

Remark 2. By a more complicated argument one can show that for β totally positive, (3)
implies (1) unless

4
√
Nβ +

√
Δ

4
√
Nβ

� 4
√
β and p < 1 + 1

2
√
β

(
4
√
Nβ +

√
Δ

4
√
Nβ

)
.

Example 2. Theorem 2 does not allow us to decide whether 1+√
17 ∈ M. This question

is open, as is a more general question, whether (3) implies (1).
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Polynomials in one variable
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Commentary on D: Polynomials in one variable

by Michael Filaseta

D1. If q0 = (1 +√
5)/2, then 1, q2

0 and q3
0 form a three term arithmetic progression.

K. Zarankiewicz posed the problem of determining whether an irrational number q exists
such that the infinite sequence 1, q, q2, q3, . . . contains four numbers that are in arithmetic
progression. In this paper, Schinzel resolves the problem by showing that for any complex
numberq, if four numbers from the sequence 1, q, q2, q3, . . . are in arithmetic progression,
then the four numbers are equal and are either all 0 or a root of unity.

The problem of Zarankiewicz can be found, for example, in [43].
For integers a, b and c satisfying 0 � a < b < c and q �= 0, observe that qa , qb

and qc are in arithmetic progression precisely when q is a root of xc−a − 2xb−a + 1.
Schinzel consequently looks at the factorization of f (x) = xn − 2xm + 1. It is not
difficult to see that both α and 1/α are roots of f (x) if and only if α is a root of xd − 1
where d = gcd(n,m). A method of W. Ljunggren in [23] then applies to determine the
factorization of f (x)/(xd − 1). Schinzel thus obtains the factorization of f (x)/(xd − 1)
given in Theorem 1.

The factorization of f (x)/(xd−1), as described above, is of significance to the problem
of Zarankiewicz as whenever qa , qb, qc and qd (with 0 � a < b < c < d integers) form a
four term arithmetic progression and q �= 0, the number q must simultaneously be a root of
xc−a−2xb−a+1 and xd−b−2xc−b+1. Knowing the factorization of f (x)/(xd−1) allows
Schinzel to determine the precise value of gcd

(
xc−a − 2xb−a + 1, xd−b − 2xc−b + 1

)
. In

particular, if q is a root of unity, then qc−a = qb−a = qd−b = qc−b = 1 and, consequently
qa = qb = qc = qd . If, on the other hand, q is not a root of unity, then one is led to a
contradiction as a, b, c and d will not themselves form a four term arithmetic progression
and Theorem 2 implies the only common roots of xc−a−2xb−a+1 and xd−b−2xc−b+1
are gcd(c − a, b − a, d − b, c − b) roots of unity.

D2. This paper sets a foundation for future investigations done by Schinzel, in partic-
ular for his work on trinomials and his sequence of papers on the reducibility of lacunary
polynomials. The paper is an initial attempt at describing effectively the canonical fac-
torization of polynomials with fixed coefficients and variable exponents by associating
each factorization with a corresponding factorization of a polynomial from a finite list
of polynomials in several variables. The canonical factorization is not of the polynomials
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themselves but rather come in two forms. Underlying the literature on this subject and
the forms of the canonical factorizations obtained is some important notation. These are
explained thoroughly in Schinzel’s own work. In particular, the reader can consult D4 or
Schinzel’s book [37]. A brief, but not completely adequate, explanation is thatKF denotes
the polynomial F with every (multivariate) cyclotomic factor removed, and LF denotes
the polynomial F with every (multivariate) self-inverse factor removed. The polynomials
KF and LF should also be normalized to have the same leading coefficient as F . This pa-
per concerns the canonical factorization ofKF which in its most general form has proved
to be more difficult to handle than the canonical factorization of LF . The latter is given a
satisfactory answer by Schinzel in D4; the former is not given a satisfactory answer until
30 years later, with additional assumptions, in D12.

The paper contains a conjecture concerning the factorization of KF which motivates
much of Schinzel’s later work on the reducibility of lacunary polynomials. The present
paper gives a partial answer to the conjecture in the case that the number of variables
involved is � 2 and the polynomials considered are over the field of rational numbers.
This leads to an application to the factorization ofK(axn+bxm+c), that is a determination
of how axn+bxm+c factors after its cyclotomic factors are removed. In addition, Schinzel
describes the cyclotomic factors of the trinomials axn+bxm+c.As indicated, D2 considers
the case where the coefficients of the polynomials are fixed and the exponents are variable.
The reverse situation, with fixed exponents and variable coefficients, is considered in later
papers; in particular, the factorization of trinomials in this manner is done rather thoroughly
in his works D10, D13, D14.

Theorem 5 is a consequence of the main result in the paper combined with Capelli’s
theorem and gives information about the factorization of polynomials of the formxn+f (x),
which later played a crucial role in his finding a connection between the factorization
of xn + f (x) and covering systems of congruences in D3. An alternative approach for
establishing Theorem 5 has been found by M. Filaseta, K. Ford and S. Konyagin in [14].

D3. Using the notation of D0(f ) and e0 (later below) as given in Lemma 4, one can
extend Theorem 1 to include the additional equivalent statement:

A′. For every polynomial f (x) with integer coefficients such that f (0) �= 0, f (1) �= −1
and f (x) �= 1, there exists an integer n > max{D0(f ), deg f } such that xn + f (x) is
irreducible over the rationals.

In other words, each of A, A′ and B are equivalent. To see this, note that A clearly
implies A′ so that, by Theorem 1, one needs only show that A′ implies A. Suppose then
that A′ holds. Fix f (x) and n as in A′. The proof that B implies A begins by showing that
the conditions in A must hold if f (x) is of the form 4h(x)4. Therefore, we consider only
the case that f (x) is not of this form. Furthermore, we define the setM as in the sentence
containing the display (31). As noted M is finite. We take M ′ to be the product of all μ
where (μ, α) ∈ M . In particular, for all positive integers m and m′, if ζm′ is a root of
xm+ f (x), thenm′ dividesM ′. We consider two cases depending on whether (n, e0) = 1
or (n, e0) �= 1.

If (n, e0) = 1, we appeal to Lemma 4. As both xn + f (x) and K(xn + f (x)) are
irreducible, we deduce that xn + f (x) = K(xn + f (x)). In particular, xn + f (x) cannot
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have a cyclotomic factor. For any positive integer t , we deduce that xn+tM ′e0 + f (x) does
not have a cyclotomic factor. Hence, Lemma 4 implies that xn+tM ′e0 +f (x) is irreducible
for every positive integer t , and A follows.

In the case that (n, e0) �= 1, we obtain a contradiction by showing that in fact xn+f (x)
is reducible. As e0 �= 1, there is a prime p dividing e0 and we can write f (x) = −w0(x)

p

for some polynomial w0(x) ∈ Z[x]. Further, n = pv for some positive integer v. Thus,
xn + f (x) can be written as a product of xv − w0(x) and

w1(x) = x(p−1)v + x(p−2)vw0(x)+ . . .+ xvw0(x)
p−2 + w0(x)

p−1.

As pv = n > deg f = p · degw0, we see that deg(xv − w0(x)) > 0. On the other hand,
if degw1 = 0, then there is a constant c ∈ Z such that

xpv − w0(x)
p = c(xv − w0(x)

)
,

which implies degw0 = v and w0(x) is monic. Setting d = deg(xv −w0(x)), we see that
the left side above has degree (p − 1)v + d and the right side has degree d. This leads to
v = 0 and w0(x) = 1, contradicting that f (1) �= −1. This completes the argument that
A′ can be added as an additional equivalence in Theorem 1.

The odd covering problem, that is the problem of finding a finite covering system of
the integers consisting of distinct odd moduli > 1, goes back over 40 years and has an
interesting history. P. Erdős and J. Selfridge after discussing the problem had different
opinions about whether such a covering should exist. Erdős felt that such a covering
probably does exist and offered $25 to anyone who could prove him wrong, that is for a
proof that no such covering exists. Selfridge thought (at the time) that no such covering
exists and offered $300 for an explicit example of such an odd covering (an example
that would demonstrate that he was wrong). No monetary award was offered for a non-
constructive proof that there is an odd covering. Selfridge over the years raised the amount
he was willing to give for an explicit example of an odd covering. In an email message
dated November 16, 1998, to M. Filaseta, Selfridge raised the offer to $2000. The problem
remains open.

Turán’s conjecture, as mentioned in the introduction, is to show that for every poly-
nomial f (x) ∈ Z[x], there is a polynomial g(x) ∈ Z[x] which is irreducible over the
rationals, satisfies deg g � deg f , and is close to f (x) in the sense that the sum of the ab-
solute values of the coefficients of f (x)−g(x) is bounded by an absolute constant, say C.
This form of the conjecture remains open. However, in D5, Schinzel shows the existence
of such a g(x) with C = 3 provided one removes the requirement that deg g � deg f .
A natural first attempt at constructing such a g(x) is to consider the polynomials of the
form xn + f (x) or of the form xn + f (x) ± 1 with the hope of possibly showing that
one of these must always satisfy the requirements imposed on g(x). The present paper
shows that if one can get away with taking g(x) in one of these forms, even without the
requirement that deg g � deg f , then condition B in Theorem 1 holds and that this in turn
implies that there is an odd covering of the integers. Given the long history with the odd
covering problem, this paper speaks to the difficulty of one likely being able to determine
if g(x) can be taken to be of one of the forms xn + f (x) and xn + f (x)± 1.
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With the requirement that deg g � deg f , Turán’s conjecture has been verified with
C = 4 for all polynomials f (x) ∈ Z[x] of degree � 24 by A. Bérczes and L. Hajdu in the
two papers [2] and [3].

The example at the beginning of the paper of an f0(x) ∈ Q[x] for which xn + f0(x)

has a cyclotomic factor for every positive integer n can be demonstrated by considering
when each of the cyclotomic polynomials Φm(x) divides f0(x) where m runs through
the divisors > 1 of 12. This example was already noted in D2. Here, 12f0(x) ∈ Z[x].
A similar example, say f1(x), with different cyclotomic factors, is shown to exist with
4f1(x) ∈ Z[x] by M. Filaseta in [13]. There one can also find a different exposition of the
connection between the irreducibility of xn + f (x) and the odd covering problem.

Schinzel’s problem suggested by D in this paper, to determine whether in every finite
covering system there must exist two distinct moduli m and n with m dividing n, has
become a popular open problem associated with finite covering systems; see, for example,
Richard Guy’s book [19], Section F13 (this is an expanded third edition, but the problem
appears in the same section in the second edition).

The paper ends with a comment that Selfridge had an argument for C implying D.
We note that this is fairly simple. Suppose aj (modmj), for j = 1, 2, . . . , r , is a finite
covering system that does not satisfy the conditions in D. Write mj = 2ej m′

j with m′
j

odd. Then them′
j are distinct (otherwise, some modulus would divide another). It follows

that either aj (modm′
j ), for j = 1, 2, . . . , r , is a finite odd covering of the integers with

moduli > 1, and C does not hold, or for some j , we have m′
j = 1 and ej � 1. In the

latter case, we may suppose j = 1. Then we claim aj (modm′
j ), for j = 2, . . . , r , is a

finite odd covering of the integers with moduli > 1. Indeed, if x ≡ a1 (modm1), then
x +m′

2 · · ·m′
r �≡ a1 (modm1) which implies there must be some j ∈ {2, . . . , r} such that

x ≡ x +m′
2 · · ·m′

r ≡ aj (modm′
j ).

D4, D6. To put this work in perspective, consider that there was at the time a bit
of literature concerning classes of lacunary polynomials having a few prescribed coeffi-
cients for which the factorization was rather well understood. More than a decade earlier,
E. S. Selmer in [42] established that xn−x−1 is irreducible for all integers n > 1 and that
xn+x+1 is irreducible for n � 1 unless n > 2 and n ≡ 2 (mod 3) (when it is divisible by
x2 + x + 1). Shortly afterwards, H. Tverberg in [46] generalized the approach of Selmer
to handle the factorization of polynomials of the more general form xn ± xm ± 1; and
at the same time, W. Ljunggren in [23] worked out an elegant approach to determine the
factorization of polynomials of the form xn±xm±1 and xn±xm±xk±1. Later, in [24],
Ljunggren also determined with the same method the factorization of xn ± xm ± xk ± p,
where p is an arbitrary prime. In particular, in each case, the polynomial is irreducible
unless it has a cyclotomic factor. Schinzel D1 himself had already taken advantage of
Ljunggren’s approach to obtain information about the factorization of xn − 2xm + 1, and
A. T. Jonassen [22] had applied Ljunggren’s approach to the trinomials xn±xm±4. We note
that some time later, W. H. Mills in [26] observed that although Ljunggren’s approach was
correct, the paper that developed the approach had an error. Ljunggren incorrectly claimed
that a quadrinomial xn ± xm ± xk ± 1 removed of its cyclotomic factors is either 1 or
irreducible. Mills himself used Ljunggren’s approach to obtain a correct result, classifying
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the cases where the quadrinomials removed of their cyclotomic factors are reducible. Also,
later, M. Filaseta and I. Solan in [17] pointed out Ljunggren’s approach easily applies to
the quintics f (x) = xn+ xm+ xk + x$+ 1 allowing one to show that Lf , in the notation
of D4, is always 1 or irreducible in this case. The ability to determine when particular
classes of polynomials, containing fixed coefficients and variable exponents, are reducible
was underway at the time of Schinzel’s work in D4, but only with regard to specific cases
where the coefficients were few and small in absolute value.

This remarkable paper of Schinzel’s went far beyond what was done in the above papers
and got to the core of these investigations. By taking, for example, F(x1, x2, . . . , xk) =
a0 + a1x1 + . . .+ akxk in Theorem 2 in D4, where a0, a1, . . . , ak are arbitrary fixed non-
zero integers, one can effectively determine a precise classification of the positive integers
n1 < . . . < nk for which Lf is reducible and, in these cases, the factorization of Lf into

a product of irreducibles, where f (x) =
k∑
j=0
ajx

nj . Thus, in theory, any result similar to

the above stated theorems can be obtained, at least when dealing with the factorization
of Lf . Some of the results above address instead the issue of factoring Kf , but a look
at these results shows that in those instances it is not difficult to analyze the contribution
cyclotomic factors make to the factorization of f . Indeed, in those instances, one can
deduce the cyclotomic factors through consideration of f (x)−xnkf (1/x). In general, it is
more difficult to obtain information about the factorization ofKf . For a different approach
to obtaining the above consequence of Theorem 2 see [12].

Note that the interesting corollary to Theorem 2 in D4 is improved in a later paper by
Schinzel on the subject, specifically in the corollary to Lemma 1 in D7. Further investiga-
tions into this subject can be found in the commentary for D7.

D5, D7, D8, D12. A discussion of Turán’s problem and the implication of D5 already
appears in the commentary for D3. The result achieved by Schinzel in D5 remains the
strongest published result toward the validity of Turán’s conjecture for arbitrary f ∈ Z[x].

In D7, Schinzel improves on work in D2 concerning the factorization of KF . In par-
ticular, D7 describes the canonical factorization for KF(xn1

1 , . . . , x
nk
k ) (see Theorem 2).

This result is extended to the field of coefficients being any finitely generated field in
Theorem 43 of Schinzel’s book [37]. In D7, Schinzel also obtains information about the
number of irreducible factors, counted with multiplicity, of KF based on the now clas-
sical estimates for roots off the unit circle in the complex plane by P. E. Blanksby and
H. L. Montgomery [4], by C. J. Smyth [44] and (in an added note at the end of the paper)
by E. Dobrowolski [9]. This subject has been explored further, specifically by Schinzel
in [33] and in [35], as well as by C. Pinner and J. Vaaler in [27], [28] and [29]. Also,
note that D7 obtains information about the factorization of non-reciprocal quadrinomials.
The factorization of non-reciprocal quadrinomials is handled in detail in [36] (see also
Theorem 78 of Schinzel’s book [37]).

In D8, Schinzel’s main theorem bounds the number of reciprocal non-cyclotomic fac-
tors of an arbitrary polynomial f ∈ Z[x] under conditions which hold, for example,
provided the coefficients are not too large and f has one term that has degree sufficiently
large compared to the degrees of its other terms. In particular, this result implies that the
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polynomial
n∑
j=0
x2j has no reciprocal non-cyclotomic factors. He uses this to resolve a

problem posed by K. Mahler in [25].
In D12, Schinzel shows how work of E. Bombieri and U. Zannier (see Schinzel’s

book [37] and, in particular, the appendix written by Zannier there) implies improvements
on various of the prior results in his serious of papers on the reducibility of lacunary
polynomials. In particular, the canonical factorization of KF(xn1 , . . . , xnk ) is dealt with
in a rather general form for the first time and in an elegant way here. One nice example
of an improvement in prior work is Corollary 2 which (even in its previous form) implies
that one can typically expect that a lacunary (or sparse) reducible polynomial removed
of its cyclotomic factors is irreducible. To put the result in a more precise perspective,
fix integers A � 2 and r � 3 and consider all polynomials f in Z[x] with coefficients
in absolute value bound by A, with f (0) �= 0, with f consisting of � r terms and with
deg f � N . Then as N tends to infinity, the density of such f having a cyclotomic factor
(and even simply divisible by x−1) is positive whereas Corollary 2 is asserting in a strong
sense that the density of such f for which Kf is reducible is zero. It follows then that
a typical lacunary reducible polynomial not divisible by x is divisible by a cyclotomic
polynomial.

D9.This problem concerns a problem of Rényi dating back to around 1949.The problem
itself has an illusion of seeming like it should have a simple solution, but the problem is
apparently quite difficult and is resolved for the first time, after approximately 40 years, in
this paper. In its simplest form, the problem asks whetherQk tends to infinity whereQk is
defined as the minimum number of terms (by definition, non-zero) that can appear in the
square of a polynomial with exactly k terms. Here, one can take the polynomials to have
real coefficients, though other variations of the problem are possible. Schinzel’s argument
that

Qk >
log log k

log 2
,

gives not only the strongest lower bound on Qk but also still provides the only published
argument for a lower bound that tends to infinity with k.

ThatQk can be < k is not even completely obvious. The simple example

w(x) = 1 + 2x − 2x2 + 4x3 + 4x4

shows that w(x)2 can have the same number of terms as w(x). Observe that if one takes

h(x) = w(x)2 = 1 + 4x + 28x4 + 32x7 + 16x8,

then it is clear that w(x) ·w(x7) has 5 · 5 = 25 terms whereas h(x) · h(x7) has fewer than
25 terms (since the product of the constant term of either h(x) or h(x7) times the term
of degree 7 in the other combine to give one term of degree 7 with coefficient 36 in the
product). Thus, w(x) ·w(x7) is an example of a polynomial whose square contains fewer
terms than itself. One can check that this polynomial has 25 terms and its square has 21
terms. Examples involving smaller values of k exist. D. Coppersmith and J. Davenport
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in [8] give the example

(125x6 + 50x5 − 10x4 + 4x3 − 2x2 + 2x + 1)(−110x6 + 1),

which is a polynomial of degree 12 having 13 non-zero terms, and the square of this
polynomial has 12 non-zero terms. J. Abbott in [1] has shown using computations with
Gröbner bases that every polynomial in Z[x] of smaller degree than 12 cannot have a
square with fewer terms than itself. It is still possible that a polynomial in Z[x] with fewer
than 13 non-zero terms (apparently of degree at least 12) could have a square with fewer
terms than itself, and it would be of interest to determine what is the fewest non-zero terms
such a polynomial can have.

There is an extensive history concerning Rényi’s problem. A. Rényi’s initial work
associated with the problem is [30], though he notes some contributions on the size of
Qk given by L. Rédei and L. Kalmár. It is noted that Q29 � 28. Based on this example
and a lemma, Rényi shows that the average of Qk/k, where k ranges from 1 to n tends
to 0. This implies that lim inf

k→∞ Qk/k = 0. Rényi conjectures here that lim
k→∞Qk/k = 0.

P. Erdős in [11] resolves this problem of Rényi and indicates that Rényi has also asked for
a proof that lim

k→∞Qk = ∞, the problem resolved by Schinzel in D9. Erdős also shows, as

mentioned in Schinzel’s paper, that Qk < c1k1−c2 for some positive constants c1 and c2.
W. Verdenius in [47] showed that one can take c2 = log13 8. Further investigations were
made by D. Coppersmith and J. Davenport in the paper quoted above. In particular, they
establish an analog to Erdős’s result for higher powers of polynomials. These authors, other
than Schinzel, restricted attention to the case that the polynomials have real coefficients.
R. Freud in [18] extended the results of Erdős to polynomials with integer coefficients.
The interested reader should consult Schinzel’s book [37]. There rather general theorems
over arbitrary fields are discussed.

There has been recent very nice progress in this area due to U. Zannier [48]. He has
shown that for each positive integer k, there is a computable numberB(k) such that if g(x)
and h(x) are non-constant polynomials in C[x] with g(h(x)) having � k terms, then h(x)
has � B(k) terms. In particular, as the number of terms of h(x) ∈ C[x] tends to infinity,
the number of terms of g(h(x))must also tend to infinity and uniformly over non-constant
g(x) ∈ C[x].

D11. This solution to an approximately 30 year old problem has led to several further
investigations. H. P. Schlickewei and C.Viola in [39] showed that the bound given by (1) can
be replaced by 244000(degp)1000. Their methods would easily allow for smaller exponents.
In particular, they make use of a preprint of H. P. Schlickewei and W. M. Schmidt which
later appeared in print as [38]. This paper has some slight improvements over the preprint
that was used. H. P. Schlickewei and C. Viola, in [41] obtain a result which replaces the
role of Schlickewei and Schmidt’s when conducting analogous investigations for k-nomials
which is treated by H. P. Schlickewei and C. Viola in [40].

The problem posed by Győry and Schinzel at the end of the introduction was resolved
negatively in the case that k � 6 by L. Hajdu in [20]. Further investigations of this type
can be found in L. Hajdu and R. Tijdeman’s paper [21].
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D10, D13, D14. The motivation of these papers is explained in D10. The factorization of
binomials has been well understood; in particular, over any fieldK , the binomial xn−a ∈
K[x] is reducible if and only if either a is a pth power in K for some prime p dividing n
or 4 |n and a = −4b4 for some b ∈ K . For a proof of this result, one can consult Section
13 of Schinzel’s book [34] or Section 2.1 of Schinzel’s more recent book [37]. In D10,
Schinzel offers corresponding results for the factorization of trinomials xn+ axm+ b. As
elaborated on in D13, the condition n � 2m is made as the trinomials xn + axm + b and
xn + ab−1xn−m + b−1 are either both irreducible or both reducible and either n � 2m or
n � 2(n−m) must hold.

Consequence 1 of D10 implies that for a field K with characteristic π � 0, there is a
constant C depending only onK such that if n andm are integers such that π /| nm(n−m)
and n/(n,m) > C, then for every non-zero a and b in K , the trinomial xn + axm + b
is either irreducible or it has a non-trivial binomial or trinomial factor. This motivates in
part the goals of D13 and D14 where we find Schinzel going beyond examining which
trinomials xn + axm + b are reducible or irreducible and determining instead more de-
tailed information about the factorization of these trinomials. Specifically, D13 provides
necessary and sufficient conditions for the trinomial xn + axm + b divided by a certain
binomial factor to be reducible, and D14 provides necessary and sufficient conditions for
the trinomial xn + axm + b divided by a certain proper trinomial factor to be reducible.

There is a tremendous amount of literature surrounding the factorization of trinomials
which would be impossible to cover in any detail here. Some discussions of these results
occur elsewhere in the commentaries (for example, the commentaries on D2, D4, D11,
D12, D16). An intriguing problem in A. Schinzel [32] is to determine whether or not there
is an absolute constant C such that every trinomial in Q[x] has an irreducible factor with
� C terms. J. Abbott (private communication) has noted that the trinomial 64x20+7x2+4
factors as the product of the two irreducible polynomials f (x) and f (−x), where

f (x) = 8x10 + 16x9 + 16x8 + 8x7 + 4x4 + 8x3 + 8x2 + 5x + 2.

This shows that if C exists, then C � 9, which is the current best known lower bound. For
more on this problem, see A. Bremner [6], or A. Choudhry and A. Schinzel [7].

D15, D16. Having dealt with the greatest common divisor of two trinomials of a rather
specific form in D1, it is natural that Schinzel would take up the task of resolving a related
intriguing problem posed by P. Weinberger in 1976. The problem, as indicated in D15, is
to determine, for fixed positive integers r and s, the supremum of the number of terms that
can occur in gcd(f, g), where f and g run over all polynomials in K[x], for some given
field K , with f consisting of r terms and g consisting of s terms. In D15, the problem is
resolved entirely except for the case that K has characteristic 0 and r = s = 3. In D16,
results related to the latter case are obtained, but the problem in this situation remains
open. It is possible that gcd(f, g) always consists of � 6 terms in this case.

D17. Beginning with some measure L(f ) of the size of a polynomial f , one can ask
to determine the infimum $(P ) on the sizes of the multiples of a given polynomial P or,
more precisely, on L(PG) where G ranges over a specific collection of polynomials. In
this paper, L(f ) denotes the sum of the absolute values of the coefficients of f , P ∈ R[x]
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and G(x) is restricted to monic polynomials in R[x]. The condition that G is monic is
necessary to avoid the infimum trivially being 0. One focus of the paper is to determine for
what P the value of $(P ) is attained, that is to determine for what P ∈ R[x], there exists a
monic polynomialG(x) ∈ R[x] that minimizes the value of L(PG). Another focus of the
paper is to obtain an effective approach for computing $(P ). Complete answers are given
in many instances; as examples, $(P ) is attained and computable in the case that P has no
roots on the unit circle and $(P ) is computable for all quadraticP .An intriguing question is
raised as to how to establish the value of $(P ) in the specific case thatP = 2x3 + 3x2 + 4.

The problem was investigated previously by A. Dubickas [10]. Similar problems have
been considered by others. A result due to G. Szegö [45] in 1914 is that the infimum above
is precisely the Mahler measure of P if one uses as a measure of the size of the polynomial
the squareroot of the sum of the squares of the absolute values of the coefficients. For
Szegö’s result, one can consider P ∈ R[x] and multiples of the form PG where G(x) is
monic in R[x] or one can consider the analog with P and G in C[x]. I. Z. Ruzsa [31] has
generalized Szegö’s result to polynomials in several variables (see also Theorem 38 on
page 227 of [37]).

The analogous problem with P ∈ Z[x] and the requirement that G ∈ Z[x], G �= 0
with G not necessarily monic, has been investigated by M. Filaseta, M. L. Robinson and
F. S.Wheeler in [15] and by M. Filaseta and I. Solan in [16]. The first of these papers handles
the case where P is irreducible, and the second handles the case where P is not divisible
by a cyclotomic polynomial. In particular, in these cases, the infimum is attained and is
computable. The methods apply to rather general notions for the size of a polynomial and,
in particular, one can use the two sizes described above; the proofs, however, are restricted
to the norm given by the squareroot of the sum of the squares of the coefficients.

We note that finding multiples of polynomials with restrictions on the coefficients and,
in particular, with small norm has applications to the Prouhet–Tarry–Escott Problem. Let n
be a positive integer. SupposeP(x) = (x−1)n and that there is a polynomialG(x) ∈ R[x]
such that L(f ) = 2n where f = PG and L(f ) is the sum of the absolute values of the
coefficients of f . Suppose further that the coefficients of f are restricted to {0,±1}. Then
f (1) = 0 implies that f has n coefficients that are 1 and n coefficients that are −1. It
follows that there are 2n distinct nonnegative integers a1, . . . , an and b1, . . . , bn such that

f (x) =
n∑
i=1

xai −
n∑
j=1

xbj .

As (x − 1)n is a factor of f , we have f (k)(1) = 0 for k ∈ {1, 2, . . . , n − 1}. A simple
argument implies that

n∑
i=1

aki =
n∑
j=1

bkj for k ∈ {1, 2, . . . , n− 1}.

Observe also that if we begin with 2n distinct nonnegative integers aj and bj that satisfy
this last string of equalities and define f (x) as the difference of the two sums, as above,
with these exponents, then f (x) is a multiple of P(x) = (x − 1)n with L(f ) = 2n. It is
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unknown whether or not such aj and bj exist for n � 13. The example

f (x) = 1 + x11 + x24 + x65 + x90 + x129 + x173

+ x212 + x237 + x278 + x291 + x302

− x3 − x5 − x30 − x57 − x104 − x116 − x186

− x198 − x245 − x272 − x297 − x299,

divisible by (x − 1)12, is based on a combination of observations by Nuutti Kuosa,
Jean-Charles Meyrignac and Chen Shuwen. Whether such aj and bj exist for general
n is a form of the Prouhet–Tarry–Escott Problem. Thus, it is of interest to know whether
an algorithm exists for finding a multiple f of P as above, but the methods described in
the papers here do not resolve this issue. For a somewhat recent paper on this subject, we
mention the work of P. Borwein, P. Lisoněk, and C. Percival [5].
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Progress, Vol. 1 (Zakopane–Kościelisko, 1997), de Gruyter, Berlin 1999, 431–444.

[32] A. Schinzel, Some unsolved problems on polynomials. In: Neki nerešeni problemi u matema-
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Solution d’un problème de K. Zarankiewicz
sur les suites de puissances consécutives

de nombres irrationnels

Dédié à la mémoire de K. Zarankiewicz

K. Zarankiewicz a posé le problème : existe-il un nombre irrationnel q tel qu’on puisse
extraire de la suite q, q2, . . . quatre termes formant une progression arithmétique ? (cf. [2],
p. 44, P 115).

La réponse négative à ce problème (même quand on admet q complexe, les quatre
termes correspondants étant distincts) est une conséquence immédiate du théorème 2, qui
va suivre.

En appliquant la méthode ingénieuse de W. Ljunggren [1], le théorème suivant sera
d’abord établi :

Théorème 1. Les nombres n et m étant des entiers tels que n > m > 0 et n �= 2m, le
polynôme

g(x) = xn − 2xm + 1

x(n,m) − 1

est irréductible, à l’exception des cas n = 7k, m = 2k et n = 7k, m = 5k, dans lesquels
g(x) est un produit de deux facteurs irréductibles, à savoir

(x3k + x2k − 1)(x3k + xk + 1) et (x3k + x2k + 1)(x3k − xk − 1)

respectivement.

Lemme. Soit

(1) f (x) = xn − 2xm + 1 = ϕr(x)ψs(x) où r + s = n,
ϕr(x) et ψs(x) étant des polynômes unitaires de degré r et s respectivement, et aux coeffi-c

cients entiers. Soit en outre

〈7k, 2k〉 �= 〈n,m〉 �= 〈7k, 5k〉.
Alors au moins l’un des deux facteurs de (1) est un polynôme réciproque.

Correction: Colloq. Math. XII (1964), 289.
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Démonstration du lemme. Il suffit de considérer le cas où n > 2m. En posant

(2) f1(x) = xrϕr(x−1)ψs(x) =
n∑
i=0

cix
n−i et f2(x) = xsψs(x−1)ϕr(x),

il vient

f2(x) = xnf1(x
−1) =

n∑
i=0

cn−ixn−i ,(3)

f1(x)f2(x) = (xn − 2xm + 1)(xn − 2xn−m + 1).(4)

En comparant les coefficients de x2n et de xn dans (2) et (3), nous trouvons c0cn = 1
et c2

0 + c2
1 + c2

2 + . . .+ c2
n = 6, d’où

(5) cn = c0 = ±1 et c2
1 + c2

2 + . . .+ c2
n−1 = 4.c

Il résulte de (5) que deux cas sont possibles :

Cas I. L’un des nombres ci , où i = 1, 2, . . . , n− 1, soit ck , est égal à ±2 et les autres
sont égaux à 0.

Cas II. Quatre des nombres ci , soit ck1 , ck2 , ck3 et ck4 , où k1 < k2 < k3 < k4, sont
égaux à ±1 et les autres sont égaux á 0.

Considérons ces deux cas successivement.
Dans le cas I, on peut admettre sans restreindre la généralité que n � 2k. On a d’après

(2) et (3) pour le polynôme réciproque f1(x)f2(x)

(6) f1(x)f2(x) = x2n + c0ckx2n−k + c0ckxn+k + 6xn + c0ckxn−k + c0ckxk + 1

et d’après (4)

(7) f1(x)f2(x) = x2n − 2x2n−m − 2xn+m + 6xn − 2xn−m − 2xm + 1.

En comparant (6) à (7), on trouve k = m et c0ck = −2, d’où

f2(x) = c0(xn − 2xm + 1) = c0f (x) et xsψs(x
−1) = c0ψs(x) ;

ainsi ψs(x) est un polynôme réciproque.
Dans le cas II, on peut admettre sans restreindre la généralité que n � k1 + k4. Alors

le polynôme réciproque f1(x)f2(x) se réduit d’après (2) et (3) à la somme

(8)

f1(x)f2(x) = x2n + c0ck4x
n+k4 + c0ck3x

n+k3 + c0ck2x
n+k2 + c0ck1x

n+k1

+ c0ck1x
2n−k1 + ck1ck4x

n+k4−k1 + ck1ck3x
n+k3−k1 + ck1ck2x

n+k2−k1

+ c0ck2x
2n−k2 + ck2ck4x

n+k4−k2 + ck2ck3x
n+k3−k2 + c0ck3x

2n−k3

+ ck3ck4x
n+k4−k3 + c0ck4x

2n−k4 + 6xn + . . . .
En comparant (7) à (8), on constate que chaque exposant sauf 2n se présente dans (8) unc

nombre pair de fois. L’exposant 2n−k1 n’apparaissant qu’une seule fois lorsque 2n−k1 >

n+k4, on a donc 2n−k1 = n+k4, d’où k4 = n−k1. On peut admettre sans restreindre la
généralité que n � k2 +k3. La condition que l’exposant max(n+k3, n+k4 −k1, 2n−k2)
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figure dans la somme (8) nécessairement un nombre pair de fois entraîne deux possibilités :
1◦ k3 = n− k2 et k2 < 2k1, 2◦ k2 = 2k1 et k3 < n− 2k1.

Considérons ces deux possibilités successivement.
Dans 1◦, les relations

min(n+ k4, n+ k3, 2n− k1, 2n− k2) > n+ k4 − k1

> max(n+ k3 − k1, n+ k2 − k1, n+ k4 − k2, n+ k3 − k2, n+ k4 − k3),

n+ k2 = 2n− k3 et n+ k1 = 2n− k4

entraîneraient que l’exposant n + k4 − k1 doit se présenter un nombre impair de fois, ce
qui vient d’être constaté comme impossible.

Dans 2◦, les relations

min(n+ k4, n+ k3, n+ k2, 2n− k1, n+ k4 − k1,

n+ k3 − k1, 2n− k2, n+ k4 − k2, 2n− k3, n+ k4 − k3)

> n+ k1 = n+ k2 − k1 = 2n− k4

entraînent que n+ k1 = n+ k3 − k2, d’où k3 = 3k1. On a maintenant

n+ k4 = 2n− k1, n+ k2 = n+ k3 − k1,

n+ k1 = n+ k2 − k1 = n+ k3 − k2 = 2n− k4,

n+ k4 − k1 = 2n− k2 et n+ k4 − k2 = 2n− k3.

Il en résulte que n+ k3 = n+ k4 − k3, c’est-à-dire

n = k1 + k4 = k1 + 2k3 = 7k1

et (8) se réduit à la forme

(9)

f1(x)f2(x) = x14k1 + (c0ck4 + c0ck1

)
x13k1

+ (ck1ck4 + c0ck2

)
x12k1 + (c0ck3 + ck2ck4

)
x11k1

+ (c0ck3 + ck3ck4

)
x10k1 + (c0ck2 + ck1ck3

)
x9k1

+ (c0ck1 + ck1ck2 + ck2ck3 + c0ck4

)
x8k1 + 6x7k1 + . . . .

Enfin, la comparaison de (7) à (9) montre qu’il y a encore deux éventualités à considérer,
à savoir

(A) m = k1 et (B) m = 3k1,

l’égalité m = 2k1 étant exclue par l’hypothèse.
Si l’on a (A), il vient en comparant les coefficients dans (7) et (9),

c0ck4 = c0ck1 = −1, ck1ck4 = −c0ck2 , c0ck3 = −ck2ck4 ,

c0ck1 + ck1ck2 + ck2ck3 + c0ck4 = −2,

d’où ck4 = ck3 = ck2 = ck1 = −c0, ce qui entraîne

c0ck1 + ck1ck2 + ck2ck3 + c0ck4 = 0,

donc une contradiction avec la formule précédente.



298 D. Polynomials in one variable

Si l’on a (B), la comparaison de ces coefficients donne

c0ck4 = −c0ck1 , ck1ck4 = −c0ck2 , c0ck3 = ck2ck4 = −1,

c0ck3 + ck3ck4 = −2,c

d’où ck4 = ck3 = −c0, ce qui entraîne

c0ck3 + ck3ck4 = 0,

donc également une contradiction avec la formule précédente.
Ainsi le cas II est démontré impossible et le lemme se trouve établi. ��

Démonstration du théorème 1. Si 〈n,m〉 = 〈7k, 2k〉 ou bien 〈7k, 5k〉, on a (n,m) = k et
on vérifie aisément que

g(x) = (x3k + x2k − 1
)(
x3k + xk + 1

)
ou

(
x3k + x2k + 1

)(
x3k + xk − 1

)
respectivement. Or les polynômes x3k + x2k ± 1 et x3k ± xk ± 1 sont irréductibles en
vertu du théorème 3 de Ljunggren (voir [1]). En supposant, par contre, que 〈7k, 2k〉 �=
〈n,m〉 �= 〈7k, 5k〉, au moins l’un des facteurs du membre droit de (1) aurait en vertu du
lemme la propriété suivante : si λ est une racine de ce facteur, il en est de même de λ−1.
La réductibilité du polynôme g(x) entraînerait donc que

(10) g(λ) = g(λ−1) = 0

pour un certain λ complexe. Il en résulte que λn − 2λm + 1 = 0 et λn − 2λn−m + 1 = 0,
d’où successivement λn−2m = 1, λ2m−2λm+1 = 0, λm = 1 et λn = 1, donc λ(n,m) = 1.
En même temps, l’hypothèse n �= 2m entraîne nλn−1 �= 2mλm−1 ; par conséquent λ serait
une racine simple de xn − 2xm + 1. Vu que λ(n,m) = 1, on aurait donc

g(λ) = λn − 2λm + 1

λ(n,m) − 1
�= 0,

contrairement à (10). La démonstration du théorème 1 est ainsi achevée. ��

Théorème 2. Les nombres n,m, p et q étant des entiers tels que n > m > 0, p > q > 0
et 〈n,m〉 �= 〈p, q〉, on a

(xn − 2xm + 1, xp − 2xq + 1) =
{
x(n,m,p,q) − 1 si 〈n, p〉 �= 〈2m, 2q〉,(
x(m,q) − 1

)2
si 〈n, p〉 = 〈2m, 2q〉.

Démonstration. On a pour r > s

gr,s(x) = xr − 2xs + 1

x(r,s) − 1
=
r/(r,s)−1∑
i=s/(r,s)

x(r,s)i −
s/(r,s)−1∑
i=0

x(r,s)i ;

si r �= 2s, les polynômes gr,s(x) et les facteurs irréductibles de g7k,2k(x) et de g7k,5k(x)

sont donc deux à deux distinct et différents des facteurs irréductibles de xl − 1, quel que
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soit l’entier l. Il en résulte que l’on a pour n �= 2m et p �= 2q

(xn − 2xm + 1, xp − 2xq + 1) = (x(n,m) − 1, x(p,q) − 1
) = x(n,m,p,q) − 1,

et on voit aisément que la même formule subsiste lorsqu’on a l’une des égalités n = 2m
et p = 2q.

Par contre, pour 〈n, p〉 = 〈2m, 2q〉, il vient

(xn−2xm+1, xp−2xq+1) = ((xm−1)2, (xq−1)2
) = (xm−1, xq−1)2 = (x(m,q)−1

)2
,

ce qui achève la démonstration du théorème 2. ��

Pour en déduire la solution du problème précité de Zarankiewicz, il suffit de remarquer
que si les nombres qα, qβ, qγ et qδ , où α < β < γ < δ, forment une progression
arithmétique, on a

qγ−α − 2qβ−α + 1 = 0 et qδ−β − 2qγ−β + 1 = 0 ;
si, au contraire, q(γ−α,β−α,δ−β,γ−β) − 1 = 0, on a

qα = qβ = qγ = qδ.
Le théorème suivant peut être établi d’une façon tout à fait analogue que le théorème 1 :

Théorème 3. Les nombres n et m étant des entiers tels que n > m > 0, le polynôme
f (x) = xn+ 2ε1x

m+ ε2, où ε1, ε2 = ±1, est un produit de deux facteurs dont le premier
a pour racines précisément celles des racines de f qui sont des racines de l’unité, et le
second, soit g(x), satisfait aux conditions :

(α) si ε1 = −ε2, n = 7k et m = 2k, on a

g(x) = (x3k + ε2x
2k + ε1)(x

3k + xk + ε2) ;
(β) si ε1 = −1, n = 7k et m = 5k, on ac

g(x) = (x3k + ε2x
2k + ε2)(x

3k − xk − ε2) ;
(γ ) si ε1 = 1, n = 7k et m = 3k, on a

g(x) = (x3k − ε2x
2k + ε2)(x

4k + ε2x
3k + x2k + 1) ;

(δ) si ε1 = ε2, n = 7k et m = 4k, on a

g(x) = (x3k − xk + ε2)(x
4k + x2k + ε2x

k + 1)

et hors des cas (α)–(δ) le polynôme g(x) est irréductible.

Notons enfin que toutes les racines de f (x) qui sont en même temps celles de l’unité
(s’il en existe)

(a) sont simples à l’exception du cas où n = 2m et ε2 = 1, dans lequel elles sont doubles,
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(b) satisfont à l’équation

xd =
{

1 si ε1 = −1 et ε2 = 1,

−1 si ε1 = (−1)n1+m1+1 et ε2 = (−1)n1 ,

dans laquelle d = (n,m), n = dn1 et m = dm1.
Cela élargit partiellement les résultats de Ljunggren (voir [1]), qui a étudié la réducti-

bilité des polynômes

f (x) = xn + ε1x
m + ε2x

p + ε3 où n > m > p > 0 et ε1, ε2, ε3 = ±1.
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1.

In the course of this paper reducibility means reducibility over the rational field Q

unless stated to the contrary. Constants are considered neither reducible nor irreducible.
A factorization of a polynomial into a product of a constant and of coprime powers of
irreducible polynomials is called its standard form. For a given polynomial f (x) �= 0,c

Kf (x) denotes the factor of f (x) of the greatest possible degree, whose no root is 0 or
a root of unity and whose leading coefficient is equal to the leading coefficient of f (x).
Clearly

Kf (x) = f (x)(
f (x), xd

∏
ϕ(δ)�d

(xδ − 1)d
) ,

where d is the degree of f (x). The paper is emerged from the efforts to solve the following
problem formulated in [4]:

Do there exist integers a, b �= 0 such that for infinitely many rational r one can find
integers m, n satisfying

(i) m/n = r ,
(ii) K(xn + axm + b) is reducible?

The negative answer to this problem follows at once from Theorem 3 below; however,
more general results are obtained. To state them I use the following notation:

If Φ(x1, . . . , xk) is a rational function of the form
I∑
i=0
ai

k∏
j=1
x
αi,j
j , where ai �= 0, αi,j

are integers and the systems
〈
αi,1, . . . , αi,k

〉
are all different for i � I , then

JΦ(x1, . . . , xk) = Φ(x1, . . . , xk)

k∏
j=1

x
−mini αi,j
j .

Corrected following Errata, Acta Arith. 11 (1965), 491; and Corrigenda, ibid. 16 (1969), 159.
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It is clear that JΦ(x1, . . . , xk) is a polynomial and that the operation J as well as K is
distributive with respect to multiplication. I prove

Theorem 1. For every irreducible polynomial F(x) not dividing xδ−x (δ > 1) and every
positive integer n there exists an integer ν satisfying the following conditions:

(i) 0 < ν � C(F);
(ii) n = νu, u integer;
(iii) if F(xν) = F1(x)F2(x) · · ·Fr(x) is a standard form of F(xν), then

F(xn) = F1(x
u)F2(x

u) · · ·Fr(xu)
is a standard form of F(xn).

C(F) is an effectively computable constant independent of n.

Theorem 2. For every irreducible polynomial F(y, z) satisfying JF(y, z) �=
±JF(y−1, z−1) and for every pair of positive integers n,m there exists an integral non-
singular matrix [

ν1 μ1
ν2 μ2

]
satisfying the following conditions:

(i) 0 � νi � C1(F ), 0 � μi � C1(F ) (i = 1, 2);
(ii) n = ν1u+ ν2v, m = μ1u+ μ2v, u, v integers � 0;
(iii) if

JF(yν1zν2 , yμ1zμ2) = const F1(y, z)
e1F2(y, z)

e2 · · ·Fr(y, z)erc

is a standard form of JF(yν1zν2 , yμ1zμ2), then either

KF(xn, xm) = constKF1(x
u, xv)e1KF2(x

u, xv)e2 · · ·KFr(xu, xv)er
is a standard form of KF(xn, xm) or

max{n,m} � C0(F )(n,m).

C0(F ) and C1(F ) are effectively computable constants independent of n,m.

For every polynomial F(x) to which Theorem 1 applies the number of irreducible
factors of F(xn) remains bounded as n tends to infinity. On the other hand, if F(x) is any
cyclotomic polynomial Xk(x) and (n, k) = 1, then

F(xn) = Xk(xn) =
∏
d |n
Xkd(x);

thus the number of irreducible factors of F(xn) can be arbitrarily large. Therefore, the
condition in Theorem 1 that F(x) does not divide xδ − x is necessary. On the other hand,
it seems that the condition in Theorem 2: JF(y, z) �= ±JF(y−1, z−1), is too strong and
could be replaced by the condition that F(y, z) does not divide yzJ (yδ1zδ2 − 1) for any
integers δ1, δ2 not both zero. Moreover, the following conjecture seems to me plausible.
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Conjecture. Let F(y1, . . . , yk) be an irreducible polynomial which does not divide
y1 · · · ykJ (yδ11 y

δ2
2 · · · yδkk − 1) for any integers δ1, . . . , δk not all zero.

For every system of k positive integers n1, . . . , nk there exists an integral non-singular
matrix [νi,j ] (1 � i � k, 1 � j � k) satisfying the following conditions:

(i) 0 � νi,j � C1(F ) (1 � i � k, 1 � j � k);
(ii) ni =

k∑
j=1
νi,j uj (1 � i � k), uj integers � 0 (1 � j � k);

(iii) if

JF
( k∏
j=1

y
ν1,j
j ,

k∏
j=1

y
ν2,j
j , . . . ,

k∏
j=1

y
νk,j
j

)
= const F1(y1, . . . , yk)

e1 · · ·Fr(y1, . . . , yk)
er

is a standard form of JF
( k∏
j=1
y
ν1,j
j ,

k∏
j=1
y
ν2,j
j , . . . ,

k∏
j=1
y
νk,j
j

)
, then either

KF(xn1 , . . . , xnk ) = constKF1(x
u1 , . . . , xuk )e1 · · ·KFr(xu1 , . . . , xuk )er

is a standard form of KF(xn1 , . . . , xnk ) or

α1n1 + . . .+ αknk = 0,

where αi are integers not all zero and |αi | � C0(F ) (1 � i � k).
C0(F ) and C1(F ) are constants independent of n1, . . . , nk .

The method of proof in Theorem 1 permits us to obtain an analogous result for re-
ducibility in an arbitrary algebraic number field. The method of proof in Theorem 2 is
valid only for totally real number fields and their totally complex quadratic extensionsc

(in the latter case the condition JF(y, z) �= ±JF(y−1, z−1) should be replaced by
JF(y, z) �= const JF(y−1, z−1)). I do not know, however, any algebraic number fieldc

in which the Conjecture could be disproved.
The following theorem can easily be inferred from Theorems 1 and 2.

Theorem 3. For any given non-zero integers a, b, c there exist two effectively computable
constants A(a, b, c) and B(a, b, c) such that if n > m > 0 and K(axn + bxm + c) is
reducible, then

(i) n/(n,m) � A(a, b, c),
(ii) there exist integers ν andμ such thatm/μ = n/ν is integral, 0 < μ < ν � B(a, b, c)

and if

K(axν + bxμ + c) = const Fe11 (x) · · ·Ferr (x)
is a standard form of K(axν + bxμ + c), then

K(axn + bxm + c) = const Fe11 (x
n/ν) · · ·Ferr (xn/ν)

is a standard form of K(axn + bxm + c).

In order to complete the investigation of trinomials I also prove
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Theorem 4. If a, b, c are integers �= 0, 0 < m < n, d = (m, n),m = dm1, n = dn1, ε, η
denote ±1, then

axn + bxm + c
K(axn + bxm + c)

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x2d + εm1

(
εn1ηm1

)
xd + 1, if c = εa = ηb, n1 +m1 ≡ 0 (mod 3), εm1 = ηn1 ,(

xd − (−ε)m1εη
)2
, if c = εa + ηb, (−ε)m1 = (−η)n1 , anε + bmη = 0,

xd − (−ε)m1εη, if c = εa + ηb, (−ε)m1 = (−η)n1 , anε + bmη �= 0,

1, otherwise.

Theorems 3 and 4 generalize the results of papers [1], [3] and [2], in which the case
|a| = |c| = 1 has been considered. The results of those papers could be expressed in the
present language in the form A(1,±1,±1) = 0, A(1,±2,±1) = B(1,±2,±1) = 7,
A(1,±p,±1) � 4p

2
(p prime > 2), respectively. The ideas of papers [1] and [2] are

fundamental for the proof of Theorem 2. The Conjecture formulated above would give a
result similar to Theorem 3 but concerning (k + 1)-nomials.

As a second application of Theorem 2 I prove

Theorem 5. Letf (x) �≡ ±1 be a polynomial such thatf (0) �= 0. There exist two constants
D0(f ) and D1(f ) �= 0 such that if n > D0(f ) and

(
n,D1(f )

) = 1, then K
(
xn + f (x))

is irreducible.

It seems natural to ask whether the irreducibility ofK
(
xn + f (x)) cannot be replaced

in Theorem 5 by the irreducibility of xn + f (x) provided f (1) �= −1. The example

f0(x) = 1

12
(3x9 + 8x8 + 6x7 + 9x6 + 8x4 + 3x3 + 6x + 5)

shows that it is impossible. In fact, f0(1) �= −1 and xn + f0(x) has for every n a factor
in common with x12 − 1. I do not know whether a similar phenomenon can occur for
polynomials with integral coefficients.

2.

Lemma 1. LetΩ be an algebraic number field, and α an element of Ω which is not 0 or
a root of unity.

There exist only finitely many integers e such that α = wβe, where w is a root of unity,
β ∈ Ω . The greatest of them, e(α,Ω), satisfies the following relations:

(1) e(α,Ω) � (exp 2N2) log
(
NH(α)

)
,

whereN is the degree ofΩ andH(α) is the height of the irreducible primitive polynomial
of α,

(2) e(αn,Ω) = ne(α,Ω) (n = 1, 2, . . . ).
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Proof. We note first that if γ ∈ Ω is an algebraic integer and γ (i) (i = 1, . . . , n) are all its
conjugates, then

(3)
1

N
max

1�i�N
∣∣γ (i)∣∣ � H(γ ) �

(
1 + max

1�i�N
∣∣γ (i)∣∣)N.

This obvious inequality implies the following one:

(4) max
1�i�N

∣∣β(i)∣∣ > exp exp(−2N2),

which holds for all integers β ∈ Ω which are not 0 or roots of unity. Indeed, assuming the
contrary we would clearly have N > 1 and for all k � exp 2N2

max
1�i�N

∣∣(βk)(i)∣∣ � exp 1.

Hence, by (3) applied to γ = βk ,
H(βk) � (1 + exp 1)N (1 � k � exp 2N2).

Now there are no more integers of degree �N and height �H thanN(2H+1)N ; thus
there are no more integers of degree � N and height � (1 + exp 1)N than

N
(
2(1 + exp 1)N + 1

)N
< 3N(1 + exp 1)N

2
< exp 2N2 (N > 1).

It follows that among the numbers βk (1 � k � exp 2N2) at least two are equal,
whence β is a root of unity. The contradiction obtained proves (4).

Now we show that the equality

(5) α = wβe,
where w is a root of unity, β ∈ Ω , e � 1, implies

(6) e � (exp 2N2) log
(
NH(α)

)
.

This will prove the existence of e(α,Ω) and inequality (1).
Let α be a zero of a primitive irreducible polynomial

a0x
m + . . .+ am−1x + am,

where m |N , ai rational integers, a0 > 0, H(α) = max
0�i�m

|ai |.
If a0 = 1, α is an integer, and by (5), β is also an integer which is neither 0 nor a root

of unity. It follows from (5) that

log
(

max
1�i�N

∣∣α(i)∣∣) = e log
(

max
1�i�N

∣∣β(i)∣∣),
and hence by (3) applied to γ = α and by (4)

log
(
NH(α)

)
� e exp(−2N2),

which gives (6).
If a0 > 1, a0α is an integer but α is not. Therefore, there exists a prime ideal p such that

pλ ‖a0, pμ ‖a0α andμ < λ. Let pν ‖a0β. It follows from (5) that (λ−μ) = (λ−ν)e, and
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since λ−μ > 0, we get λ−ν > 0 and e � λ−μ � λ. On the other hand, (norm p)λ |aN0 ,
hence

2λ � aN0 � H(α)N .

This gives

e � λ � N

log 2
logH(α) < (exp 2N2) log

(
NH(α)

)
,

i.e. again (6).
In order to prove (2) we put e(α,Ω) = e, e(αn,Ω) = f , (n, f ) = d and assume

(7) α = w1β
e, αn = w2γ

f ,

where w1, w2 are roots of unity, β, γ ∈ Ω . Clearly αn = wn1βne, whence f � ne.
On the other hand, there exist integers p, q such that pn − qf = d and it follows

from (7) that (
α(αqγ−p)f/d

)d = αd+qf γ−pf = αpn(w2α
−n)p = wp2 ;

thus α(αqγ−p)f/d is a root of unity, say w3. We getc

α = w3(α
−qγ p)f/d

and, by the definition of e, e � f/d � f/n � e. This gives f = ne and completes the
proof. ��

Lemma 2. Let Ω be an algebraic number field and α an element of Ω which is not 0 or
a root of unity. For every positive integer n we put

ν = ν(α,Ω, n) = (n, 2e(α,Ω)−1e(α,Ω)!).
If g(x) is a monic polynomial irreducible overΩ and g(x) |xn−α, then g(x) = G(xn/ν),
where G(x) is a polynomial over Ω .

Proof. We proceed by induction with respect to e(α,Ω). If e(α,Ω) = 1, then neither
α = βp, p > 1, nor α = −4β4, β ∈ Ω; thus, in view of a theorem of Capelli (for the
proof and references see [5], pp. 288–294), xn−α is irreducible inΩ and g(x) = xn−α.
The lemma holds with G(x) = x − α. Assume that the lemma is true for all Ω ′ and α′
with e(α′,Ω ′) < m (m > 1) and let e(α,Ω) = m, g(x) |xn − α.

If xn − α is irreducible, then the lemma is trivially true with G(x) = xν − α. If it is
reducible, then by the theorem of Capelli

(A) α = βp, where p |n, p prime > 1, β ∈ Ω ,
or
(B) α = −4β4, where 4 |n, β ∈ Ω .

We consider these cases successively, using the following notation: ζq is a primitive
qth root of unity, Ωq = Ω(ζq), dq is the degree of Ωq over Ω , NΩq/Ω is the norm of
elements of Ωq or polynomials over Ωq relative to Ω .
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(A) We have here

(8) g(x) |xn − βp = (xn/p − β)
p−1∏
r=1

(xn/p − ζ rpβ).

If g(x) |xn/p−β our inductive assumption applies directly, since by (A) and Lemma 1

(9) m = e(α,Ω) = pe(β,Ω) > e(β,Ω).
Putting ν0 = ν(β,Ω, n/p) we have

ν0 |
(
n/p, 2m−2(m− 1)!), g(x) = G0(x

n/pν0),

G0(x) ∈ Ω[x] and it is sufficient to take G(x) = G0(x
ν/pν0).

If g(x) /| xn/p − β, let h(x) be a monic factor of g(x) irreducible over Ωp. By (8)

h(x) |g(x)
∣∣∣ p−1∏
r=1

(xn/p − ζ rpβ);

thus for some positive r < p

(10) h(x) |xn/p − ζ rpβ.
Let h(1)(x) = h(x), . . . , h(dp)(x) be all the conjugates of h(x) relative toΩ . It follows

from (10) that (
h(i)(x), h(j)(x)

) ∣∣β(ζ (i)rp − ζ (j)rp

)
(1 � i � j � dp);

thus h(i)(x) (i = 1, 2, . . . , dp) are relatively prime in pairs.
Since h(i)(x) |g(x), it follows that

(11) g(x) = NΩp/Ω
(
h(x)
)
.

On the other hand, we have e
(
ζ rpβ,Ωp

) = e1 < m. Indeed, if

ζ rpβ = wγ e1 , w a root of unity, γ ∈ Ωp,
then

α = βp = wpγ pe1 and αdp = NΩp/Ω(wp)
(
NΩp/Ω(γ )

)pe1 .
It follows by Lemma 1 that

dpm = e(αdp ,Ω) > pe1
and, since dp � p − 1, e1 < m.

Applying the inductive assumption to (10) and putting

ν1 = ν(ζ rpβ,Ωp, n/p),
we get

(12) ν1 |
(
n/p, 2m−2(m− 1)!), h(x) = H(xn/pν1), H(x) ∈ Ωp[x].



308 D. Polynomials in one variable

Since p |m by (9), we have ν1p | (n, 2m−1m!) = ν and it is sufficient to put

G(x) = NΩp/Ω
(
H(xν/pν1)

)
.c

Indeed, by (11) and (12)

g(x) = NΩp/Ω
(
H(xn/pν1)

) = G(xn/ν).
(B) We have here

g(x) |xn + 4β4 =
∏
εη=±1

(
xn/4 − (ε + ηζ4)β

)
.

Let h(x) be a monic factor of g(x) irreducible overΩ4. There is a pair of integers ε, η
such that εη = ±1,

(13) h(x) |xn/4 − (ε + ηζ4)β.
It follows, like (11) from (10), that

(14) g(x) = NΩ4/Ω

(
h(x)
)
.

On the other hand, e
(
(ε + ηζ4)β,Ω4

) = e2 < m. Indeed, if

(ε + ηζ4)β = wγ e2 , w a root of unity, γ ∈ Ω4,

then

α = −4β4 = w4γ 4e2 and αd4 = NΩ4/Ω(w
4)
(
NΩ4/Ω(γ )

)4e2 .
It follows by Lemma 1 that

d4m = e(αd4 ,Ω) > 4e2

and since d4 � 2, e2 < m.
Applying the inductive assumption to (13) and putting

ν2 = ν(ε + ηζ4,Ω4, n/4)

we get

(15) ν2 |
(
n/4, 2m−2(m− 1)!), h(x) = H(xn/4ν2), H(x) ∈ Ω4[x].

By Lemma 1 and (B) m = e(a,Ω) = 2e(2β2,Ω). Thus 2 |m and by (15)
4ν2 | (n, 2m−1m!) = ν. Now put

G(x) = NΩ4/Ω

(
H(x)ν/4ν2

)
.

By (14) and (15)

g(x) = NΩ4/Ω

(
H(x)n/4ν2

) = G(xn/ν),
which completes the inductive proof. ��

Proof of Theorem 1. Put C(F) = exp
(
(2N2 + log logNH)(exp 2N2) logNH

)
, where

N is the degree of F and H its height. Let a0 be the leading coefficient of F , α any of
its zeros and Ω = Q(α). For any given n, we put ν = (n, 2e(a,Ω)−1e(a,Ω)!). Clearly
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ν � e(a,Ω)e(a,Ω) and by Lemma 1, ν � C(F). Besides, u = n/ν is an integer; thus parts
(i) and (ii) of Theorem 1 are proved. In order to prove (iii) assume that

(16) F(xν) = F1(x) · · ·Fr(x)
is a standard form of F(xν) (since F(x) is irreducible, there are no multiple factors).
Clearly Fj (xu) (1 � j � r) are relatively prime in pairs and it remains to show that they
are all irreducible. Let fj (x) be a monic irreducible factor of Fj (xu). Clearly

(17) fj (x) |F(xn).
We now use the following Lemma of Capelli (cf. [5], pp. 288–290): if

(18) xn − α =
l∏
i=1

gi(x)

is a decomposition of xn − α into monic factors irreducible over Q(α) = Ω and NΩ/Q
denotes the norm relative to Q, then

(19) F(xn) = a0

l∏
i=1

NΩ/Q
(
gi(x)

)
is the decomposition of F(xn) into monic factors irreducible over Q.

It follows from (17) and (19) that for some i � l

(20) fj (x) = NΩ/Qgi(x).
On the other hand, it follows from (18) and Lemma 2 that

(21) gi(x) = Gi(xu),
where Gi(x) is a polynomial over Ω .

By (20), (21) and the choice of fj (x)

(22) fj (x) = NΩ/QGi(xu) |Fj (xu);
thus

NΩ/QGi(x) |Fj (x).
Since Fj (x) is irreducible,

Fj (x) = constNΩ/QGi(x);
thus by (22)

Fj (x
u) = const fj (x)

and by the choice of fj (x), Fj (xu) is irreducible. This completes the proof. ��
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Corollary to Theorem 1. For every polynomial F(x) �= 0 and every positive integer nc

there exists an integer ν satisfying the following conditions:

0 � ν � C′(F );(23)

n = νu, u—an integer;(24)

if KF(xν) = const F1(x)
e1F2(x)

e2 · · ·Fr(x)er is a standard form of KF(xν), then

KF(xn) = const F1(x
u)e1F2(x

u)e2 · · ·Fr(xu)er
is a standard form of KF(xn).

Proof. Let KF(x) = constΦε11 (x)Φ
ε2
2 (x) · · ·Φ

ε�
� (x) be a standard form of KF(x).

Since each polynomial Φi(x) (1 � i � �) satisfies the conditions of Theorem 1, there
exists for each i � � a positive integer νi satisfying the following conditions:

0 < νi � C(Φi); n = νiui , ui—an integer;
if Φi(xνi ) = Φi,1(x)Φi,2(x) · · ·Φi,ri (x) is a standard form of Φi(xνi ), then

Φi(x
n) = Φi,1(xui )Φi,2(xui ) · · ·Φi,ri (xui )

is a standard form of Φi(xn).
We put

ν = [ν1, . . . , ν�], C′(F ) = ( max
1�i��

C(Φi)
)!.

Conditions (23) and (24) are clearly satisfied. Since νi | ν we have u |ui and the irre-
ducibility of Φi,j (xui ) implies the irreducibility of Φi,j (xui/u) (1 � i � �, 1 � j � ri).
Since polynomials Φi,j are relatively prime in pairs, it follows that

KF(xν) = const
�∏
i=1

ri∏
j=1

Φi,j (x
ui/u)εi

is a standard form of KF(xν) and

KF(xn) = const
�∏
i=1

ri∏
j=1

Φi,j (x
ui )εi

is a standard form of KF(xn). This completes the proof. ��

3.

Lemma 3. For any two relatively prime polynomialsG(y, z) �= 0,H(y, z) �= 0 there existc

two constants B0(G,H) = B0 � 1 and B1(G,H) such that if n,m are positive integers,
then (

JG(xn, xm)

KG(xn, xm)
,
JH(xn, xm)

KH(xn, xm)

) ∣∣∣∣ (x(n,m)B0 − 1)B0 ,(25) (
KG(xn, xm),KH(xn, xm)

) = 1(26)

unless max{n,m} � B1(G,H)(n,m).
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Proof. Let R(z) be the resultant of polynomialsG(y, z) andH(y, z) with respect to y and
S(y) their resultant with respect to z, and D = max{degreeR, degree S}.

Let e2πir1 , e2πir2 , …, e2πirk be all the roots of unity which are zeros of R and
�1, �2, . . . , �k their respective multiplicities, and similarly let

e2πis1 , e2πis2 , . . . , e2πisl

be all the roots of unity which are zeros of S and σ1, σ2, . . . , σl their respective multiplic-
ities. Let d be the least common denominator of 1, r1, . . . , rk, s1, . . . , sl . We put

B0 = B0(G,H) = d max
{
1, max

1�i�k
�i, max

1�j�l
σj
}
, B1(G,H) = DC′(R)C′(S),

where C′ is a constant from the Corollary to Theorem 1. Clearly

JR(z)

KR(z)

∣∣∣ (zB0 − 1)B0 ,
JS(y)

KS(y)

∣∣∣ (yB0 − 1)B0 ,

whence

JR(xm)

KR(xm)

∣∣∣ (xmB0 − 1)B0 ,
JS(xn)

KS(xn)

∣∣∣ (xnB0 − 1)B0;(
JR(xm)

KR(xm)
,
JS(xn)

KS(xn)

) ∣∣∣∣ (x(n,m)B0 − 1)B0 .

Since

(27)
(
G(xn, xm),H(xn, xm)

) ∣∣ (R(xm), S(xn)),
(25) follows. In order to prove (26), assume that f (x) is an irreducible polynomial such
that

f (x) | (KG(xn, xm),KH(xn, xm)).
By (27)

f (x) |KR(xm) and f (x) |KS(xn).
Now by the Corollary to Theorem 1 there exist a μ � C′(R) and a polynomial F1(x)

such that

(28) f (x) = F1(x
m/μ) and F1(x) |KR(xμ).

Similarly there exist a ν � C′(S) and a polynomial F2(x) such that

(29) f (x) = F2(x
n/ν) and F2(x) |KS(xν).

Let d1, d2 be the degrees of F1 and F2 respectively. It follows from (28) and (29) that

d1
m

μ
= d2

n

ν
, d1 � Dμ, d2 � Dν.

Hence max{n,m}/(n,m) � Dμν � DC′(R)C′(S) = B1(G,H), which completes the
proof. ��

Lemma 4. Let ki (0 � i � l) be an increasing sequence of integers. Let kj1 − ki1 ,
. . . , kjP − kiP (P � 0) be all the numbers besides kl − k0 which appear only once in
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the double sequence kj − ki (0 � i < j � l). Suppose that for each pair p, q, where
1 � p < q � P

(30) cp,q(kl − k0)+ c′p,q(kjp − kip )+ c′′p,q(kjq − kiq ) = 0,

where cp,q , c′p,q , c′′p,q are integers not all zero. Let c = 1 if P < 2 and c =
max

1�p<q�P
max
{|cp,q |, |c′p,q |, |c′′p,q |} if P � 2. Then there exist integers s, t, κi, λi

(0 � i � l) such that

ki − k0 = sκi + tλi (0 � i � l),
|κi | < (5c)l, |λi | < (5c)l (0 � i � l).

Proof. By the assumption, for each pair 〈i, j〉, where 0 � i < j � l and 〈i, j〉 �=
〈0, l〉 , 〈i1, j1〉 , . . . , 〈iP , jP 〉 there exists a pair

〈
gi,j , hi,j

〉 �= 〈i, j〉 such that

kj − ki = khi,j − kgi,j .
Let us consider the system of linear homogeneous equations

(31)

x0 = 0,

xj − xi = xhi,j − xgi,j , 〈i, j〉 �= 〈0, l〉 , 〈i1, j1〉 , . . . , 〈iP , jP 〉 ,
cp,qxl + c′p,q(xjp − xip )+ c′′p,q(xjq − xiq ) = 0, 1 � p < q � P.

k = [0, k1 − k0, . . . , kl − k0] is a solution of this system. Suppose that there are two other
linearly independent solutions, a = [a0, a1, . . . , al] and b = [b0, b1, . . . , bl]. Performing
linear transformations on the system k, a, b we shall denote by a(ν), b(ν) the successive
images of a and b, and by a(ν)i , b

(ν)
i the components of a(ν), b(ν) respectively.

Put

a′ = a − al

kl − k0
k, b′ = b − bl

kl − k0
k,

i′—the least i such that a′i = min
0�j�l

a′j or max
0�j�l

a′j ,

j ′—the greatest i such that a′i = min
0�j�l

a′j + max
0�j�l

a′j − a′i′ (the opposite extremum).

Clearly j ′ > i′. Since a′ �= 0 and a′0 = 0, it follows from the definition of j ′ that
a′
j ′ �= 0.

Put

b′′ = b′ − b
′
j ′

a′
j ′

a′,

i′′—the least i such that b′′i = min
0�j�l

b′′j or max
0�j�l

b′′j ,

j ′′—the greatest i such that b′′i = min
0�j�l

b′′j + max
0�j�l

b′′j − b′′i′′ .c

Clearly j ′′ > i′′. a′ and b′′ are solutions of the system (31) and satisfy the following
conditions:

(32) a′
j ′ �= 0 = a′l ,
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(33) all a′i are in the interval
〈
a′
i′ , a

′
j ′
〉
, a′i �= a′i′ for i < i′, a′i �= a′j ′ for i � i′ and for

i > j ′,

(34) b′′
j ′′ �= 0 = b′′

j ′ = b′′l ,

(35) all b′′i are in the interval
〈
b′′
i′′ , b

′′
j ′′
〉
, b′′i �= b′′i′′ for i < i′′, b′′i �= b′′j ′′ for i � i′′ and for

i > j ′′.

Now, (32) and (33) imply that
〈
i′, j ′
〉
is for some p � P identical with

〈
ip, jp

〉
. Indeed,

by (32),
〈
i′, j ′
〉 �= 〈0, l〉, whence we would have in the opposite case

a′j ′ − a′i′ = a′h − a′g, where 〈g, h〉 = 〈gi′,j ′ , hi′,j ′ 〉 �= 〈i′, j ′〉 .
It follows from (33) that a′h = a′j ′ , a′g = a′i′ , whence g � i′, h � j ′.

On the other hand,

kj ′ − ki′ = kh − kg
and since ki are increasing, g = i′, h = j ′, which gives a contradiction. Similarly, (34)
and (35) imply that

〈
i′′, j ′′

〉
is
〈
iq , jq

〉
, where 1 � q � P .

Moreover, by (34)
〈
i′, j ′
〉 �= 〈i′′, j ′′〉. Thus p �= q and without loss of generality we

may assume p < q. Putting for brevity c′p,q = c′ and c′′p,q = c′′, we get from (30), (32)
and (34)

cp,q(kl − k0)+ c′(kj ′ − ki′)+ c′′(kj ′′ − ki′′) = 0,(36)

c′(a′j ′ − a′i′)+ c′′(a′j ′′ − a′i′′) = 0,(37)

c′(b′′j ′ − b′′i′)+ c′′(b′′j ′′ − b′′i′′) = 0.(38)

Since kl > k0, it follows from (36) that c′ �= 0 or c′′ �= 0. Now in view of (33) and (37)
|c′′| � |c′|, and in view of (35) and (38) |c′| � |c′′|. Hence c′ = ±c′′ �= 0. If c′ = −c′′,
(35) and (38) imply that b′′

j ′ = b′′
j ′′ , which contradicts (34). If c′ = c′′, (33) and (37)

imply that a′
i′′ = a′

j ′ , i
′′ > i′. Similarly (35) and (38) imply that b′′

i′ = b′′
j ′′ , i

′ > i′′.
The contradiction obtained proves that system (31) has at most two linearly independent
solutions. Therefore, the rank of the matrixM of system (31) is at least l − 1. If this rank
is l, solving the system by means of Cramer’s formulae we get

xi = xμDi/D (0 � i � l, μ fixed),

where D and Di are determinants of order l and, as can easily be seen from the form ofc

matrix M , the sum of the absolute values of integers standing in any line of Di does not
exceed 5c. Hence |Di | < (5c)l and a fortiori |Di |/(D0, . . . , Dl) < (5c)l .

Since

(kμ − k0)Di

D
= ki − k0 (0 � i � l),

(kμ − k0)(D0, . . . , Dl)/D is an integer and the lemma holds with

s = (kμ − k0)(D0, . . . , Dl)/D, t = 0,

κi = Di/(D0, . . . , Dl), λi = 0 (0 � i � l).
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If the rank ofM is l − 1, we get similarly

xi = (xμD′
i + xνD′′

i )/D (0 � i � l, μ, ν fixed),

where D, D′
i and D′′

i are determinants of order l − 1,c

(39) |D′
i | < (5c)l−1, |D′′

i | < (5c)l−1 (0 � i � l).
Integral vectors [xμ, xν] such that all numbers (xμD′

i + xνD′′
i )/D (0 � i � l) are

integers form a module, say M. Clearly [0, |D|] ∈ M and [|D|, 0] ∈ M. Let ξ1 be the
least positive integer such that for some η1, [ξ1, η1] ∈ M and let η2 be the least positive
integer such that [0, η2] ∈ M. Clearly [ξ1, η1] and [0, η2] form a basis for M and without
loss of generality we may assume 0 � η1 < η2. On the other hand, η2 � |D| and
ξ1 � |D|. Since ki are integers, [kμ − k0, kν − k0] ∈ M; thus there are integers s, t such
that kμ − k0 = ξ1s, kν − k0 = η1s + η2t .

Putting κi = (ξ1D′
i + η1D

′′
i )/D, λi = η2D

′′
i /D, we get for i � l

ki − k0 = κis + λit
and by (39)

|κi | � ξ1

|D| |D
′
i | +

η1

|D| |D
′′
i | � 2(5c)l−1 < (5c)l,

c

|λi | � η2

|D| |D
′′
i | < (5c)l−1.

This completes the proof. ��

Remark. For a given finite linear set, denote by � the number of distances linearly inde-c

pendent over Q and by ρ0 the number of linearly independent distances which appear onlyc

once. It follows from the lemma that if �0 � 2, then � � 2. It can easily be found from
remark 1 at the end of paper [2] that if �0 = 1 then � = 1. The equality � = �0 suggests
itself, but I am unable to prove it.

Definition. For a given integral matrix A, h(A) will denote the maximum of absolute
values of the elements of A.

Lemma 5. LetΓ be any given integral matrix 2×2. For arbitrary positive integers d, n,m
there exists an integral matrix

M =
[
ν1 μ1
ν2 μ2

]
satisfying the conditions:

0 � νi �
(
(2d2)!)2, 0 � μi �

(
(2d2)!)2 (i = 1, 2),(40)

|M| > 0,(41)

[n,m] = [u, v]M, u, v integers � 0,(42)

and with the following property. If

(43) [n,m]Γ = [s, t]Δ,
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where s, t are integers, Δ is an integral matrix,

(44) |Δ| �= 0 and h(Δ) � d,

then

(45) MΓ = TΔ and [s, t] = [u, v]T ,
where T is an integral matrix and

(46) h(T ) � 4d
(
(2d2)!)2h(Γ ).

Proof. Let S be the set of all integral matrices Δ satisfying (43) and (44). Integral vectors
[x, y] such that for all Δ ∈ S and suitable integers sΔ, tΔ, [x, y]Γ = [sΔ, tΔ]Δ form a
module, say M. By (44) (2d2) � |Δ| �= 0, whence |Δ| divides (2d2)!.

It follows that [(2d2)!, 0] ∈ M and [0, (2d2)!] ∈ M. Let ξ1 be the least positive integer
such that, for some η1, [ξ1, η1] ∈ M and let η2 be the least positive integer such that
[0, η2] ∈ M. Clearly [ξ1, η1] and [0, η2] form a basis for M and we may assume without
loss of generality that 0 � η1 < η2. Hence

(47) 0 < ξ1 � (2d2)!, 0 � η1 < η2 � (2d2)!.
Let

η1

η2
= 1

b1
− 1

b2
− . . .− 1

br

be the expansion ofη1/η2 into a continued fraction, wherebp are integers > 1 (1 � p � r);
if η1 = 0 let r = 0. Put

A−1 = −1, B−1 = 0; A0 = 0, B0 = 1;
Ap+1 = bp+1Ap − Ap−1, Bp+1 = bp+1Bp − Bp−1 (0 � p < r).c

It follows that the sequences Ap,Bp are increasing and for 0 � p � rc

ApBp−1 − BpAp−1 = 1,(48)

0 � Ap � η1, 0 < Bp � η2,(49)

(50) Ap/Bp < Ar/Br = η1/η2 (if p < r).c

Since m > 0, n > 0, we have

η1

η2
− m
n

· ξ1
η2
<
Ar

Br
.

Let q be the least non-negative integer which can be substituted for r in the last inequality.
Assuming A−1/B−1 = −∞ we have therefore

(51)
Aq−1

Bq−1
� η1

η2
− m
n

· ξ1
η2
<
Aq

Bq
.

Let us put

M =
[
ν1 μ1
ν2 μ2

]
=
[
Bq −Aq
Bq−1 −Aq−1

] [
ξ1 η1
0 η2

]
=
[
Bqξ1 Bqη1 − Aqη2
Bq−1ξ1 Bq−1η1 − Aq−1η2

]
.
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Inequalities (47), (49) and (50) imply (40). By (48)

|M| =
∣∣∣∣ξ1 η1
0 η2

∣∣∣∣ = ξ1η2 > 0.

Moreover, the vectors [ν1, μ1], [ν2, μ2] form a basis for M. Since [n,m] ∈ M, there are
integers u, v satisfying (42). We have

[u, v] = [n,m]M−1 = 1

ξ1η2
[n,m]

[
Bq−1η1 − Aq−1η2 −Bqη1 + Aqη2

−Bq−1ξ1 Bqξ1

]
c

= 1

ξ1η2

[
Bq−1(nη1 −mξ1)− Aq−1η2, Aqη2 − Bq(nη1 −mξ1)

]
.

It follows from (51) that u � 0, v � 0. In order to prove the last statement of the
lemma suppose that for some integral matrix Δ (43) and (44) hold. Thus Δ ∈ S and since
[νi, μi] ∈ M (i = 1, 2) there are integers σi, τi such that [νi, μi]Γ = [σi, τi]Δ (i = 1, 2).
Putting

(52) T =
[
σ1 τ1
σ2 τ2

]
we get

MΓ = TΔ.
On the other hand, (42) and (43) imply

(53) [u, v]MΓ = [s, t]Δ.
Since |Δ| �= 0 by (44), we get (45) from (52) and (53). Finally, by (52), (40) and (44)

h(T ) = h(MΓΔ−1) � 4h(M)h(Γ )h(Δ) � 4d
(
(2d2)!)2h(Γ ).

This completes the proof. ��

Lemma 6. Let f (x) be an irreducible polynomial not dividing xδ − x (δ > 1), α, β
integers, α > 0 or β > 0. For arbitrary positive integers n,m such that αn + βm > 0
there exists an integral matrix

M =
[
ν1 μ1
ν2 μ2

]
satisfying the conditions

0 � νi � C(f, α, β), 0 � μi � C(f, α, β) (i = 1, 2),(54)

|M| > 0,(55)

[n,m] = [u, v]M, u, v integers � 0,(56)

ανi + βμi � 0 (i = 1, 2),(57)

and having the following property: if

f
(
yαν1+βμ1zαν2+βμ2

) = f1(y, z) · · · fr(y, z)
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is a standard form of f
(
yαν1+βμ1zαν2+βμ2

)
, then

f (xαn+βm) = f1(x
u, xv) · · · fr(xu, xv)

is a standard form of f (xαn+βm).
C(f, α, β) is an effectively computable constant, independent of n and m.

Proof. By Theorem 1, there exists a positive integer ν � C(f ) such that αn+ βm = νw,
w integer, and having the following property: if

(58) f (xν) = f ′
1(x) · · · f ′

r ′(x)

is a standard form of f (xν), then

(59) f (xαn+βm) = f ′
1(x

w) · · · f ′
r ′(x

w)

is a standard form of f (xαn+βm).
Now we distinguish two cases, αβ � 0 and αβ < 0.
If αβ � 0 we put in Lemma 5:

Γ =
[
α α

β β

]
, d = C(f ).

Let

M =
[
ν1 μ1
ν2 μ2

]
be an integral matrix whose existence forn,m is asserted in that lemma. It follows from (40)
that

(60) 0 � νi �
((

2C2(f )
)!)2

, 0 � μi �
((

2C2(f )
)!)2

(i = 1, 2);
c

thus (54) is satisfied with C(f, α, β) =
((

2C2(f )
)!)2

and, in view of α � 0, β � 0,

(57) holds. Formulae (55) and (56) follow from (41) and (42). We apply the last statement
of Lemma 5 with

[s, t] = [w,w], Δ =
[
ν 0
0 ν

]
.

In virtue of that statement there exists an integral matrix T such that[
ν1 μ1
ν2 μ2

] [
α α

β β

]
= T
[
ν 0
0 ν

]
,

whence

(61) ν |ανi + βμi (i = 1, 2).

If αβ < 0, we may assume without loss of generality α > 0, β < 0. We put in
Lemma 5:

Γ ′ =
[
ν ν

−β −β
]
, d ′ = α, n′ = αn+ βm

ν
, m′ = m
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(the “prime” is added to avoid a confusion in notation). In virtue of that lemma there existsc

an integral matrix

M ′ =
[
ν′1 μ′

1
ν′2 μ′

2

]
such that

0 � ν′i �
(
(2α2)!)2, 0 � μ′

i �
(
(2α2)!)2 (i = 1, 2),(62)

|M ′| > 0,(63)

[(αn+ βm)/ν,m] = [u, v]M ′, u, v integers � 0.(64)

We apply the last statement of Lemma 5 with

[s, t] = [w,w], Δ =
[
α 0
0 α

]
.

In virtue of that statement there exists an integral matrix T such that[
ν′1 μ′

1
ν′2 μ′

2

] [
ν ν

−β −β
]
= T
[
α 0
0 α

]
,

whence α | νν′i − βμ′
i (i = 1, 2). We put

νi = (νν′i − βμ′
i )/α, μi = μ′

i (i = 1, 2).

(62) implies (57) and the inequality

0 � νi �
(
(2α2)!)2(C(f )+ |β|), 0 � μi �

(
(2α2)!)2 (i = 1, 2);

thus (54) is satisfied with C(f, α, β
) = ((2α2)!)2(C(f ) + |β|). Formulae (55) and (56)

follow from (63) and (64); besides we have (61).c

In order to prove the last property of the matrixM postulated in the lemma, we put

(65) f ′
j (y, z) = f ′

j

(
y(αν1+βμ1)/νz(αν2+βμ2)/ν

)
(1 � j � r ′).

By (56) f ′
j (x

u, xv) = f ′
j (x

w), whence by (59), f ′
j (x

u, xv) is irreducible. We show that
f ′
j (y, z) is not reducible.

Denote by δ the degree of f ′
j (x) and suppose that

(66) f ′
j (y, z) = g(y, z)h(y, z),

where g is of degree γ1 in y, γ2 in z; h is of degree χ1 in y, χ2 in z and γ1 + γ2 > 0,
χ1 + χ2 > 0. By (65) we have

δ(ανi + βμi)/ν = γi + χi (i = 1, 2).

On the other hand,

f ′
j (x

w) = g(xu, xv)h(xu, xv).
The degree of f ′

j (x
w) equals

δ(αn+ βm)/ν = δu(αν1 + βμ1)/ν + δv(αν2 + βμ2)/ν = u(γ1 + χ1)+ v(γ2 + χ2).
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The degree of g(xu, xv)h(xu, xv) can be equal to uγ1 + uχ1 + vγ2 + vχ2 only if
the degree of g(xu, xv) equals uγ1 + vγ2 and the degree of h(xu, xv) equals uχ1 + vχ2.
Since f ′

j (x
w) is irreducible we get uγ1 + vγ2 = 0 or uχ1 + vχ2 = 0, whence u = 0 and

γ2χ2 = 0 or v = 0 and γ1χ1 = 0 or u = v = 0. The last case is impossible by (56), and
in view of symmetry it is enough to consider u = 0, γ2 = 0. Thus g(y, 0) = g(y, z) is not
constant and, since f ′

j (0) �= 0, it follows from (65) and (66) that αν2 + βμ2 = 0. This
gives αn+βm = u(αν1 +βμ1)+ v(αν2 +βμ2) = 0. The contradiction obtained proves
that no f ′

j (y, z) (1 � j � r ′) is reducible. Since f ′
j (y, z) are also not constant, and by (58)

f
(
yαν1+βμ1zαν2+βμ2

) = f ′
1(y, z) · · · f ′

r ′(y, z),

it follows that the polynomials f ′
j (y, z) (1 � j � r ′) and fj (y, z) (1 � j � r), after a

suitable permutation, differ only by constant factors. Since the polynomials f ′
j (x

u, xv) =
f ′
j (x

w) (1 � j � r ′) are irreducible and coprime, the same applies to fj (xu, xv)
(1 � j � r), which completes the proof. ��

4.

Proof of Theorem 2. It is clear that ifΦ(x) is a polynomial, thenKΦ(x) = KJΦ(x). We
take this equality as a definition of KΦ(x), where Φ(x) is a rational function of the form
I∑
i=0
aix

αi (αi integers).

Now let

F(y, z) =
I∑
i=0

aiy
αi zβi ,

where ai are integers �= 0 and the pairs 〈αi, βi〉 (0 � i � I ) are all different (it is clearly
sufficient to prove the theorem for polynomials with integral coefficients). Let � be the
rank of the matrix [

α1 − α0 α2 − α0 . . . αI − α0
β1 − β0 β2 − β0 . . . βI − β0

]
.

We consider separately two cases, � = 1 and � = 2.

Case � = 1. In this case there exist integers α, β and γi (0 � i � I ) such that α > 0
or β > 0 and

αi − α0 = αγi, βi − β0 = βγi (0 � i � I ).
Put

f (x) = J
I∑
i=0

aix
γi .

Clearly

(67) JF(y, z) = Jf (yαzβ).
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Since F(y, z) is irreducible and is different from ay, az, both f (x) and Jf (x−1) =
J
I∑
i=0
aix

−γi are irreducible. If we had for some δ > 1, f (x) |xδ − x, this would imply

f (x) = ±Jf (x−1), whence JF(y, z) = ±JF(y−1, z−1), against the assumption. Thus
both f (x) and Jf (x−1) satisfy the conditions of Lemma 6 and constants C(f, α, β),
C
(
Jf (x−1), α, β

)
are well defined. We put

C0(F ) = max{|α|, |β|}; C1(F ) = max
{
C(f, α, β), C

(
Jf (x−1), α, β

)}
.

If αn+ βm = 0, we have max{n,m} � C0(F )(n,m).
If αn+βm < 0, we can replace in (67) f by Jf (x−1), α by −α, β by −β, which will

not affect the inequality

(68) C(f, α, β) � C1(F ).

We may therefore assume without loss of generality that αn+βm > 0 and (68) holds. Let

M =
[
ν1 μ1
ν2 μ2

]
be an integral matrix, whose existence for n,m is asserted in Lemma 6. Since by (57)
and (67)

JF(yν1zν2 , yμ1zμ2) = f (yαν1+βμ1zαν2+βμ2),

KF(xn, xm) = f (xαn+βm),
Theorem 2 follows in this case (� = 1) from Lemma 6 and (68).

Case � = 2. We may assume without loss of generality that∣∣∣∣α1 − α0 α2 − α0
β1 − β0 β2 − β0

∣∣∣∣ �= 0.

Let ξ be any irrational number. Clearly the numbers (α1 − α0) + ξ(β1 − β0) and
(α2 − α0)+ ξ(β2 − β0) are incommensurable; thus there are incommensurable distances
in the set of points αi + ξβi (0 � i � I ). By remark 1 at the end of paper [2] (cf. also
the remark after Lemma 4) there are in this set two incommensurable distances which
appear only once in the double sequence αj − αi + ξ(βj − βi) (0 � i < j � I ). This
means that there exist 4 non-negative integers i′, i′′, j ′, j ′′ such that

〈
αj ′ − αi′ , βj ′ − βi′

〉
and
〈
αj ′′ − αi′′ , βj ′′ − βi′′

〉
appear only once in the double sequence

〈
αj − αi, βj − βi

〉
(0 � i < j � I ) and ∣∣∣∣αj ′ − αi′ αj ′′ − αi′′

βj ′ − βi′ βj ′′ − βi′′
∣∣∣∣ �= 0.

We put in Lemma 5

(69) Γ =
[
αj ′ − αi′ αj ′′ − αi′′
βj ′ − βi′ βj ′′ − βi′′

]
, d = 2(10N2)A,

where N = max
0�i�I

max{αi, βi}, A =
I∑
i=0
a2
i .
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Let

M =
[
ν1 μ1
ν2 μ2

]
be an integral non-singular matrix, whose existence for n,m is asserted in that lemma.
Thus we have by (40) and (42)

0 � νi �
(
(8 · 102AN4A)!)2, 0 � νi �

(
(8 · 102AN4A)!)2 (i = 1, 2),(70)

[n,m] = [u, v]M, u, v integers � 0.(71)

We see that assertions (i) and (ii) of Theorem 2 are satisfied with C1(F ) = ((8 ·
102AN4A)!)2.c

Moreover, by (70) and (71)

(72) max{n,m} � 2C1(F )max{u, v}, (n,m) � (u, v).

Let

(73) JF(yν1zν2 , yμ1zμ2) = const F1(y, z)
e1F2(y, z)

e2 · · ·Fr(y, z)er
be a standard form of JF(yν1zν2 , yμ1zμ2). In order to prove (iii) we have to show that
either

KF(xn, xm) = constKF1(x
u, xv)e1KF2(x

u, xv)e2 · · ·KFr(xu, xv)er
is a standard form ofKF(xn, xm)or max{n,m} � C0(F )(n,m), whereC0(F ) is a constant
independent of n,m. In view of (70) it is sufficient to prove the same with C0(F ) replaced
by C0(F,M), a constant depending only on F andM .

In order to define C0(F,M) we notice that by the assumption(
JF(y, z), JF (y−1, z−1)

) = 1 and by Lemma 3 there exist two constants,
B00 = B0

(
JF(y, z), JF (y−1, z−1)

)
� 1 and B01 = B1

(
JF(y, z), JF (y−1, z−1)

)
, such

that

(74)

(
JF(xn, xm)

KF(xn, xm)
,
JF (x−n, x−m)
KF(x−n, x−m)

) ∣∣∣∣ (x(n,m)B00 − 1)B00

and

(75)
(
KF(xn, xm),KF(x−n, x−m)

) = 1

unless

max{n,m} � B01(n,m).

Since for an arbitrary polynomial f (x)

(76) Jf (x)/Kf (x) = Jf (x−1)/Kf (x−1),

we get from (74)

(77)
JF(xn, xm)

KF(xn, xm)

∣∣∣∣ (x(n,m)B00 − 1)B00 .
c
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Let Sj (1 � j � r) be the set of all the polynomials not divisible by Fj (y, z) which

are of the form J
l∑
i=0
ciy

σi zτi , where ci are integers �= 0,
l∑
i=0
c2
i = A and

max{|σi |, |τi |} � 16 · 102AN4A+1C1(F ) (0 � i � l).

Clearly the sets Sj (1 � j � r) are finite and effectively computable. Moreover, for each
H ∈ Sj there exists by Lemma 3 a constant B1(Fj ,H) such that

(78)
(
KFj(x

u, xv),KH(xu, xv)
) = 1

unless

max{u, v} � B1(Fj ,H)(u, v).

Finally for each pair 〈i, j〉, where 1 � i < j � r , there exists by Lemma 3 a constant
B1(Fi, Fj ) such that

(79)
(
KFi(x

u, xv),KFj (x
u, xv)

) = 1

unless

max{u, v} � B1(Fi, Fj )(u, v).

We put

C0(F,M) = max
{
8NC2

1 (F )B
2
00, B01,

2C1(F ) max
1�j�r

max
H∈Sj

B1(Fj ,H), 2C1(F ) max
1�i<j�r

B1(Fi, Fj )
}
.

If for any pair 〈i, j〉, where 1 � i < j � r ,
(
KFi(x

u, xv),KFj (x
u, xv)

) �= 1 we have by
(72) and (79)

max{n,m}/(n,m) � 2C1(F )B1(Fi, Fj ) � C0(F,M).

It remains to prove that if any polynomialKFj(xu, xv) (1 � j � r) is not irreducible,
then max{n,m} � C0(F,M)(n,m).

We shall do that in two steps assuming first thatKF1(x
u, xv) is constant and secondly

that it is reducible (the treatment of F1(x
u, xv) instead of Fj (xu, xv) does not affect

generality and simplifies a little the notation).

1. Assume that KF1(x
u, xv) is constant. Letc

(80) F1(y, z) =
k∑
j=0

bjy
γj zδj (bj �= 0,

〈
γj , δj

〉
all different)

and let �1 be the rank of the matrix[
γ1 − γ0 . . . γk − γ0
δ1 − δ0 . . . δk − δ0

]
.
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It follows from (70) and (73) that

(81)
0 � γj � N(μ1 + ν1) � 2NC1(F ),

0 � δj � N(μ2 + ν2) � 2NC1(F )
(0 � j � k)

and �1 = 1 or 2. If �1 = 1, we have

(82) F1(y, z) = Jf (yγ zδ),
where f is a polynomial in one variable, γ, δ are integers (cf. p. 319) and by (81)

(83) 0 < max{|γ |, |δ|} � 2NC1(F ).

KF1(x
u, xv) = const implies Kf (xγu+δv) = const ; thus γ u + δv = 0 or Kf (x) =

const . In the first case, by (83)

(84) max{u, v} � 2NC1(F )(u, v);
in the second case by (76) Jf (x) = ±Jf (x−1) and by (82)

Jf (yγ zδ) = F1(y, z) = ±JF1(y
−1, z−1).

The last equality implies by (73)

Jf (yγ zδ)
∣∣ (JF(yν1zν2 , yμ1zμ2), JF (y−ν1z−ν2 , y−μ1z−μ2)

)
.

By a substitution y = ημ2ζ−ν2 , z = η−μ1ζ ν1 we get

(85) Jf (ηγμ2−δμ1ζ−γ ν2+δν1)
∣∣ (JF(η|M|, ζ |M|), JF (η−|M|, ζ−|M|)

)
.

However (JF (y, z), JF (y−1, z−1)
) = 1, and thus(

JF(η|M|, ζ |M|), JF (η−|M|, ζ−|M|)
) = 1

and (85) implies

Jf (ηγμ2−δμ1ζ−γ ν2+δν1) = const .

Since by (82) Jf (x) �= const , we get

γμ2 − δμ1 = 0,

−γ ν2 + δν1 = 0.

Since ∣∣∣∣ μ2 −μ1
−ν2 ν1

∣∣∣∣ = |M| �= 0,

the last system of equations gives γ = δ = 0, against (83). The contradiction obtained
proves (84).

If �1 = 2 we may assume without loss of generality that∣∣∣∣γ1 − γ0 γ2 − γ0
δ1 − δ0 δ2 − δ0

∣∣∣∣ �= 0.
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On the other hand, by (73)

JF1(x
u, xv)

KF1(xu, xv)

∣∣∣∣ JF(xn, xm)KF(xn, xm)

and since KF1(x
u, xv) = const , we get from (77)

JF1(x
u, xv)

∣∣ (x(n,m)B00 − 1)B00 .

It follows by (80) that either

(86) uγi + vδi = uγj + vδj for i = 1 or 2 and some j � k

or

(87) |u(γi − γ0)+ v(δi − δ0)| � B2
00(n,m) (i = 1, 2).

(81) and (86) imply

(88) max{u, v} � 2NC1(F )(u, v),

(81) and (87) imply

(89) max{u, v} � 4NC1(F )B
2
00(n,m).

In view of (72) it follows from (84), (88) and (89) that

max{n,m} � C0(F,M)(n,m).

2. Assume that KF1(x
u, xv) is reducible. Let f (x) be an irreducible primitive factor

of it. Since by (71) and (73) KF1(x
u, xv) |F(xn, xm), we havec

(90) F(xn, xm) = f (x)g(x),
where g(x) is a polynomial with integral coefficients. It follows from (75) that(

KF1(x
u, xv),KF(x−n, x−m)

) = 1 unless max{n,m} � B01(n,m),

whence by (90)

(91) f (x) = const
(
KF1(x

u, xv),K[f (x)g(x−1)])
or

(92) max{n,m} � B01(n,m).

In order to calculate the right hand side of (91) we put

(93) f (x)g(x−1) =
l∑
i=0

cix
ki (ci integers �= 0, k0 < k1 < . . . < kl)
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and consider two expressions for F(xn, xm)F (x−n, x−m):

(94)

F(xn, xm)F (x−n, x−m) =
I∑
i=0

a2
i +

∑
0�i,j�I
i �=j

aiaj x
nαj+mβj−(nαi+mβi),

[
f (x)g(x−1)

][
f (x−1)g(x)

] = l∑
i=0

c2
i +

∑
0�i,j�l
i �=j

cicj x
kj−ki .

If for any pair 〈i, j〉:
(95) i �= j and nαj +mβj − (nαi +mβi) = 0,

we get n(αj − αi)+m(βj − βi) = 0, whence

(96) max{n,m} � N(n,m).

Similarly, if for any pair 〈i, j〉

(97) 〈i, j〉 �= 〈i′, j ′〉 and nαj +mβj − (nαi +mβi)
= nαj ′ +mβj ′ − (nαi′ +mβi′)

or

(98) 〈i, j〉 �= 〈i′′, j ′′〉 and nαj +mβj − (nαi +mβi)
= nαj ′′ +mβj ′′ − (nαi′′ +mβi′′),

we get by the choice of
〈
i′, j ′
〉
,
〈
i′′, j ′′

〉
(p. 320) a linear homogeneous equation onm and n

with non-zero coefficients absolutely � 2N , whence

(99) max{n,m} � 2N(n,m).

If no pair 〈i, j〉 satisfies (95), (97) or (98), it follows from (94) that

(100)
l∑
i=0

c2
i =

I∑
i=0

a2
i = A,

(101) the numbers nαj ′ +mβj ′ − (nαi′ +mβi′) and nαj ′′ +mβj ′′ − (nαi′′ +mβi′′) appear
among the differences kj − ki (0 � i � l, 0 � j � l),

(102) each number kj − ki which appears only once in the double sequence kj − ki
(0 � i < j � l) has a value nγ +mδ, where |γ | � N , |δ| � N .

Let kj1 − ki1 , kj2 − ki2 , . . . , kjP − kiP (P � 0) be all the numbers mentioned in (102)
besides kl − k0.
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If P � 2, 1 � p < q � P , it follows from

kl − k0 = γ0n+ δ0m,
kjp − kip = γpn+ δpm,
kjq − kiq = γqn+ δqm,

�p,q = rank of

⎡⎣γ0 δ0
γp δp
γq δq

⎤⎦ ,
that

cp,q(kl − k0)+ c′p,q(kjp − kip )+ c′′p,q(kjq − kiq ) = 0,

where

[cp,q, c′p,q, c′′p,q ] =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

[∣∣∣∣∣γp δp

γq δq

∣∣∣∣∣ ,
∣∣∣∣∣γq δq

γ0 δ0

∣∣∣∣∣ ,
∣∣∣∣∣γ0 δ0

γp δp

∣∣∣∣∣
]

if �p,q = 2,

[γp,−γ0, 0] if �p,q = 1 and γ0 �= 0,

[δp,−δ0, 0] if �p,q = 1 and δ0 �= 0.

Clearly

0 < max{|cp,q |, |c′p,q |, |c′′p,q |} � 2N2 (1 � p < q � P).

Therefore, the assumptions of Lemma 4 are satisfied with c � 2N2 and we get from that
lemma

(103) ki − k0 = sκi + tλi (0 � i � l),

where s, t, κi, λi (0 � i � l) are integers, |κi | � (10N2)l , |λi | � (10N2)l .
Since by (93) and (100) l < A, we have

(104) |κi | < (10N2)A, |λi | < (10N2)A (0 � i � l).

Now by (101), (103) and (104)

(105)
nαj ′ +mβj ′ − (nαi′ +mβi′) = κ ′s + λ′t,
nαj ′′ +mβj ′′ − (nαi′′ +mβi′′) = κ ′′s + λ′′t,

where κ ′, λ′, κ ′′, λ′′ are integers and

(106) 0 < max
{|κ ′|, |λ′|} < 2(10N2)A, 0 < max

{|κ ′′|, |λ′′|} < 2(10N2)A.

(κ ′ = λ′ = 0 or κ ′′ = λ′′ = 0 would imply (96).)
We put

Δ =
[
κ ′ κ ′′
λ′ λ′′

]
.

It follows from (69), (105) and (106) that

(107) [n,m]Γ = [s, t]Δ and h(Δ) < 2(10N2)A = d.
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We distinguish two cases, |Δ| = 0 and |Δ| �= 0.
If |Δ| = 0, let

|Γ |ΔΓ −1 =
[
ξ1 η1
ξ2 η2

]
(by the choice of Γ , Γ −1 exists). It follows from (106) that

(108) 0 < max{|ξ1|, |η1|} � 2h(Δ)h(Γ ) < 4 · 10AN2A+1.

On the other hand, since ξ1η2 − η1ξ2 = 0, we get from (107) ξ1m− η1n = 0, and thus
by (108)

(109) max{n,m}/(n,m) < 4 · 10AN2A+1 < C1(F ).

If |Δ| �= 0, we can apply to (107) the last statement of Lemma 5. In virtue of that
statement there exists an integral matrix T such that

(110) [s, t] = [u, v]T
and

(111) h(T ) � 8 · 10AN2A+1((8 · 102AN4A)!)2 = 8 · 10AN2A+1C1(F ).

Put

T

[
κi
λi

]
=
[
σi
τi

]
(0 � i � l),(112)

H(y, z) = J
l∑
i=0

ciy
σi zτi .(113)

We have by (103) and (110)

ki − k0 = uσi + vτi (0 � i � l);
thus by (93), (113) and (91)

K
(
f (x)g(x−1)

) = K l∑
i=0

cix
ki−k0 = KH(xu, xv),

f (x) = const
(
KF1(x

u, xv),KH(xu, xv)
)
.(114)

If we had F1 |H , it would imply KF1(x
u, xv) |KH(xu, xv), whence

KF1(x
u, xv) |f (x), against the choice of f (x). Thus (F1, H) = 1. On the other hand, by

(104), (111) and (112)

max{|σi |, |τi |} � 16 · 102AN4A+1C1(F ) (0 � i � l);
thus by (100), (113) and the choice of S1 (p. 322), H ∈ S1. It follows by (78) that(

KF1(x
u, xv),KH(xu, xv)

) = 1



328 D. Polynomials in one variable

or

(115) max{u, v}/(u, v) � B1(F1, H) � max
H∈S1

B1(F1, H).

A comparison with (114) shows that (115) holds. In view of (72) it follows from (92), (96),
(99), (109) and (115) that

max{n,m} � C0(F,M)(n,m).

The proof is complete. ��

5.

Proof of Theorem 3. Put in Theorem 2 F(y, z) = ay + bz + c. Since c �= 0 we have
JF(y, z) �= ±JF(y−1, z−1); thus the assumptions of the theorem are satisfied and the
constant C0(ay + bz+ c) exists. Put

(116)
A(a, b, c) = C0(ay + bz+ c),
B(a, b, c) = A(a, b, c) max

(α,β)∈S,α>β C
′(axα + bxβ + c),

where C′ is a constant from the Corollary to Theorem 1 and S consists of all pairs of
relatively prime positive integers � A(a, b, c).

Now, assume that n,m are positive integers, n > m andK(axn+bxm+c) is reducible.
Let

M =
[
ν1 μ1
ν2 μ2

]
be an integral non-singular matrix whose existence for F, n,m is asserted in Theorem 2.

Without loss of generality we may assume that |M| > 0. It follows from part (iii) of
Theorem 2 that if K(axn + bxm + c) is reducible then either J (ayν1zν2 + byμ1zμ2 + c)
is reducible or

(117) n/(n,m) � C0(F ) = A(a, b, c).
We prove that the former eventuality is impossible. Suppose that

(118) J (ayν1zν2 + byμ1zμ2 + c) = G1(y, z)G2(y, z),

where G1,G2 are polynomials. By a substitution y = ημ2ζ−ν2 , z = η−μ1ζ ν1 we get

J (aη|M| + bζ |M| + c) = JG1(η
μ2ζ−ν2 , η−μ1ζ ν1)JG2(η

μ2ζ−ν2 , η−μ1ζ ν1).

However,

J (aη|M| + bζ |M| + c) = aη|M| + bζ |M| + c = aη|M| +D(ζ)
is irreducible by the theorem of Capelli applied to the binomial a|η|M+D(ζ) in the function
field Q(ζ ); in fact, ±D(ζ) is not a power of any element of Q(ζ ) with exponent > 1. It
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follows that

JGi(η
μ2ζ−ν2 , η−μ1ζ ν1) = const , i = 1 or 2,

whence by a substitution η = Y ν1Zν2 , ζ = Yμ1Zμ2

JGi(Y
|M|, Z|M|) = const , i = 1 or 2.

Since |M| �= 0 and by (118) Gi(0, 0) �= 0, we get Gi(y, z) = const (i = 1 or 2). This
shows that J (ayν1zν2 + byμ1zμ2 + c) is irreducible and consequently (117) holds. Part (i)
of Theorem 3 is thus proved.

In order to prove part (ii) we notice that by the Corollary to Theorem 1 there exists an
integer δ satisfying the following conditions:

(119) 0 < δ � C′(axn/(n,m) + bxm/(n,m) + c); (n,m) = δu, u integer;
if

K
(
axnδ/(n,m) + bxmδ/(n,m) + c) = const F1(x)

e1F2(x)
e2 · · ·Fr(x)er

is a standard form of K
(
axnδ/(n,m) + bxmδ/(n,m) + c), then

K(axn + bxm + c) = const F1(x
u)e1F2(x

u)e2 · · ·Fr(xu)er
is a standard form of K(axn + bxm + c). We put ν = nδ/(n,m), μ = mδ/(n,m).

Clearly n/ν = m/μ is integral. Further by (117) and the definition of S:
〈n/(n,m),m/(n,m)〉 ∈ S, and thus by (116) and (119)

ν � A(a, b, c)δ � B(a, b, c).
This completes the proof. ��

6.

Proof of Theorem 4. Put (axn + bxm + c)/K(axn + bxm + c) = g(x). Clearly
g(x) |axn + bxm + c and g(x) | cxn + bxn−m + a, whence

(120) g(x) | (cxn + a)(axn + bxm + c)− bxm(cxn + bxn−m + a)
= ac

(
x2n + a

2 + c2 − b2

ac
xn + 1

)
,

g(x) | (cxm + b)(axn + bxm + c)− axm(cxn + bxn−m + a)
= bc

(
x2m + b

2 + c2 − a2

bc
xm + 1

)
.

If g(x) �= 1, it follows that

x2 + a
2 + c2 − b2

ac
x + 1 �= K

(
x2 + a

2 + c2 − b2

ac
x + 1

)
,

x2 + b
2 + c2 − a2

bc
x + 1 �= K

(
x2 + b

2 + c2 − a2

bc
x + 1

)
.
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On the other hand, the only monic reciprocal quadratic polynomials which have roots
of unity as zeros are x2 + 1, x2 ± x+ 1, x2 ± 2x+ 1. It follows that a2 + c2 − b2 = εrac,
b2 + c2 − a2 = ηsbc, where |ε| = |η| = 1; r = 0, 1 or 2; s = 0, 1 or 2. Hence

2c2 = εrac + ηsbc, 2a2 − 2b2 = εrac − ηsbc;
2c = εra + ηsb, 4a2 − 4b2 = (εra)2 − (ηsb)2,

and

a2(4 − (εr)2) = b2(4 − (ηs)2).
The last inequality implies (εr)2 = (ηs)2, and thus r = s. Since c �= 0, it is impossible
that s = r = 0; thus two cases remain:

r = s = 1, a2 = b2, c = εa = ηb;(121)

r = s = 2, c = εa + ηb.(122)

In the first case, by (120)

g(x) |x2n + εxn + 1,

and since all zeros of x2n + εxn + 1 are roots of unity

g(x) = (axn + bxm + c, x2n + εxn + 1).

On the other hand, by (121)

c(x2n + εxn + 1)xm = η(axn + bxm + c)+ c(xm+n − εη)(xn + ε)
and since (x2n + εxn + 1, xn + ε) = 1, it follows that

g(x) = (axn + bxm + c, x2n + εxn + 1) = (x2n + εxn + 1, xm+n − εη).
In the second case, by (120)

g(x) |x2n + 2εxn + 1 = (xn + ε)2,
and since all zeros of xn + ε are roots of unity,

g(x) = (axn + bxm + c, (xn + ε)2).
On the other hand, by (122)

axn + bxm + c = a(xn + ε)+ b(xm + η),
and every multiple factor of axn + bxm + c divides

naxn + bmxm = na(xn + ε)+mb(xm + η)− (anε +mbη).
It follows that in the second case

g(x) =
{
(xn + ε, xm + η)2 if anε + bmη = 0,

(xn + ε, xm + η) if anε + bmη �= 0.

In order to complete the proof it remains to calculate

(x2n + εxn + 1, xm+n − εη) and (xn + ε, xm + η).
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This is easily done by factorization in cyclotomic fields (cf. [1], p. 69, where in Theorem 3
εmε′n should be replaced by εm1ε′n1 ). ��c

7.

Proof of Theorem 5. Put in Theorem 2 F(y, z) = y + f (z). Since f (z) �≡ ±1 and
f (0) �= 0, JF(y, z) �= ±JF(y−1, z−1), and thus the assumptions of the theorem are
satisfied and the constants C0

(
y + f (z)), C1

(
y + f (z)) exist. We put

D0(f ) = max
{
C0
(
y + f (z)), C1

(
y + f (z))},

D1(f ) = the greatest common divisor of multiplicities of all the zeros of f (z).

By Theorem 2 for every n there exists an integral matrix[
ν1 μ1
ν2 μ2

]
satisfying the following conditions

0 � νi � C1
(
y + f (z)), 0 � μi � C1

(
y + f (z)) (i = 1, 2),(123)

n = ν1u+ ν2v, 1 = μ1u+ μ2v, u, v integers � 0;(124)

if K
(
xn + f (x)) is reducible, then

either J
(
yν1zν2 + f (yμ1zμ2)

)
is reducible

or n = max{n, 1}/(n, 1) � C0
(
y + f (z)) � D0(f ).

(125)

It follows from (123) and (124) that μ1u = 0, μ2v = 1 or μ1u = 1, μ2v = 0. In view
of symmetry it is enough to consider the first possibility. We then have μ2 = v = 1 and
u = 0 or μ1 = 0. If u = 0, then

(126) n = ν2 � C1
(
y + f (z)) � D0(f ).

If μ1 = 0, then

J
(
yν1zν2 + f (yμ1zμ2)

) = yν1zν2 + f (z).
By the theorem of Capelli applied to the binomial yν1 + z−ν2f (z) in the function field

Q(z), yν1zν2 + f (z) is reducible only if −z−ν2f (z) = g(z)p and p | ν1 or z−ν2f (z) =
4g(z)4 and 4 | ν1, where g(z) is a rational function and p is a prime. Since f (0) �= 0, it
follows that for some prime p

p |D1(f ), p | ν1 and p | ν2.

By (124), this implies

(127)
(
n,D1(f )

) �= 1.

Therefore, if K
(
xn + f (x)) is reducible, at least one of the inequalities (125), (126)

and (127) is satisfied. This completes the proof. ��
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Note added in proof. 1. H. Zassenhaus and the writer have proved (cf. [4a]) the following im-
provement of inequality (4): max

1�i�N
|β(i)| > 1 + 2−N−4. Hence inequality (1) can be improved as

follows:
e(a,Ω) � (2N+4 + 1) log(NH(α)).

2. E. G. Straus has proved the equality � = �0 conjectured on p. 314. His general proof (to
appear in [4b]) specialized to the case �0 = 2 would lead also to a simpler proof of Lemma 4 than
that given in the present paper.
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Reducibility of polynomials
and covering systems of congruences

The following problem has been proposed by Professor P. Turán in an oral communi-
cation:

Does there exist a constant C such that for every polynomial f (x) =
n∑
i=0
aix

n−i

(ai integers, a0 �= 0), there is a polynomial g(x) =
n∑
i=0
bix

n−i (bi integers) irreducible

over the rationals and satisfying
n∑
i=0

|bi − ai | � C ?

This problem, apparently very difficult, becomes simpler if one removes the condition
that the degree of g should not exceed the degree of f . Then it seems plausible that for
polynomials f (x) with f (0) �= 0 the value of C can be taken 1, i.e. for a suitable n and a
suitable sign the polynomial ±xn + f (x) is irreducible.

I have treated the irreducibility of xn+f (x) in [3] and I have proved (Theorem 5) that
for every polynomial f (x) with rational coefficients such that f (0) �= 0, f (1) �= −1 and
f (x) �≡ 1, there exist infinitely many n’s for which xn+ f (x) has exactly one irreducible
factor that is not a cyclotomic polynomial (the precise formulation of the theorem says a
little more). The example

f0(x) = 1

12
(3x9 + 8x8 + 6x7 + 9x6 + 8x4 + 3x3 + 6x + 5)

shows that xn + f (x) may have cyclotomic factors for any n. In this example, however,
the coefficients of f (x) are not integers. The aim of the present paper is to investigate the
irreducibility of xn+f (x), where f (x) has integer coefficients and to show its connection
with the so called covering systems of congruences.

A system of congruences ai modmi is called covering if every integer satisfies one of
the congruences (cf. [1] and the papers quoted there). The precise formulation of the results
is given below, but their most striking consequence is that if there are no covering systems
with distinct odd moduli > 1 (the conjecture of Selfridge), then for every polynomial
f (x) with integer coefficients such that f (0) �= 0, f (1) �= −1, xn + f (x) is irreducible
for infinitely many n.
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Theorem 1. The following two propositions are equivalent.

A. For every polynomial f (x) with integer coefficients such that f (0) �= 0, f (1) �= −1
and f (x) �≡ 1, there exists an arithmetical progression N such that if ν ∈ N then
xν + f (x) is irreducible over the rationals.

B. In every finite covering system of congruences ai modmi (mi > 1) at least one of
the quotients mj/mi equals qα (q prime, α � 0), aj �≡ ai modmi and either q > 2
or mi ≡ 1 mod 2 or aj �≡ ai mod (mi/2).

Theorem 2. There is an implication C → B → D, where C and D are the following
propositions.

C. In every finite covering system of congruences ai modmi (mi > 1) either there are
two equal moduli or there is a modulus even.

D. In every finite covering system of congruences ai modmi (mi > 1) at least one
modulus divides another one.

Notation. Z is the ring of integers, Q the field of rationals, a monic polynomial means a
polynomial with the highest coefficient ±1.
Xn(x) is the nth cyclotomic polynomial, ζn is a primitive nth root of unity. For any

polynomial f (x), Kf (x) is the factor of f (x) of the greatest possible degree whose no
root is 0 or a root of unity and whose leading coefficient is equal to that of f (x).

Lemma 1. Let Fi(x), ai(x) ∈ Z[x] (i = 1, 2, . . . , r). If the polynomials Fi(x)
(i = 1, 2, . . . , r) are monic and relatively prime in pairs modulo every prime, then there
exists a polynomial f (x) ∈ Z[x] such that

f (x) ≡ ai(x)mod Fi(x),(1)

degree f (x) < degree
r∏
i=1

Fi(x).(2)

Proof. For each i � r consider the polynomials

Fi(x) and Gi(x) = Fi(x)−1
r∏
i=1

Fi(x).

Since they are monic and relatively prime mod 2 they are relatively prime over Q and
there exist polynomials Ui(x), Vi(x) ∈ Z[x] such that

degreeUi < degreeGi, degreeVi < degreeFi

and

Fi(x)Ui(x)+Gi(x)Vi(x) = Ri �= 0.

Let Ui(x) = uiU∗
i (x), Vi(x) = viV ∗

i (x), where ui, vi are integers and U∗
i (x), V

∗
i (x) are

primitive polynomials.
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If Ri/(ui, vi) has any prime factor p, we have

either p /| ui

(ui, vi)
or p /| vi

(ui, vi)
.

Without loss of generality we may assume the former. Since Fi(x) andGi(x) are relatively
prime mod p, it follows from

(3) Fi(x)
ui

(ui, vi)
U∗
i (x)+Gi(x)

vi

(ui, vi)
V ∗
i (x) =

Ri

(ui, vi)

that
ui

(ui, vi)
U∗
i (x) ≡ 0

(
mod p,Gi(x)

)
.

Since ui �= 0 and Gi(x) is monic, the degree of U∗
i (x) is less than the degree of Gi(x)

also mod p, thus we get a contradiction.
Therefore, Ri/(ui, vi) has no prime factors; equals εi = ±1 and it follows from (3)

that

(4) εi
vi

(ui, vi)
Gi(x)V

∗
i (x) ≡

{
1 mod Fi(x),

0 modGi(x).

Now, put

(5)
r∑
i=1

εi
vi

(ui, vi)
ai(x)Gi(x)V

∗
i (x) = q(x)

r∏
i=1

Fi(x)+ f (x),

where q(x) ∈ Q[x] and

degree f (x) < degree
r∏
i=1

Fi(x).

Since
r∏
i=1
Fi(x) is monic, f (x) ∈ Z[x]. By (4) and (5) (1) holds. ��

Remark. Without the condition (2) the lemma is true also if polynomials Fi(x) are not
monic, but the proof is much more complicated.

Lemma 2. If q is a prime, thenXm(x),Xn(x) (m � n) are relatively prime mod q except
if n/m = qα (α � 0), in which case

(6) Xn(x) ≡ Xm(x)ϕ(n)/ϕ(m) mod q.

Proof. Let m = qμm1, n = qνn1, where q /| m1n1.
We have by the properties of cyclotomic polynomials

(7) Xm(x) = Xm1(x
qμ)

Xm1(x
qμ−1

)
≡ Xm1(x)

qμ−qμ−1
mod q (μ � 1)
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and similarly

(8) Xn(x) = Xn1(x
qν )

Xn1(x
qν−1
)
≡ Xn1(x)

qν−qν−1
mod q (ν � 1).

If n1 �= m1, the polynomials Xm1(x), Xn1(x) are relatively prime over Q, and both
divide xn1m1 − 1. Thus their resultant R divides the discriminant of xn1m1 − 1 and since
n1m1 �≡ 0 mod q we get R �≡ 0 mod q. Hence Xm1(x) and Xn1(x) are relatively prime
mod q and by (7) and (8) the same is true aboutXm(x) andXn(x). If n1 = m1, (6) follows
from (7) and (8) after taking into account the case μ = 0. ��

Lemma 3. For every odd c � 1 and integer α � 1 the polynomial

(9) D2αc(x) = 1
2

[
X2αc(x)−Xc(x2α−1

)
]

belongs to Z[x], is monic and relatively prime mod every prime toX2βc(x), where β < α.

Proof. We have

(10) X2αc(x) = Xc(−x2α−1
),

thusD2αc(x) ∈ Z[x]. If c = 1,D2αc(x) = 1, thus the lemma is true. If c > 1 and c∗ is the
product of all distinct prime factors of c, we have

Xc(x) = Xc∗(xc/c∗) = xϕ(c) − μ(c∗)xϕ(c)−c/c∗ + . . . ,
whence

D2αc(x) = μ(c∗)x2α−1(ϕ(c)−c/c∗) + . . .
and D2αc(x) is monic. Since

Xc(x
2α−1
) =

α−1∏
β=0

X2βc(x),

it follows from Lemma 2 that D2αc(x) and X2βc(x) (β < α) are relatively prime modulo
every odd prime. In order to prove that they are relatively prime mod 2 consider their
resultant R. We have

R =
∏
D2αc(ζ ),

where ζ runs through all primitive roots of unity of degree 2βc. By (9) and (10)

R = 2−ϕ(2βc)
∏
Xc(−ζ 2α−1

).

When ζ runs through all primitive roots of unity of degree 2βc, ζ 2α−1
runs ϕ(2β) times

through all primitive roots of unity of degree c. Therefore,

R = 2−ϕ(2βc)
( ∏
(γ,c)=1

Xc(−ζ γc )
)ϕ(2β)

.
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Since

Xc(x) =
∏
(δ,c)=1

(x − ζ δc ),

we have ∏
(γ,c)=1

Xc(−ζ γc ) =
∏

(γ δ,c)=1

(ζ
γ
c + ζ δc ) = 2ϕ(c)

∏
(γ δ,c)=1
γ �=δ

(ζ
γ
c + ζ δc ).

Thus

R =
∏

(γ δ,c)=1

(ζ
γ
c + ζ δc )ϕ(2

β) ≡
∏

(γ δ,c)=1
γ �=δ

(ζ
γ
c − ζ δc )ϕ(2

β) ≡ dϕ(2β) mod 2,

where d is the discriminant of Xc(x). Since d is odd, R is also odd and the proof is
complete. ��

Lemma 4. Let f (x) be a polynomial satisfying the assumptions of Proposition A. Let e0c

be the greatest integer e such that −f (x) = g(x)e, g(x) ∈ Z[x].
There exists a constant D0(f ) such that if n > D0(f ), (ν, e0) = 1 and ν �≡ 0 mod 4

in the case f (x) = 4h(x)4, h(x) ∈ Z[x], then K
(
xν + f (x)) is irreducible over Q.

Proof. Put in Theorem 2 of [3]: F(y, z) = y+ f (z), n = ν,m = 1. By that theorem therec

exists an integral matrixM =
[
ν1 μ1
ν2 μ2

]
with the following properties:

0 � νi � C1(F ), 0 � μi � C1(F ) (i = 1, 2),(11)

[ν, 1] = [u, v]M, (u, v integers � 0),(12)

(13) if yν1zν2+f (yμ1zμ2) = const F1(y, z)
e1F2(y, z)

e2 · · ·Fr(y, z)er is a decomposition
of yν1zν2 + f (yμ1zμ2) into factors irreducible over Q, then either

K
(
xν + f (x)) = constKF1(x

u, xv)e1KF2(x
u, xv)e2 · · ·KFr(xu, xv)er

is a decomposition of K
(
xν + f (x)) into factors irreducible over Q or

ν � C0(F ).

C0(F ) and C1(F ) are constants independent of ν.

We take D0(f ) = max{C0(F ), C1(F )} and assume ν > D0(f ), (ν, e0) = 1 and
ν �≡ 0 mod 4 if f (x) = 4h(x)4, h(x) ∈ Z[x].

It follows from (12) that

(14) ν = ν1u+ ν2v, 1 = μ1u+ μ2v,

thus by (11)

μ1u = 1, μ2v = 0 or μ1u = 0, μ2v = 1.
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In view of the symmetry we may assume the latter. Thus μ2 = v = 1 and either u = 0 ofc

μ1 = 0. If u = 0, then ν = ν2 � D0(f ) against the assumption. If μ1 = 0,

yν1zν2 + f (yμ1zμ2) = yν1zν2 + f (z).
By the theorem of Capelli (cf. [3], p. 6(1)) the last polynomial can be reducible over Q

only if

(15) −f (z)z−ν2 = k(z)p, where p | ν1 and k(z) ∈ Q(z)

or

(16) f (z)z−ν2 = 4k(z)4, where 4 | ν1 and k(z) ∈ Q(z).

Since f (0) �= 0, (15) implies that p | e0 and p | ν2, thus by (14) (ν, e0) �= 1 against the
assumption. Similarly (16) implies that f (z) = 4h(z)4, h(z) ∈ Z[z] and ν ≡ 0 mod 4,
again contrary to the assumption. Thus yν1zν2 + f (yμ1zμ2) is irreducible over Q and
by (13) K

(
xν + f (x)) is also irreducible. ��

Proof of Theorem 1. Implication A → B. Assume B is false, thus there exists a finite
set S of integral pairs (m, a) with m > 1 and with the following properties.

(17) For every integer ν there exists a pair (m, a) ∈ S such that ν ≡ a modm (the system
a modm, (m, a) ∈ S is covering).

(18) If (m, a) ∈ S, (n, b) ∈ S and n/m = qα (q prime, α � 0), then either b ≡ a modm

or q = 2, m ≡ 0 mod 2 and b ≡ a mod
m

2
.

Let S0 be a subset of S irreducible with respect to property (17). If (m, a) ∈ S0,
(n, b) ∈ S0, (m, a) �= (n, b) and m |n, then b �≡ a modm; otherwise, S0 \ {(n, b)} would
also have property (17). Property (18) is hereditary, but in view of the last remark it takes
for S0 the following simpler form.

If (m, a) ∈ S0, (n, b) ∈ S0, (m, a) �= (n, b) and n/m = qα (q prime, α � 0), then

q = 2, α > 0, m ≡ 0 mod 2, b ≡ a mod
m

2
and b �≡ a modm.

Divide the set S0 into classes assigning two pairs (m, a) and (n, b) to the same class if
n/m = 2α (a � 0 or < 0). We obtain the decomposition of S0

(19) S0 =
r⋃
i=1

Ci,

and the pairs in any classCi can be represented in the form (2αij ci , aij ) (j = 1, 2, . . . , ki),
where ci is odd and either ki = 1, 2αi1ci > 1 orc

(20)
0 < αi1 < αi2 < . . . < αiki = αi,

aij ≡ aiki mod 2αij−1ci, aij �≡ aiki mod 2αij ci (1 � j < ki).

(1) This collection, page 306.
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For each i such that ki > 1 consider the system of congruences

(21) g(x) ≡ 0 mod
ki−1∏
j=1

X2αij ci (x), g(x) ≡ −xaiki modD2αi ci (x).

By Lemma 3 for each j < ki , X2αij ci (x) is relatively prime to D2αi ci (x) mod every

prime, thus the same is true about
ki−1∏
j=1

X2αij ci (x). By Lemma 1 for each i such that ki > 1,

there exists a polynomial gi(x) ∈ Z[x] satisfying the system (21).
Now, put for each i � r:

(22) fi(x) =
⎧⎨⎩
gi(x)+ xaiki
D2αi ci (x)

X2αi ci (x)− xaiki , if ki > 1,

−xai1 , if ki = 1,

and consider the system of congruences

(23) f (x) ≡ fi(x)mod
ki∏
j=1

X2αij ci (x) (i = 1, 2, . . . , r).

By Lemma 2 the moduli are relatively prime in pairs mod every prime, thus by Lemma 1
there exists a polynomial fr+1(x) ∈ Z[x] satisfying (23) and such that

(24) degree fr+1(x) < degree
r∏
i=1

ki∏
j=1

X2αij ci (x).

We claim that

(25) fr+1(x) ≡ −xaij modX2αij ci (x) (1 � i � r, 1 � j � ki).

This is clear by (22), if ki = 1. On the other hand, if ki > 1,

Xci (x
2αi−1

) =
αi−1∏
β=0

X2βci (x),

thus

2D2αi ci (x) ≡ X2αi ci (x)mod
ki−1∏
j=1

X2αij ci (x)

and it follows from (21) (with g replaced by gi), (22) and (23) (with f replaced by fr+1)
that

(26)
fr+1(x) ≡ xaiki mod

ki−1∏
j=1

X2αij ci (x),

fr+1(x) ≡ −xaiki modX2αi ci (x).
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By (20) aiki ≡ aij mod 2αij−1ci , but aiki �≡ aij mod 2αij ci , hence x2aiki ≡ x2aij

modX2αij ci (x), x
aiki �≡ xaij modX2αij ci (x), thus

(27) xaiki ≡ −xaij modX2αij ci (x) (1 � j < ki).

Now (25) follows from (26) and (27). Put

(28) t = max
{
1, 2 − fr+1(0),−fr+1(1)

}
and consider the polynomial

(29) f0(x) = fr+1(x)+ t
r∏
i=1

ki∏
j=1

X2αij ci (x).

By (20) 2αij ci > 1, thus we have

f0(0) = fr+1(0)+ t � 2, f0(1) � fr+1(1)+ t � 0

and the polynomial f0(x) satisfies the assumptions of Proposition A. On the other hand,
by the choice of S0 and (19) for every integer ν � 0 there exist i � r and j � ki such that

ν ≡ aij mod 2αij ci .

Hence

xν ≡ xaij modX2αij ci (x)

and by (25) and (29)

(30) xν + f0(x) ≡ 0 modX2αij ci (x).

However, by (24) and (28) f0(x) has the degree equal to that of
r∏
i=1

ki∏
j=1
X2αij ci (x) and the

leading coefficient positive. Since
r∑
i=1
ki > 1, the degree of xν + f0(x) is greater than

that of X2αij ci (x) and it follows from (30) that xν + f0(x) is reducible. Thus we have
proved more than was necessary, namely the existence of a polynomial f (x) satisfying
the assumptions of Proposition A and such that xν + f (x) is reducible for all ν � 0.

Implication B → A. Let f (x) be a polynomial satisfying the assumptions of A and
let e0 be the greatest integer e such that

−f (x) = g(x)e, g(x) ∈ Z[x].
Consider first the case, where f (x) = 4h(x)4, h(x) ∈ Z[x]. Then let r0 be the least
number r such that (r, 2e0) = 1 and r > D0(f ). The arithmetical progressionN : 2e0t+r0c

(t = 0, 1, . . . ) has the property asserted inA. Indeed, if ν ∈ N then ν > D0(f ), (ν, e0) = 1
and ν �≡ 0 mod 4, thus, by Lemma 4, K

(
xν + f (x)) is irreducible. But no root of unity,

ζm say, can be a zero of xν + f (x), since it would follow that

ζ νm + 4h(ζm)
4 = 0, ζ νm ≡ 0 mod 4,

which is impossible.
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Assume now that f (x) �= 4h(x)4, h(x) ∈ Z[x]. Let P be the set of all pairs (p, 0),
where p is a prime and p | e0. LetM be the set of all pairs (μ, α), where 0 � α < μ and

(31) ζαμ + f (ζμ) = 0.

M is finite. Indeed, it follows from (31) that f (ζμ)f (ζ−1
μ ) = 1, thus ζμ is a root of the

equation xdf (x)f (x−1)− xd = 0, where d is the degree of f (x), and we get ϕ(μ) � 2d.
Since f (1) �= −1 we have μ > 1 for all (μ, α) ∈ M .

We claim that the system of congruences a modm, where (m, a) ∈ P ∪M , does not
satisfy the condition for covering system asserted in B. Indeed, suppose that

(m, a) ∈ P ∪M, (n, b) ∈ P ∪M,
n

m
= qα (q prime, α � 0), b �≡ a modm,(32)

q > 2 or m ≡ 1 mod 2 or b �≡ a mod
m

2
.(33)

(m, a) ∈ P , (n, b) ∈ P impossible in view of (32).
Consider first the case (m, a) ∈ P , (n, b) ∈ M . By the definition of P , m is a prime

and

−f (x) = k(x)m, k(x) ∈ Z[x].
On the other hand, by the definition ofM

ζbn + f (ζn) ≡ 0.

Thus, we get k(ζn)m = ζ bn and

(34) k(ζn) = ζ βmn, where (β, n) = (b, n).
k(ζn) is a primitive root of unity of degree mn/(β,mn), but k(ζn) ∈ Q(ζn), thus by a
known theorem (cf. e.g. [2], p. 536)

mn

(β,mn)

∣∣∣∣ 2n

(2, n)
; m

∣∣∣∣ 2(β,mn)

(2, n)

and

(35) m

∣∣∣∣ 2β

(2, n)
.

Since by the first part of (32)m |n, it follows from (34) and (35) that b ≡ 0 modm, which
contradicts the second part of (32).

Consider next the case (m, a) ∈ M , (n, b) ∈ P . Then since n is a prime and m > 1, it
follows from (32) that n = m, thus we can interchange the roles of m and n and apply the
preceding case.

Consider finally the case (m, a) ∈ M , (n, b) ∈ M . We have

(36)
xa + f (x) ≡ 0 modXm(x),

xb + f (x) ≡ 0 modXn(x).
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Since by Lemma 2, Xn(x) ≡ Xm(x)ϕ(n)/ϕ(m) mod q, we get from (36)

xb − xa ≡ 0
(
mod q,Xm(x)

)
.

Since x and Xm(x) are relatively prime mod q, it follows that

(37) x|b−a| − 1 ≡ 0
(
mod q,Xm(x)

)
.

Put Δ = |b − a| = qδΔ1, where q /| Δ1. We have

(38) xΔ − 1 ≡ (xΔ1 − 1
)qδ ≡ ∏

d |Δ1

Xd(x)
qδ mod q.

It follows from (37), (38) and Lemma 2 that for some d1 |Δ1 and some β � 0,
m

d1
= qβ, Xm(x) ≡ Xd1(x)

ϕ(m)/ϕ(d1) mod q,

and

Xd1(x)
qδ ≡ 0

(
mod q,Xd1(x)

ϕ(m)/ϕ(d1)
)
.

The last congruence implies

(39) qδ � ϕ(m)

ϕ(d1)
= ϕ(qβ).

Ifβ = 0 or q > 2, it follows from (39) that δ � β, thusΔ ≡ 0 modm and b ≡ a modm

contrary to (32). If β > 0 and q = 2 we get from (39) that δ � β − 1, thusΔ ≡ 0 mod
m

2
and b ≡ a mod

m

2
contrary to (33).

By the proposition B, the system a modm, where (m, a) ∈ P ∪M , is not covering,
thus there exist numbersD1 and r1 such that if ν ≡ r1 modD1, then ν �≡ a modm for any
(m, a) ∈ P ∪M .

Let r2 be the least integer r such that r ≡ r1 modD1 and r > D0(f ). The arithmeticalc

progression N : D1t + r2 (t = 0, 1, . . . ) has the property asserted in A. Indeed, if ν ∈ N
then ν > D0(f ) and (ν, e0) = 1, hence by Lemma 4 K

(
xν + f (x)) is irreducible.c

On the other hand, no root of unity can be a zero of xν + f (x), since this would imply(
m, ν −m

[ ν
m

])
∈ M for a suitable m. ��

Proof of Theorem 2. The implication B → D being obvious, it is enough to prove C → B.
Assume B is false, thus (compare the proof of Theorem 1, implication A → B) there exists
a covering system aij mod 2αij ci (1 � i � r , 1 � j � ki), where ci are odd and distinct
and for ki > 1 (20) holds.

Consider the system of congruences

aiki mod ci (1 � i � r, ci > 1),(40)

ai0j mod 2αi0j (1 � j � ki0), where ci0 = 1.(41)

If C is true, system (40) is not covering, thus there exists an integer ν1 such that

ν1 �≡ aiki mod ci, for any i � r with ci > 1.
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On the other hand, system (41) is not covering, since by (20) ai0j (1 � j � ki0 ) are

distinct and
∑
j

1

2αi0j
< 1. Thus there exists an integer ν2 such that

ν2 �≡ ai0j mod 2αi0j for any j � ki0 .
By the Chinese Remainder Theorem there exists

ν0 ≡

⎧⎪⎨⎪⎩ν1 mod
r∏
i=1

ci,

ν2 mod 2αi0 .

By the choice of ν1 and ν2, ν0 does not satisfy any of the congruences (40) and (41),
thus system (40)–(41) and a fortiori the system aij mod 2αij ci is not covering and we get
a contradiction.

Remark. The implication C→D was first proved in a similar way by J. L. Selfridge.
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1.

The present paper is in close connection with [9], the notation of that paper is used
and extended (for a result which requires little notation see Corollary to Theorem 2).
Reducibility means reducibility over the rational field Q. Constants are considered neither
reducible nor irreducible. If f (x1, . . . , xk) �= 0 is a polynomial, then

f (x1, . . . , xk)
can= const

s∏
σ=1

fσ (x1, . . . , xk)
eσ

means that polynomials fσ are irreducible and relatively prime in pairs.

If Φ(x1, . . . , xk)=f (x1, . . . , xk)
k∏
i=1
x
αi
i where f is a polynomial, αi are integers and(

f (x1, . . . , xk), x1 · · · xk
) = 1 then

JΦ(x1, . . . , xk) = f (x1, . . . , xk)

(this definition is equivalent to one given in [9]). Let

JΦ(x1, . . . , xk)
can= const

s∏
σ=1

fσ (x1, . . . , xk)
eσ .

We set

KΦ(x1, . . . , xk) = const
∏

1
fσ (x1, . . . , xk)

eσ ,

LΦ(x1, . . . , xk) = const
∏

2
fσ (x1, . . . , xk)

eσ ,

where
∏

1 is extended over these fσ which do not divide J (xδ11 · · · xδkk − 1) for any
[δ1, . . . , δk] �= 0,

∏
2 is extended over all fσ such that

(∗) Jfσ (x
−1
1 , . . . , x−1

k ) �= ±fσ (x1, . . . , xk).

Corrigenda: Acta Arithmetica XIX (1971), 201; ibid. XXXIV (1978), 265.
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The leading coefficients of KΦ and LΦ are assumed equal to that of JΦ. In particu-
lar for k = 1, KΦ(x) equals JΦ(x) deprived of all its cyclotomic factors and LΦ(x)
equals JΦ(x) deprived of all its monic irreducible reciprocal factors (a polynomial f (x)
is reciprocal if Jf (x−1) = ±f (x)). J0 = K0 = L0 = 0. Note that (∗) impliesc

Jfσ (x
−1
1 , . . . , x−1

k ) �= const fσ (x1, . . . , xk).
The operationsJ,K,L are distributive with respect to multiplication, besides for k = 1,

J and K are commutative with the substitution x → xn (n � 0), L does not share this
property and is always performed after the substitution. We have KJ = JK = K ,
LJ = JL = L, LK = KL = L; the first two formulae follow directly from the
definitions, the last one requires a proof (see Lemma 11).

The paper has emerged from unsuccessful efforts to prove the conjecture formulated
in [9] concerning the factorization ofKF(xn1 , . . . , xnk ) for given F . The operation L has
turned out more treatable and the analogue of the conjecture forLF(xn1 , . . . , xnk ) appears
below as Lemma 12.

For a polynomial F(x1, . . . , xk) ‖F‖ is the sum of squares of the absolute values of
the coefficients of F ; if F �= 0, |F | is the maximum of the degrees of F with respect to xi
(1 � i � k),

|F |∗ =
√

max{|F |2, 2} + 2,

exp1 x = exp x, expj x = exp(expj−1 x).
From this point onwards all the polynomials considered have integral coefficients unless

stated to the contrary. The highest common factor of two polynomials is defined only up
to a constant; the formulae involving it should be suitably interpreted; we set (0, 0) = 0.

Theorem 1. For any polynomial F �= 0 and any integer n �= 0 there exist integers ν and u
such that

(i) 0 � ν � exp
(
10|F | log |F |∗ log ‖F‖)2,

(ii) n = uν,

(iii) KF(xν)
can= const

s∏
σ=1

Fσ (x)
eσ implies KF(xn)

can= const
s∏
σ=1

JFσ (x
u)eσ .

c

This is a quantitative formulation of Corollary to Theorem 1 [9] and a generalization
of that theorem.

Theorem 2. For any polynomial F(x1, . . . , xk) and any integral vector
n = [n1, . . . , nk] �= 0 such that F

(
xn1 , . . . , xnk

) �= 0 there exist an integral matrix
N = [νij ] i�r

j�k
of rank r and an integral vector v = [v1, . . . , vr ] such that

(i) max |νij | � cr(F ),
(ii) n = vN ,
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(iii) LF

( r∏
i=1

y
νi1
i , . . . ,

r∏
i=1

y
νik
i

)
can= const

s∏
σ=1

Fσ (y1, . . . , yr )
eσ implies

LF
(
xn1 , . . . , xnk

) can= const
s∏
σ=1

LFσ
(
xv1 , . . . , xvr

)eσ .
Moreover

cr(F ) =

⎧⎪⎪⎨⎪⎪⎩
exp 9k · 2‖F‖−5 if r = k,
exp
(
5 · 2‖F‖2−42‖F‖ log |F |∗) if r + k = 3,

exp(k−r)(k+r−3)
(
10k|F |∗‖F‖−1 log ‖F‖) otherwise.c

Corollary. For any polynomial f (x) �= 0 the number of its irreducible non-reciprocal
factors except x counted with their multiplicities does not exceed

exp‖f ‖2−5‖f ‖+7
(‖f ‖ + 2

)
(a bound independent of |f |).

Theorem 2 is the main result of the paper. An essential role in the proof is played by a
result of Straus [11]. It is an open question equivalent to the conjecture from [9] whether a
similar theorem, possibly with greater constants cr(F ), holds for the operation K instead
of L.

The case k = 1 is settled by Theorem 1, for k = 2 a partial result is given by

Theorem 3. For any polynomial F(x1, x2) such that KF(x1, x2) = LF(x1, x2) and any
integral vector n = [n1, n2] �= 0 such that F

(
xn1 , xn2

) �= 0 there exist an integral matrix
N = [νij ] i�r

j�2
of rank r and an integral vector v = [v1, vr ] such that

(i) max
i,j

|νij | �
{

exp 9 · 2‖F‖−4 if r = 2,

exp
{
500‖F‖2

(
2|F |∗)2‖F‖+1}

if r = 1,

(ii) n = vN ,

(iii) KF

( r∏
i=1

y
νi1
i ,

r∏
i=1

y
νi2
i

)
can= const

s∏
σ=1

Fσ (y1, yr )
eσ implies

KF
(
xn1 , xn2

) can= const
s∏
σ=1

KFσ
(
xv1 , xvr

)eσ .
This theorem is closely related to Theorem 2 of [9] but is both quantitative and more

general, since it does not assume the irreducibility of F .

Theorem 4. If k � 2, a0 �= 0, aj �= 0 and nj (1 � j � k) are integers then either

L

(
a0 +

k∑
j=1

ajx
nj

)
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is irreducible or there is an integral vector [γ1, . . . , γk] such that

0 < max
j

|γj | �

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
24
∑2
j=0 a

2
j+5 log

2∑
j=0

a2
j if k = 2,

exp2k−4

(
k2
∑k
j=0 a

2
j+3 log

k∑
j=0

a2
j

)
if k > 2

c

and
k∑
j=1

γjnj = 0.

Theorem 5. Ifa, b, c, n,mare integers,n > m > 0,abc �= 0 then eitherK(axn+bxm+c)
is irreducible or

n/(n,m) � 24(a2+b2+c2)+5 log(a2 + b2 + c2)

and there exist integers ν and μ such that m/μ = n/ν is integral,

0 < μ < ν � exp(a2 + b2 + c2)224(a2+b2+c2)+11

and

K(axν + bxμ + c) can= const
s∏
σ=1

Fσ (x)
eσ

implies

K(axn + bxm + c) can= const
s∏
σ=1

Fσ (x
n/ν)eσ .

This is a quantitative formulation of Theorem 3 of [9].
The proofs of Theorems 1, 2, 3, 4, 5 are given in §§ 2, 3, 4, 5, 5 respectively. Some

of the proofs could be simplified at the cost of increasing the order of cr(F ) and of other
similar constants. Since however simplifications would not be great and the constants
already are, I did as much as I could not to increase their order. On the other hand I have
refrained from making generalizations to algebraic number fields. The method of proof of
Theorem 1 works in any algebraic number field, while the method of proof of Theorems 2
and 3 works only in totally real fields and their totally complex quadratic extensions. The
fields of these two types share the property that the trace of a square of the absolute value
of any non-zero element is positive. In the case of totally complex fields, the definition of
LΦ(x1, . . . , xk) must be modified, namely condition (∗) is to be replaced by

Jfσ (x
−1
1 , . . . , x−1

k ) �= const fσ (x1, . . . , xk).

A generalization to function fields over totally real fields is also possible.c

The following notation is used through the paper in addition to that introduced already.

1. |Ω| is the degree of a field Ω .
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2. ζq is a primitive root of unity of order q.c

3. If Ω is a field and α ∈ Ω , α �= 0, then

e(α,Ω) =
{

0 if α = ζq for some q,

maximal e such that α = ζqβe with some q and β ∈ Ω , otherwise.

4. h(M) is the maximum of the absolute values of the elements of a matrix M (the
height of M).

MT and MA are matrices transposed and adjoint to M , respectively. The same notation
applies to vectors treated as matrices with one row. The elements of a vector denoted by a
bold face letter are designated by the same ordinary letter with indices. Bold face capital
letters represent matrices except Ω that is a field.

2.

Lemma 1. Let Ω be an algebraic number field and α �= 0 an element of Ω satisfying an
equation f (α) = 0, where f is a polynomial. Then

(1) e(α,Ω) �

⎧⎪⎨⎪⎩
20|Ω|2 log |Ω|∗ log ‖f ‖ always,
5
2 |Ω| log ‖f ‖ if α is not conjugate to α−1,

(2 log 2)−1|Ω| log ‖f ‖ if α is not an integer.

Besides, for any algebraic number field Ω1 ⊃ Ω

(2) e(α,Ω1) � |Ω1|
|Ω| e(α,Ω).

Proof. If α is a root of unity, the lemma follows from the definition of e(α,Ω). Assume
that α is not a root of unity and let

(3) α = ζqβe, β ∈ Ω, e = e(α,Ω).
If α is an integer, β is also. It follows that

(4) log α = e log β ,

where α is the maximal absolute value of the conjugates of α. Now by a recent result of
Blanksby and Montgomery [1] and by a slight refinement of a theorem of Cassels [3] (see
p. 379 of the present paper)

β � 1 +
{(

40|Ω|2 log |Ω|∗ − 1
)−1 always,(

5|Ω| − 1
)−1 if α is not conjugate to α−1.

Hence

(5)
1

log β
�
{

40|Ω|2 log |Ω|∗ always,

5|Ω| if α is not conjugate to α−1.
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[The second inequality for β and hence the second inequality for 1/ log β are not justified,
the inequality (1) is nevertheless true, see the paper D6.] On the other hand α does notc

exceed the maximal absolute value of the zeros of f and by the inequality of Carmichael–
Masson (see [5], p. 125)

α � ‖f ‖1/2,

hence

(6) log α � 1
2 log ‖f ‖.

The first part of the lemma follows now from (4), (5) and (6). Assume that α is not
an integer and let a0 be the leading coefficient of f . Since f (α) = 0, a0α is an integer.
Therefore there exists a prime ideal p of Ω such that

− ordp a0 � ordp α < 0.

It follows from (3) that

ordp α = e ordp β

and

e � − ordp α � ordp a0.

On the other hand, taking norms N from Ω to Q we get

N(p)ordp a0
∣∣ a|Ω|

0 ,

whence

e � ordp a0 � |Ω| log |a0|
log 2

� |Ω| log ‖f ‖
2 log 2

<
5

2
|Ω| log ‖f ‖,

which proves (1).
In order to prove (2), assume that

α = ζrβe11 , β1 ∈ Ω1, e1 = e(α,Ω1)

and take norms N1 from Ω1 to Ω . We get

ad = N1(ζr )N1(β1)
e1; e1 � e(αd,Ω),

where d = |Ω1|/|Ω|. Since by Lemma 1 of [9]

e(αd,Ω) = de(α,Ω)
(2) follows. ��

Lemma 2. If Φ(x) is any irreducible polynomial not dividing xδ − x (δ �= 1), α is any of
its zeros, Ω = Q(α), n is an integer �= 0,

ν = (n, 2e(α,Ω)−1e(α,Ω)!),
then

Φ(xν)
can= Φ1(x) · · ·Φr(x)
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implies

JΦ(xn)
can= JΦ1(x

n/ν) · · · JΦr(xn/ν).c

Proof. The proof for n > 0 does not differ from the proof of Theorem 1 of [9].
The case n < 0 can be reduced to the former in view of the identity JΦ(xn) = Ψ (x−n),

where Ψ (x) = JΦ(x−1). ��

Proof of Theorem 1. Let

KF(x)
can= const

�∏
i=1

Φi(x)
εi .

For each Φi we denote by αi , Ω i , νi the relevant parameters from Lemma 2 and set

ν =
(
n, max

1�i��
2e(αi ,Ω i )−1e(αi,Ω i )!

)
, u = nν−1.

We may assume that either ‖F‖ � 5 or |F | � 3, ‖F‖ � 3 because otherwise s = 0.
Since 2m−1m! � mm and |Ω i | � |F | (i = 1, . . . , �) we get by Lemma 1

ν � exp
(
20|F |2 log |F |∗ log ‖F‖(log 20|F |2 + log2 |F |∗ + log2 ‖F‖)

)
� exp

(
10|F | log |F |∗ log ‖F‖)2,

which proves (i). (ii) is clear. In order to prove (iii) we notice that

2m1−1m1! |2m2−1m2!
for m1 � m2, thus νi | ν for i � �. By Lemma 2

Φi(x
νi )

can=
ri∏
j=1

Φij (x)

implies

Φi(x
ν)

can=
ri∏
j=1

Φij (x
ν/νi ),

JΦi(x
n)

can=
ri∏
j=1

JΦij (x
n/νi ),

whence

KF(xν)
can=

�∏
i=1

ri∏
j=1

Φij (x
ν/νi )εi ,

KF(xn)
can=

�∏
i=1

ri∏
j=1

JΦij (x
n/νi )εi .
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Denoting the polynomials Φij (xν/νi ) (1 � i � �, 1 � j � ri) by F1, . . . , Fs we
obtain (iii). ��

3.

Lemma 3. Let P(x1, . . . , xk+1) �= 0,Q(x1, . . . , xk+1) �= 0 be polynomials with complex
coefficients, (P,Q) = G and P = GT , Q = GU . The resultant of T ,U with respect
to xi divides a certain nonvanishing minor of Sylvester’s matrix R of P,Q formed with
respect to xi (|R| being the resultant of P,Q).

Proof. Consider polynomials A(x), B(x), C(x) of degrees |A| > 0, |B| > 0, |C| with
indeterminate coefficients a0, . . . , b0, . . . , c0, . . . , the resultantD ofA,B and any minor S
of order |A| + |B| + |C| of Sylvester’s matrix R of AC,BC. Since D is absolutelyc

irreducible and prime to a0b0 (see [6], Satz 120), we have either S = DV , where V is a
polynomial in the coefficients ofA,B,C, or there exist complex values of the coefficients
such thatD = 0 and a0b0c0S �= 0 (cf. [6], Satz 136).A(x) andB(x)with these coefficients
have a common factor of degree > |C| and by a well known theorem ([6], Satz 114) the
rank of R is less than |A| + |B| + |C|. The contradiction obtained with S �= 0 proves that

(7) S = DV
for any minor S of order |A| + |B| + |C| of R.c

Now, if neither T norU is constant with respect to xi we setA(xi) = T (x1, . . . , xk+1),
B(xi) = U(x1, . . . , xk+1), C(xi) = G(x1, . . . , xk+1).

Since (AC,BC) = C, it follows from the quoted theorem that at least one of the
minors of order |A| + |B| + |C| of R does not vanish. By (7) this minor has the propertyc

asserted in the lemma.
If T , say, is constant with respect to xi and the relevant degree of U is u, the principal

minor S of order u has the said property (if u = 0 we take S = 1). ��c

Lemma 4. LetT (x1, x2),U(x1, x2) be polynomials with complex coefficients, (T , U) = 1.
The number of pairs 〈η, ϑ〉 such that T (η, ϑ) = U(η, ϑ) = 0 does not exceed the degree
of the resultant of T ,U with respect to xi (i = 1, 2).

Remark. The lemma must be notorious but it is not readily found in the literature.

Proof. It suffices to consider i = 2. Let t, u be the degrees of T ,U with respect to x2
and for a given η let tη, uη be the degrees of T (η, x2), U(η, x2). Let R(x1) be Sylvester’s
matrix of T ,U formed with respect to x2,R(x1) its determinant and Rη Sylvester’s matrix
of T (η, x2), U(η, x2).

If tη = t , uη = u then Rη = R(η), otherwise Rη can be obtained from R(η) by
crossing out step by step row i, column i (1 � i � u − uη), row u + i, column i
(u− uη < i � (u− uη)+ (t − tη)). At each step all non-zero elements crossed out are in
a row, thus the rank diminishes by at most one. We get

rank of Rη � rank of R(η)− (t − tη)− (u− uη).
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Now if there are kη different ϑ such that T (η, ϑ) = U(η, ϑ) = 0, T (η, x2),U(η, x2) have
a common factor of degree at least kη, thus ([6], Satz 114)

rank of Rη � tη + uη − kη.
It follows that the rank of R(η) does not exceed t + u− kη, whence by differentiation

(x1 − η)kη |R(x1).

Giving η all the possible values, we obtain∑
kη � |R|. ��

Lemma 5. Let P(x1, . . . , xk+1) �= 0,Q(x1, . . . , xk+1) �= 0 be polynomials and S �= 0 a
minor of their Sylvester’s matrix formed with respect to xi (1 � i � k+ 1). The following
inequalities hold

|S| � 2|P | |Q|,
‖S‖ � ‖P ‖2|Q|‖Q‖2|P |.

Proof. We assume without loss of generality i = k + 1 and set

P =
m∑
i=0

Pi(x1, . . . , xk)x
m−i
k+1 , Q =

n∑
j=0

Qj(x1, . . . , xk)x
n−j
k+1 .

Since m � |P |, n � |Q| and Sylvester’s matrix of P,Q is⎡⎢⎢⎢⎢⎢⎢⎣
P0 P1 . . . Pm
. . . . . . . . . . . . . . . . . . . . .

P0 P1 . . . Pm
Q0 Q1 . . . Qn
. . . . . . . . . . . . . . . . . . . . .

Q0 Q1 . . . Qn

⎤⎥⎥⎥⎥⎥⎥⎦

⎫⎬⎭ n times⎫⎬⎭m times

it follows that

|S| � nmax |Pi | +mmax |Qj | � 2|P | |Q|.
In order to estimate ‖S‖ we note that

‖S‖ = (2π)−k
∫ 2π

0
· · ·
∫ 2π

0

∣∣S(eiϕ1 , . . . , eiϕk )
∣∣2 dϕ1 dϕ2 . . . dϕk

(cf. [2], Lemma 6 of Chapter VIII), hence

(8) ‖S‖ � max
0�ϕ�2π

∣∣S(eiϕ1 , . . . , eiϕk )
∣∣2.

On the other hand, for any polynomial R with integral coefficients

(9) max
0�ϕ�2π

∣∣R(eiϕ1 , . . . , eiϕk )
∣∣2 � ‖R‖2.
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Using (8), Hadamard’s inequality and (9) we obtain

‖S‖ � max
0�ϕ�2π

( m∑
j=0

∣∣Pj (eiϕ1 , . . . , eiϕk )
∣∣2)n( n∑

j=0

∣∣Qj(eiϕ1 , . . . , eiϕk )
∣∣2)m

�
( m∑
j=0

max
0�ϕ�2π

∣∣Pj (eiϕ1 , . . . , eiϕk )
∣∣2)n( n∑

j=0

max
0�ϕ�2π

∣∣Qj(eiϕ1 , . . . , eiϕk )
∣∣2)m

�
( m∑
j=0

‖Pj‖2
)n( n∑

j=0

‖Qj‖2
)m

�
( m∑
j=0

‖Pj‖
)2n( n∑

j=0

‖Qj‖
)2m

� ‖P ‖2|Q|‖Q‖2|P |. ��

Lemma 6. If an m-dimensional sublattice of the n-dimensional integral lattice contains
m linearly independent vectors v1, . . . , vm then it has a basis of the form

m∑
j=1

c1jvj , . . . ,

m∑
j=1

cmjvj ,

where

0 � cij < cjj � 1 (i �= j), cij = 0 (i < j).

Proof. The proof is obtained by a standard method (see [2], Appendix A). For a more
precise result see [7]. ��

Lemma 7. Let ki (0 � i � l) be an increasing sequence of integers. Let kjp − kip
(1 � p � p0) be all the numbers which appear only once in the double sequence kj − ki
(0 � i � j � l). Suppose that for each p

kjp − kip =
k∑
q=1

cpqnq,

where cpq are integers, |cpq | � c, c positive integer. Then either there exist integralc

matrices

K = [κqi]q�k
i�l

and Λ = [λqt ]q�k
t�k

and an integral vector u such that

[k1 − k0, . . . , kl − k0] = uK, n = [n1, . . . , nk] = uΛ,(10)

h(K) � k
(
max{c2, 2} + 2

)l/2
,

0 � λqt < λtt � 2l−1 (q �= t), λqt = 0 (q < t)(11)

or there exists an integral vector γ such that

γn = 0 and 0 < h(γ ) � kk−1(max{kc2, 2} + 2k
)(l+1)(k−1)/2

.c
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Proof. By the assumption for each pair 〈i, j〉 where 0 � i � j � l and 〈i, j〉 �= 〈ip, jp〉
(1 � p � p0) there exists a pair

〈
gij , hij

〉 �= 〈i, j〉 such that

kj − ki = khij − kgij .
Let us consider the system of linear homogeneous equations

(12)

x0 = 0,

xj − xi − xhij + xgij = 0, 〈i, j〉 �= 〈i1, j1〉 , . . . ,
〈
ip0 , jp0

〉
,

xjp − xip −
k∑
q=1

cpqyq = 0 (1 � p � p0)

satisfied by xi = ki − k0 (0 � i � l), yq = nq (1 � q � k).
Let A be the matrix of the system obtained from (12) by cancelling the first equation

and substituting x0 = 0 in the others, B be the matrix of the coefficients of the x’s, −Γ

the matrix of the coefficients of the y’s so that A = B | − Γ in the sense of juxtaposition
(the vertical line is added in order to avoid a confusion with the subtraction).

We assert that (12) has at most k linearly independent solutions. Indeed, if we had
k + 1 such solutions a1, . . . , ak+1 then taking as ξ1, . . . , ξk+1 real numbers rationally

independent we should find a set of reals
k+1∑
m=1

amiξm (0 � i � l), where all the differences

would span over the rationals a space of dimension k+ 1, while the differences occurring
only once

k+1∑
m=1

(amjp − amip )ξm =
k+1∑
m=1

ξm

k∑
q=1

cpqam,l+q =
k∑
q=1

cpq

(k+1∑
m=1

am,l+qξm
)

would span a space of dimension at most k contrary to the theorem of Straus [11].
It follows that the rank of A is l + �, where 0 � � < k. If the rank of B is l then since

one row of B (corresponding to 〈i, j〉 = 〈0, l〉) is [0, . . . , 0, 1] there exists a nonsingular
submatrix Δ of B of order l containing this row. Solving the system by means of Cramerc

formulae we find a system of k linearly independent integral solutions which can be written
(horizontally) in the form K ′ |Λ′, where elements of K ′ are determinants obtained from Δ

by replacing one column by a column of Γ and Λ′ = DI k , D = |Δ|, I k is the identity
matrix of order k.c

By Hadamard’s inequality and an inequality for determinants with real entries (see this
collection, paper M4)c

|D| � 2l−1, h(K ′) � min{(max{c2, 4} + 2
)l/2
, (c + 1)l} �

(
max{c2, 2} + 2

)l/2
.c

From K ′ |Λ′ we obtain by Lemma 6 a fundamental system of integral solutions K |Λ
satisfying (11). Since the system is fundamental there exists an integral vector u satisfy-
ing (10).

If the rank of B is less than l, we find a system of k − � linearly independent integral
solutions in the form K ′ |Λ′, where elements of Λ′ are up to a sign minors of A of orderc
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l + �. The rank of Λ′ is less than k, otherwise the equality BK ′T = Γ Λ′T would imply

Γ = BK ′T (Λ′T )−1, A = B | − Γ = B
(
I l | − K ′T (Λ′T )−1)

and the rank of A would be less than l, which is impossible. By Hadamard’s inequality
and the inequality for determinants with real entries quoted abovec

h(Λ′) � min{(max{kc2, 4} + 2
)(l+�)/2

, (kc + 1)l+�} �
(
max{kc2, 2} + 2k

)(l+�)/2
.c

By a well known lemma ([2], Lemma 3 of Chapter VI) there exists an integral vector
γ �= 0 such that Λ′γ T = 0 and

h(γ ) �
[
h(Λ′)k

](k−max{�,1})/max{�,1} � kk−1(max{kc2, 2} + 2k
)(l+1)(k−1)/2

.c

Since n = u′Λ′ (u′ not necessarily integral) we get

γn = nγ T = u′Λ′γ T = 0. ��
Remark. The proof of Straus can be transformed into a proof that (12) has at most k linearly
independent solutions, which does not use any irrationalities and is in this respect nearer
to the proof of Lemma 4 in [9].

Suppose that a1, . . . , ak+1 are solutions,

am = [0, am1, . . . , aml, am,l+1, . . . , am,l+k].
There exist integers b1, . . . , bk+1 not all zero such that

k+1∑
m=1

bmam,l+q = 0 (1 � q � k).

Consider a vector a =
k+1∑
m=1

bmam = [0, a1, . . . , al, 0, . . . , 0]. It is also a solution of (12).

Set
i′ = the least i such that ai = min

0�j�l
aj or max

0�j�l
aj ,

j ′ = the greatest i such that ai = min
0�j�l

aj + max
0�j�l

aj − ai′ .
The equality aj ′ − ai′ = ah − ag implies ai′ = ag , aj ′ = ah, i′ � g, j ′ � h and either〈

i′, j ′
〉 = 〈g, h〉 or kj ′ − ki′ > kh− kg . It follows that

〈
i′, j ′
〉
is identical with some

〈
ip, jp

〉
(1 � p � p0) and we get

aj ′ − ai′ =
k∑
q=1

cpqal+q = 0.

Hence ai = 0 (0 � i � l + k) and

k+1∑
m=1

bmam = 0.
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Lemma 8 (L8k). Let P(x1, . . . , xk) �= 0, Q(x1, . . . , xk) �= 0 be polynomials and
(P,Q) = G. For any integral vector n = [n1, . . . , nk] we have either(

LP(xn1 , . . . , xnk ), LQ(xn1 , . . . , xnk )
) = LG(xn1 , . . . , xnk )

or |P | |Q| > 0 and there exists an integral vector β such that

βn = 0,(13)

0 < h(β) <

{
5|P | |Q| log ‖P ‖2|Q|‖Q‖2|P | if k = 2,

exp2k−5
(
2‖P ‖2|Q|‖Q‖2|P | log 5|P | |Q| + log 7k

)
if k > 2.

(14)

Lemma 9 (L9k). For any polynomial F(x1, . . . , xk) �= 0, any integral vector
n = [n1, . . . , nk] and any irreducible factor f (x) of LF(xn1 , . . . , xnk ) either there exist
an integral matrix Λ = [λqt ] of degree k, an integral vector u = [u1, . . . , uk] and a
polynomial T (z1, . . . , zk) such that

0 � λqt < λtt � 2‖F‖−2 (q �= t), λqt = 0 (q < t),(15)

n = uΛ,(16)

T (z1, . . . , zk) |F
( k∏
q=1

z
λq1
q , . . . ,

k∏
q=1

z
λqk
q

)
,

f (x) = constLT (xu1 , . . . , xuk )

or ‖F‖ � 3 and there exists an integral vector γ such that

γn = 0,(17)

0 < h(γ ) <

{
120
(
2|F |∗)2‖F‖−1 log ‖F‖ if k = 2,

exp2k−4
(
7k|F |∗‖F‖−1 log ‖F‖) if k > 2.

We prove these lemmata by induction showing first L82 and then the implications
L8k → L9k (k � 1), L9k → L8k+1 (k > 1). Since L81 is obvious this argumentation is
sufficient.

Proof of L82. If P = GT ,Q = GU and(
LP(xn1 , xn2), LQ(xn1 , xn2)

) �= LG(xn1 , xn2)

then for some ξ not conjugate to ξ−1: T (ξn1 , ξn2) = 0 = U(ξn1 , ξn2). LetRi be the resul-
tant of T (x1, x2), U(x1, x2) with respect to xi and Si a nonvanishing minor of Sylvester’s
matrix of P,Q, divisible by Ri , whose existence is asserted in Lemma 3. Set

(18) αi = ξni , Ω = Q(α1, α2).

|Ω| does not exceed the number of distinct pairs 〈η, ϑ〉 satisfying T (η, ϑ) = U(η, ϑ) = 0
thus by Lemma 4

|Ω| � |Ri | � |Si | (i = 1, 2).
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Since ξ (n1,n2) ∈ Ω , it follows

|Q(ξ)| � (n1, n2)|Ω|.
Moreover R3−i (αi) = 0, S3−i (αi) = 0 and if αi is not an integer or ni = 0 we get
from (18) and Lemma 1

(19) |ni | � e
(
αi,Q(ξ)

)
� (2 log 2)−1|Q(ξ)| log ‖S3−i‖

� (2 log 2)−1(n1, n2)|Si | log ‖S3−i‖.
If αi is an integer and ni �= 0, ξ sgn ni is also an integer. It is not conjugate to ξ− sgn ni ,

thus by the already quoted refinement of Theorem 1 of [3]

ξ sgn ni > 1 + 1

5|Q(ξ)| − 1
; 1

log ξ sgn ni
< 5|Q(ξ)|.

On the other hand, by the inequality of Carmichael–Masson

αi � ‖S3−i‖1/2; log αi � 1
2 log ‖S3−i‖.

It follows from (18) that

|ni | = log αi
log ξ sgn ni

<
5

2
|Q(ξ)| log ‖S3−i‖ � 5

2
(n1, n2)|Si | log ‖S3−i‖.

In view of Lemma 5 this inequality together with (19) implies L82 on taking β =[ n2

(n1, n2)
,

−n1

(n1, n2)

]
. ��

Proof of the implication L8k → L9k . Let

F(x1, . . . , xk) =
I∑
i=0

aix
αi1
1 · · · xαikk

where ai are integers �= 0 and the vectors αi are all different. Let further

JF(xn1 , . . . , xnk ) = f (x)g(x)c

where f and g have integral coefficients (if necessary we may change f (x) by a constant
factor without impairing the assertion of the lemma). We set

f (x−1)g(x) =
l∑
i=0

cix
ki (ci integers �= 0, k0 < k1 < . . . < kl)

c

and consider two expressions for F(xn1 , . . . , xnk )F (x−n1 , . . . , x−nk ):

F(xn1 , . . . , xnk )F (x−n1 , . . . , x−nk ) =
I∑
i=0

a2
i +

∑
0�i,j�I
i �=j

aiaj x
nαj−nαi ,

(
f (x−1)g(x)

)(
f (x)g(x−1)

) = l∑
i=0

c2
i +

∑
0�i,j�l
i �=j

cicj x
kj−ki .
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If for any pair 〈i, j〉
(20) i �= j and nαj − nαi = 0

we have (17) with h(γ ) � |F |.
If no pair 〈i, j〉 satisfies (20), it follows that F(xn1 , . . . , xnk ) �= 0

(21)
l∑
i=0

c2
i =

I∑
i=0

a2
i = ‖F‖, l � ‖F‖ − 1,

each number kj−ki which appears only once in the double sequence kj−ki (0 � i � j � l)

has a value
k∑
q=1
nqdq with |dq | � |F |.

Applying Lemma 7 with c = |F |we find either integral matrices K = [κqt ], Λ = [λqt ]
and an integral vector u satisfying (15), (16) and

ki − k0 =
k∑
q=1

κqiuq, h(K) < k|F |∗‖F‖−1

or an integral vector satisfying (17) with

h(γ ) < kk−1(k|F |∗2)‖F‖(k−1)/2
<

{
120
(
2|F |∗)2‖F‖−1 log ‖F‖ if k = 2,

exp2k−4
(
7k|F |∗‖F‖−1 log ‖F‖) if k > 2.c

We notice that ‖F‖ � 3 since otherwise LF(xn1 , . . . , xnk ) = const. Set

P(z1, . . . , zk) =
I∑
i=0

ai

k∏
q=1

z

∑k
t=1 λqtαit

q ,

Q(z1, . . . , zk) = J
l∑
i=0

ci

k∏
q=1

z
κqi
q .

Clearly

|P | � k|F |2‖F‖−2, |Q| � 2k|F |∗‖F‖−1
,

whence

(22) |P | + |Q| � 3k|F |∗‖F‖−1
, |P | |Q| � k22‖F‖−1|F |∗‖F‖.

The vectors [κ1i , . . . , κki] (0 � i � l) are all different since such are the numbers

ki − k0. Similarly, by (16) the vectors
[ n∑
t=1
λ1t αit , . . . ,

n∑
t=1
λktαit

]
(0 � i � l) are all

different since such are the numbers
k∑
t=1
αitnt . Therefore, by (21)

(23) ‖P ‖ = ‖Q‖ = ‖F‖.
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We get from L8k that either(
LP(xu1 , . . . , xuk ), LQ(xu1 , . . . , xuk )

) = LG(xu1 , . . . , xuk )

or βu = 0 with β satisfying (14).
In the former case

Lg(x) = const
(
LF(xn1 , . . . , xnk ), Lf (x−1)g(x)

)
= const

(
LP(xu1 , . . . , xuk ), LQ(xu1 , . . . , xuk )

)
= constLG(xu1 , . . . , xuk ),

f (x) = LF(xn1 , . . . , xnk )

Lg(x)
= LP(xu1 , . . . , xuk )

constLG(xu1 , . . . , xuk )
= constLT (xu1 , . . . , xuk ),

where T = PG−1.
In the latter case we have k � 2,

γn = 0 with γ = βΛA,

h(γ ) � kh(β)h(ΛA) � k(k − 1)(k−1)/2h(Λ)k−1h(β)

and we estimate h(γ ) separately for k = 2 and for k > 2, using (14), (15), (22), (23) and
|F |∗ � 2, ‖F‖ � 3.

For k = 2 we obtain

h(γ ) � 2h(Λ) · 5|P | |Q| log ‖P ‖2|Q|‖Q‖2|P |

� 5 · 2‖F‖−1 · 2‖F‖+1|F |∗‖F‖ · 12|F |∗‖F‖−1 log ‖F‖
� 120

(
2|F |∗)2‖F‖−1 log ‖F‖.

For k > 2 we use the inequality

k(k − 1)(k−1)/2h(Λ)k−1 < kk−12(k−1)(‖F‖−2) < exp2k−4
(
6k|F |∗‖F‖−1 log ‖F‖)

and obtain

h(γ ) � k(k − 1)(k−1)/2h(Λ)k−1

× exp2k−4
(
6k|F |∗‖F‖−1 log ‖F‖ + log log 5k22‖F‖−1|F |∗‖F‖ + log 3

)
� exp2

2k−4

(
6k|F |∗‖F‖−1 log ‖F‖ + log 5

2k
2 + ‖F‖ log 2|F |∗ + log 3 − 1

)
< exp2k−4

(
7k|F |∗‖F‖−1 log ‖F‖). ��

Proof of the implication L9k → L8k+1 (k > 1). Let P = GT , Q = GU , let Rj be
the resultant of T ,U with respect to xj and let Sj be a nonvanishing minor of Sylvester’s
matrix of P,Q divisible by Rj , whose existence is asserted in Lemma 3.

If (
LP(xn1 , . . . , xnk+1), LQ(xn1 , . . . , xnk+1)

) �= LG(xn1 , . . . , xnk+1)

then |P | |Q| > 0 and there exists an irreducible polynomial f (x) such that

f (x) | (LT (xn1 , . . . , xnk+1), LU(xn1 , . . . , xnk+1)
)
.
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Clearly for each j � k + 1

f (x) |Rj (xn1 , . . . , xnk+1) |Sj (xn1 , . . . , xnk+1),

where xnj does not occur among the arguments of Rj and Sj . By L9k either there exist an
integral nonsingular triangular matrix Λj with nonnegative entries, an integral vector uj
and a polynomial Tj such that

h(Λj ) � 2‖Sj ‖−2,(24)

[n1, . . . , nj−1, nj+1, . . . , nk+1] = Λjuj ,(25)

Tj |Sj
( k∏
q=1

z
λq1
q , . . . ,

k∏
q=1

z
λqk
q

)
, f (x) = const Tj (x

uj1 , . . . , xujk )(26)

or

γ j [n1, . . . , nj−1, nj+1, . . . , nk+1] = 0

with

0 < h(γ j ) <

{
120
(
2|Sj |∗

)2‖Sj ‖−1 log ‖Sj‖ if k = 2,

exp2k−4
(
7k|Sj |∗‖Sj ‖−1 log ‖Sj‖

)
if k > 2.

In the latter case we have βn = 0, where

0 < h(β) � max
1�j�k+1

h(γ j ).

If k = 2 we obtain from Lemma 5

h(β) � 120
(
2|Sj |∗

)2‖Sj ‖−1 log ‖Sj‖
< exp

(
log(120 log ‖Sj‖)+ (‖Sj‖ − 1

2 ) log(16|P |2|Q|2 + 8)
)

< exp
(
log log ‖P ‖2|Q|‖Q‖2|P | + ‖P ‖2|Q|‖Q‖2|P | log

(
16|P |2|Q|2 + 8

)+ log 5
)

< exp
(
2‖P ‖2|Q|‖Q‖2|P | log 5|P | |Q| + log 21

)
.

If k > 2 we have similarly

h(β) � exp2k−4
(
7k|Sj |∗‖Sj ‖−1 log ‖Sj‖

)
< exp2k−3

( 1
2‖Sj‖ log(4|P |2|Q|2 + 2)+ log log ‖Sj‖ + log 7k

)
< exp2k−3

(‖P ‖2|Q|‖Q‖2|P | log 5|P | |Q| + log 7k
)
.

In the former case we set uk+1 = v = [v1, . . . , vk], find

f (x) = constLTk+1(x
v1 , . . . , xvk ),

Jf (x−1) = constLTk+1(x
−v1 , . . . , x−vk )

and

(27)
Jf (x−1)

f (x)
= LTk+1(x

−v1 , . . . , x−vk )
LTk+1(xv1 , . . . , xvk )

= JTk+1(x
−v1 , . . . , x−vk )

JTk+1(xv1 , . . . , xvk )
.
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Let

Tk+1(z1, . . . , zk) =
I∑
i=0

aiz
αi1
1 z

αi2
2 · · · zαikk ,

where ai �= 0 (0 � i � I ) and the vectors αi are all different. Since Sk+1 �= 0, |Λk+1| �= 0
we get by (26)

(28) h(αi ) � k|Sk+1|h(Λk+1) (0 � i � I ).

Let αiv take its minimum for i = m, maximum for i = M . We havec

JTk+1(x
v1 , . . . , xvk ) = x−αmv

I∑
i=0

aix
αiv,

c

(29)

JTk+1(x
−v1 , . . . , x−vk ) = xαMv

I∑
i=0

aix
−αiv.

Since Jf (x−1) �= const f (x) we get from (27)

d(x) = amJTk+1(x
−v1 , . . . , x−vk )− aMJTk+1(x

v1 , . . . , xvk ) �= 0.

By (29) the lowest term in d(x) is of the form axγ v , where γ = αi − αm or αM − αi so
that

(30) a �= 0; γ v > 0

and by (28)

(31) h(γ ) � k|Sk+1|h(Λk+1).

It follows that

(32)
Jf (x−1)

f (x)
= JTk+1(x

−v1 , . . . , x−vk )
JTk+1(xv1 , . . . , xvk )

≡ aM

am
+ a

a2
m

xγ v mod xγ v+1.
c

By (25) |Λk+1|γ v = (γΛAk+1)[n1, . . . , nk] and since

(33) γ ′ = γΛAk+1 �= 0

we have for some j � k, γ ′j �= 0. Applying (25) and (26) we find as above

(34)
Jf (x−1)

f (x)
≡ bN

bn
+ b

b2
n

xδvj mod xδvj+1
c

with

b �= 0, δvj > 0,(35)

h(δ) � k|Sj+1|h(Λj+1).(36)

It follows from (30), (32), (34) and (35) that

γ v = δvj ,
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which gives

|Λj |γ ′[n1, . . . , nk] = |Λk+1|δ′[n1, . . . , nj−1, nj+1, . . . , nk+1]
with

(37) δ′ = δΛAj .

Hence

j−1∑
i=1

(|Λj |γ ′i − |Λk+1|δ′i
)
ni + |Λj |γ ′j nj

+
k∑

i=j+1

(|Λj |γ ′i − |Λk+1|δ′i−1

)
ni + |Λk+1|γ ′knk+1 = 0,

which is the desired equality (13) with

0 < h(β) � |Λj |h(γ ′)+ |Λk+1|h(δ′).
It follows from (24), (31), (33), (36), (37) and Lemma 5 that

h(β) � h(Λj )kk(k − 1)(k−1)/2h(Λk+1)
k−1h(γ )

+ h(Λk+1)
kk(k − 1)(k−1)/2h(Λj )

k−1h(δ)

� k2(k − 1)(k−1)/2h(Λj )
kh(Λk+1)

k
(|Sj | + |Sk+1|

)
< exp

(
k + 3

2
log k + k(‖Sj‖ + ‖Sk+1||

)
log 2 + log

(|Sj | + |Sk+1|
))

< exp

(
k + 3

2
log k + 2k‖P ‖2|Q|‖Q‖2|P | log 2 + log 4|P | |Q|

)
.

For k = 2 we get

h(β) < exp
(
2‖P ‖2|Q|‖Q‖2|P | log 5|P | |Q| + log 21

)
,

for k > 2 we use the inequality

kx < exp2k−4 x (x � 0)

and obtain

h(β) � exp
(
2k‖P ‖2|Q|‖Q‖2|P | + k log 4|P | |Q|k)

< exp2k−3
(
2‖P ‖2|Q|‖Q‖2|P | log 5|P | |Q| + log 7k

)
. ��

Lemma 10. IfQ �= 0 is a polynomial,

JQ(y−1
1 , . . . , y−1

k ) �= ±JQ(y1, . . . , yk) and LQ(xv1 , . . . , xvk ) = const,

then

(38) βv = 0 with h(β) � 2|Q|.



D4. Reducibility of lacunary polynomials I 363

Proof. Let the degree of JQ with respect to yj be qj and

JQ(y1, . . . , yk) =
∑
aαy

α1
1 · · · yαkk ,

where the summation is taken over all integral vectors α satisfying 0 � αj � qj . Clearly

JQ(y−1
1 , . . . , y−1

k ) =
∑
aq−αy

α1
1 · · · yαkk

and there exist integral vectors αj and α−j (1 � j � k) such that αjj = qj , aαj �= 0,
α−jj = 0, aα−j �= 0.

In view of the condition JQ(y−1
1 , . . . , y−1

k ) �= ±JQ(y1, . . . , yk) we have for some
αl ,α−l

(39) aαl �= aq−αl , aα−l �= −aq−α−l .

Let the product αv taken over all α for which aα �= 0, attains its minimum for α = αm,
maximum for α = αn. We have

JQ(xv1 , . . . , xvk ) = x−αmv
∑
aαx

αv,

JQ(x−v1 , . . . , x−vk ) = xαnv
∑
aαx

−αv.

All the exponents αv are different unless (38) holds (even with h(β) � |Q|). In particular,
Q(xv1 , . . . , xvk ) �= 0.

The equality LQ(xv1 , . . . , xvk ) = const implies

JQ(xv1 , . . . , xvk ) = const JQ(x−v1 , . . . , x−vk )

and by the comparison of constant terms

aαnJQ(x
v1 , . . . , xvk ) = aαmJQ(x−v1 , . . . , x−vk ).

Comparing the leading coefficients on both sides we get

a2
αn

= a2
αm
, i.e. aαn = ±aαm,∑

aαx
αv = ±x(αm+αn)v

∑
aαx

−αv.(40)

In particular, we have for each j � k and a suitable βj

aαj x
αj v = ±aβj x(αm+αn−βj )v.

If α + βj − αm − αn �= 0 we get again (38), otherwise

(41) αmj + αnj = αjj + βjj � αjj = qj .
Similarly we have for each j � k and a suitable β−j

aα−j x
α−j v = ±aβ−j x

(αm+αn−β−j )v;
thus either (38) holds or

αmj + αnj = α−jj + β−jj = β−jj � qj .
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The last inequality together with (41) implies

αm + αn = q

and

x(αm+αn)v
∑
aαx

−αv =
∑
aq−αx

αv.

It follows now from (39) and (40) that with a suitable sign and a suitable integral α

α±lv = αv, α �= a±l
which gives (38) again. ��

Lemma 11. For any polynomial F(x1, . . . , xk) �= 0

LKF(x1, . . . , xk) = KLF(x1, . . . , xk) = LF(x1, . . . , xk).

Proof. In view of the definition of the operations K and L it is enough to prove that for
any integral vector [δ1, . . . , δk] �= 0 and any factorQ(y1, . . . , yk) of J (yδ11 · · · yδkk − 1)

JQ(y−1
1 , . . . , y−1

k ) = ±JQ(y1, . . . , yk).

Supposing the contrary we apply Lemma 10 with

vi =
(
4h(δ)+ 1

)i
(1 � i � k).

Since the conditions βv = 0, h(β) � 2|Q| � 2h(δ) imply β = 0, it follows from that
lemma LQ(xv1 , . . . , xvk ) �= const. On the other hand

LQ(xv1 , . . . , xvk ) |L(xvδ − 1)

and since all factors of x|vδ| − 1 are reciprocal we get a contradiction. ��

Lemma 12. For any polynomial F(x1, . . . , xk) and any integral vector n = [n1, . . . , nk]
such that F(xn1 , . . . , xnk ) �= 0 there exist an integral matrix M = [μij ] of order k andc

an integral vector v = [v1, . . . , vk] such that

0 � μij < μjj � exp 9k · 2‖F‖−5 (i �= j), μij = 0 (i < j);(42)

n = vM,(43)

and either

(44) LF

( k∏
i=1

y
μi1
i ,

k∏
i=1

y
μi2
i , . . . ,

k∏
i=1

y
μik
i

)
can= const

s∏
σ=1

Fσ (y1, . . . , yk)
eσ

c

implies

(45) LF(xn1 , . . . , xnk )
can= const

s∏
σ=1

LFσ (x
v1 , . . . , xvk )eσ

or ‖F‖ � 3 and there exists an integral vector γ such that

(46) γn = 0,
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where

(47) 0 < h(γ ) <

{
max
{
120(2|F |∗)2‖F‖−1 log ‖F‖, 8|F | exp 9 · 2‖F‖−3

}
if k = 2,

exp2k−4
(
9k|F |∗‖F‖−1 log ‖F‖) if k > 2.c

If k = 2 and some LFσ (xv1 , xv2) in (45) are allowed to be constants then (47) can be
replaced by

0 < h(γ ) < 120(2|F |∗)2‖F‖−1 log ‖F‖.

Proof. If ‖F‖ � 2 then by Lemma 11 s = 0, LF(xn1
1 , . . . , x

nk
k ) = const and it suffices to

take M = I k (the identity matrix). Therefore we assume ‖F‖ � 3.
Let S be the set of all integral matrices Λ = [λqt ] of order k satisfyingc

0 � λqt < λtt � 2‖F‖−2 (q �= t), λqt = 0 (q < t),(48)

n = uΛ with integral u.(49)

Integral vectors m such that for all Λ ∈ S and a suitable integral vector vΛ

m = vΛΛ

form a module M, say. By (48) for any Λ ∈ S, |Λ| divides

exp kψ(2‖F‖−2) = μ,
where ψ is Chebyshev’s function. Clearly vectors [μ, 0, . . . , 0], [0, μ, . . . , 0], . . . ,
[0, . . . , 0, μ] belong to M. It follows from Lemma 6 that M has a basis μ1, . . . ,μkc

such that

0 � μij < μjj � μ (i �= j), μij = 0 (i < j).c

Since by Theorem 12 of [8], ψ(x) < 1.04x < 9
8x for all x, the matrix M satisfies (42),

since n ∈ M it satisfies also (43).
In order to prove the alternative (45) or (46) and (47) we set

P(y1, . . . , yk) = F
( k∏
i=1

y
μi1
i , . . . ,

k∏
i=1

y
μik
i

)
can= const

k∏
i=1

y
αi
i

s1∏
σ=1

Fσ (y1, . . . , yk)
eσ ,

(50)

Hi(x1, . . . , xk) =
k∑
j=1

μijxj
∂F

∂xj

(note that P �= 0 since F(xn1 , . . . , xnk ) �= 0). It follows

(51)
∂P

∂yi
yi = Hi

( k∏
i=1

y
μi1
i , . . . ,

k∏
i=1

y
μik
i

)
=
(
yi

s1∑
σ=1

eσF
−1
σ

∂Fσ

∂yi
+ αi
)
P

c
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and by (43)

P(xv1 , . . . , xvk ) = F(xn1 , . . . , xnk ),(52)

xvi
∂P

∂yi
(xv1 , . . . , xvk ) = Hi(xn1 , . . . , xnk ).(53)

(44) implies

(54) JFσ (y
−1
1 , . . . , y−1

k ) = ±Fσ (y1, . . . , yk) (σ > s).

Assume now that for some distinct �, τ � s1
(55) D(x) = (LF�(xv1 , . . . , xvk ), LFτ (x

v1 , . . . , xvk )
) �= 1.

We consider two cases:

1. for some j :
∂F�

∂yj
�= 0 and

∂Fτ

∂yj
�= 0,

2. for each i:
∂F�

∂yi
· ∂Fτ
∂yi

= 0.

1. Here Hj �= 0 and we set G = (F,Hj ). It follows from (50) and (51) that

G

( k∏
i=1

y
μi1
i , . . . ,

k∏
i=1

y
μik
i

)
= const

(
P,
∂P

∂yj
yj

)
= const P

s1∏
σ=1

F−1
σ (y1, . . . , yk),

c

where the product is taken over all σ satisfying
∂Fσ

∂yj
�= 0. On substituting yi = xvi

(1 � i � k) we obtain from (50), (51)

D(x)LG
( k∏
i=1

xμi1vi , . . . ,

k∏
i=1

xμikvi
) ∣∣∣∣ (LP(xv1 , . . . , xvk ), Lxvj

∂P

∂yj
(xv1 , . . . , xvk )

)
,

which in view of (43), (52) and (53) gives

D(x)LG(xn1 , . . . , xnk ) | (LF(xn1 , . . . , xnk ), LHj (x
n1 , . . . , xnk )

)
.

By (55) and Lemma 8 we have (46) with

0 < h(γ ) <

{
5|F | |Hj | log ‖F‖2|Hj |‖Hj‖2|F | if k = 2,

exp2k−5
(
2‖F‖2|Hj |‖Hj‖2|F | log 5|F | |Hj | + log 7k

)
if k > 2.

2. Here we have for some h, j

∂F�

∂yh
�= 0,

∂Fτ

∂yh
= 0; ∂F�

∂yj
= 0,

∂Fτ

∂yj
�= 0,

thus Hh �= 0, Hj �= 0.
We set G = (Hh,Hj ). It follows from (50) and (51) that

(56)

∂P

∂yh
yh = Fe�−1

� F eττ U, U �≡ 0 mod F�,

∂P

∂yj
yj = Fe�� F eτ−1

τ V , V �≡ 0 mod Fτ ,
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hence

G

( k∏
i=1

y
μi1
i , . . . ,

k∏
i=1

y
μik
i

)
= Fe�−1

� F eτ−1
τ (U, V )(y1, . . . , yk).

On substituting yi = xvi we obtain from (56)

D(x)LG
( k∏
i=1

xμi1vi , . . . ,

k∏
i=1

xμikvi
)

∣∣∣∣ (Lxvh ∂P∂yh (xv1 , . . . , xvk ), Lxvj
∂P

∂yj
(xv1 , . . . , xvk )

)
,

which in view of (43) and (53) gives

D(x)LG(xn1 , . . . , xnk ) | (LHh(xn1 , . . . , xnk ), LHj (x
n1 , . . . , xnk )

)
.

By (55) and Lemma 8 we have (46) with

0 < h(γ ) <

{
5|Hh| |Hj | log ‖Hh‖2|Hj |‖Hj‖2|Hh| if k = 2,

exp2k−5
(
2‖Hh‖2|Hj |‖Hj‖2|Hh| log 5|Hh| |Hj | + log 7k

)
if k > 2.

Since for all i: |Hi | � |F |,

‖Hi‖ � k
k∑
j=1

∥∥∥∥μijxj ∂F∂xj
∥∥∥∥ � k2h(M)2|F |2‖F‖,

it follows in both cases that if k = 2

0 < h(γ ) < 20|F |3 log 4h(M)2|F |2‖F‖
< 20|F |3 log 4|F |2‖F‖ + 20|F |3 · 9 · 2‖F‖−3 < 120

(
2|F |∗)2‖F‖−1 log ‖F‖,

if k > 2

0 < h(γ ) < exp2k−4
(
4|F | log k2h(M)2|F |2‖F‖ + log log 5|F |2 + log 3

)
< exp2k−4

(
5|F | log k2|F |2‖F‖ + |F | · 9k · 2‖F‖−2)

< exp2k−4
(
9k|F |∗‖F‖−1 log ‖F‖).c

Assume, therefore, that for all distinct �, τ � s1
(57)

(
LF�(x

v1 , . . . , xvk ), LFτ (x
v1 , . . . , xvk )

) = 1

and let f (x) be any irreducible factor of LF(xn1 , . . . , xnk ). By Lemma 9 either (46)–(47)
hold or there exist an integral matrix Λ = [λqt ] of order k, an integral vectorc

u = [u1, . . . , uk] satisfying (48)–(49) and a polynomial T such that

T (z1, . . . , zk) |F
( k∏
q=1

z
λq1
q , . . . ,

k∏
q=1

z
λqk
q

)
,(58)

f (x) = constLT (xu1 , . . . , xuk ).(59)
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Since Λ ∈ S and by the choice of M: μ1, . . . ,μn ∈ M we have for some integral vectors
θ1, . . . , θn: μi = θ iΛ, thus

(60)

(61)

M = ΘΛ

u = vΘ

}
, Θ =

⎡⎢⎣θ1
...

θn

⎤⎥⎦ .
Set

W(y1, . . . , yk) = JT
( k∏
i=1

y
ϑi1
i , . . . ,

k∏
i=1

y
ϑik
i

)
.

We have by (58) and (60)

W(y1, . . . , yk) |F
( k∏
i=1

y
μi1
i , . . . ,

k∏
i=1

y
μik
i

)
,

by (59) and (61)

f (x) = constLW(xv1 , . . . , xvk ).

Since f (x) is irreducible, the last two formulae imply in view of (50)

(62) f (x) = constLF�(x
v1 , . . . , xvk ) for some � � s1

and since Jf (x−1) �= ±Jf (x) we have by (54) � � s. By (57)(
f (x),

s1∏
σ=s+1

LFσ (x
v1 , . . . , xvk )eσ

)
= 1

and because of the arbitrariness of f (x)(
LF(xn1 , . . . , xnk ),

s1∏
σ=s+1

LFσ (x
v1 , . . . , xvk )eσ

)
= 1.

Since by (50) and (52)

LF(xn1 , . . . , xnk ) = const
s1∏
σ=1

LFσ (x
v1 , . . . , xvk )eσ ,

it follows that

LF(xn1 , . . . , xnk ) = const
s∏
σ=1

LFσ (x
v1 , . . . , xvk )eσ .

Moreover, none of the LFσ (xv1 , . . . , xvk ) (σ � s) is reducible since taking as f (x) any
of its reducible factors we would obtain from (62) a contradiction with (57).

It remains to prove that none of LFσ (xv1 , . . . , xvk ) (σ � s) is constant unless (46)
holds with

0 < h(γ ) <

{
8|F | exp 9 · 2‖F‖−3 if k = 2,

exp2k−4
(
9k|F |∗‖F‖−1 log ‖F‖) if k > 2.c
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This follows from Lemma 10 on takingQ = Fσ , since (38) implies (46) withγ = βMA

and

0 < h(γ ) � kh(MA)h(β) � k(k − 1)(k−1)/2h(M)k−12|P |
� 2k2(k − 1)(k−1)/2h(M)k|F | � 2k2(k − 1)(k−1)/2|F | exp 9k22‖F‖−5. ��

Remark. A comparison of Lemma 12 with the conjecture from [9] shows besides the
replacement of K by L the two differences:

it is not assumed that F is irreducible,
it is not assumed that n1 > 0, …, nk > 0 and it is not asserted that v1 � 0, . . . , vk � 0

(instead it is asserted that M is triangular).

As to the first difference one may note the fact overlooked in [9] that if F is irreducible
all the exponents eσ in (44) are 1. Indeed, in the notation of the preceding proof eσ > 1
implies

Fσ (y1, . . . , yk) |
(
P(y1, . . . , yk),

∂P

∂y1
, . . . ,

∂P

∂yk

)
hence (

JF(x1, . . . , xk),H1(x1, . . . , xk), . . . , Hk(x1, . . . , xk)
) �= 1.

Since |M| �= 0 it follows by the definition of Hi that(
JF(x1, . . . , xk), x1

∂F

∂x1
, . . . , xk

∂F

∂xk

)
�= 1,

which for an irreducible F is impossible.
As to the second difference it may be noted that the formulation with the assumption

n1 � 0, . . . , nk � 0 and the assertion v1 � 0, . . . , vk � 0 (but M not necessarily triangular
and h(M) possibly greater) is also true its proof however involves the following theorem
of Schmidt [10].

If M is a full sublattice of the integral k-dimensional lattice and M+ consists of allc

vectors of M with nonnegative coordinates then there exists a finite subset M0 of M+
such that every vector of M+ is a linear combination of k vectors of M0 with nonnegative
integral coefficients.

In the proof of Lemma 5 of [9] the truth of this theorem for k = 2 was established
together with a bound for the height of the vectors of M0 in terms of M. Such a bound in
the general case has been found recently by R. Lee.

Proof of Theorem 2. The theorem is true for k = 1 by Lemma 12. Assume that it is
true for polynomials in k − 1 variables and consider F(x1, . . . , xk). By Lemma 12 either
there exist a matrix M and a vector v with the properties (42), (43), (45) or we have
‖F‖ � 3 and there exists a vector γ satisfying (46), (47). In the former case the theo-
rem holds with r = k, in the latter case n belongs to the module N of integral vectors
perpendicular to γ . If γ = [0, . . . , 0, γν, . . . , γk] with γν �= 0, N contains k − 1 linearly
independent vectors [1, 0, . . . , 0], . . . , [0, . . . , 1, 0, . . . , 0], [0, . . . , γν+1,−γν, 0, . . . , 0],
. . . , [0, . . . , γk, 0, . . . ,−γν] and by Lemma 6 it has a basis which written in the form of
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a matrix Δ = [δtj ] t<k
j�k

satisfies

h(Δ) � (k − 1)h(γ ),(63)

rank of Δ = k − 1,(64)

n = mΔ, m integral �= 0.(65)

Set

(66) F ′(z1, . . . , zk−1) = JF
(k−1∏
t=1

z
δt1
t ,

k−1∏
t=1

z
δt2
t , . . . ,

k−1∏
t=1

z
δtk
t

)
.

We have clearly F ′(xm1 , . . . , xmk−1) �= 0,

(67) |F ′|∗ � 2(k − 1)|F |∗h(Δ),
and by (8) and (9)

(68) ‖F ′‖ � max
0�ϕ�2π

∣∣F ′(eiϕ1 , . . . , eiϕk−1)
∣∣2 � max

0�ϑ�2π

∣∣F(eiϑ1 , . . . , eiϑk )
∣∣2 � ‖F‖2.

By the inductive assumption there exist an integral matrix N ′ = [ν′it ]i�r
t�k

and an integral

vector v = [v1, . . . , vr ] such that

(69) h(N ′)

�

⎧⎪⎨⎪⎩
exp 9(k − 1)2‖F ′‖−5 if k − 1 = r,
exp
(
5 · 2‖F ′‖2−4 + 2‖F ′‖ log |F ′|∗) if k + r − 1 = 3,

exp(k−r−1)(k+r−4)
(
8(k − 1)|F ′|∗‖F ′‖−1 log ‖F ′‖) otherwise;

rank of N ′ = r;(70)

m = vN ′;(71)

LF ′
( r∏
i=1

y
ν′i1
i , . . . ,

r∏
i=1

y
ν′i,k−1
i

)
can= const

s∏
σ=1

Fσ (y1, . . . , yr )
eσ

implies

(72) LF ′(xm1 , . . . , xmk−1)
can= const

s0∏
σ=1

LFσ (x
v1 , . . . , xvr )eσ .

Set

(73) N = N ′Δ.

It follows from (64) and (70) that N is of rank r . By (65) and (71) n = vN . By (66)
and (73)

LF ′
( r∏
i=1

y
ν′i1
i , . . . ,

r∏
i=1

y
ν′i,k−1
i

)
= LF

( r∏
i=1

y
νi1
i , . . . ,

r∏
i=1

y
νik
i

)
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and by (65) and (66)

JF ′(xm1 , . . . , xmk−1) = JF(xn1 , . . . , xnk ).

In view of (72) it remains to estimate h(N). By (69) and (73)

h(N) � (k − 1)2h(γ )h(N ′).

To proceed further we use the inequalities (47), (67)–(69), |F |∗ � 2, |F |∗ � 3 and
distinguish four cases:

1. k = 2, r = 1. Here

h(N) � max
{
120(2|F |∗)2‖F‖−1 log ‖F‖, 8|F | exp 9 · 2‖F‖−3} exp 9 · 2‖F‖2−5

� exp
(
5 · 2‖F‖2−4 + 2‖F‖ log |F |∗).

2. k = 3, r = 1. Here we use the inequality

log 4 + 5 · 2‖F‖4−4 + 2‖F‖2 log 8|F |∗ < (‖F‖2 − 1
)

exp
(
27|F |∗‖F‖−1 log ‖F‖)c

and obtain

h(N) � 4 exp2
(
27|F |∗‖F‖−1 log ‖F‖) exp

(
5 · 2‖F ′‖2−4 + 2‖F ′‖ log |F ′|∗)

< exp
(
log 4 + exp(27|F |∗‖F‖−1 log ‖F‖))

× exp
(
5 · 2‖F‖4−4 + 2‖F‖2 log 8|F |∗ + 2‖F‖2 exp(27|F |∗‖F‖−1 log ‖F‖))

< exp
(
3‖F‖2 exp(27|F |∗‖F‖−1 log ‖F‖)) < exp2

(
30|F |∗‖F‖−1 log ‖F‖).c

3. k − 1 = r > 1. Here we use the inequality

(k − 1)2 exp 9(k − 1)2‖F‖2−5 < exp 11(k − 1)2‖F‖2−5 < exp2 9k2‖F‖−1

< exp2
(
9k|F |∗‖F‖−1 log ‖F‖)c

and obtain

h(N) � (k − 1)2 exp2k−4
(
9k|F |∗‖F‖−1 log ‖F‖) · exp 9(k − 1)2‖F‖2−5

� exp2
2k−4

(
9k|F |∗‖F‖−1 log ‖F‖) < exp2k−4

(
10k|F |∗‖F‖−1 log ‖F‖).c

4. k − 1 > max(r, 2). Here we use the inequality

20k log ‖F‖(2k2|F |∗ exp2k−4(9k|F |∗‖F‖−1 log ‖F‖))‖F‖2

<
(
exp2k−4(9k|F |∗‖F‖−1 log ‖F‖))2‖F‖2

= exp2
(
exp2k−6(9k|F |∗‖F‖−1 log ‖F‖)+ log 2‖F‖2)

< exp2k−4(9k|F |∗‖F‖−1 log ‖F‖ + 1)c
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and obtain

h(N) � (k − 1)2 exp2k−4(9k|F |∗‖F‖−1 log ‖F‖)
× exp(k−r−1)(k+r−4)(10(k − 1)|F ′|∗‖F ′‖−1 log ‖F ′‖)

< exp2k−4(10k|F |∗‖F‖−1 log ‖F‖)
× exp(k−r−1)(k+r−4)

(
20k log ‖F‖(2k2|F |∗ exp2k−4(9k|F |∗‖F‖−1 log ‖F‖))‖F‖2)

< exp2k−3(9k|F |∗‖F‖−1 log ‖F‖ + 1)

× exp(k−r−1)(k+r−4)+2k−4(9k|F |∗‖F‖−1 log ‖F‖ + 1)

< exp2
(k−r)(k+r−3)(9k|F |∗‖F‖−1 log ‖F‖ + 1)

< exp(k−r)(k+r−3)(10k|F |∗‖F‖−1 log ‖F‖). ��c

Proof of Corollary. Let JF(x) = a0 +
k∑
j=1
ajx

nj , where aj �= 0, nj distinct > 0. Set in

Theorem 2

F(x1, . . . , xk) = a0 +
k∑
j=1

ajxj .

We have

(74) k � ‖F‖ − 1 = ‖f ‖ − 1, |F |∗ = 2.

By Theorem 2, the number l of irreducible factors ofLf (x) equals the number of irreducible
factors of

LF

( r∏
i=1

y
νi1
i ,

r∏
i=1

y
νi2
i , . . . ,

r∏
i=1

y
νik
i

)
(in the notation of the theorem), hence l = 0 if ‖f ‖ � 2 and l � 2rh(N) otherwise. Thus
if k �= 2 we get from (i) and (74)

l � max
{
2k exp 9k · 2‖F‖−5,max

r<k
2r exp(k−r)(k+r−3)(10k|F |∗‖F‖−1 log ‖F‖)}

� 2 expk2−3k+2(5k · 2‖F‖ log ‖F‖) � 2 exp‖f ‖2−5‖f ‖+6
(
5(‖f ‖ − 1)2‖f ‖ log ‖f ‖)

< exp‖f ‖2−5‖f ‖+7(‖f ‖ + 2).c

If k = 2 we have

l � max
{
4 exp 9 · 2‖f ‖−4, 2 exp

(
5 · 2‖f ‖2−4 + 2‖f ‖ log 2

)}
< exp‖f ‖2−5‖f ‖+7(‖f ‖+ 2)

except when ‖f ‖ = 3. However in this case Jf (x) = ±xn1 ± xn2 ± 1 has at most one
irreducible non-reciprocal factor (see [4] or [13]) and the proof is complete. ��
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4.

Lemma 13. If KF(x1, x2) = LF(x1, x2) and [n1, n2] �= 0 then

either KF(xn1 , xn2) = LF(xn1 , xn2) or F(xn1 , xn2) �= 0c

and for each zero ξ of
KF(xn1 , xn2)

LF(xn1 , xn2)
the inequality holds

max{|n1|, |n2|}
(n1, n2)

e(ξ,Q(ξ)
)

� 120(2|F |∗)2‖F‖−1 log ‖F‖.

Proof. We can assume |F | � 4 since otherwise

KF(xn1 , xn2) = LF(xn1 , xn2)

holds trivially. Set

P = F(x1, x2), Q1 = JF(x−1
1 , x−1

2 ), Q2 = ∂P

∂x1
, Gi = (P,Qi),

Ti = PG−1
i , Ui = QiG−1

i , V = (LF(x1, x2), LF(x
−1
1 , x−1

2 )
)
.

By the assumption KF(x1, x2) = LF(x1, x2), we have

(75)
G1 = JF(x1, x2)

KF(x1, x2)
V (x1, x2),

T1 = LF(x1, x2)V
−1, U1 = LF(x−1

1 , x−1
2 )V −1.c

If ξ is a zero of
KF(xn1 , xn2)

LF(xn1 , xn2)
then ξ is conjugate to ξ−1 thus P(ξn1 , ξn2) =

Q1(ξ
n1 , ξn2) = 0. On the other hand, ξ not being a root of unity is not a zero of

JF(xn1 , xn2)

KF(xn1 , xn2)
and we get from (75) either T1(ξ

n1 , ξn2) = U1(ξ
n1 , ξn2) = 0 or

V (ξn1 , ξn2) = 0. [This argument needs an amplification. It assumes silently that every zeroc

ξ �= 0 of
JF

KF
(xn1 , xn2) is a zero of

JF(xn1 , xn2)

KF(xn1 , xn2)
, which is true but not obvious. When

one refers to the definition ofKF given of p. 344 one has to show that for an irreducible F
the divisibility F(x1, x2) |J

(
x
δ1
1 x

δ2
2 − 1

)
implies KF(xn1 , xn2) = const. This is obvious

if n1δ1 + n2δ2 �= 0, but if n1δ1 + n2δ2 = 0 one needs the fact implied by Lemma 11 of
D7 that

F(x1, x2) = const JΦ
(
x
δ1/(δ1,δ2)
1 x

δ2/(δ1,δ2)
2

)
for a polynomial Φ | z(δ1,δ2) − 1.]

In the second case (ξn1 , ξn2) is a zero of a certain irreducible factor of V (x1, x2),
f (x1, x2) say. Without loss of generality we may assume ∂f/∂x1 �= 0. By the definition
of V , it follows that g(x1, x2) = Jf (x−1

1 , x−1
2 ) divides V and is prime to f . Set

P = f αgβh, where αβ > 0, (f, g) = (f, h) = (g, h) = 1.
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We have

Q2 = ∂P

∂x1
=
(
α
∂f/∂x1

f
+ β ∂g/∂x1

g
+ ∂h/∂x1

h

)
P �= 0,

c

G2 =
( ∂h
∂x1
, h
) P
fgh

, T2 = fgh

(∂h/∂x1, h)
,

c

U2 = α ∂f
∂x1

g
h

(∂h/∂x1, h)
+ βf ∂g

∂x1
· h

(∂h/∂x1, h)
+ fg h

(∂h/∂x1, h)
.

Since f (ξn1 , ξn2) = g(ξn1 , ξn2) it follows

T2(ξ
n1 , ξn2) = U2(ξ

n1 , ξn2) = 0.

In any case

(76) Ti(ξ
n1 , ξn2) = Ui(ξn1 , ξn2) = 0 with suitable i.c

Let Rij be the resultant of Ti, Ui with respect to xj and Sij a nonvanishing minor of
Sylvester’s matrix of P,Qi divisible by Rij . Since

|P | = |F |, |Qi | � |F |, ‖P ‖ = ‖F‖, ‖Qi‖ � |F |2‖F‖
we get from Lemma 5

|Sij | � 2|F |2, ‖Sij‖ � (|F | ‖F‖)4|F | (1 � i, j � 2).

Set Ω = Q(ξn1 , ξn2). By (76) |Ω| does not exceed the number of distinct pairs 〈η, ϑ〉
satisfying Ti(η, ϑ) = Ui(ϑ, η) = 0 and by Lemma 4

|Ω| � |Rij | � |Sij |.c

Since ξ (n1,n2) ∈ Ω , it follows

|Q(ξ)| � (n1, n2)|Ω|.
Moreover Ri,3−j (ξnj ) = 0, Si,3−j (ξnj ) = 0 and we get by Lemma 1 with Ω1 = Q(ξ)c

|nj |e
(
ξ,Q(ξ)

)
� e
(
ξnj ,Q(ξ)

)
� (n1, n2)e(ξ

nj ,Ω)

� (n1, n2)20|Ω|2 log |Ω|∗ log ‖Si,3−j‖
� (n1, n2)20|Sij |2 log |Sij |∗ · 4|F | log(|F | ‖F‖)
� (n1, n2)120(2|F |∗)2‖F‖−1 log ‖F‖,c

which completes the proof. ��

Proof of Theorem 3. If ‖F‖ � 2 then s = 0,KF(xn1 , xn2) = const and it suffices to take
N = I 2. Suppose therefore ‖F‖ � 3 and assume first

max{|n1|, |n2|}
(n1, n2)

> 120(2|F |∗)2‖F‖−1 log ‖F‖.

We apply Lemmata 12 and 13 to polynomial F and vector [n1, n2]. If M = [μij ] is the
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matrix of Lemma 12 then [n1, n2] = [v1, v2]M . Moreover

(77) KF(y
μ11
1 y

μ21
2 , y

μ12
1 y

μ22
2 )

can= const
s∏
σ=1

Fσ (y1, y2)
eσ

implies by Lemma 11

LF(y
μ11
1 y

μ21
2 , y

μ12
1 y

μ22
2 )

can= const
s0∏
σ=1

Fσ (y1, y2)
eσ

where JFσ (y
−1
1 , y−1

2 ) �= ±Fσ (y1, y2) for σ � s0 exclusively, and by Lemma 12

(78) LF(xn1 , xn2) = const
s0∏
σ=1

LFσ (x
v1 , xv2)eσ ,

the polynomials LFσ (xv1 , xv2) are relatively prime in pairs and either irreducible or con-
stant.

By Lemma 13, KF(xn1 , xn2) = LF(xn1 , xn2), thus

KFσ (x
v1 , xv2) = LFs(xv1 , xv2) (σ � s0)

and we get

KF(xn1 , xn2) = const
s0∏
σ=1

KFσ (x
v1 , xv2)eσ .

If none of LFσ (xv1 , xv2) (σ � s0) is constant we set N = M . By (42) and (43),
(i) and (ii) hold. As to (iii) it remains to prove s0 = s. Supposing contrariwise that

Fs(y1, y2) = ±JFs(y−1
1 , y−1

2 )

we obtain

D(z1, z2) = JFs(zμ22
1 z

−μ21
2 , z

−μ12
1 z

μ11
2 ) = ±JFs(z−μ22

1 z
μ21
2 , z

μ12
1 z

−μ11
2 ).

On the other hand, by (77), Fs(y1, y2) divides f (yμ11
1 y

μ21
2 , y

μ12
1 y

μ22
2 ) where f (x1, x2) is

a certain irreducible factor of KF(x1, x2). By the assumption KF(x1, x2) = LF(x1, x2)

we have(
f (x1, x2), Jf (x

−1
1 , x−1

2 )
) = 1 and

(
JF(z

|M|
1 , z

|M|
2 ), JF (z

−|M|
1 , z

−|M|
2 )

) = 1.

On substituting y1 = z
μ22
1 z

−μ21
2 , y2 = z

−μ12
1 z

μ11
2 we infer that D(z1, z2) divides

JF(z
|M|
1 , z

|M|
2 ) and JF(z−|M|

1 , z
−|M|
2 ), thus D(z1, z2) = const and since the substitu-

tion is invertible (|M| �= 0), Fs(y1, y2) = const, a contradiction.
If some LF(xv1 , xv2) is constant then we have by Lemma 10

(79)
max{|v1|, |v2|}
(v1, v2)

� 2|Fσ | � 4|F |h(M).
In this case we set r = 1,

N =
[

n1

(v1, v2)
,

n2

(v1, v2)

]



376 D. Polynomials in one variable

so that (ii) is clearly satisfied. By (42), (43) and (79)

h(N) � 8|F |h(M)2 � 8|F | exp(9 · 2‖F‖−3),

thus (i) holds. Finally by (78)

KF(xn1/(v1,v2), xn2/(v1,v2)) = const
s0∏
σ=1

KFσ (x
v1/(v1,v2), xv2/(v1,v2))eσ ,

where the polynomials KFσ (xv1/(v1,v2), xv2/(v1,v2)) are relatively prime in pairs and irre-
ducible or constant simultaneously with KFσ (xv1 , xv2). This proves (iii).

Assume now that

(80)
max{|n1|, |n2|}
(n1, n2)

� 120(2|F |∗)2‖F‖−1 log ‖F‖ = m
and set

(81) F ′(x) = JF(xn1/(v1,v2), xn2/(v1,v2)).

Clearly

|F ′| � 2|F |m
and by (8) and (9)

‖F ′‖ � max
0�ϕ�2π

|F ′(eiϕ)|2 � max
0�ϑ�2π

|F(eiϑ1 , eiϑ2)|2 � ‖F‖2.

Let ξ be a zero of F ′(x). If ξ−1 is not conjugate to ξ , then by Lemma 1

e
(
ξ,Q(ξ)

)
� 5

2 |F ′| log ‖F ′‖ � 10|F |m log ‖F‖.
If ξ−1 is conjugate to ξ , then ξ is a zero of

KF(xn1/(n1,n2), xn2/(n1,n2))

LF(xn1/(n1,n2), xn2/(n1,n2))

and by Lemma 13

e
(
ξ,Q(ξ)

)
� m.

In both cases

e
(
ξ,Q(ξ)

)
� 600(2|F |∗)2‖F‖ log2 ‖F‖,(82)

log e
(
ξ,Q(ξ)

)
� 3‖F‖ |F |∗.(83)

Put

(84) ν =
(
n1, n2,max 2e(ξ,Q(ξ))−1e

(
ξ,Q(ξ)

)!), (n1, n2) = νv,
where the maximum is taken over all zeros ξ of F(x).

It follows like in the proof of Theorem 1 that

KF ′(xν) can= const
s∏
σ=1

Fσ (x)
eσ
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implies

(85) KF ′(x(n1,n2))
can= const

s∏
σ=1

Fσ (x
v)eσ

(since v > 0, KFσ (xv) = JFσ (xv) = Fσ (xv)). Set

N =
[

n1

(n1, n2)
,

n2

(n1, n2)

]
ν.

We get from (80), (82), (83) and (84)

h(N) � mmax e
(
ξ,Q(ξ)

)e(ξ,Q(ξ))
� exp

{
3‖F‖ |F |∗ + 900(2|F |∗)2‖F‖+1‖F‖ log2 ‖F‖}

� exp
{
500(2|F |∗)2‖F‖+1‖F‖2},

thus (i) holds. (ii) is clear from (84). Finally by (81)

KF(xν11 , xν12) = KF ′(xν), KF(xn1 , xn2) = KF ′(x(n1,n2))

and (iii) follows from (85). ��

5.

Lemma 14. If k � 2, aj �= 0 (0 � j � k) are complex numbers and M = [μij ] is an
integral nonsingular matrix of degree k then

J

(
a0 +

k∑
j=1

aj

k∏
i=1

z
μij
i

)
is absolutely irreducible.

Proof. We may assume without loss of generality that |M| > 0. Suppose that there is a
factorization

J

(
a0 +

k∑
j=1

aj

k∏
i=1

z
μij
i

)
= T (z1, . . . , zk)U(z1, . . . , zk),

where T �= const, U �= const.
Setting

zi =
k∏
h=1

y
μ′hi
h , where [μ′

hi] = |M| · M−1

we obtain

(86) a0 +
k∑
j=1

ajy
|M|
j = T ′(y1, . . . , yk)U

′(y1, . . . , yk),
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where

T ′ = JT
( k∏
h=1

y
μ′h1
h , . . . ,

k∏
h=1

y
μ′hk
h

)
�= const,

U ′ = JU
( k∏
h=1

y
μ′h1
h , . . . ,

k∏
h=1

y
μ′hk
h

)
�= const.

However (86) is impossible since as follows from Capelli’s theorem already

a0 + a1y
|M|
1 + a2y

|M|
2

is absolutely irreducible (cf. [14]). ��

Remark. The following generalization of the lemma seems plausible.
If aj �= 0 (0 � j � k) are complex numbers and the rank of an integral matrix [μij ] i�l

j�k
exceeds (k + 1)/2, then

J

(
a0 +

k∑
j=1

aj

l∏
i=1

z
μij
i

)
c

is absolutely irreducible.

Proof of Theorem 4. Set in Lemma 12:

F(x1, . . . , xk) = a0 +
k∑
j=1

ajxj

and let M be the matrix of that lemma. Since by Lemma 14

JF

( k∏
i=1

y
μi1
i , . . . ,

k∏
i=1

y
μik
i

)
c

is irreducible, we conclude that either LF(xn1 , . . . , xnk ) is irreducible or constant or
γn = 0 with

0 < h(γ ) <

{
120(2|F |∗)2‖F‖−1 log ‖F‖ if k = 2,

exp2k−4(9k|F |∗‖F‖−1 log ‖F‖) if k > 2.c

If however LF(xn1 , . . . , xnk ) is constant we obtain the relation γn = 0 from Lemma 10.

Taking into account that |F |∗ = 2, ‖F‖ =
k∑
j=0
a2
j , we get the theorem. ��

Proof of Theorem 5. It follows from Theorem 4 that L(axn + bxm + c) is irreducible
unless

max{n,m}
(n,m)

� 24(a2+b2+c2)+5 log(a2 + b2 + c2).
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On the other hand, by Lemma 13 (with F(x1, x2) = ax1 + bx2 + c)
K(axn + bxm + c) = L(axn + bxm + c)

unless

max{n,m}
(n,m)

� 120 · 42(a2+b2+c2)−1 log(a2 + b2 + c2)

� 24(a2+b2+c2)+5 log(a2 + b2 + c2).

This proves the first part of the theorem. To obtain the second part we apply Theorem 3 with
F(x1, x2) = ax1+bx2+c. In view of Lemma 14 and the reducibility ofK(axn+bxm+c),
the matrix N is of rank 1 and we have

h(N) � exp
{
500(2|F |∗)2‖F‖+1‖F‖2} � exp

(
24(a2+b2+c2)+11(a2 + b2 + c2)2

)
. ��

Note added in proof. The original result of [1] concerning an algebraic integer α of degree n is

α > 1 + (40n2 log n)−1 (n > 1).

This implies the inequality

α > 1 + (40n2 log n∗ − 1)−1

used in the proof of Lemma 1 since 40n2 log(n∗/n) > 1 for n > 1. For completeness we list below
the modifications needed in [3] in order to obtain the inequality

α > 1 + (5n− 1)−1

used in the same proof.
Inequality (2.4) should be replaced by

1 < � � 1 + 1

5n− 1

(this is permissible since � = 5n/(5n − 1) satisfies (2.1)). The right hand side of (3.2) should be
replaced by (δe1/e)n (this is permissible since t1/t � e1/e for all t > 0). Inequality (4.4) and the
preceding formula should be replaced by

δ =
(

1 + 1

5n− 1

)2 − 1 = 10n− 1

(5n− 1)2
, Π1 � (δe1/e)n.

The two inequalities following (4.5) should be replaced by

�2n(n−1) �
(

1 + 1

5n− 1

)2n(n−1)
� e2n/5,

Π1Π2 < (nδe
1/e+2/5)n < 1 (n > 2).

For n = 2 the lemma is true because then α �
√

2.
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Reducibility of lacunary polynomials II

To the memory of my teachers
Wacław Sierpiński and Harold Davenport

This paper is based on the results of [6] and the notation of that paper is retained. In
particular |f | is the degree of a polynomial f (x) and ‖f ‖ is the sum of squares of the
coefficients of f , supposed rational.

The aim of the paper is to prove the following theorem.

Theorem. For any non-zero integers A,B, and any polynomial f (x) with integral coeffi-
cients, such that f (0) �= 0 and f (1) �= −A − B, there exist infinitely many irreducible
polynomials Axm + Bxn + f (x) with m > n > |f |. One of them satisfies

m < exp
(
(5|f | + 2 log |AB| + 7)(‖f ‖ + A2 + B2)

)
.

Corollary. For any polynomial f (x) with integral coefficients there exist infinitely many
irreducible polynomials g(x) with integral coefficients such that

‖f − g‖ �
{

2 if f (0) �= 0,

3 always.

One of them, g0, satisfies |g0| < exp
(
(5|f | + 7)(‖f ‖ + 3)

)
.

The example A = 12, B = 0, f (x) = 3x9 + 8x8 + 6x7 + 9x6 + 8x4 + 3x3 + 6x + 5
taken from [4], p. 4(1), shows that in the theorem above it would not be enough to assume
A2 + B2 > 0. On the other hand, in the first assertion of Corollary the constant 2 can
probably be replaced by 1, but this was deduced in [5] from a hypothetical property of
covering systems of congruences. Corollary gives a partial answer to a problem of Turán
(see [5]). The complete answer would require |g0| � max{|f |, 1}.

Lemma 1. If
k∑
ν=1
aνζ

αν
l = 0, where aν, αν are integers, then either the sum

∑
can be

divided into two vanishing summands or for all μ � ν � k

l | (αμ − αν) expϑ(k).

(1) Page 304 in this collection.
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Proof. This is the result of Mann [2] stated in a form more convenient for our appli-
cations. If

∑
cannot be divided into two vanishing summands, the relation

∑ = 0 is in
Mann’s terminology irreducible. Then according to his Theorem 1 there are distinct primes
p1, p2, . . . , ps where p1 < p2 < . . . < ps � k and p1p2 · · ·ps th roots of unity ην such
that

ζ
αν
l = ηνζ, 1, . . . , k.

Hence we get

l | (αμ − αν)p1p2 · · ·ps (1 � μ � ν � k)

and since p1p2 · · ·ps | expϑ(k) the lemma follows. ��

Lemma 2. Let A,B, f satisfy the assumptions of the theorem and besides |f | > 0,
f (x) �= εAxq + ηBxr (ε = ±1, η = ±1). Then there exists an integer d such that

(1) d < exp 5
2 |f |

and

(2) Aζml + Bζnl + f (ζl) = 0

implies l |d.

Proof. Set

d = expψ(|f |) expϑ(|f | + 3).

By the inequalityϑ(x) � ψ(x) < 1.04x (see [3], Theorem 12) it follows that d � exp 5
2 |f |

for |f | > 7 and for |f | � 7 the same can be verified directly. Assume now (2). Setting

f (x) =
|f |∑
i=0
aix

i we get

S = Aζml + Bζnl +
|f |∑
i=0

aiζ
i
l = 0.

The sum S can be divided into a certain number � 1 of vanishing summands for which
further such division is impossible. If at least one summand with k terms, say, contains at
least two terms fromf (ζl),aqζ

q
l andarζ rl (q �= r), say, then by Lemma 1 l | (q−r) expϑ(k)

and since q − r | expψ(|f |), k � |f | + 3, we get l |d.
If each summand contains at most one term fromf (ζl), then since each term is contained

in a certain summand the number of terms in f (ζl) is at most two. Since |f | > 0, f (0) �= 0
the number of terms is exactly two,

f (x) = aqxq + arxr , and Aζml + aqζ ql = Bζnl + arζ rl = 0 (q �= r).
It follows hence aq = εA, ar = ηB, ε = ±1, η = ±1; f (x) = εAxq + ηBxr , contrary
to the assumption. ��
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Lemma 3. If A,B are integers, 0 < |A| � |B|, ε = ±1, η = ±1 and

(3) Aζml + Bζnl + εAζql + ηBζ rl = 0,

then either

(4) ζml + εζ ql = ζ nl + ηζ rl = 0

or

B = 2θA (θ = ±1),

ζml = εζ ql , {εθζ n−ql , εηθζ
r−q
l } = {ζ3, ζ 2

3 }(5)

or

B = θA (θ = ±1),

ζ nl = ηζ rl , {ζml , εζ ql } = {−θζ nl ,−ηθζ rl }.(6)

Proof. Set A = (A,B)A1, B = (A,B)B1. By (3)

A1(ζ
m
l + εζ ql ) = −B1(ζ

n
l + ηζ rl )c

and it follows on taking norms that Bϕ(l)1 divides the norm of ζml + εζ ql . The latter can be
divisible by ϕ(l)th power of a prime only when it is 0 or 2ϕ(l). Hence we get either (4) or
B1 = ±1 or B1 = ±2, ζml = εζ ql .

Since |A1| � |B1| and (A1, B1) = 1 we get besides (4) the two possibilities

B = 2θA (θ = ±1), ζml = εζ ql , εζ
q
l + θζ nl + θηζ rl = 0

or

B = θA (θ = ±1), ζml + θζ nl + εζ ql + θηζ rl = 0, ζml + εζ ql �= 0.

Taking the complex conjugates we get in the former case

εζ
−q
l + θζ−nl + θηζ−rl = 0,

in the latter case

ζ−ml + θζ−nl + εζ−ql + θηζ−rl = 0.

It follows that the elements of both sets occurring in (5) or (6) have the same non-zero sum
and the same sum of reciprocals, hence the sets coincide. ��

Lemma 4. Let A,B, f satisfy the assumptions of the theorem and besides |A| � |B|;
|f | = 0 or f (x) = εAxq +ηBxr , ε = ±1, η = ±1. Then there exist integers a, b, d such
that

(7) d � 3|f | + 3

and m > 0, n > 0, m ≡ a, n ≡ bmod d implies

(8) K
(
Axm + Bxn + f (x)) = Axm + Bxn + f (x).
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Proof. Assume first that f (x) = εAxq + ηBxr , where qr = 0. Since f (1) �= −A− B it
follows

(9) ε = 1 or η = 1.

(8) holds unless for some l we have (3). Consider separately four cases

B �= ±A,±2A,(10)

B = 2θA (θ = ±1),(11)

B = −A,(12)

B = A.(13)

In case (10) by Lemma 3, (3) implies (4) and by (9) l ≡ 0 mod 2. We set d = 2,

a = q + 1, b = r + 1 − η
2

. If m ≡ a mod d we infer from (4) ε = 1, l ≡ 2 mod 4,

n ≡ r + l

2
· 1 + η

2
mod l, n ≡ r + 1 + η

2
mod 2, which contradicts n ≡ bmod d.

In case (11) by Lemma 3, (3) implies (4) or (5). We set d = 6, a = q+1, b = r+ 1 − η
2

.
c

By the argument given above, (4) is impossible. (5) is impossible also since it implies l ≡ 0,
m ≡ q mod 3. If q = r = 0 it is enough to take d = 2, thus (7) holds.

In case (12) by Lemma 3, (3) implies (4) or (6). Since f (1) �= −A− B = 0 we have
ε = −η. In view of symmetry between q and r we assume r = 0 and set

d = 2, a = q + 1 − ε
2
, b = q + 1 + ε

2
if q ≡ 0 mod 2,

d = 4, a = q 3 − ε
2
, b = q 3 + ε

2
if q ≡ 1 mod 2.

(4) implies l ≡ 0 mod 2 and

m ≡ q + 1 + ε
2

· l
2
, n ≡ 1 − ε

2
· l

2
mod l,

hence ifm ≡ a mod 2, then ε = 1, l ≡ 0 mod 4, andn ≡ 0 mod 4, contrary ton ≡ bmod d.c

(6) implies l ≡ 0 mod 2 and either m ≡ nmod 2 or

m ≡ 1 + ε
2

· l
2
, n ≡ q + 1 − ε

2
· l

2
mod l,

hence ifn ≡ bmod 2, then eitherm ≡ bmod 2 or ε = −1, l ≡ 0 mod 4, andm ≡ 0 mod 4,
contrary to m ≡ a mod d .

In case (13) by Lemma 3, (3) implies (4) or (6). In view of symmetry between q and r
we assume r = 0 and set

d = 2, a = 0, b = q + 1 if ε = η = 1,

d = 2q, a = b = 1 if ε = 1, η = −1,

d = 2q, a = b = q + 1 if ε = −1, η = 1

(note that if ε = −η we have q > 0 since f (0) �= 0).
If ε = η = 1, (4) or (6) implies l ≡ 0 mod 2, m+ n ≡ q mod 2 which is incompatible

with m ≡ 0, n ≡ q + 1 mod 2.
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If ε = 1, η = −1, (4) implies l ≡ 0 mod 2, n ≡ 0 mod 2 contrary to n ≡ bmod 2;
(6) implies l ≡ 0 mod 2, m ≡ 0 mod 2 or m − n ≡ l

2 mod l, q ≡ 0 mod l contrary toc

m ≡ a mod 2, m− n ≡ 0 mod q (q even).
If ε = −1, η = 1, (4) implies l ≡ 0 mod 2, m ≡ q mod l contrary to m ≡ a mod 2;

(6) implies l ≡ 0 mod 2, n ≡ q mod 2 or m − n ≡ l
2 mod l, q ≡ 0 mod l contrary toc

n ≡ bmod 2, m− n ≡ 0 mod q (q even).
Assume now that |f | = 0, f (x) �= εA + ηB. Then by Theorem 4 of [4], (8) holds

unless

f (x) = εA = ηB, m1 + n1 ≡ 0 mod 3, εn1 = ηm1 ,

wherem1 = m/(m, n), n1 = n/(m, n). We set d = 3, a = b = 1. Ifm ≡ a, n ≡ bmod d
we have m+ n �≡ 0 mod 3 and m1 + n1 �≡ 0 mod 3. ��

Lemma 5. Let D = {〈m, n〉 : 0 � m < d, 0 � n < d} and let l1, . . . , lk be divisors of d
relatively prime in pairs. Set

Dlj = {〈m, n〉 : 0 � m < lj , 0 � n < lj } (1 � j � k)

and let S(lj ) be a subset of D such that

(14) 〈m, n〉 ∈ S(lj ),
〈
m′, n′

〉 ∈ D and 〈m, n〉 ≡ 〈m′, n′
〉

mod lj

imply
〈
m′, n′

〉 ∈ S(lj ).
Then

d−2|S(lj )| = l−2
j

∣∣S(lj ) ∩Dlj ∣∣,
d−2
∣∣∣ k⋂
j=1

S(lj )

∣∣∣ = k∏
j=1

d−2|S(lj )|,

where |S| is the cardinality of S.

Proof. Set

L = l1l2 · · · lk, D0 = {〈m, n〉 : 0 � m < dL−1, 0 � n < dL−1}.
Choose integers aj such that

aj ≡ 1 mod lj , aj ≡ 0 mod Ll−1
j (1 � j � k).

The formula

〈m, n〉 ≡ 〈m0, n0〉L+
k∑
j=1

〈
mj , nj

〉
aj mod d,

〈
mj , nj

〉 ∈ Dlj
settles one-to-one correspondence between D and the Cartesian product D0 × Dl1 ×
. . .×Dlk in such a way thatc

〈m, n〉 ≡ 〈mj , nj 〉 mod lj .
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If χj is the characteristic function of S(lj ) then by (14)

χj (m, n) = χj (mj , nj ).
Hence

d−2|S(lj )| = d−2
∑

〈m,n〉∈D
χj (m, n) = d−2

∑
〈m0,n0〉∈D0

∑
1
· · ·
∑

k
χj (mj , nj ),

where
∑
i is taken over all 〈mi, ni〉 ∈ Dli and

d−2|S(lj )| = d−2|D0|
k∏

i=1,i �=j
|Dli |

∑
j
χj (mj , nj ) = l−2

j

∣∣S(lj ) ∩Dlj ∣∣.
c

It follows further

d−2
∣∣∣ k⋂
j=1

S(lj )

∣∣∣
= d−2

∑
〈m,n〉∈D

k∏
j=1

χj (m, n) = d−2
∑

〈m0,n0〉∈D0

∑
1
· · ·
∑

k

k∏
j=1

χj (mj , nj )

= d−2|D0|
k∏
j=1

∑
j
χj (mj , nj ) = L−2

k∏
j=1

∣∣S(lj ) ∩Dlj ∣∣ = k∏
j=1

d−2|S(lj )|. ��

Lemma 6. The following inequalities hold

(15)
∞∏
p=3

(
1 + p

p3 − p2 − 2p + 1

)
< 1.376,

∞∑
p=3

p

p3 − p2 − 2p + 1
> 0.3435,

c

(16)
∞∏
p=3

(
1 + p

p3 − p2 − 3p + 1

)
< 1.459,

∞∑
p=3

p

p3 − p2 − 3p + 1
> 0.4165,

c

(17)
∞∏
p=3

(
1− 2(p2 − 1)

p(p3 − p2 − 3p + 1)

)
> 0.3683,

∞∑
p=3

p2 − 1

p(p3 − p2 − 3p + 1)
> 0.3804,

c

where p runs over primes.

Proof. We have for p � 11 and c = 2 or 3

1

p2 + 1

p3 + c + 1

p4 <
p

p3 − p2 − cp + 1
<

1

p2 + 1

p3 + c + 2

p4 ,



D5. Reducibility of lacunary polynomials II 387

hence
∞∑
p=11

p−2 +
∞∑
p=11

p−3 + 3
∞∑
p=11

p−4 <

∞∑
p=11

p

p3 − p2 − 2p + 1

<

∞∑
p=11

log
(

1 + p

p3 − p2 − 3p + 1

)
<

∞∑
p=11

p

p3 − p2 − 3p + 1

<

∞∑
p=11

p−2 +
∞∑
p=11

p−3 + 5
∞∑
p=11

p−4.

Now

∞∑
p=11

p−2 =
∞∑
p=2

p−2 −
7∑
p=2

p−2 = 0.452247 . . .− 0.421519 . . . = 0.030728 + ε2,

∞∑
p=11

p−3 =
∞∑
p=2

p−3 −
7∑
p=2

p−3 = 0.174762 . . .− 0.172952 . . . = 0.001810 + ε3,

c

∞∑
p=11

p−4 =
∞∑
p=2

p−4 −
7∑
p=2

p−4 = 0.076993 . . .− 0.076862 . . . = 0.000131 + ε4,

where the values of
∞∑
p=2
p−i (i = 2, 3, 4) are taken from the tables [1], p. 249, and

|εi | < 10−6. Hence

∞∑
p=11

log
(

1 + p

p3 − p2 − 3p + 1

)
< 0.033193 + ε2 + ε3 + 5ε4 < 0.0332,

c

∞∑
p=11

p

p3 − p2 − 2p + 1
> 0.032931 + ε2 + ε3 + 3ε4 > 0.0329.

c

On the other hand,

7∑
p=3

log
(

1 + p

p3 − p2 − 2p + 1

)
< 0.2858,

7∑
p=3

p

p3 − p2 − 2p + 1
> 0.3106,

c

7∑
p=3

log
(

1 + p

p3 − p2 − 3p + 1

)
< 0.3442,

7∑
p=3

p

p3 − p2 − 3p + 1
> 0.3836,

hence
∞∑
p=3

log
(

1 + p

p3 − p2 − 2p + 1

)
< 0.3190,

∞∑
p=3

p

p3 − p2 − 2p + 1
> 0.3435,

c
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∞∑
p=3

log
(

1 + p

p3 − p2 − 3p + 1

)
< 0.3774,

∞∑
p=3

p

p3 − p2 − 3p + 1
> 0.4165,

c

which implies (15) and (16).
In order to prove (17) we notice that for p � 11

log
(

1 − 2(p2 − 1)

p(p3 − p2 − 3p + 1)

)
> − 2(p2 − 1)

p(p3 − p2 − 3p + 1)
> − 2

p2 − 2

p3 − 13

p4 ,

p2 − 1

p(p3 − p2 − 3p + 1)
>

1

p2 + 1

p3 + 3

p4 ,

hence
∞∑
p=11

log
(

1 − 2(p2 − 1)

p(p3 − p2 − 3p + 1)

)
> −2

∞∑
p=11

p−2 − 2
∞∑
p=11

p−3 − 13
∞∑
p=11

p−4

= −0.066779 − 2ε2 − 2ε3 − 13ε4 > −0.0668,c

∞∑
p=11

p2 − 1

p(p3 − p2 − 3p + 1)
>

∞∑
p=11

p−2 +
∞∑
p=11

p−3 + 3
∞∑
p=11

p−4

= 0.032931 + ε2 + ε3 + 3ε4 > 0.0329.c

On the other hand,

7∑
p=3

log
(

1 − 2(p2 − 1)

p(p3 − p2 − 3p + 1)

)
> −0.9319,

7∑
p=3

p2 − 1

p(p3 − p2 − 3p + 1)
> 0.3475,

c

whence
∞∑
p=3

log
(

1 − 2(p2 − 1)

p(p3 − p2 − 3p + 1)

)
> −0.9987,

c

∞∑
p=3

p2 − 1

p(p3 − p2 − 3p + 1)
> 0.3804,

which completes the proof. ��

Lemma 7. Let A,B, f satisfy the assumptions of the theorem. Then there exist integers
a, b, d such that

(18) d � 3 exp 5
2 |f |

and m > 0, n > 0, m ≡ a, n ≡ bmod d implies

(19) K
(
Axm + Bxn + f (x)) = Axm + Bxn + f (x).
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Proof. In view of symmetry we can assume 0 < |A| � |B|. In virtue of Lemma 4 we
can suppose that A,B, f satisfy the assumptions of Lemma 2; set d = 2d0, where d0 is
an integer from that lemma. (18) follows from (1) and (19) holds unless we have (2) for
some l |d0.

Put

D = {〈m, n〉 : 0 � m < d, 0 � n < d
}
,

Dl =
{〈m, n〉 : 0 � m < l, 0 � n < l

}
,

El =
{〈m, n〉 ∈ D : Aζml + Bζnl + f (ζl) �= 0

}
.

If 〈a, b〉 ∈ ⋂
l |d
El then m > 0, n > 0, m ≡ a, n ≡ bmod d implies (19). Since f (1) �=

−A− B we have E1 = D. We show that
⋂
l |d
E �= ∅ separately in each of the cases (10),

(11), (12), (13). In the first two cases we use the inequality∣∣∣⋂
l |d
El

∣∣∣ � |D| −
∑

1<l |d
|D \ El |,

where in virtue of Lemma 5

|D \ El | = d2l−2
∣∣(D \ El) ∩Dl

∣∣.
In case (10) we have ∣∣(D \ El) ∩Dl

∣∣ � 1.

Indeed, if 〈m, n〉 ∈ D \ El and 〈q, r〉 ∈ D \ El we get

(20) Aζml + Bζnl − Aζql − Bζ rl = 0,

hence by Lemma 3 with ε = η = −1, ζml − ζ ql = ζ nl − ζ rl = 0; 〈m, n〉 ≡ 〈q, r〉 mod l.
Therefore,

d−2
∣∣∣⋂
l |d
El

∣∣∣ � 1 −
∑

1<l |d
l−2 > 2 −

∞∑
l=1

l−2 = 2 − π
2

6
> 0.

In case (11) we have

∣∣(D \ El) ∩Dl
∣∣ � {1 if l �≡ 0 mod 6,

2 if l ≡ 0 mod 6.

Indeed, if 〈m, n〉 ∈ D \ El and 〈q, r〉 ∈ D \ El we get again (20) and hence it follows by
Lemma 3 that

ζml − ζ ql = ζ nl − ζ rl = 0 or ζml = −ζ ql ,
{−θζ n−ql , θζ

r−q
l } = {ζ3, ζ 2

3 };
〈m, n〉 ≡ 〈q, r〉 mod l or l ≡ 0 mod 6,

〈m, n〉 ≡ 〈q + l/2, 2q − r + l/2〉 mod l.
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Therefore,

d−2
∣∣∣⋂
l |d
El

∣∣∣ � 1 −
∑

1<l |d
l−2 −

∑
l |d

l≡0 mod 6

l−2 > 2 − 37

36

∞∑
l=1

l−2 = 2 − 37π2

36 · 6
> 0.

c

In case (12) let β be the least exponent such that f (ζ2β ) = 0 if such equality is possible,
otherwise β = ∞, 2−β = 0. In the former case 2β |d, since A(ζ 0

2β
− ζ 0

2β
)+ f (ζ2β ) = 0.

Set

E′′
l = {〈m, n〉 ∈ D : m ≡ nmod l

}
and

E′
l =
{
El \ E′′

l if l = 2β or l is an odd prime,

El ∪ E′′
l otherwise.

If l has an odd prime factor p then

E′
l ∩ E′

p \ El ⊂ E′′
l ∩ E′

p ⊂ E′′
l \ E′′

p = ∅.

If l = 2α , where α < β, then by the choice of β

E′
l \ El ⊂ E′′

l \ El = ∅.c

If l = 2α , where α � β, then

E′
l ∩ E′

2β \ El ⊂ E′′
l ∩ E′

2β ⊂ E′′
l \ E′′

2β = ∅.

Hence
⋂
l |d
E′
l ⊂
⋂
l |d
El and it remains to estimate

∣∣⋂
l |d
E′
l

∣∣. With this end we note that

(21)
∣∣(D \ El \ E′′

l ) ∩Dl
∣∣ �
⎧⎪⎨⎪⎩

0 if l = 2β,

1 if l = 2,

(2, l) otherwise.

Indeed, if 〈m, n〉 ∈ D \ El \ E′′
l , 〈q, r〉 ∈ D \ El \ E′′

l we have

(22) A(ζml − ζ nl )+ f (ζl) = A(ζql − ζ rl )+ f (ζl) = 0; m �≡ n, q �≡ r mod l,

thus (20) holds with B = −A, ζml − ζ nl �= 0. Hence in virtue of Lemma 3

ζml = ζ ql , ζ nl = ζ rl or ζml = −ζ rl , ζ nl = −ζ ql
and

(23)
〈m, n〉 ≡ 〈q, r〉 mod l or l ≡ 0 mod 2,

〈m, n〉 ≡ 〈r + l/2, q + l/2〉 mod l.

This gives (21) for l �= 2β, 2. If l = 2β then (22) is impossible, thus D \ El \ E′′
l = ∅.

Finally, if l = 2 (22) implies q ≡ r + 1 mod 2, thus (23) is satisfied by only one residue
class 〈m, n〉 mod 2.
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We have further

(∗) ∣∣E′′
l ∩Dl

∣∣ = l.
In virtue of Lemma 5 it follows from (21), (∗) and the definition of E′

l thatc

d−2|D \ E′
l | �

⎧⎪⎪⎪⎨⎪⎪⎪⎩
l−1 + l−2 if l is an odd prime,

l−1 if l = 2β,

4−1 if l = 2 �= 2β,

(2, l)l−2 otherwise.

Set ordp d = op. We get

d−2
o2∑
α=1

|D \ E′
2α | <

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
2−1 +

∞∑
α=2

21−2α = 2
3 if β = 1,

4−1 + 2−β +
∞∑
α=2
α �=β

21−2α = 5
12 + 2−β − 21−2β < 2

3 if β > 1;
c

e2 = d−2
∣∣∣ o2⋂
α=1

E′
2α

∣∣∣ � 1 − d−2
o2∑
α=1

|D \ E′
2α | > 1

3 = c2,

ep = d−2
∣∣∣ op⋂
α=1

E′
pα

∣∣∣ � 1 − d2
op∑
α=1

|D \ E′
pα
| > 1 − p−1 − p−2 −

∞∑
α=2

p−2α

c

= p3 − p2 − 2p + 1

p(p2 − 1)
= cp (p > 2).

On the other hand, ⋂
l |d
E′
l =
⋂
pα |d

E′
pα \
⋃

1

(
(D \ E′

l ) ∩
⋂
pα |d
p/| l

E′
pα

)
,

∣∣∣⋂
l |d
E′
l

∣∣∣ � ∣∣∣⋂
pα |d

E′
pα

∣∣∣−∑
1

∣∣∣(D \ E′
l ) ∩

⋂
pα |d
p/| l

E′
pα

∣∣∣,
where

⋃
1 and

∑
1 are taken over all divisors l or d except the prime powers.

The families of sets
{
S(pop )

}
p |d ∪

{
S(l)
}

and {S(pop )}p |d
p/| l

, where S(pop ) =
op⋂
α=1
E′
pα ,

S(l) = D \ El , satisfy the assumptions of Lemma 5, hence

d−2
∣∣∣⋂
l |d
E′
l

∣∣∣ �∏
p |d
ep −

∑
1
d−2|D \ E′

l |
∏
p |d
p/| l

ep =
∏
p |d
ep

(
1 −
∑

1
(l, 2)l−2

∏
p |l
e−1
p

)

>
∏
p |d
ep

(
1 −

∞∑
l=2

(l, 2)l−2
∏
p |l
c−1
p +

∑
pα>1

(pα, 2)p−2αc−1
p

)
.

c
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The function (l, 2)l−2∏
p |l
c−1
p is multiplicative. Therefore

∞∑
l=2

(l, 2)l−2
∏
p |l
c−1
p =

∞∏
p=2

(
1 +

∞∑
α=1

(pα, 2)p−2αc−1
p

)
− 1

= 3
∞∏
p=3

(
1 + c−1

p (p
2 − 1)−1)− 1 = 3

∞∏
p=3

(
1 + p

p3 − p2 − 2p + 1

)
− 1,

∑
pα>1

(pα, 2)p−2αc−1
p =

∞∑
α=1

21−2αc−1
2 +

∞∑
p=3

∞∑
α=1

p−2αc−1
p = 2+

∞∑
p=3

p

p3 − p2 − 2p + 1
.

In virtue of Lemma 6 we have

4 − 3
∞∏
p=3

(
1 + p

p3 − p2 − 2p + 1

)
+

∞∑
p=3

p

p3 − p2 − 2p + 1
> 0.2,

hence

d−2
∣∣∣⋂
l |d
E′
l

∣∣∣ > 0.2d2
∏
p |d
ep > 0

and the proof in case (12) is complete.
In case (13) let β be the least positive exponent such that f (ζ2β ) �= 0.
Since for β � 2c

A
(
ζ 2β−2

2β−1 + ζ 0
2β−1

)+ f (ζ2β−1) = 0,c

we have 2β−1 |d0, hence by the choice of d , 2β |d. We set

E′′
l = {〈m, n〉 ∈ D : m ≡ nmod l

}
, E′′′

l = {〈m, n〉 ∈ D : m ≡ n+ l
2 mod l

}
,c

E′
l =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
E′′
l if l = 2α, α < β,

E′′′
l if l = 2β,

El \ E′′
l if l is an odd prime,

El ∪ E′′′
l otherwise.c

If l has an odd prime factor p then

E′
l ∩ E′

p \ El ⊂ E′′′
l ∩ E′

p ⊂ E′′′
l \ E′′

p = ∅.c

If l = 2α , 0 < α � β, 〈m, n〉 ∈ E′
l , then by the choice of β

A
(
ζml + ζ nl

)+ f (ζl) = {2Aζml �= 0 if α < β,

f (ζl) �= 0 if α = β,c

thus E′
l \ El = ∅.

If l = 2α , α > β, then

E′
l ∩ E′

2β \ El ⊂ E′′′
l ∩ E′

2β ⊂ E′′
2β ∩ E′

2β = ∅.c
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Hence ⋂
l |d
E′
l ⊂
⋂
l |d
El

and it remains to estimate |⋂
l |d
E′
l |. With this end we note that

(24)
∣∣(D \ El \ E′′′

l ) ∩Dl
∣∣ � 2.c

Indeed, if 〈m, n〉 ∈ D \ El \ E′′′
l , 〈q, r〉 ∈ D \ El \ E′′′

l we havec

A(ζml + ζ nl )+ f (ζl) = A(ζql + ζ rl )+ f (ζl) = 0; m �≡ n+ l
2 , q �≡ r + l

2 mod l,c

thus (20) holds with A = B, ζml + ζ nl �= 0. Hence in virtue of Lemma 3

ζml = ζ ql , ζ nl = ζ rl or ζml = ζ rl , ζ nl = ζ ql
and

(25) 〈m, n〉 ≡ 〈q, r〉 or 〈r, q〉 mod l.

We have further

(26) |E′′′
l ∩Dl | � l, |E′

2β ∩D2β | = 2β.c

In virtue of Lemma 5 it follows from (24), (26) and the definition of E′
l that

(27) d−2|D \ E′
l | �
{

2l−2 if l composite �= 2α (α � β),
l−1 + 2l−2 if l prime > 2.

On the other hand, since E′
2β

⊂ E′
2α (α < β)

d−2
∣∣∣ β⋂
α=1

E′
2α

∣∣∣ = d−2|E′
2β | = 2−β.

Set ordp d = op. We get

2−β = d−2|E′
2β | � e2 = d−2

∣∣∣ o2⋂
α=1

E′
2α

∣∣∣ � d−2|E′
2β | − d−2

o2∑
α=β+1

|D \ E′
2α |

c

> 2−β −
∞∑

α=β+1

21−2α = 2−β − 1
3 · 21−2β = c2,

and for prime p > 2c

ep = d−2
∣∣∣ op⋂
α=1

E′
pα

∣∣∣ � 1 − d−2
op∑
α=1

|D \ E′
pα | > 1 − p−1 − 2

∞∑
α=1

p−2α

c

= p3 − p2 − 3p + 1

p(p2 − 1)
= cp.
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If l = 2αl1, α > 0, l1 odd > 1 then

(28) d−2
∣∣(D \ E′

l ) ∩ E′
2β
∣∣ � 21−max(β−α,0)l−2.

For α � β the inequality follows at once from (27). In order to show it for α < β suppose
that 〈q, r〉 ∈ D \ E′

l and setc

E′
l,l1

= {〈m, n〉 ∈ D : 〈m, n〉 �≡ 〈q, r〉 , 〈r, q〉 mod l1
}
,

E′
l,2α =

{〈m, n〉 ∈ D : 〈m, n〉 �≡ 〈q, r〉 , 〈r, q〉 mod 2α
}
.

Since 〈m, n〉 ∈ D \ E′
l implies (25) we have

D \ E′
l ⊂ (D \ E′

l,l1
) ∩ (D \ E′

l,2α ).

The sets

S(l1) = D \ E′
l,l1
, S(2β) = (D \ E′

l,2α ) ∩ E′
2β

satisfy the assumptions of Lemma 5, hence

d−2|S(l1)| = l−2
1 |S(l1) ∩Dl1 | � 2l−2

1 ,

d−2|S(2β)| = 2−2β |S(2β) ∩D2β | =
{

0 if q �≡ r mod 2α,

2−α−β if q ≡ r mod 2α,

d−2
∣∣(D \ E′

l ) ∩ E′
2β
∣∣ � d−2

∣∣S(l1) ∩ S(2β)∣∣ = d−2|S(l1)| d−2|S(2β)|,
which implies (28).c

Now we have⋂
l |d
E′
l =
(⋂
pα |d

E′
pα ∩

⋂
2p |d

E′
2p

)
\
⋃

1

(
(D \ E′

l ) ∩
⋂
pα |d
p/| l

E′
pα

)

\
⋃

2

(
(D \ E′

l ) ∩ E′
2β ∩

⋂
pα |d
p/| 2l

E′
pα

)
,

(29) d−2
∣∣∣⋂
l |d
E′
l

∣∣∣ � d−2
∣∣∣⋂
pα |d

E′
pα ∩

⋂
2p |d

E′
2p

∣∣∣−∑
1
d−2
∣∣∣(D \ El) ∩

⋂
pα |d
p/| l

E′
pα

∣∣∣
−
∑

2
d−2
∣∣∣(D \ E′

l ) ∩ E′
2β ∩

⋂
pα |d
p/| 2l

E′
pα

∣∣∣,
where

⋃
1 and

∑
1 are taken over all l |d such that l ≡ 1 mod 2, l �= 1, pα ,

⋃
2 and

∑
2 are

taken over all l |d such that l ≡ 0 mod 2, l �= 2p (p is a prime).
∑

1 and
∑

2 are estimated
easily. Indeed, the family of sets

{S(l)} ∪ {S(pop )}p |d, p/| l , where S(l) = Dl \ E′
l , S(p

op ) =
op⋂
α=1

E′
pα ,
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satisfies for each l the assumptions of Lemma 5. Hence by (27)

Σ1 =
∑

1
d−2|D \ E′

l |
∏
p |d
p/| l

ep �
∏
p |d
ep
∑

1
2l−2

∏
p |l
e−1
p �

∏
p |d
ep
∑

1
2l−2

∏
p |l
c−1
p

<
∏
p |d
ep

( ∞∑
l=3
l odd

2l−2
∏
p |l
c−1
p −

∑
pα�3
p odd

2p−2αc−1
p

)
.

The function l−2∏
p |l
c−1
p is multiplicative and in the set of odd numbers there is the unique-

ness of factorization, thus

∑
l=3
l odd

2l−2
∏
p |l
c−1
p = 2

∞∏
p=3

(
1 +

∞∑
α=1

p−2αc−1
p

)
− 2

= 2
∞∏
p=3

(
1 + p

p3 − p2 − 3p + 1

)
− 2,

(30)

∑
pα�3
p odd

2p−2αc−1
p = 2

∞∑
p=3

∞∑
α=1

p−2αc−1
p = 2

∞∑
p=3

p

p3 − p2 − 3p + 1
.

We get by Lemma 6

(31) Σ1 <
∏
p |d
ep(2 · 1.459 − 2 − 2 · 0.4165) = 0.085

∏
p |d
ep.

c

Similarly, the family of sets

{
S(2max(β−α,0)l)

} ∪ {S(pop )}
p |d, p/| 2l ,

where S(2max(β−α,0)l) = (D \ E′
l ) ∩ E′

2β
, S(pop ) =

op⋂
α=1
E′
pα , satisfies for each l = 2αl1,

l1 > 1 odd, the assumptions of Lemma 5. Hence by (28)c

Σ2 =
∑

2
d−2
∣∣(D \ E′

l ) ∩ E′
2β
∣∣ ∏
p |d
p/| 2l

ep �
∏
p |d
p>2

ep
∑

2
21−max(β−α,0)l−2

∏
p |l1
e−1
p

<
∏
p |d
p>2

ep

( ∞∑
l1=3
l1 odd

∞∑
α=1

21−max(β−α,0)−2αl−2
1

∏
p |l1
c−1
p −

∞∑
p=3

2−βp−2c−1
p

)
.
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Now

∞∑
α=1

21−max(β−α,0)−2α =
β∑
α=1

21−β−α +
∞∑

α=β+1

21−2α

= 21−β − 21−2β + 1
3 · 21−2β = 2c2 � 2e2.

On the other hand, by (30) and Lemma 6∑
l1=3
l1 odd

2l−2
1

∏
p |l1
c−1
p = 2

∞∏
p=3

(
1 + p

p3 − p2 − 3p + 1

)
− 2 < 2 · 1.459 − 2 = 0.918,

c

∞∑
p=3

p−2c−1
p =

∞∑
p=3

p2 − 1

p(p3 − p2 − 3p + 1)
> 0.3804.

Hence

(32) Σ2 <
∏
p |d
ep

(
0.918− 2−βe−1

2

∞∑
p=3

p−2c−1
p

)
<
∏
p |d
ep
(
0.918− 2−βe−1

2 · 0.38
)
.

c

It remains to estimate
∣∣ ⋂
pα |d

E′
pα ∩

⋂
2p |d

E′
2p

∣∣. Here we distinguish two cases β = 1 and

β > 1. If β = 1 we put

E1
2 = {〈m, n〉 ∈ D : 〈m, n〉 ≡ 〈0, 1〉 mod 2

}
,

E2
2 = {〈m, n〉 ∈ D : 〈m, n〉 ≡ 〈1, 0〉 mod 2

}
,

so that

(33) E1
2 ∪ E2

2 = E′
2, E1

2 ∩ E2
2 = ∅.

If E′
2 \E′

2p = ∅ we put further E1
2p,p = E2

2p,p = D (p prime � 3). If E′
2 \E′

2p �= ∅ let
〈q, r〉 ∈ E′

2 \E′
2p. Then also 〈r, p〉 ∈ E′

2 \E′
2p and in view of symmetry we may assume

〈q, r〉 ∈ E1
2 . We set

E1
2p,p = {〈m, n〉 ∈ D : 〈m, n〉 �≡ 〈q, r〉 mod p

}
,

E2
2p,p = {〈m, n〉 ∈ D : 〈m, n〉 �≡ 〈r, q〉 mod p

}
.

Since 〈m, n〉 ∈ D \ E′
2p implies (25) with l = 2p, we have

E′
2 ∩ E′

2p = (E1
2 ∩ E1

2p,p

) ∪ (E2
2 ∩ E2

2p,p

)
,⋂

pα |d
E′
pα ∩

⋂
2p |d

E′
2p =

⋂
p |d
S1(p

op ) ∪
⋂
p |d
S2(p

op ),(34)

where

Si(2
o2) = Ei2 ∩

o2⋂
α=1

E′
2α , Si(p

op ) =
op⋂
α=1

E′
pα ∩ Ei2p,p (p � 3).

c
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The family of sets {Si(pop )}p |d satisfies for i = 1, 2 the assumptions of Lemma 5, and by
(33) the two summands in (34) are disjoint, hence

d−2
∣∣∣⋂
pα |d

E′
pα ∩

⋂
2p |d

E′
2p

∣∣∣ =∏
p |d
d−2|S1(p

op )| +
∏
p |d
d−2|S2(p

op )|.

However, by (33)

|S1(2
o2)| + |S2(2

o2)| = |S1(2
o2) ∪ S2(2

o2)| =
∣∣∣E′

2 ∩
o2⋂
α=1

E′
2α

∣∣∣ = d2e2,

and for prime p > 2c

d−2|Si(pop )| � d−2
∣∣∣ op⋂
α=1

E′
pα

∣∣∣− d−2|D \ Ei2p,p|

= ep − p−2
∣∣(D \ Ei2p,p) ∩Dp

∣∣ � ep − p−2.

Hence

d−2
∣∣∣⋂
pα |d

E′
pα ∩

⋂
2p |d

E′
2p

∣∣∣ � d−2(|S1(2
o2)| + |S2(2

o2)|) ∏
p |d
p>2

(ep − p−2)

c

=
∏
p |d
ep ·
∏
p |d
p>2

(1 − p−2e−1
p ) >

∏
p |d
ep ·

∞∏
p=3

(1 − p−2c−1
p )

c

>
∏
p |d
ep

(
1 −

∞∑
p=3

p−2c−1
p + 3−2 · 5−2c−1

3 c
−1
5

)
>
∏
p |d
ep

(
1.014 −

∞∑
p=3

p−2c−1
p

)
.

It follows from (29), (31) and (32) that

d−2
∣∣∣⋂
l |d
E′
l

∣∣∣ �∏
p |d
ep

(
0.011 −

∞∑
p=3

p−2c−1
p + 2−βe−1

2

∞∑
p=3

p−2c−1
p

)
> 0.011

∏
p |d
ep > 0.

c

If β > 1, we put

E1
2 = {〈m, n〉 ∈ D : 〈m, n〉 �≡ 〈0, 0〉 mod 2

}
,

E2
2 = {〈m, n〉 ∈ D : 〈m, n〉 �≡ 〈1, 1〉 mod 2

}
so that again (33) holds.

If p > 2 is a prime, E′
2p �= D and 〈q, r〉 ∈ D \ E′

2p we set

E′
2p,p = {〈m, n〉 ∈ D : 〈m, n〉 �≡ 〈q, r〉 , 〈r, q〉 mod p

}
and we assign p into class P0, P1 or P2 according to whether 〈q, r〉 /∈ E′

2, 〈q, r〉 ∈ E1
2 or

〈q, r〉 ∈ E2
2 , respectively.

Since 〈m, n〉 ∈ D \ E′
2p implies (25) with l = 2p, the residue classes of 〈q, r〉, 〈r, q〉

mod 2p are determined uniquely up to a permutation and sets E′
2p,p, P1, P2 are well
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defined. We have

E′
2 ∩ E′

2p =

⎧⎪⎨⎪⎩
E2

2 ∪ (E1
2 ∩ E′

2p,p

)
if p ∈ P1,

E1
2 ∪ (E2

2 ∩ E′
2p,p

)
if p ∈ P2,

E′
2 otherwise.

Hence

E′
2 ∩
⋂

2p |d
E′

2p =
(
E1

2 ∩
⋂

2p |d
p∈P1

E′
2p,p

)
∪
(
E2

2 ∩
⋂

2p |d
p∈P2

E′
2p,p

)

and

(35)
⋂
pα |d

E′
pα ∩

⋂
2p |d

E′
2p =

⋂
p |d
S1(p

op ) ∪
⋂
p |d
S2(p

op ),

where

Si(2
o2) = Ei2 ∩

o2⋂
α=1

E′
2α ,

Si(p
op ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
E′

2p,p ∩
op⋂
α=1

E′
pα if p ∈ Pi,

op⋂
α=1

E′
pα if p /∈ Pi, p > 2.

The family of sets {Si(pop )}p |d satisfies for i = 1, 2 the assumptions of Lemma 5 and by
(33) the two summands in (35) are disjoint. Hence

d−2
∣∣∣⋂
pα |d

E′
pα ∩

⋂
2p |d

E′
2p

∣∣∣ =∏
p |d
d−2|S1(p

op )| +
∏
p |d
d−2|S2(p

op )|.
c

On the other hand,

Si(2
o2) =

o2⋂
α=1

E′
2α \ (D \ Ei2) ∩ E′

2β ,

d−2|Si(2o2)| � e2 − d−2
∣∣(D \ Ei2) ∩ E′

2β
∣∣

= e2 − 2−2β
∣∣(D \ Ei2) ∩ E′

2β ∩D2β
∣∣ = e2 − 2−β−1,

d−2|S1(2
o2)| + d−2|S2(2

o2)| = d−2
∣∣S1(2

o2) ∪ S2(2
o2)
∣∣ = d−2

∣∣∣ o2⋂
α=1

E′
2α

∣∣∣ = e2,
whence

d−2|Si(2o2)| = e2

2

(
1 + (−1)iε

)
where |ε| � 2−βe−1

2 − 1.
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Further, for p > 2

d−2|Si(pop )| � d−2
∣∣∣ op⋂
α=1

E′
pα

∣∣∣− d−2
∣∣D \ E′

2p,p

∣∣
= ep − p−2

∣∣(D \ E′
2p,p) ∩Dp

∣∣ = ep − 2p−2 if p ∈ Pi,
d−2|Si(pop )| = ep if p /∈ Pi.

Hence

(36) d−2
∣∣∣⋂
pα |d

E′
pα ∩

⋂
2p |d

E′
2p

∣∣∣ �∏
p |d
ep
(
( 1

2 − 1
2ε)Π1 + ( 1

2 + 1
2ε)Π2

)
�
∏
p |d
ep
( 1

2Π1 + 1
2Π2 − 1

2 (2
−βe−1

2 − 1)|Π1 −Π2|
)
,

where

Πi =
∏
p∈Pi

(1 − 2p−2c−1
p ) =

∏
p∈Pi

(
1 − 2(p2 − 1)

p(p3 − p2 − 3p + 1)

)
.

It follows from Lemma 6 that

Π1Π2 �
∞∏
p=3

(
1 − 2(p2 − 1)

p(p3 − p2 − 3p + 1)

)
= C > 0.3683

c

and, if 3 ∈ P1 ∪ P2, since 1 − 2 · 3−2c−1
3 = 7

15 <
√
C we havec

1
2 |Π1 − CΠ−1

1 | � 1
2 (

15
7 C − 7

15 ),

1
2Π1 + 1

2Π2 � 1
2Π1 + 1

2CΠ
−1
1 =

√
C + 1

4 (Π1 − CΠ−1
1 )2 � 1

2 (
15
7 C + 7

15 ) > 0.627.

If 3 /∈ P1 ∪ P2, then Π1Π2 � 15
7 C, hencec

1
2Π1 + 1

2Π2 �
√
Π1Π2 �

√
15
7 C > 0.627.

On the other hand, in both cases

|Π1 −Π2| � 1 − C < 0.632.

It follows from (29), (31), (32) and (36) that

d−2
∣∣∣⋂
l |d
E′
l

∣∣∣ �∏
p |d
ep
(
0.627 − (2−βe−1

2 − 1)0.316 − 1.003 + 2−βe−1
2 · 0.38

)
c

�
∏
p |d
ep
(
0.004 + (2−βe−1

2 − 1)0.064
)
> 0.004

∏
p |d
ep > 0

c

and the proof is complete. ��

Lemma 8. IfA �= ±B then each rational factor ofAxc+B is of degree at least c |AB|−1.
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Proof. Each zero of Axc + B has absolute value |BA−1|1/c. Hence any monic factor of
Axc + B of degree γ has constant term with absolute value |BA−1|γ /c. If this term is
rational we have in the notation in Lemma 1 of [6]

c � e
(
BγA−γ ,Q

) = γ e(BA−1,Q).

However, since either BA−1 or B−1A is not an integer we get by that lemma

e(BA−1,Q) = e(B−1A,Q) � log(A2 + B2)

2 log 2
� |AB|,

γ � c|AB|−1. ��

Proof of Theorem. Let a, b, d be integers from Lemma 7 and set

(37) c = a − b + d + d[d−1(b − a + |f |∗|AB|)],c

(38) e = b + d + d[−bd−1 + d−1 log(‖f ‖ + A2 + B2)120(4c2 + 8)‖f ‖+A2+B2]
,

where as in [6]

|f |∗ =
√

max{|f |2, 2} + 2 .

It follows

c > |f |∗|AB| � max(|f |, 2)|AB|,(39)

e > 120(4c2 + 8)‖f ‖+A2+B2
log(‖f ‖ + A2 + B2) > |f |.(40)

We note that

(Axc + B)(A+ Bxc) �= xcf (x)f (x−1),(41) (
K(Axc + B),Kf (x)) = (L(Axc + B),Lf (x)) = 1.(42)

(41) follows from (39) by comparison of degrees of both sides, (42) is obvious ifA = ±B.
If A �= ±B any rational factor of Axc +B is by Lemma 8 and (39) of degree greater than
|f |, which implies (42). Assume now

(43) n = dt + e (t � 0)

and set in Lemmata 12 and 13 of [6]

F(x1, x2) = (Axc2 + B)x1 + f (x2), n1 = n, n2 = 1.

The assumption of Lemma 13 is satisfied since by (41), (42)

F(x1, x2)

KF(x1, x2)
=
(
Axc2 + B
K(Axc2 + B) ,

f (x2)

Kf (x2)

)
= (Axc2 + B, f (x2)

)
=
(
Axc2 + B
L(Axc2 + B) ,

f (x2)

Lf (x2)

)
= F(x1, x2)

LF(x1, x2)
.

c

In view of (39)

|F | = c > 2; |F |∗ =
√
c2 + 2 , ‖F‖ = A2 + B2.
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In view of (40) and (43) the numbers n1, n2 do not satisfy any relation γ1n1 + γ2n2 = 0
with

0 < max{|γ1|, |γ2|} � 120(2|F |∗)2‖F‖ log ‖F‖.
Therefore, by Lemma 12 of [6] there is an integral matrix M = [μij ] of order 2 such thatc

0 � μ21 < μ11, 0 = μ12 < μ22,(44)

[n, 1] = [v1, v2]M(45)

and

(46) L
(
(Ay

cμ22
2 + B)yμ11

1 y
μ21
2 + f (yμ22

2 )
) can= const

s∏
σ=1

Fσ (y1, y2)
eσ

c

implies

L
(
Axn+c + Bxn + f (x)) = const

s∏
σ=1

LFσ (x
v1 , xv2)eσ ,

where polynomials LFσ (xv1 , xv2) (σ � s) are either irreducible or constant.
Now by (44) and (45) μ22 = 1 and the left hand side of (46) becomesc

L
(
(Ayc2 + B)yμ11

1 y
μ21
2 + f (y2)

)
which itself is not reducible.

Indeed, since c > |f | and Ayc2 + B has no multiple factors

± f (y2)

y
μ21
2 (Ayc2 + B)

is not a power in the field Q(y2) and by Capelli’s theorem

y
μ11
1 + f (y2)

y
μ21
2 (Ayc2 + B)

is irreducible in this field. It follows that

(Ayc2 + B)yμ11
1 y

μ21
2 + f (y2)(

(Ayc2 + B)yμ21
2 , f (y2)

)
is irreducible. Since by (42) and f (0) �= 0(

L(Ayc2 + B)yμ21
2 , Lf (y2)

) = 1,

we have on the right hand side of (46) s = 0 or s = e1 = 1. We infer that
L
(
Axn+c + Bxn + f (x)) is not reducible. By Lemma 13 of [6] we have

L
(
Axn+c + Bxn + f (x)) = K(Axn+c + Bxn + f (x)).

Finally by (37), (38) and (43) n+ c ≡ a, n ≡ bmod d and by Lemma 7

K
(
Axn+c + Bxn + f (x)) = Axn+c + Bxn + f (x),

thus Axm + Bxn + f (x) is irreducible for any m = n + c, n = dt + e (t � 0). By (40)
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we have n > |f |. On the other hand, by (18) and (37)

c � |f |∗|AB| + d � |f |∗|AB| + 3 exp 5
2 |f | � 5 exp

( 5
2 |f | + log |AB|)

and for t = 0 we get by (18) and (38)

m = c + e � c + d + log
(‖f ‖ + A2 + B2)120(4c2 + 8)‖f ‖+A2+B2

� 8 exp
( 5

2 |f | + log |AB|)+ 6‖f ‖+A2+B2(
108 exp(5|f | + 2 log |AB|)‖f ‖+A2+B2)

< exp
(
(5|f | + 2 log |AB| + 7)(‖f ‖ + A2 + B2)

)
.

The proof is complete. ��

Proof of Corollary. If f (0) �= 0 we set g(x) = Axn + Bxm + f (x) and apply Theorem
with A = B = 1 if f (1) �= −2, with A = −B = 1 if f (1) = −2.

The inequality for |g0| follows, even with ‖f ‖ + 3 replaced by ‖f ‖ + 2.
If f (0) = 0 we set g(x) = Axn+Bxm+f (x)+1 and apply Theorem withA = B = 1

if f (1) �= −3, with A = −B = 1 if f (1) = −3.
If f (x) �≡ 0 we have |f (x) + 1| = |f |, ‖f (x) + 1‖ = ‖f ‖ + 1, which implies thec

inequality for |g0|. If f (x) ≡ 0, |f | = −∞, we set g0(x) = x. ��
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A note on the paper
“Reducibility of lacunary polynomials I”

with J. Wójcik (Warszawa)

In the paper [1] mentioned in the title the first writer has left a gap in the proof of
Lemma 1. The aim of this note is to fill this gap by proving a property of normal number
fields which may be of independent interest.

Let Ω be a number field of degree |Ω|, α ∈ Ω , α �= 0. We denote by ζq a primitive
qth root of unity and set following [1]

e(α,Ω) =
{

0 if α = ζq for some q,

maximal e such that α = ζqβe with suitable q and β ∈ Ω , otherwise.

It is asserted in Lemma 1 of [1] that if α �= 0, f (α) = 0, where f (x) =
m∑
i=0
aix

i is a

polynomial with integral coefficients and ‖f ‖ =
m∑
i=0
a2
i , then

(1) e(α,Ω) � 5
2 |Ω| log ‖f ‖.

The proof for α not being an integer is correct. The proof for α being an integer is
based on the following refinement of a result of Cassels ([1], p. 159(1)).

If an algebraic integer β of degree n is not conjugate to β−1 then

(2)
∣∣β∣∣ > 1 + 1

5n− 1
,

where
∣∣β∣∣ is the maximal absolute value of the conjugates of β.

If α is an integer and α = ζqβe then β is also an integer (e > 0). However it does not
follow that if α is not conjugate to α−1 then β is not conjugate to β−1. The example

α = −1 −√
2 = ζ4

(
ζ8

√
1 +√

2
)2 = ζ4β2

shows that even for all i ζ iqβ may be conjugate to ζ−iq β−1.

(1) Page 379 in this volume.



404 D. Polynomials in one variable

Therefore the inequality (2) does not follow in an obvious way (which is assumed
although not asserted in [1]) from the assumption of the lemma in question and we are not
able to decide whether it follows at all. However the inequality (1) is a simple consequence
(see Corollary below) of the following

Theorem. If α = ζqβe is not conjugate to α−1, β ∈ K(α) where K is a normal field of
degree |K| and (|K|, q, e) = 1 then for some i, ζ iqβ is not conjugate to ζ−iq β−1.

Lemma 1. Let p be a prime not dividing |K|, ζp ∈ K(α), β ∈ K(α). If σ1, σ2 are twoc

automorphisms of the normal closure of K(α), σ1(α) = σ2(α), σ1(ζp) = σ2(ζp) and
σ1(β

p) = σ2(β
p) then σ1(β) = σ2(β).

Proof. Set σ = σ−1
2 σ1. Let α be of degree r over K(ζp) and let

β = a0 + a1α + . . .+ ar−1α
r−1, ak ∈ K(ζp).c

If σ(β) �= β we have σ(β) = ζpβ �= 0. Therefore,

σ(β) = ζpa0 + ζpa1α + . . .+ ζpar−1α
r−1,

where at least one coefficient ζpai , say, is non-zero. On the other hand,

σ(β) = σ(a0)+ σ(a1)α + . . .+ σ(ar−1)α
r−1.

Since K is normal, σ(ai) ∈ K(ζp). It follows that

σ(ai) = ζpai, σ (a
p
i ) = api .

a
p
i belongs, therefore, to the subfield L of K(ζp) invariant with respect to σ . We have also
ζp ∈ L, ai /∈ L and byAbel’s theorem ai is of degreep over L. Since L ⊂ L(ai) ⊂ K(ζp)

it follows |K(ζp)| ≡ 0 mod p and |K| ≡ 0 mod p, contrary to the assumption. ��

Lemma 2. The theorem holds for q = 2ν .

Proof. Set ζq = ζ . If e �≡ 0 (mod 2) we have for suitable i

α = ζβe = (ζ iβ)e,
hence ζ iβ is not conjugate to ζ−iβ−1. Assume that e ≡ 0 mod 2, |K| �≡ 0 mod 2 and that
for each i there exists an automorphism σi of the normal closure of K(α) such that

σi(ζ
iβ) = ζ−iβ−1.

If σi(ζ ) = ζ si we have

σ ti (β) = ζ−i(s
t
i+1)β−1 (t odd),

σ ti (α) =
{
ζ s
t
i−ie(sti+1)β−e for t odd,

ζ s
t
i−ie(sti−1)βe for t even.

If si ≡ −1 mod q then setting t = 1 we get σi(α) = α−1, contrary to the assump-
tion. This remark implies the validity of the lemma for ν = 1, 2. Indeed, if ν = 1 then
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si ≡ −1 mod 2. If ν = 2 then either s0 ≡ −1 mod 4 or s1 ≡ −1 mod 4. Otherwise
s0 ≡ s1 ≡ 1 mod 4,

σ0(α) = ζβ−e = σ1(α), σ0(β
2) = β−2 = σ1(β

2)

and by Lemma 1

σ0(β) = σ1(β), β−1 = −β−1,

which is impossible.

In order to prove the lemma for ν � 3 we prove first the three assertions:

(i) if ν � 3, 2ν−3 ‖ i − j then either si ≡ −1 mod 4 or sj ≡ −1 mod 4,

(ii) if ν � 4, 2ν−4 ‖ i − j , si ≡ 3 mod 8 then sj ≡ −1 mod 4,

(iii) if 1 < l < ν, 2ν−1−l ‖ i − j , 2l ‖ si + 1 then 2l /|| sj + 1.

(i) We have σiσj (α)= ζ si sj−je(sj+1)si+ie(si+1)βe. Since 2(i − j)(si + 1)(sj + 1)≡
0 mod 2ν it follows that σiσj (α) = σjσi(α) and σiσj (β2) = σjσi(β2), thus by Lemma 1
σiσj (β) = σjσi(β). Hence (i−j)(si+1)(sj+1) ≡ 0 mod 2ν , (si+1)×(sj+1) ≡ 0 mod 8
and either si ≡ −1 mod 4 or sj ≡ −1 mod 4.

(ii) If si ≡ 3 mod 8 then 2(i − j)(si + 1)(sj + 1) ≡ 0 mod 2ν , σiσj (α) = σjσi(α),
σiσj (β

2) = σjσi(β2) thus by Lemma 1 σiσj (β) = σjσi(β), (i − j)(si + 1)(sj + 1) ≡
0 mod 2ν , (si + 1)(sj + 1) ≡ 0 mod 16, sj ≡ −1 mod 4.

(iii) Let si ≡ −5αi , sj ≡ −5αj mod 2ν . If 2l ‖ si + 1, 2l ‖ sj + 1 then 5αi ≡ 2l + 1
mod 2l+1, 5αj ≡ 2l + 1 mod 2l+1, hence 2l−2 ‖αi , 2l−2 ‖αj , (αj , 2ν−2) |αi . It follows
that the congruence

tαj ≡ αi mod 2ν−2

is soluble. Its root t must be odd since otherwise l − 1 � ν − 2 implies αi ≡ tαj ≡
0 mod 2l−1, which is impossible. Thus we have for an odd t

stj ≡ si mod 2ν .

Since 2(i − j)(si + 1) ≡ 0 mod 2ν we get σ tj (α) = σi(α), σ tj (β
2) = σi(β

2), thus by
Lemma 1 σ tj (β) = σi(β), (i − j)(si + 1) ≡ 0 mod 2ν , which is impossible.

Let l be the greatest integer not exceeding ν such that si ≡ −1 mod 2l for suitable i.
Since si �≡ −1 mod 2ν for all i we have l < ν and by (i) l > 1.

Consider first the case ν = 3. Then q = 8, l = 2, si ≡ 3 mod 8. Taking in (iii) l = 2,
ν = 3, j = i − 1 or i + 1 we get si−1 ≡ si+1 ≡ 1 mod 4.

If si−1 ≡ si+1 mod 8 then 2[(i + 1) − (i − 1)](si−1 + 1) ≡ 4(si−1 + 1) ≡ 0 mod 8,
hence σi−1(α) = σi+1(α), σi−1(β

2) = σi+1(β
2) and by Lemma 1 σi−1(β) = σi+1(β),

2(si−1 + 1) ≡ 0 mod 8 which is impossible.

In the remaining cases: si−1 ≡ 1, si ≡ 3, si+1 ≡ 5 mod 8 and si−1 ≡ 5, si ≡ 3,
si+1 ≡ 1 we have si−1sisi+1 ≡ −1, si ≡ 3 mod 8.
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It follows

σi−1σiσi+1(α) = ζ si−1si si+1−e[(i+1)si−1si si+1+si−1si−si−1+i−1]β−e

= ζ−1−e(−i−1+3si−1−si−1+i−1)β−e

= ζ−1−2e(si−1−1)β−e = ζ−1β−e = α−1,

since 2(si−1 − 1) ≡ 0 mod 8.
Consider next the case ν � 4. Let 2ν−1−l ‖ i − j , 2k ‖ sj + 1. For suitably chosen j

we have k > 1. Indeed, if l > 2 then ν − 1 − l < ν − 3, 2ν−1−l ‖ i − j − 2ν−3 and by (i)
sj ≡ −1 mod 4 or sj+2ν−3 ≡ −1 mod 4.

If l = 2 and sj ≡ 1 mod 4 then by (i) sj+2ν−3 ≡ −1 mod 4, by (ii) sj+2ν−4 ≡ −1 mod 4,
because sj+2ν+3 �≡ −1 mod 8 and again by (ii) sj ≡ −1 mod 4, a contradiction.

By the definition of l we have k � l and by (iii) k �= l. Thus we get 1 < k < l < ν.
Let

si ≡ −5αi mod 2ν, sj ≡ −5αj mod 2ν .

It follows

5αi ≡ 1 mod 2l , 5αj ≡ 2k + 1 mod 2k+1;
2l−2 |αi, 2k−2 ‖αj ; (αj , 2

ν−2) |αi
and the congruence

tαj + αi ≡ 0 mod 2ν−2

is soluble. Since k < l its root t must be even. Thus we have for an even t

sis
t
j ≡ −1 mod 2ν .

Since 2ν−1−l | i − j , 2l | si + 1 we get

j (sis
t
j − si)+ i(si + 1) ≡ (i − j)(si + 1) ≡ 0 mod 2ν−1

and

σiσ
t
j (α) = ζ si s

t
j−e[j (si stj−si )+i(si+1)]

β−e = α−1,

which is impossible. ��

Lemma 3. The theorem holds for q = pν , where p is an odd prime.

Proof. Set ζq = ζ . If e �≡ 0 mod p we have for suitable i

α = ζβe = (ζ iβ)e,
hence ζ iβ is not conjugate to ζ−iβ−1. Assume that e ≡ 0 mod p, |K| �≡ 0 mod p and that
for each i there exists an automorphism σi of the normal closure of K(α) such that

σi(ζ
iβ) = ζ−iβ−1.

If i ≡ 0 mod pν−1, t is odd then

σ ti (β) = ζ−i(s
t
i+1)β−1, σ ti (α) = ζ s

t
i β−e.c
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We have

σ0σpν−1(α) = ζ s0spν−1βe = σpν−1σ0(α),

σ0σpν−1(ζp) = σpν−1σ0(ζp), σ0σpν−1(βp) = σpν−1σ0(β
p),

thus by Lemma 1

σ0σpν−1(β) = σpν−1σ0(β); pν−1(s0 + 1)(spν−1 + 1) ≡ 0 mod pν.

Hence either s0 ≡ −1 mod p or spν−1 ≡ −1 mod p and we assume without loss of

generality that the first congruence holds. Then sp
ν−1

0 ≡ −1 mod pν , σp
ν−1

0 (α) = α−1,
which is impossible. ��

Proof of the theorem. We proceed by induction with respect toω(q) the number of distinct
prime factors of q. If ω(q) = 0 the theorem is trivial. If ω(q) = 1 the theorem holds in
virtue of Lemmata 2 and 3. Suppose that the theorem holds for ω(q) < n and consider
ω(q) = n > 1. Let p be the least prime factor of q, q = pνq1, e = pμe1, where p /| q1e1.
If μ = 0 then for suitable ζpν , ζq1 we have

α = ζqβe = ζq1(ζpνβ)
e.

Since ζq = αβ−e ∈ K(α) we have ζpν ∈ K(α), ζpνβ ∈ K(α) and by the inductive
assumption for some i

ζ iq1
ζpνβ is not conjugate to ζ−iq1

ζ−1
pν β

−1,

which was to be proved.
If μ > 0, by the assumption |K| �≡ 0 mod p. We have for suitable ζpν , ζq1

α = ζqβe = ζpν (ζq1β
e1)p

μ

.

Since ζq1β
e1 ∈ K(α) it follows by the inductive assumption that for some i

α1 = ζ ipν ζq1β
e1 is not conjugate to α−1

i .

However we have for suitable j

α1 = ζq1(ζ
j
pνβ)

e1

and ζ jpνβ ∈ K(ζpν , α1). Indeed, β ∈ K(α) and α = ζ
1−ipμ
pν a

pμ

1 . Moreover since
(|K|, q, e) = 1 and p is the least prime factor of q(|K(ζpν )|, q1, e1

) ∣∣ (pν−1(p − 1)|K|, q1, e1
) = 1.

By the inductive assumption we have for some k:

ζ kq1
ζ
j
pνβ is not conjugate to ζ−kq1

ζ
−j
pν β

−1,c

which was to be proved. ��

Remark 1. An examination of the proof shows that if K is abelian the assumption
(|K|, q, e) = 1 can be replaced by (|K|, q, e) ≡ 1 mod 2.
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Corollary. If α ∈ Ω is an integer not conjugate to α−1, α �= 0 and f (α) = 0, where f
is a polynomial with integer coefficients then

e(α,Ω) � 5
2 |Ω| log ‖f ‖.

Proof. Suppose first that Ω = Q(α), set e(α,Ω) = e and let β be an integer of Q(α) such
that α = ζqβe. It follows that

(3) log
∣∣α∣∣ = e log

∣∣β∣∣.
By the inequality of Carmichael–Masson

∣∣α∣∣ � ‖f ‖1/2 we have

(4) log
∣∣α∣∣ � 1

2 log ‖f ‖.
On the other hand, by the theorem ζ iqβ is not conjugate to ζ−iq β−1 for some i. Since
ζ iqβ ∈ Q(α) we have by the inequality (2)∣∣β∣∣ = ∣∣ζ iqβ∣∣ > 1 + 1

5|Q(α)| − 1
,

thus

log
∣∣β∣∣ > 1

5|Q(α)|
and by (3) and (4)

e � 5
2 |Q(α)| log ‖f ‖.

In the general case we use the following assertion of Lemma 1 of [1] independent
of (1). If Ω1 ⊃ Ω then

e(α,Ω1) � |Ω1|
|Ω| e(α,Ω).

Taking Ω1 = Ω , Ω = Q(α) we get

e(α,Ω) � |Ω|
|Q(α)| ·

5
2 |Q(α)| log ‖f ‖ = 5

2 |Ω| log ‖f ‖. ��
Remark 2. The recent unpublished work of C. J. Smyth on the product of conjugates of
an algebraic integer lying outside the unit circle allows one to strenghten considerably the
Corollary and the relevant results of [1]. This will form an object of another paper (see the
paper D7 in this volume).
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Reducibility of lacunary polynomials III

1.

The present paper is a sequel to [11] and the notation of that paper is used throughout.
All the polynomials considered are supposed to have integral coefficients unless stated to
the contrary. Reducibility means reducibility over the rational field Q.

If f (x1, . . . , xk) �= 0 is a polynomial then

f (x1, . . . , xk)
can= const

s∏
σ=1

fσ (x1, . . . , xk)
eσ

means that the polynomials fσ are irreducible and prime to each other.

IfΦ(x1, . . . , xk) = f (x1, . . . , xk)
k∏
i=1
x
αi
i , wheref is a polynomial prime to x1x2 · · · xk

and αi are integers, then we set

JΦ(x1, . . . , xk) = f (x1, . . . , xk).

A polynomial g such that

Jg(x−1
1 , . . . , x−1

k ) = ±g(x1, . . . , xk)

is called reciprocal. Let

JΦ(x1, . . . , xk)
can= const

s∏
σ=1

fσ (x1, . . . , xk)
eσ .

We set

KΦ(x1, . . . , xk) = const
∏

1
fσ (x1, . . . , xk)

eσ ,

LΦ(x1, . . . , xk) = const
∏

2
fσ (x1, . . . , xk)

eσ ,

where
∏

1 is extended over all fσ that do not divide J (xδ11 · · · xδkk − 1) for any
[δ1, . . . , δk] �= 0,

∏
2 is extended over all fσ that are non-reciprocal. The leading co-

efficients ofKΦ and LΦ are assumed equal to that of JΦ. In particular for k = 1KΦ(x)
equals JΦ(x) deprived of all its cyclotomic factors and is called the kernel of Φ.

For a polynomial F(x1, . . . , xk), ‖F‖ is the sum of squares of the coefficients of F ; if
F �= 0, |F | is the maximum of the degrees ofF with respect to xi (1 � i � k),Ω(F) is the
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number of irreducible factors ofF counted with multiplicities, expk and logk denote the kth
iteration of the exponential and the logarithmic function respectively. τ(n) is the number
of divisors and Ω0(n) the number of prime divisors of n counted with multiplicities.

The main object of [11] has been to describe the canonical factorization of
LF(xn1 , . . . , xnk ) for any fixed polynomial F and a variable integral vector [n1, . . . , nk].
The much more difficult problem of describing the factorization of KF(xn1 , . . . , xnk )

has been solved only for k = 1 and for k = 2 provided KF(x1, x2) = LF(x1, x2),
in particular if F(x1, x2) = a0 + a1x1 + a2x2. For k > 2 even the simplest case

F(x1, x2, x3) = a0 +
3∑
j=1
ajxj (n1 < n2 < n3) has been settled only under very re-

strictive assumption about the aj ’s (see [3]).
The aim of the present paper is to improve and to extend the above results in several

ways. First, due to the recent progress made by Blanksby and Montgomery [1] and by
Smyth [20] in the problem of distribution of the conjugates of an algebraic integer on the
plane it has been possible to improve the result on KF(xn) mentioned above. We have

Theorem 1. For any polynomial F(x) �= 0 such that KF(x) �= const, for some positive
integer c(F ) and for any positive integer n there exist positive integers ν and u such thatc

(i) ν | c(F ),
(ii) n = uν,

(iii) KF(xν)
can= const

s∏
σ=1
Fσ (x)

eσ implies KF(xn)
can= const

s∏
σ=1
Fσ (x

u)eσ .

Moreover,

log c(F )� (|KF | log(2|KF |) log ‖F‖)1/3(log 2|KF | + log2 ‖F‖
)2/3

and if KF(x) = LF(x)

log c(F ) �
√

log ‖F‖ log2 ‖F‖
2 logϑ0

+O(√log ‖F‖ log3 ‖F‖
)
,

where ϑ0 is the real zero of x3 − x − 1.
In any case

Ω
(
KF(xn)

) = s∑
σ=1

eσ � min

(
|KF |τ(n), |KF |1+o(1) exp

( log 2 + o(1)
log3 ‖F‖

log2 ‖F‖
))
.

Examples will be given to show that in the first of the estimates for log c(F ) the exponent
1/3 cannot be lowered, in the second the main term is best possible and the estimate for
Ω(KF(xn)

)
is sharp with respect to all three parameters involved n, |KF | and ‖F‖.

Corollary 1. For any polynomial F(x) such that F(0) �= 0 and any n we have

Ω
(
F(xn)

)
� |F |τ(n).
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Corollary 2. For any binomial b(x) we have

Ω
(
Kb(x)

)
� exp

( log 2 + o(1)
log3 ‖b‖

log2 ‖b‖
)
.

Corollary 3. For any trinomial t (x) we have

Ω
(
Kt(x)

)
� log ‖t‖

2 logϑ0 + o(1) .

The corollaries are of interest because for a general polynomial f (x) only Ω
(
Lf (x)

)
is known to be O

(
log ‖f ‖) and the estimates for Ω

(
Kf (x)

)
depend upon |f | (see [15]

and the Corollary to Lemma 1).
Coming back to [11] it is possible to improve also the estimates given there for the case

k > 1. The improvements are however not drastic and the new estimates are probably still
far from best possible, thus we shall not go into the matter. On the other hand using the result
of E. Gourin [4] it is possible to describe the canonical factorization ofKF(xn1

1 , . . . , x
nk
k )

for any k.
We have

Theorem 2. For any polynomial F(x1, . . . , xk) �= 0 and any positive integers n1, . . . , nk
there exist positive integers ν1, . . . , νk and v1, . . . , vk such that

(iv) νj | c(F ) (1 � j � k),
(v) nj = νj vj (1 � j � k),
(vi) KF(x

ν1
1 , . . . , x

νk
k )

can= const
s∏
σ=1
Fσ (x1, . . . , xk)

eσ implies

KF(x
n1
1 , . . . , x

nk
k )

can= const
s∏
σ=1
Fσ (x

v1
1 , . . . , x

vk
k )
eσ .

The constant c(F ) �= 0 is effectively computable.

This theorem is clearly stronger than its analogue with L in place of K announced
in [13]. In the latter case it follows by the method of [11] that

log c(F ) � 9 · 2‖F‖−5;
it seems however that this estimate is far from the best possible.

Turning again to polynomials in one variable we shall obtain

Theorem 3. Let k � 3, aj (0 � j � k) be non-zero integers and n1 < n2 < . . . < nk
positive integers. Then either there exist integers γj (1 � j � k) such that

(vii)
k∑
j=1

γjnj = 0

and

(viii) 0 < max
1�j�k

|γj | < exp2k−4

(
k2
∑k
j=0 a

2
j+2 log

k∑
j=0

a2
j

)
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or all primitive irreducible factors of f (x) = a0 +
k∑
j=1
ajx

nj except a single simple one

are reciprocal and monic, moreover if

(ix) |a0| + |ak| �
k−1∑
j=1

|aj |

they are cyclotomic and if for some g, h � k
(x) a2

g �≡ a2
h mod g.c.d.

0�j�k
aj · g.c.d.

j �=g,h
aj

none whatever.
Besides, (ix) and (x) imply

Ω
(
Kf (x)/Lf (x)

)
� Ω0

(
(a0, ak)

)
and Ω

(
f (x)/Lf (x)

)
� Ω0

(
(a0, ak)

)
,

respectively.

This is a refinement of Theorem 4 of [11]. A refinement in a different direction has
been given in [14].

The last part of the paper is concerned with quadrinomials. Improving the results of [3]
we shall prove

Theorem 4. Let aj (0 � j � 3) be non-zero integers and

(xi) either |a0| + |a3| � |a1| + |a2| or for some g, h � 3

a2
g �≡ a2

h mod g.c.d.
0�j�3

aj · g.c.d.
j �=g,h

aj

or |a0| = |a3|, |a1| = |a2|.
Then for any quadrinomial q(x) = a0 +

3∑
j=1
ajx

nj (0 < n1 < n2 < n3) that is not

reciprocal we have one of the following four possibilities.

(xii) Kq(x) is irreducible.
(xiii) q(x) can be divided into two parts that have the highest common factor d(x) being

a non-reciprocal binomial.K
(
q(x)d−1(x)

)
is then irreducible unless q(x)d−1(x) is

a binomial.
(xiv) q(x) can be represented in one of the forms

(1)

k(T 2 − 4T UVW − U2V 4 − 4U2W 4)

= k(T − UV 2 − 2UVW − 2UW 2)(T + UV 2 − 2UVW + 2UW 2),

k(U3 + V 3 +W 3 − 3UVW)

= k(U + V +W)(U2 + V 2 +W 2 − UV − UW − VW),
k(U2 + 2UV + V 2 −W 2) = k(U + V +W)(U + V −W),

where k = ±(a0, a1, a2, a3) and T , U , V ,W are monomials in Z[x]. The factors on
the right hand side of (1) have irreducible kernels.
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(xv) nj = vνj (1 � j � 3); v and νj are positive integers,

ν3 < exp2
(
12 · 2‖q‖ log ‖q‖)

and K
(
a0 +

3∑
j=1
ajx

νj

)
is reducible.

Moreover

K
(
a0 +

3∑
j=1

ajx
νj
)

can= const
s∏
σ=1

Fσ (x)
eσ

implies

Kq(x)
can= const

s∏
σ=1

Fσ (x
v)eσ .

Besides

Ω
(
q(x)
) = s∑

σ=1

eσ �
( 1

2 logϑ0
+ 1

2 log 2

)
log ‖q‖.

The condition (xi) is fulfilled for about 82% of quadruples (a0, a1, a2, a3) of height
� H → ∞. Since a rule for obtaining the canonical factorization of binomials is contained
in Theorem 1 (and a more practical one in Lemma 5 below), Theorem 4 gives a satisfactory

description of the canonical factorization of the kernel of q(x) = a0+
3∑
j=1
ajx

nj (0 < n1 <

n2 < n3) for all those quadruples (a0, a1, a2, a3) provided only q(x) is not reciprocal.
The factorization of q(x)/Kq(x) can be obtained easily by means of the results of

Mann [8]. We content ourselves with stating the following

Corollary 4. A non-reciprocal quadrinomial q(x) = a0 +
3∑
j=1
ajx

nj (0 < n1 < n2 < n3)

satisfying (xi) is reducible if and only if we have one of the conditions (xii)–(xv) or q(x)
can be divided into two parts with the highest common factor equal to xδ ± 1 or finally

a0 +
3∑
j=1

aj ζ
nj /(n1,n2,n3) = 0, where ζ 6 = 1.

A real enigma is the reducibility of reciprocal quadrinomials. A new idea seems to be
needed even to solve the following simple

Problem. Given a, b with |a| �= |b| do there exist infinitely many quotients r such that for
suitable integers m, n: m/n = r and K(axm+n + bxm + bxn + a) is reducible?

The proofs of Theorems 1, 2, 3 and 4 are given in Sections 2, 3, 4, 5 respectively. Before
proceeding to the proofs we call the attention of the reader to an error in [11] repeated
also in [12]. At the bottom of p. 133 in [11] certain inequalities for determinants are said
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to follow from Hadamard’s inequality. Now the inequalities in question are true but need
not follow from Hadamard’s inequality(1).

2.

In addition to the notation introduced in §1 we shall use the following: ζq is a primitive
root of unity of order q, Xq is the qth cyclotomic polynomial.c

If Ω is a field and α ∈ Ω , α �= 0, then

e(α,Ω) =
{

0 if α = ζq for some q,

maximal e such that α = ζqβe with some q and β ∈ Ω otherwise;

E(α,Ω) =
{

0 if α = ζq for some q,

maximal n such that α = ϑn, ϑ ∈ Ω(ζn) otherwise.

For a given polynomial f =
k∑
j=0
ajx

j

l(f ) =
k∑
j=0

|aj |, C(f ) = (a0, a1, . . . , ak).

c

Small bold face letters denote vectors, capital bold face letters denote matrices except
Ω that is a field. NΩ2/Ω1 is the norm from Ω2 to Ω1 or from Ω2(x) to Ω1(x).

Lemma 1. Let αi (i = 1, . . . , �) be a system of pairwise not conjugate zeros ofKf , where
f is a polynomial, and let εi be the multiplicity of αi . Then

(2)
�∑
i=1

εi

√
e
(
αi,Q(αi)

)
�
√

26|Kf | log(7|Kf |) log ‖f ‖ ,

(2′)
∑′

εie
(
αi,Q(αi)

)
� log ‖f ‖

2 logϑ0
,

where the sum
∑′ is taken over all αi not conjugate to α−1

i and ϑ0 is the real zero of
x3 − x − 1.

Proof. Let us consider the product

P = |a0|
∏

f (α)=0, |α|>1

|α|,

where a0 is the leading coefficient of f . By the inequality of Landau [6]

(3) P < ‖f ‖1/2.

(1) The explanation is omitted, since in this edition [11] has been corrected.
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On the other hand, let

Kf (x)
can= c

�∏
i=1

f
εi
i (x),

where fi(αi) = 0 and fi is primitive. We have

(4) P = c
�∏
i=1

|ai |εi
∏

|α(j)i |>1

|α(j)i |εi ,

where α(j)i runs over the conjugates of αi and ai is the leading coefficient of fi . We shall
show that

(5) |ai |
∏

|α(j)i |>1

|α(j)i | >

⎧⎪⎨⎪⎩exp
e
(
αi,Q(αi)

)
52|fi | log 7|fi | always,

ϑ
e(αi ,Q(αi ))
0 if αi is not conjugate to α−1

i .

Since αi is not a root of unity, we have by the definition of e
(
αi,Q(αi)

)
(6) αi = ζqβe, β ∈ Q(αi), e = e(αi,Q(αi)).
If αi is not an integer we use an argument due to J. Wójcik and set αi = μ/ν, (μ) = dm,
(ν) = dn, where d,m, n are ideals of Q(αi) and (m, n) = 1. By Gauss’s Lemma the

polynomialN(d)−1
|fi |∏
j=1

(
ν(j)x−μ(j)) is primitive,N denoting the norm from Q(αi) to Q.

Since it is also irreducible it coincides with fi up to a sign.
It follows that

ai = ±Nd−1Nν = ±Nn.

By (6) n = re and |ai | = Nre � 2e thus (5) holds. If αi is an integer, β is also. We have

(7)
∏

|α(j)i |>1

|α(j)i | =
∏

|β(j)|>1

|β(j)|e.
c

By the theorem of Blanksby and Montgomery [1]∏
|β(j)|>1

|β(j)| > 1 + 1

52|fi | log 6|fi | > exp
( 1

52|fi | log 6|fi | + 1

)
c

> exp
( 1

52|fi | log 7|fi |
)
,

which together with (7) gives the first part of (5).
If αi is not conjugate to α−1

i then by the result of [18] applied with K = Q, ζ rq β is not
conjugate to ζ−rq β−1 for a suitable r . By Smyth’s theorem [20]∏

|β(j)|>1

|β(j)| =
∏

|β(j)|>1

|(ζ rq β)(j)| � ϑ0,

which together with (7) gives the second part of (5).
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Now (3), (4) and (5) give
�∑
i=1

εi
e
(
αi,Q(αi)

)
52|fi | log 7|fi | <

1
2 log ‖f ‖,(8)

∑′
εie
(
αi,Q(αi)

)
<

log ‖f ‖
2 logϑ0

.

The inequality (2′) follows at once. In order to prove (2) let us notice that
�∑
i=1

52|fi | log 7|fi | � 52|Kf | log 7|Kf |.

Since

εi

√
e
(
αi,Q(αi)

) =
√
e
(
αi,Q(αi)

)
εi

52|fi | log 7|fi | ·
√

52εi |fi | log 7|fi |

(2) follows from (8) by the Schwarz inequality. ��

Corollary. We have

Ω(Kf ) <
√

26|Kf | log(7|Kf |) log ‖f ‖ ,
Ω(Lf ) <

log ‖f ‖
2 logϑ0

.

Remark. The bound given in (2′) cannot be improved as it is shown by the examplec

(9) fm(x) = NQ(ϑ0)/Q(x − ϑm0 )
= x3 − (ϑm0 + ϑm1 + ϑm2 )x2 + (ϑ−m0 + ϑ−m1 + ϑ−m2 )x − 1,

where ϑ1, ϑ2 are the two conjugates of ϑ0.

Clearly e
(
ϑm0 ,Q(ϑ0)

)
� m. On the other hand, since |ϑ1| = |ϑ2| = |ϑ0|−1/2

log ‖fm‖ = log
(
2 + (ϑm0 + ϑm1 + ϑm2 )2 + (ϑ−m0 + ϑ−m1 + ϑ−m2 )2

)
= log

(
ϑ2m

0 +O(ϑm0 )
) = 2m logϑ0 +O(ϑ−m0 ).

For further reference note that similarly

(10) log l(fm) = m logϑ0 +O(ϑ−m/20 ).

Lemma 2. For any algebraic number field Ω and any α ∈ Ω , α �= 0, we have

(11) E(α,Ω) | e(α,Ω)(w(Ω), 2 l.c.m.
p |e(α,Ω)
p prime

(p − 1)
)
,

where w(Ω) is the number of roots of unity contained in Ω . Moreover, if α = βm, β ∈
Ω1 ⊂ Ω(ζm), then

(12) mE(β,Ω1) |E(α,Ω).
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Proof. The equality

(13) α = ϑn, ϑ ∈ Ω(ζn)

implies by Theorem 3 of [16]

ασ = γ n, γ ∈ Ω,

where

(14) σ = (n,w(Ω), l.c.m.
q |n

q prime or q=4

[Ω(ζq) : Ω]).
Hence by Lemma 1 of [10]

(15) n | e(α,Ω)σ
and by (14)

n | e(α,Ω)w(Ω).
It follows that if e(α,Ω) �= 0, i.e. α is not a root of unity, there are only finitely many n
satisfying (13). The greatest of them E(α,Ω) = E satisfies by (14) and (15)

E | e(α,Ω)w(Ω),(16)

E | e(α,Ω) l.c.m.
q |e(α,Ω)w(Ω)
q prime or q=4

[Ω(ζq) : Ω].(17)

However, if q |w(Ω) then [Ω(ζq) : Ω] = 1, thus those factors q contribute nothing to
l.c.m.[Ω(ζq) : Ω] occurring in (17). It is enough therefore to consider q |2e(α,Ω).

For q being a prime we have

[Ω(ζq) : Ω] = [Q(ζq) : Q]
[Ω ∩ Q(ζq) : Q]

∣∣∣ q − 1.

For q = 4 the degree [Ω(ζq) : Ω] divides 2. Thus if e(α,Ω) �= 0 (11) follows from (16)
and (17). If e(α,Ω) = 0 (11) is obvious, as in (12) if E(α,Ω) = 0. If E(α,Ω) �= 0, α is
not a root of unity, hence by Lemma 1 of [10] 0 �= e(α,Ω1) = me(β,Ω1), and by (11)
applied to β and Ω1

E1 = E(β,Ω1) �= 0.

If

β = ϑE1
1 , ϑ1 ∈ Ω1(ζE1)

and r, s are rational integers satisfying

rE + smE1 = (E,mE1)

we get from (13) with n = E and from α = ϑmE1
1 the equality

α = (ϑsϑr1 )[E,mE1], ϑsϑr1 ∈ Ω
(
ζ[E,mE1]

)
.

By the definition of E this implies [E,mE1] � E, hence E ≡ 0 modmE1. ��
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Lemma 3. Let Ω be an algebraic number field and α ∈ Ω , α �= 0. For every positive
integer n we put

ν = (n,E(α,Ω)).
If g(x) ∈ Ω[x] is a monic polynomial irreducible over Ω and g(x) |xn − α, then g(x) =
G(xn/ν), where G(x) is a polynomial over Ω .

Proof. We proceed by induction with respect to E(α,Ω). If E(α,Ω) = 0 the assertion is
trivial. Assume that the lemma is true for all Ω ′ and α′ with E(α′,Ω ′) < E(α,Ω) and let
g(x) |xn − α.

If xn − α is irreducible, then the lemma is trivially true with G(x) = xν − α. If it is
reducible, then by Capelli’s theorem either

(A) α = βp, p |n, p prime, β ∈ Ω

or

(B) α = −4β4, 4 |n, β ∈ Ω.

We consider these cases successively using the following notation: Ωq = Ω(ζq),
dq = [Ωq : Ω].

(A) We have there

(18) g(x) |xn − βp = (xn/p − β)
p−1∏
r=1

(
xn/p − ζ rpβ

)
.

If g(x) |xn/p−β our inductive assumption applies directly, since by (A) and Lemma 2
E(β,Ω) | 1

p
E(α,Ω).

Putting ν0 = ( n
p
, E(β,Ω)

)
we have

ν0

∣∣∣ ν
p
, g(x) = G0(x

n/pν0),

G0(x) ∈ Ω[x] and it is sufficient to take G(x) = G0(x
n/pν0).

If g(x) /| xn/p − β, let h(x) be a monic factor of g(x) irreducible over Ωp. By (18)

h(x) |g(x)
∣∣∣ p−1∏
r=1

(
xn/p − ζ rpβ

)
,

thus for some positive r < p

(19) h(x) |xn/p − ζ rpβ.
Let h(1)(x) = h(x), …, h(dp)(x) be all the conjugates of h(x) relative to Ω(x). It

follows from (19) that(
h(i)(x), h(j)(x)

) |β(ζ (i)rp − ζ (j)rp

)
(1 � i < j � dp),c

thus h(i)(x) (i = 1, 2, . . . , dp) are relatively prime in pairs. Since h(i)(x) |g(x) it follows
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that

(20) g(x) = NΩp/Ω

(
h(x)
)
.

On the other hand, we have by Lemma 2

E(ζ rpβ,Ωp)

∣∣∣ 1

p
E(α,Ω).

Applying the inductive assumption to (19) and putting

ν1 =
( n
p
,E(ζ rpβ,Ωp)

)
we get

(21) ν1

∣∣∣ ν
p
, h(x) = H(xn/pν1), H(x) ∈ Ωp[x].

It is sufficient now to take

G(x) = NΩp/Ω

(
H(xν/pν1)

)
.

Indeed, by (20) and (21)

g(x) = NΩp/Ω

(
H(xn/pν1)

) = G(xn/ν).
(B) We have here

g(x) |xn + 4β4 =
3∏
r=0

(
xn/4 − ζ r4 (1 + ζ4)β

)
.

Let h(x) be a monic factor of g(x) irreducible over Ω4. We have for an r � 3

(22) h(x) |xn/4 − ζ r4 (1 + ζ4)β
and it follows in the same way as (20) from (19) that

(23) g(x) = NΩ4/Ω

(
h(x)
)
.

On the other hand, by Lemma 2

E
(
ζ r4 (1 + ζ4)β,Ω4

) | 1
4E(α,Ω).

Applying the inductive assumption to (22) and putting

ν2 =
(n

4
, E
(
ζ r4 (1 + ζ4)β,Ω4)

)
we get

(24) ν2

∣∣∣ ν
4
, h(x) = H(xn/4ν2), H(x) ∈ Ω4[x].

It is sufficient now to take

G(x) = NΩ4/Ω

(
H(xν/4ν2)

)
.

Indeed by (23) and (24)

g(x) = NΩ4/Ω

(
H(xn/4ν2)

) = G(xn/ν). ��
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Remark. One can show by induction with respect to E(α,Ω) that for n = E(α,Ω) there
is no ν < n with the property asserted in the lemma.

Moreover, Lemmata 2 and 3 remain valid for any field Ω , not necessarily algebraic,
n not divisible by char Ω and those α ∈ Ω for which e(α,Ω) is defined. w(Ω) is then to
be replaced by the number of roots of unity of order E(α,Ω) contained in Ω .c

Lemma 4. If a |b then ∑
(j,b)=1

(a, j − 1) = τ(a)ϕ(b),

where the sum is taken over any reduced system of residues mod b.

Proof. This is a special case of the theorem due to R. Sivaramakrishnan [19]. I owe the
reference to Mr. A. M ↪akowski. ��

Lemma 5. If Φ(x) is an irreducible polynomial, α �= 0 is any of its zeros, n > 0 is an
integer,

ν = (n,E(α,Q(α)))
then

Φ(xν)
can= Φ1(x) · · ·Φr(x)

implies

Φ(xn)
can= Φ1(x

n/ν) · · ·Φr(xn/ν).
Moreover

r � |Φ|τ(ν).
Proof. SinceΦ is irreducible,Φ(x) and hence alsoΦ(xν) has no multiple factors. Clearly
Φj(x

n/ν) (1 � j � r) are prime to each other and to prove the first assertion of the
lemma we have only to show that they are irreducible. Let fj (x) be an irreducible factor
of Φj(xn/ν). Clearly

(25) fj (x) |Φ(xn).
We now use the following Lemma of Capelli (cf. [21], p. 289): if

(26) xn − α =
l∏
i=1

gi(x)

is the canonical factorization of xn − α in Ω = Q(α) then

(27) Φ(xn)
can= const

l∏
i=1

NΩ/Qgi(x).

It follows from (25) and (27) that for some i � l
(28) const fj (x) = NΩ/Qgi(x).
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On the other hand, it follows from (26) and Lemma 3 that

(29) gi(x) = Gi(xn/ν),
where Gi(x) ∈ Ω[x]. By (28), (29) and the choice of fj

(30) const fj (x) = NΩ/QGi(x
n/ν) |Φj(xn/ν),

thus NΩ/QGi(x) |Φj(x).
Since Φj is irreducible

Φj(x) = constNΩ/QGi(x),

thus by (30)

Φj(x
n/ν) = const fj (x)

and by the choice of fj (x), Φj(xn/ν) is irreducible.
To prove the second assertion of the lemma we first remark that by (27)

(31) r = l.
By the definition of E(α,Ω) = E we have E > 0 or α is a root of unity. In the former
case

(32) α = ϑ(ζE)E, where ϑ ∈ Ω[x].
Let the Galois group G of Ω(ζE)/Ω be represented as a subgroup J of the multi-

plicative group E of reduced residues mod E, so that

(33) J = {j ∈ E : ∃ g ∈ G ζ
j
E = g(ζE)}.

For any j ∈ J we have by (32)

ϑ(ζ
j
E)
E = α = ϑ(ζE)E,

hence

(34) ϑ(ζ
j
E) = ζ e(j)E ϑ(ζE)

for a suitable integer e(j).
On the other hand, by (32)

xν − α =
ν∏
i=1

(
x − ζ iνϑ(ζE)E/ν

)
and taking norms from Ω(ζE, x) to Ω(x)

(35) (xν − α)|G | =
ν∏
i=1

NΩ(ζE)/Ω

(
x − ζ iνϑ(ζE)E/ν

)
,

where |G | is the order of G .
The ith factor on the right hand side is a power of a polynomial irreducible over Ωc

with the exponent equal to the number ni of those elements of G that leave x− ζ iνϑ(ζE/νE )
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invariant. By (33) we have

ni =
∣∣{j ∈ J : ζ ijν ϑ(ζ jE)E/ν = ζ iνϑ(ζE)E/ν

}∣∣
and by (34)

(36) ni =
∣∣{j ∈ J : ij + e(j) ≡ i mod ν

}∣∣.
Comparing the number of factors irreducible over Ω on both sides of (35) we get by (26),
(31) and (36)

r|G | =
ν∑
i=1

ni =
ν∑
i=1

∣∣{j ∈ J : ij + e(j) ≡ i mod ν
}∣∣

=
∑
j∈J

∣∣{1 � i � ν : ij + e(j) ≡ i mod ν
}∣∣ � ∑

j∈J

(ν, j − 1) �
∑

(j,E)=1

(ν, j − 1).
c

Now

|G | = [Ω(ζE) : Ω] � ϕ(E)

|Φ| ,

by Lemma 4 ∑
(j,E)=1

(ν, j − 1) = τ(ν)ϕ(E),

and it follows that r � |Φ|τ(ν).
It remains to consider the case where α is a root of unity. We have then, for a suitable q,

Φ(x) = constXq(x).
Let now n = n1n2, where every prime factor of n1 divides q and (n2, q) = 1. It follows

from the identity

Xq(x
n) =

∏
d |n2

Xqn1d(x)

and from the irreducibility of cyclotomic polynomials that

r � τ(n2) � τ(n) = τ(ν). ��
In the next three lemmata we use the notation m(x) = l.c.m.

p |x, p prime
(p − 1) for any

c

positive integer x.

Lemma 6. For any integer x > 1 either there exist three positive integers x1, x2, x3 such
that

(37) xm(x) | [x1m(x1), x2m(x2), x3m(x3)
]

and
√
x1 + √

x2 + √
x3 <

√
x or x = qαrβs, where q, r are primes, s is an integer,c

r < 50, s < 50, α > 0, β � 0.

Proof. Let q be the greatest prime factor of x, x = qαy, q /| y. If y � 50, but (q−1, y) = 1
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we set x1 = qα , x2 = y, x3 = 1 and get
√
x −√

x1 −√
x2 −√

x3 �
(√
q − 1

)(√
y − 1

)− 2 >
(√

3 − 1
)(√

50 − 1
)− 2 > 0.

If (q − 1, y) > 1 let r be a common prime factor of y and q − 1

y = rβs, q − 1 = rγ t, r /| st.
If either r � 50 or s � 50 we set

x1 = qα, x2 = rβ+γ , x3 = rβst,
easily verify (37) and get
√
x −√

x1 −√
x2 −√

x3 � qα/2rβ/2s1/2 − qα/2 − r(β+γ )/2 − rβ/2(st)1/2

>
√
x
(

1 − 1

rβ/2s1/2 − 1

(st)1/2
− 1

(rγ )1/2

)
>

√
x
(

1 − 2√
50

− 1√
2

)
> 0.

The case st = 1 is excluded since q − 1 = rγ implies r = 2 <
√

50. ��

Lemma 7. If xi are positive integers and
j∑
i=1

√
xi � √

x then

log l.c.m.
i=1,...,j

xim(xi)� x1/3(log x)2/3.

Proof. Let M = max l.c.m.
i=1,...,j

xim(xi), where the maximum is taken over (finitely many)

integral points (x1, . . . , xj ) satisfying xi > 1,
j∑
i=1

√
xi � √

x. Let (x0
1 , . . . , x

0
k ) be a point

in which the maximum is attained with the least value of
j∑
i=1

√
xi . By Lemma 6 we have

x0
i = qαii rβii si (i = 1, . . . , k), where qi, ri are primes and αi > 0, ri < 50, si < 50. It

follows that

(38) M = l.c.m.
1�i�k

x0
i m(x

0
i ) � l.c.m.

1�i�k
q
αi
i (qi − 1) l.c.m.

1�i�k
r
βi
i l.c.m.

1�i�k
(ri − 1)sim(si)

� l.c.m.
1�i�k

q
αi
i (qi − 1) l.c.m.

1�i�k
r
βi
i .

Since rβii � x and ri < 50 we have

(39) log l.c.m.
1�i�k

r
βi
i � π(50) log x = 15 log x.

Similarly

(40) log l.c.m.
i=1,...,k

q
αi
i (qi − 1) � 2n log x,

where n is the number of distinct terms among qαii (i = 1, . . . , k). Let n1, n2 be the number

of distinct terms with αi = 1 and αi � 2, respectively. The condition
k∑
i=1
q
αi/2
i � √

x
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implies
n1∑
i=1
p

1/2
i � √

x, where pi is the ith prime and
n2∑
i=1
P

1/2
i � √

x, where Pi is the ith

perfect power with an exponent � 2. Using pi " i log i and Pi " i2 we get

n
3/2
1 (log n1)

1/2 � √
x and n2

2 � √
x.

Hence

(41) n = n1n2 � x1/3(log x)−1/3,

and the lemma follows from (38)–(41). ��

Lemma 8. If xi are positive integers and
j∑
i=1
xi � x then

log l.c.m.
i=1,...,j

xim(xi) �
√
x log x +O(√x log2 x

)
.

Proof. LetM = max l.c.m.
1�i�j

xim(xi), where the maximum is taken over all integral points

(x1, . . . , xj ) satisfying xi > 1,
j∑
i=1
xi � x, and let (x0

1 , . . . , x
0
k ) be a point in which the

maximum is attained with the least value of
k∑
i=1
xi . Since

√
x1+√

x2+√
x3 <

√
x implies

x1 + x2 + x3 < x it follows from Lemma 6 that

x0
i = qαii rβii si , where qi, ri are primes and ri < 50, si < 50, αi > 0

and as in the proof of Lemma 7 we find

(42) logM < log l.c.m.
1�i�k

q
αi
i (qi − 1)+ 15 log x +O(1).

Now by the classical result of Landau ([7], §61) if
k∑
i=1
xi � x then

log l.c.m.
1�i�k

xi �
√
x log x +O(√x)

hence

(43) log l.c.m.
1�i�k

q
αi
i �

√
x log x +O(√x).

In order to estimate l.c.m.
i=1,...,k

(qi − 1) we divide the primes qi into two classes C1

and C2 assigning qi to C1 if qi − 1 has a prime factor ti between a = log x/ log2 x

and b = √x log2 x and to C2 otherwise. Since∑
qi∈C1

qi − 1

ti
� x

log x
log2 x

we have by the quoted Landau’s result

log l.c.m.
qi∈C1

qi − 1

ti
�
√
x log2 x +O

(√
x
)
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and

(44) log l.c.m.
qi∈C1

(qi − 1) � log l.c.m.
qi∈C1

ti + log l.c.m.
qi∈C1

qi − 1

ti

� b +O
( b

log b

)
+√x log2 x +O

(√
x
) = 2

√
x log2 x +O

(√
x
)
.

In order to estimate l.c.m.
qi∈C2

(qi − 1) we may assume without loss of generality that

C2 = {q1, . . . , qn} and q1 < q2 < . . . < qn. By the upper sieve theory (see [5], p. 134,
Theorem 4.2) the number C2(t) of qi ∈ C2, qi � t satisfies for t � b

C2(t)� t

log t

∏
a<p<b

(
1 − 1

p

)
� t

log t

log2 x

log x
.

For i > b/ log b, we have qi " b, hence

b

log b
< i = C2(qi)� qi

log qi

log2 x

log x
� qi

log2 x
log2 x

and

qi " b

log b

log2 x

log2 x
"
√

x

log2 x
log x.

The inequality
n∑
i=1
qi � x implies

(
n− b

log b

)√ x

log2 x
log x � x,

hence

n� b

log b
+
√
x log2 x

log x
�
√
x log2 x

log x
.

c

It follows that

(45) log l.c.m.
qi∈C2

(qi − 1) � n log x � √x log2 x ,

and the lemma results from (42)–(45). ��

Proof of Theorem 1. Let

(46) KF(x)
can= const

�∏
i=1

Φi(x)
ei .

For each Φi we denote by αi, νi the relevant parameters from Lemma 5 and set
c(F ) = l.c.m.

1�i��
E
(
αi,Q(αi)

)
:

ν = l.c.m.
1�i��

νi =
(
n, c(F )

)
, u = nν−1.



426 D. Polynomials in one variable

(i) and (ii) follow immediately. By Lemma 2

c(F ) |2 l.c.m.
1�i��

e
(
αi,Q(αi)

)
m
(
e
(
αi,Q(αi)

))
,

where m(x) = l.c.m.
p |x (p − 1).

On the other hand, by Lemma 1
�∑
i=1

√
e
(
αi,Q(αi)

)� √|KF | log(2|KF |) log ‖F‖ ,

and if KF(x) = LF(x)
�∑
i=1

e
(
αi,Q(αi)

)
� log ‖F‖

2 logϑ0
.

Hence by Lemma 7

log c(F )� (|KF | log(2|KF |) log ‖F‖)1/3(log |KF | + log2 ‖F‖
)2/3

and if KF(x) = LF(x), by Lemma 8

log c(F ) �
√

log ‖F‖ log2 ‖F‖
2 logϑ0

+O(√log ‖F‖ log3 ‖F‖
)

(note that |KF | � 1 implies ‖F‖ � 3, log2 ‖F‖ > 0).
In order to prove (iii) we note that by Lemma 5

Φi(x
νi )

can=
ri∏
j=1

Φij (x) implies Φi(x
n)

can=
ri∏
j=1

Φij (x
n/νi ),

whence by (46)

KF(xν)
can= const

�∏
i=1

ri∏
j=1

Φij (x
ν/νi )εi , KF(xn)

can= const
�∏
i=1

ri∏
j=1

Φij (x
n/νi )εi .

Denoting the polynomialsΦij (xν/ν1) (1 � i � �, 1 � j � r) byF1, . . . , Fs we obtain (iii).

It remains to estimate Ω = Ω
(
KF(xn)

) =
�∑
i=1
εiri . By Lemma 5 we have ri �

|Φi |τ(νi), hence

(47) Ω �
�∑
i=1

εi |Φi |τ(νi).

Since νi |n and by (46)

(48)
�∑
i=1

εi |Φi | = |KF |,

we getΩ � |KF |τ(n). In order to get the other bound forΩ given in the theorem we note
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that (the αi’s not being roots of unity) E
(
αi,Q(αi)

) �= 0 and νi |E
(
αi,Q(αi)

)
implies

(49) τ(νi) � τ
(
E
(
αi,Q(αi)

))
.

By Lemma 2

(50) E
(
αi,Q(αi)

)
� wie

(
αi,Q(αi)

)
,

wherewi is the number of roots of unity contained in Q(αi). Clearly ϕ(wi) � |Φi | � KF
hence by the classical Landau’s result ([7], §59)

wi � |KF | log2 |KF |, wi � 2|KF |1+o(1).
On the other hand, by Lemma 1

e
(
αi,Q(αi)

)
� 26|KF | log(7|KF |) log ‖F‖,

hence by (50)

(51) E
(
αi,Q(αi)

)
� 100|KF |2+o(1) log ‖F‖.

Now by the result of Wigert (cf. [7], §60)

(52) τ(x) < τ0(x)
1+o(1),

where

τ0(x) = exp
( log 2

log2 x
log x

)
and o(1)→ 0 as x → ∞.

The function τ0(x) is increasing to infinity and we easily deduce from (52) the appar-
ently stronger estimate

τ(y) < τ0(x)
1+o(1) for all y � x.

Moreover, for x, y > e

τ0(xy) � τ0(x)τ0(y) � xo(1)τ0(y).

Hence by (51)

τ
(
E
(
αi,Q(αi)

))
� τ0
(
100|KF |2+o(1) log ‖F‖)1+o(1)

� 10|KF |o(1)τ0
(
10 log ‖F‖)1+o(1)

= |KF |o(1) exp
( log 2 + o(1)

log3 ‖F‖
log2 ‖F‖

)
,

and the desired estimate for Ω
(
KF(xn)

)
follows in view of (47), (48) and (49). ��

Proof of Corollary 1. Since F(0) �= 0 we have for some qi, εi

F (x) = JF(x) = KF(x)
j∏
i=1

Xqi (x)
εi .
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By the easy case of Lemma 5 (ν = n) we get

Ω
(
Xqi (x

n)
)

� |Xqi |τ(n).
Hence

Ω
(
F(xn)

) = Ω(KF(xn))+ j∑
i=1

εiΩ
(
Xqi (x

n)
)

� |KF |τ(n)+
j∑
i=1

εi |Xqi |τ(n) = |F |τ(n). ��

Proof of Corollary 2. If b(x) = a0 + a1x
n it is sufficient to take in the theorem

F(x) = a0 + a1x. ��

Proof of Corollary 3. By Corollary to Lemma 1

Ω
(
Lt(x)

)
<

log ‖t‖
2 logϑ0

.

On the other hand, if t (x) = a0 + a1x
n1 + a2x

n2 we have

(53)
t (x)

Lt (x)

∣∣∣ (a0x
n2 + a2)t (x)− a1x

n1+n2 t (x−1)

= a0a2x
2n2 + (a2

0 + a2
2 − a2

1)x
n2 + a0a2.

Taking in the theorem F(x) = a0a2x
2 + (a2

0 + a2
2 − a2

1)x + a0a2 we get ‖F‖ � 2‖t‖2,

Ω
(
KF(xn2)

)� exp
( log 2 + o(1)

log3 ‖t‖
log2 ‖t‖

)
= o(log ‖t‖)

and since by (53)

Kt(x)

Lt(x)

∣∣∣ KF(xn2)

the corollary follows. ��

Examples. In order to show that the estimates for c(F ) and Ω
(
KF(xn)

)
given in Theo-

rem 1 are sharp we consider the following two examples

1. n = ∏
p�t
p, F(x) = ∏

p�t
fp(x);

2. n = ∏
p�t
p, F(x) = (2nx − 1)m,

where p runs over primes, fp(x) is given by (9) and t, m are parameters.

In the case 1 we have F = KF = LF since fp are non-reciprocal,

|KF | = 3π(t)� t/ log t,
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and by (10)

log ‖F‖ � 2 log l(F ) � 2
∑
p�t

log l(fp)

� 2
∑
p�t

(
p log ν0 +O(ϑ−p/20 )

) = logϑ0
t2

log t
+O
( t2

(log t)2

)
.

Hence (|KF | log(2|KF |) log ‖F‖)1/3(log |KF | + log2 ‖F‖
)2/3 � t (log t)1/3 ,√

log ‖F‖ log2 ‖F‖
2 logϑ0

� t +O
( t

log t

)
.

On the other hand, by Lemma 1

e
(
ϑ0,Q(ϑ0)

)
� log 3

2 logϑ0
< 2,

hence e
(
ϑ0,Q(ϑ0)

) = 1, e
(
ϑ
p
0 ,Q(ϑ0)

) = p. By Capelli’s theorem xν − ϑp0 is reducible
in Q(ϑ0) if and only if ν ≡ 0 mod p. By (9) and Capelli’s lemma ν ≡ 0 mod p is also
a necessary and sufficient condition for the reducibility of fp(x). Hence for all proper
divisors ν of n

Ω
(
F(xν)

)
< Ω
(
F(xn)

)
and if ν satisfies (ii) and (iii) we have ν = n,

log ν =
∑
p�t

logp = t +O
( t

log t

)
.

In the case 2 we have

|KF | = |F | = m,
log ‖F‖ � 2 log l(F ) � 2m log(2n + 1) � 3mn,

log2 ‖F‖
log3 ‖F‖

� o (logm)+ log n

log2 n
= o (logm)+ t

log t
+O
( t

log2 t

)
= o (logm)+ π(t)+ o(π(t)).

Hence

|KF |τ(n) = m · 2π(t),

|KF |1+o(1) exp
( log 2 + o(1)

log3 ‖F‖
log2 ‖F‖

)
< m1+o(1) · 2π(t)+o(π(t)).

On the other hand

KF(xn) =
∏
d |n
Xd(2x)

m, Ω
(
KF(xn)

) = mτ(n) = m · 2π(t).
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3.

Lemma 9. Let P(x1, . . . , xk),Q(x1, . . . , xk) be polynomials, (P,Q) = G.
For any positive integers n1, . . . , nk we have(

P(x
n1
1 , . . . , x

nk
k ),Q(x

n1
1 , . . . , x

nk
k )
) = G(xn1

1 , x
n2
2 , . . . , x

nk
k ).

Proof. Let P = GP0,Q = GQ0 and let R(x2, . . . , xk) be the resultant of P0 andQ0 with
respect to x1. There exist polynomials U and V such that

UP0 + VQ0 = R.
From

U(x
n1
1 , . . . , x

nk
k )P0(x

n1
1 , . . . , x

nk
k )+ V (xn1

1 , . . . , x
nk
k )Q0(x

n1
1 , . . . , x

nk
k )

= R(xn2
2 , . . . , x

nk
k )

we infer that
(
P0(x

n1
1 , . . . , x

nk
k ),Q0(x

n1
1 , . . . , x

nk
k )
)

does not depend upon x1. Since the
same argument applies to other variables we have(

P0(x
n1
1 , . . . , x

nk
k ),Q0(x

n1
1 , . . . , x

nk
k )
) = const

and the lemma follows. ��

Lemma 10. If Ψ is an absolutely irreducible polynomial with algebraic coefficients, one
of which is rational �= 0, and Ω is the field generated by these coefficients thenNΩ/QΨ (X)

is irreducible (X = (x1, . . . , xk)).

Proof. LetΦ be the irreducible factor ofNΩ/QΨ (X) divisible byΨ (X). For all isomorphic
injections σ of Ω into the complex field C we have

Ψ σ (X) |Φ(X)
hence ∏

σ

Ψ σ (X) = NΩ/QΨ (X) |Φ(X)[Ω:Q].

Since Φ(X) is irreducible

(54) NΩ/QΨ (X) = constΦ(X)a, Ψ (X)a |NΩ/QΨ (X)

and

(55) Ψ (X)a−1
∣∣ ∏′

Ψ σ (X),

where
∏′ is taken over all injections σ different from the identity e. However for such

injections

Ψ σ (X) �= Ψ (X)
by the definition of Ω , and since Ψ σ (X), Ψ (X) have a common non-zero coefficient

Ψ σ (X) �= constΨ (X).
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Since Ψ (X) is absolutely irreducible and of the same degree as Ψ σ (X) with respect to all
the variables it follows that (

Ψ (X), Ψ σ (X)
) = 1 (σ �= e).

Hence by (55) a = 1 and the lemma follows from (54). ��

Lemma 11. If Φ(x) is irreducible, γ1, . . . , γk are integers and (γ1, . . . , γk) = 1 then
JΦ(x

γ1
1 , . . . , x

γk
k ) is irreducible.

Proof. Let Φ(α) = 0. If, say, γ1 �= 0 then

b(x1, . . . , xk) = J (xγ1
1 · · · xγkk − α)

is a binomial with respect to x1 over C(x2, . . . , xk). By Capelli’s theorem it is irreducible
over that field. But b has no factor independent of x1, hence it is irreducible over C. Since

JΦ(x
γ1
1 , . . . , x

γk
k ) = constNQ(α)/Qb(x1, . . . , xk)

the lemma follows from the preceding one. ��

Lemma 12. Let Φ(x1, . . . , xk) �= const xj be irreducible and not of the form

JΦ0(x
δ1
1 · · · xδkk ), where Φ0 ∈ Q[x] and δ1, . . . , δk are integers. For any positive inte-

gers n1, . . . , nk there exist positive integers μ1, . . . , μk , u1, . . . , uk such that

μj � |Φ|2,(56)

nj = μjuj ,(57)

and

(58) Φ(x
μ1
1 , . . . , x

μk
k )

can= const
h∏
g=1

Φg(x1, . . . , xk)
eg

implies eg = 1 (1 � g � h) and

Φ(x
n1
1 , . . . , x

nk
k )

can= const
h∏
g=1

Φg(x
u1
1 , . . . , x

uk
k ).

Proof. LetΨ be an absolutely irreducible factor ofΦ with the leading coefficient 1. (By the
leading coefficient we mean here the coefficient of the first term in the inverse lexicographic
order.) By the classical theorem of Kronecker the coefficients of Ψ are algebraic. If Ω0 is
the field generated by them then by Lemma 10

NΩ0/QΨ (x1, . . . , xk)

is irreducible, and since it has a factor in common with Φ(x1, . . . , xk)

(59) Φ(x1, . . . , xk) = constNΩ0/QΨ (x1, . . . , xk).

If Ψ has only two terms then

Ψ = J (xδ11 · · · xδkk − α)
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for a suitable α and suitable integers δ1, . . . , δk . Here Ω0 = Q(α) and ifΦ0 is the minimal
polynomial of α

NΩ0/QΨ (x1, . . . , xk) = JΦ0(x
δ1
1 · · · xδkk ),

which together with (59) contradicts the assumption. ThusΨ has more than two terms and
by Gourin’s theorem there exist positive integers μ1, . . . , μk; u1, . . . , uk such that

μj � |Ψ |2, nj = μjuj
and

(60) every absolutely irreducible factor ofΨ (xn1
1 , . . . , x

nk
k ) is of the formT (xu1

1 , . . . , x
uk
k ),

where T ∈ C[x1, . . . , xk].
Since |Ψ | � |Φ| the numbers μj , uj satisfy the conditions (56) and (57). Assume

now (58). For at least one j � k we have

∂Φ

∂xj
(x1, . . . , xk) �= 0,

hence by the irreducibility of Φ(
Φ(x1, . . . , xk),

∂Φ

∂xj
(x1, . . . , xk)

)
= 1

and by Lemma 9 (
Φ(x

μ1
1 , . . . , x

μk
k ),

∂Φ

∂xj
(x
μ1
1 , . . . , x

μk
k )
)
= 1.

Since also (
Φ(x

μ1
1 , . . . , x

μk
k ), xj

) = 1

it follows that (
Φ(x

μ1
1 , . . . , x

μk
k ),

∂

∂xj
Φ(x

μ1
1 , . . . , x

μk
k )
)
= 1,

which proves that eg = 1 (g � h). (Cf. Remark on p. 148 in [11](2).) The polynomi-
als Φg(x

u1
1 , . . . , x

uk
k ) are clearly non-constant, and by Lemma 9 they are prime to each

other. To show that they are irreducible let Ψg denote an absolutely irreducible factor of
Φg(x

u1
1 , . . . , x

uk
k ) with the leading coefficient 1. By Kronecker’s theorem the coefficients

of Ψg are algebraic. By (57) and (58) we have

Ψg(x1, . . . , xk) |Φ(xn1
1 , . . . , x

nk
k )

and in view of (59) there exists a conjugate Ψ σg of Ψg such that

Ψ σg (x1, . . . , xk) |Ψ (x1, . . . , xk).

Ψ σg is absolutely irreducible and by (60)

(61) Ψ σg (x1, . . . , xk) = T (xu1
1 , . . . , x

uk
k ),

(2) Page 369 in this volume.



D7. Reducibility of lacunary polynomials III 433

where T ∈ C[x1, . . . , xk].
The coefficients of Ψ σg generate an algebraic number field Ωg and by Lemma 10

(62) N = NΩg/QΨ
σ
g (x1, . . . , xk) is irreducible.

Since N has with Φg(x
u1
1 , . . . , x

uk
k ) the common factor Ψg we have

N |Φg(xu1
1 , . . . , x

uk
k )

and by (61)

NΩg/Q

(
T (x

u1
1 , . . . , x

uk
k )
) |Φg(xu1

1 , . . . , x
uk
k ).

However T ∈ Ωg[x1, . . . , xk]
NΩg/Q

(
T (x

u1
1 , . . . , x

uk
k )
) = (NΩg/QT

)
(x
u1
1 , . . . , x

uk
k ).

Therefore it follows from Lemma 9 that

NΩg/QT (x1, . . . , xk) |Φg(x1, . . . , xk)

and from the irreducibility of Φg that

Φg(x1, . . . , xk) = constNΩg/QT (x1, . . . , xk).c

Thus by (61)

Φg(x
u1
1 , . . . , x

uk
k ) = constNΩg/QT (x

u1
1 , . . . , x

uk
k ) = constN

and the missing assertion of the lemma follows from (62). ��

Remark. Lemma 12 remains true for polynomials over any field Ω of characteristic 0. If
the characteristic is positive the lemma has to be modified.

Proof of Theorem 2. Let us observe first that

(63) KF(x
n1
1 , . . . , x

nk
k ) = (KF)(xn1

1 , . . . , x
nk
k ).

Indeed, if f (x1, . . . , xk) |J (xδ11 · · · xδkk − 1) then

f (x
n1
1 , . . . , x

nk
k ) |J (xn1δ1

1 · · · xnkδkk − 1)

hence the left hand side of (63) divides the right hand side. On the other hand for any
integral vector [δ1, . . . , δk] �= 0(

KF(x1, . . . , xk), J (x
nδ1/n1
1 · · · xnδk/nkk − 1)

) = 1, where n = n1 · · · nk.
Hence by Lemma 9 (

(KF)(x
n1
1 , . . . , x

nk
k ), J (x

nδ1
1 · · · xnδkk − 1)

) = 1

and since

J (x
δ1
1 · · · xδkk − 1) |J (xnδ11 · · · xnδkk − 1)

we get (
(KF)(x

n1
1 , . . . , x

nk
k ), J (x

δ1
1 · · · xδkk − 1)

) = 1.
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This proves (63). Let now

(64) KF(x1, . . . , xk)
can= const

r∏
i=1

Φi(x1, . . . , xk)
εi ,

where, for i � r0, Φi is of the form JΦi0(x
δi1
1 · · · xδikk ) for a suitable Φi0 and suitable

integers δi1, . . . , δik while, for i > r0, Φi is not of this form. Clearly, for each i � r0,c

Φi0 is irreducible and non-cyclotomic, hence denoting any of its zeros by αi we have
ci = E

(
αi,Q(αi)

) �= 0. Let us set

c(F ) = l.c.m.
{
c1, . . . , cr0 , 1, 2, . . . ,max

i>r0
|Φi |2

}
,

νj =
(
c(F ), nj

)
, vj = njν−1

j (1 � j � k),
δi(n) = (δi1n1, . . . , δiknk) (1 � i � r0),

δi =
(
δi(n), ci

)
(1 � i � r0).

The conditions (iv) and (v) are clearly satisfied.
By Lemma 5 for each i � r0

Φi0(x
δi )

can=
hi∏
g=1

Φig(x)

implies

Φi0(x
δi (n))

can=
hi∏
g=1

Φig(x
δi (n)/δi ).

Setting in Lemma 11

γj = δij nj /δi(n) (1 � j � k)

we infer that for all g � hi the polynomials

JΦig

( k∏
j=1

x
γj δi (n)/δi
j

)
= JΦig

( k∏
j=1

x
δij nj /δi
j

)
are irreducible. Since

JΦi0

( k∏
j=1

x
γj δi (n)

j

)
= JΦi0

( k∏
j=1

x
δij nj
j

)
= Φi(xn1

1 , . . . , x
nk
k )

we get

(65) Φi(x
n1
1 , . . . , x

nk
k )

can=
hi∏
g=1

JΦig

( k∏
j=1

x
δij nj /δi
j

)
(1 � i � r0).

Since by the definition of c(F ) and νj , δi | δij νj (1 � j � k) the substitution xj → x
νj /nj
jc
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(1 � j � k) gives

(65′) Φi(x
ν1
1 , . . . , x

νk
k )

can=
hi∏
g=1

JΦig

( k∏
j=1

x
δij νj /δi
j

)
(1 � i � r0).

For i > r0 there exist by Lemma 12 positive integers μij and uij (1 � j � k) such
that

μij � |Φi |2, nj = μijuij ,
and

Φi(x
μi1
1 , . . . , x

μik
k )

can=
hi∏
g=1

Φig(x1, . . . , xk)

implies

(66) Φi(x
n1
1 , . . . , x

nk
k )

can=
hi∏
g=1

Φig(x
ui1
1 , . . . , x

uik
k ).

By the definition of c(F ) we have μij | c(F ), hence

μij | νj , vj |uij (r0 < i � r, 1 � j � k).

The substitution xj → x
1/νj
j applied to (66) gives

(66′) Φi(x
ν1
1 , . . . , x

νk
k )

can=
hi∏
g=1

Φig(x
ν1/μi1
1 , . . . , x

νk/μik
k ).

From (63), (64), (65), (65′), (66), (66′) and Lemma 9 we infer that

KF(x
n1
1 , . . . , x

nk
k )

can= const
r0∏
i=1

hi∏
g=1

JΦig

( k∏
j=1

x
δij nj /δi
j

)εi
×

r∏
i=r0+1

hi∏
g=1

Φig(x
ui1
1 , . . . , x

uik
k )

εi ,

KF(x
ν1
1 , . . . , x

νk
k )

can= const
r0∏
i=1

hi∏
g=1

JΦig

( k∏
j=1

x
δij νj /δi
j

)εi
×

r∏
i=r0+1

hi∏
g=1

Φig(x
ν1/μi1
1 , . . . , x

νk/μik
k )εi .

Denoting the polynomials

JΦig

( k∏
j=1

x
δij νj /δi
j

)
(1 � i � r0, 1 � g � hi)
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and

Φig(x
ν1/μi1
1 , . . . , x

νk/μik
k ) (r0 < i � r, 1 � g � hi)

by F1, . . . , Fs we get (vi). ��

4.

Lemma 13. Let aj (0 � j � k) be non-zero integers. If

(67) a0 +
k∑
j=1

ajλ
nj = a0 +

k∑
j=1

ajλ
−nj = 0

then either λ is an algebraic unit or there exist integers γj (1 � j � k) such that

(68)
k∑
j=1

γjnj = 0

and

(69) 0 < max
1�j�k

|γj | < max
0�j�k

log a2
j

log 2
.

Proof. If λ is not a unit then for a certain prime ideal p of Q(λ) we have ordp λ = ξ �= 0.
Let p be the rational prime divisible by p and let ordp p = e, ordp aj = αj (0 � j � k).
It follows from (67) that for ε = ±1 the minimal term of the sequence {eαj + εnj ξ}
(j = 0, 1, . . . , k) must occur in it at least twice (we take n0 = 0). Thus we have for
suitable non-negative indices g, h, i, j

eαg − ngξ = eαh − nhξ, g < h,(70)

eαi + niξ = eαj + nj ξ, i < j.

Hence

e(αi − αj )(nh − ng)ξ = e(αh − αg)(nj − ni)ξ,
and since ξ �= 0

(71) (αi − αj )(nh − ng)− (αh − αg)(nj − ni) = 0.

This gives the desired relation (68) unless

αi − αj = αh − αg = 0

or

αi − αj = αh − αg and i = g, j = h.
The latter possibility however reduces to the former and both give by (70) ng = nh,
ni = nj . In order to get (69) we notice that the coefficients of ng , nh, ni , nj in (71) do not
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exceed

2 max
0�j�k

αj � 2 max
0�j�k

log |aj |
logp

� max
0�j�k

log a2
j

log 2
. ��

Lemma 14. If real numbers aj (0 � j � k) and a certain λ satisfy (67) and moreover

(72) 0 < n1 < n2 < . . . < nk, |a0| + |ak| �
k−1∑
j=1

|aj | > 0

then |λ| = 1.

Proof. Choose ε = ±1 so that |ak + εa0| = |ak| + |a0| and consider the polynomial

F(x) = a0 +
k∑
j=1

ajx
nj + εxnk

(
a0 +

k∑
j=1

ajx
−nj
)
.

c

F(x) is reciprocal of degree nk . By a theorem of A. Cohn ([2], p. 113) the equations
F(x) = 0 and xnk−1F ′(x−1) = 0 have the same number of zeros inside the unit circle.c

We have

G(x) = xnk−1F ′(x−1)

= xnk−1
( k∑
j=1

ajnjx
1−nj + εa0nkx

1−nk + ε
k−1∑
j=1

aj (nk − nj )x1+nj−nk
)

= (ak + εa0)nk +
k−1∑
j=1

ajnjx
nk−nj + ε

k−1∑
j=1

aj (nk − nj )xnj .
c

Assuming G(x) = 0 for |x| < 1 we get

|ak + εa0|nk <
k−1∑
j=1

|aj |nj +
k−1∑
j=1

|aj |(nk − nj ) = nk
k−1∑
j=1

|aj |,

|ak| + |a0| = |ak + εa0| <
k−1∑
j=1

|aj |,

a contradiction. Thus all zeros of G(x) and F(x) are on the unit circle. Since by (67)
F(λ) = 0 we get |λ| = 1. ��

Lemma 15. If f (x) = a0 +
k∑
j=1
ajx

nj satisfies (72) then eitherKf (x) = Lf (x) or there

exist integers γ1, . . . , γk satisfying (68) and (69). In any case

Ω
(
Kf (x)/Lf (x)

)
� Ω0

(
(a0, ak)

)
.
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Proof. Let

Kf (x)

Lf (x)

can= c

h∏
i=1

fi(x)
ei ,

where fi(x) are primitive polynomials with the leading coefficients ci > 0 (1 � i � h).
Comparing the leading coefficients on both sides we get

c =
h∏
i=1

c
−ei
i .

Comparing the contents we get

C(Lf ) = C(Kf )
h∏
i=1

c
ei
i .

Since Lf has the same leading coefficient as f and the same up to a sign constant term it
follows that

(73)
h∏
i=1

c
ei
i

∣∣ (a0, ak).

If for any i � h we had ci = 1 the zeros of fi , which by Lemma 13 lie on the unit
circle, by Kronecker’s theorem would have to be roots of unity contrary to the definition
ofKf . Thus for all i � h we have ci > 1 and (73) gives the second part of the lemma. To
prove the first note that if h > 0 we can take for λ in Lemma 13 any zero of f1. ��

Lemma 16. Let 0 < n1 < . . . < nk and let aj (0 � j � k) be non-zero integers. If

f (x) = a0 +
k∑
j=1
ajx

nj satisfies for some g, h � k

(74) a2
g �≡ a2

h mod g.c.d.
0�j�k

aj g.c.d.
j �=g,h

aj

then eitherLf (x) = Jf (x) or there exist integers γj (1 � j � k) satisfying (68) and (69).
In any case Ω

(
f (x)/Lf (x)

)
� Ω0

(
(a0, ak)

)
.

Proof. Let

f (x)

Lf (x)

can= c

h∏
i=1

fi(x)
ei ,

where fi(x) are primitive polynomials with the leading coefficients ci > 0. By the argu-
ment used in the proof of Lemma 15 we deduce again the divisibility (73).

If for i � h we had ci = 1 any zero λ of fi would be a unit and would satisfy (67).
Setting

g.c.d.
0�j�k

aj = δ, g.c.d.
j �=g,h

aj = d
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we would get from (67)

agλ
ng + ahλnh ≡ 0 mod d, agλ

−ng + ahλ−nh ≡ 0 mod d;
agδ

−1 ≡ −ahδ−1λnh−ng mod dδ−1, agδ
−1 ≡ −ahδ−1λng−nh mod dδ−1;

a2
gδ

−2 ≡ a2
hδ

−2 mod dδ−1; a2
g ≡ a2

h mod dδ

contrary to (74). Thus for i � hwe have ci > 1 and (73) gives the second part of the lemma.
The first follows from Lemma 13 on taking for λ any hypothetical zero of f (x)/Lf (x).��

Proof of Theorem 3. By Theorem 4 of [11] eitherLf (x) is irreducible or there are integers
γ1, . . . , γk satisfying (vii) and (viii). All zeros of the quotient f (x)/Lf (x) satisfy the
assumptions of Lemma 13. Since (69) implies (viii) it follows that unless (vii) and (viii)
are satisfied all primitive factors of f (x)/Lf (x) are reciprocal and monic. The remaining
part of the theorem follows at once from Lemmata 15 and 16. ��

5.

Lemma 17. If |a0| = |a3| > 0, |a1| = |a2| > 0 and 0 < n1 < n2 < n3 then either the

quadrinomial q(x) = a0 +
3∑
j=1
ajx

nj is reciprocal or Kq(x) = Lq(x).

Proof. q(λ) = q(λ−1) = 0 implies

a0 + a3λ
n3 = −a1λ

n1 − a2λ
n2 ,

a0 + a3λ
−n3 = −a1λ

−n1 − a2λ
−n2 .

Dividing the above equalities side by side we get
a3

a0
λn3 = a2

a1
λn2+n1 ,

and either λ is a root of unity or n3 = n2 + n1 and a3/a0 = a2/a1 in which case q(x) is
reciprocal. ��

Lemma 18. If a quadrinomial q(x) = a0 +
3∑
j=1
ajx

nj is representable in one of the

forms (1), where k, T , U, V,W are monomials in Q(x) then it is also representable in the
same form where ±k = C(q), T ,U, V,W are monomials in Z[x] and the factors on the
right hand side of (1) differ from the original ones by monomial factors.

Proof. Let T = t

m3 2τ1xτ , U = u

m
2ϕ1xϕ , V = v

m
2ψ1xψ , W = w

m
2ω1xω, k = k′2κ1xκ ,

where m, t, u, v,w, k′ odd, m > 0.c

If

q(x) = k(T 2 − 4T UVW − U2V 4 − 4U2W 4)
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we have

(75)

κ = −min(2τ, τ + ϕ + ψ + ω, 2ϕ + 4ψ, 2ϕ + 4ω)

= −2 min(τ, ϕ + 2ψ, ϕ + 2ω)

C(q) = |k′| (t
2, tuvw, u2v4, u2w4)

m6 2κ2 = |k′| (t, uv
2, uw2)2

m6 2κ2 ,

where κ2 = min
(
κ1 + 2τ1, κ1 + 2ϕ1 + 4ψ1, κ1 + 2ϕ1 + 4ω1 + 2

) ≡ κ1 mod 2. Sincec

κ1 +2ϕ1 +4ψ1 −κ2, κ1 +2ϕ1 +4ω1 +2−κ2 are non-negative, even and different mod 4,
we have either κ1 + 2ϕ1 + 4ω1 + 2 − κ2 � 2 or κ1 + 2ϕ1 + 4ψ1 − κ2 � 2. Taking

k0 = C(q) sgn k′, T0 = m3

(t, uv2, uw2)
2(κ1−κ2)/2T xκ/2,

and, in the former case

U0 = m(v,w)2

(t, uv2, uw2)
22ψ1−2ψ2+(κ1−κ2)/2Uxκ/2+2 min(ψ,ω),

V0 = m

(v,w)
2ψ2−ψ1V x−min(ψ,ω), W0 = m

(v,w)
2ω2−ω1Wx−min(ψ,ω),

in the latter case

U0 = m(v,w)2

(t, uv2, uw2)
22ω1−2ψ2+(κ1−κ2)/2+1Uxκ/2+2 min(ψ,ω),

V0 = m

(v,w)
2ψ2−ω1Wx−min(ψ,ω), W0 = m

(v,w)
2ω2−ψ1V x−min(ψ,ω),

we find in view of (75)

q(x) = k0(T
2
0 − 4T0U0V0W0 − U2

0V
4
0 − 4U2

0W
4
0 )

andc

(76) T0, U0, V0,W0 ∈ Z[x].
Moreover the factors on the right hand side of (1) differ from the original ones by the factor
cxκ/2, c ∈ Q.c

If

q(x) = k(U3 + V 3 +W 3 − 3UVW)

we have

(77)
κ = −min(3ϕ, 3ψ, 3ω, ϕ + ψ + ω) = −3 min(ϕ, ψ, ω),

C(q) = |k′| (u
3, v3, w3, 3uvw)

m3 = |k′|
m3 (u, v,w)

3.

Taking

k0 = C(q) sgn k′, U0 = U m

(u, v,w)
xκ/3, V0 = V m

(u, v,w)
xκ/3,

c

W0 = W m

(u, v,w)
xκ/3
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we find in view of (77)

q(x) = k0(U
3
0 + V 3

0 +W 3
0 − 3U0V0W0)

and again (76). The first and the second factor on the right hand side of (1) differ from the
original ones by the factor cxκ/3 and c2x2κ/3, respectively, c ∈ Q.c

Finally, if

q(x) = k(U2 + 2UV + V 2 −W 2)

we have

(78)
κ = −min(2ϕ, ϕ + ψ, 2ψ, 2ω) = −2 min(ϕ, ψ, ω),

C(q) = |k′| (u
2, 2uv, v2, w2)

m2 = |k′| (u, v,w)
2

m2 .

Taking

k0 = C(q) sgn k′, U0 = U m

(u, v,w)
xκ/2, V0 = V m

(u, v,w)
xκ/2,

W0 = W m

(u, v,w)
xκ/2

we find in view of (78)

q(x) = k0(U
2
0 + 2U0V0 + V 2

0 −W 2
0 )

and again (76). The factors on the right hand side of (1) differ now from the original ones
by the factor cxκ/2, c ∈ Q. ��c

Proof of Theorem 4. WithKq(x) replaced byLq(x) the theorem has been actually proved
in the course of proof of Theorem 2 in [3], see namely formula (20) there and the subsequent
argument. We shall have soon to go through the same argument again and then we shall
supply a few details missing there or peculiar to the present context (e.g. the application
of Lemma 18), taking them now for granted.

By Lemma 15, 16 and 17 we haveKq(x) = Lq(x)unless (68) and (69) hold with k = 3.
Therefore we shall assume these relations for a certain integral vector γ = [γ1, γ2, γ3]. In-
tegral vectors perpendicular to γ form a module, say N. We have [γ2,−γ1, 0], [γ3, 0,−γ1],c

[0, γ3,−γ2] ∈ N and since γ �= 0 two among these three vectors are linearly independent.
By Lemma 6 of [11] N has a basis which written in the form of a matrix Δ = [δtj ] t�2

j�3satisfies

(79) max
t,j

|δtj | � 2 max
j

|γj | � 4
log ‖q‖

log 2
.

Moreover,

(80) rank Δ = 2

and by (67)

(81) [n1, n2, n3] = [m1,m2]Δ, [m1,m2] integral �= 0.
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Since 0 < n1 < n2 < n3 the vectors [δ1j , δ2j ] (j = 1, 2, 3) are distinct and different from
[0, 0]. Let us set

(82) Q0(y1, y2) = J
(
a0 +

3∑
j=1

ajy
δ1j
1 y

δ2j
2

)
.

By (81) we have

(83) q(x) = JQ0(x
m1 , xm2).

Since q(x) is not reciprocalQ0(y1, y2) is also not reciprocal. Thus by Theorem 1 of [3]

(84) LQ0(y1, y2) = Q0(y1, y2) or
Q0(y1, y2)

D0(y1, y2)
LD0(y1, y2),

where D0 is a certain binomial defined there. Now, for binomials

KLD0(y1, y2) = KD0(y1, y2);
on the other hand by Lemma 11 of [11]

KLQ0(y1, y2) = LQ0(y1, y2).

Applying the operation K to the both sides of (84) we get

LQ0(y1, y2) = KQ0(y1, y2).

Now we apply Theorem 3 of [11] setting there F(x1, x2) = Q0(x1, x2). By that
theorem there exists an integral matrix M = [μij ] i�r

j�2
of rank r � 2 and an integral vector

v = [v1, vr ] such that

max
i,j

|μij | �
{

exp 9 · 2‖Q0‖−4 if r = 2,

exp
(
500‖Q0‖2(2|Q0|∗)2‖Q0‖+1

)
if r = 1;(85)

[m1,m2] = vM;(86)

KQ0

( r∏
i=1

y
μi1
i ,

r∏
i=1

y
μi2
i

)
can= const

s∏
σ=1

Fσ (y1, yr )
eσ(87)

implies

(88) KQ0(x
m1 , xmr )

can= const
s∏
σ=1

KF(xv1 , xvr )eσ .

In (85) |Q0|∗ = √max{2, |Q0|2} + 2.c

Let us set

(89) N = [νij ] i�r
j�3

= MΔ.

It follows from (80) that N is of rank r and from (81) and (86) that

(90) [n1, n2, n3] = vN .



D7. Reducibility of lacunary polynomials III 443

Consider first the case r = 2 and put

Q(y1, y2) = JQ0

( 2∏
i=1

y
μi1
i ,

2∏
i=1

y
μi2
i

)
.

By (82) and (89)

Q(y1, y2) = J
(
a0 +

3∑
j=1

ajy
ν1j
1 y

ν2j
2

)
.

By (90) the vectors [ν1j , ν2j ] are distinct and different from [0, 0], moreover

(91) q(x) = JQ(xv1 , xv2).

Now by Theorem 1 of [3] we have the following possibilities.

(92) Q(y1, y2) is irreducible.

(93) Q(y1, y2) can be divided into two parts with the highest common factor D(y1, y2)

being a binomial. ThenQD−1 is either irreducible and non-reciprocal or binomial.

(94) Q(y1, y2) can be represented in one of the forms (1), where k ∈ Q and T ,U, V,W
are monomials in Q[y1, y2]. The factors on the right hand side of (1) are irreducible
and non-reciprocal.

(We have made in comparison to [3] a certain permutation of letters and formulae.)
In the case (92) we have on the right hand side of (87) at most one irreducible factor.

By (83) and (88) the same applies to the canonical factorization of Kq(x). Since q(x) is
not reciprocal, Kq(x) �= const and (xii) follows.

In the case (93) in virtue of (91) q(x) can be divided into two parts that have the
common factor JD(xv1 , xv2) = d(x) which is either binomial or constant. We get

q(x)d−1(x) = JQ(xv1 , xv2)D−1(xv1 , xv2).

If qd−1 is not a binomial we conclude that QD−1 is not a binomial either. Hence QD−1

is irreducible and non-reciprocal. From LQD−1 = QD−1 we infer by Lemma 11 of [11]
that KQD−1 = QD−1. Thus by (88)

K
(
Q(xv1 , xv2)D−1(xv1 , xv2)

) = K(q(x)d−1(x)
)

is irreducible. Ifd(x) is reciprocal,Kd(x) = const and we get (xii); ifd(x) is not reciprocal
we get (xiii).

In the case (94) we get from Lemma 11 of [11] that KQ = Q. The factorization (87)
is given by the formulae (1). Taking for F1, F2 the two factors occurring on the right hand
side of (1) we infer from (88) that KFσ (xv1 , xv2) (σ = 1, 2) are irreducible. Now by
(91) to the representation of Q(y1, y2) in any one of the forms (1) there corresponds a
representation of q(x) in the same form, where k, T , U, V,W are now monomials in Q(x)

and the factors on the right hand side of (1) areFσ (xv1 , xv2) (σ = 1, 2). By Lemma 18 there
exists a representation of q(x) in the form in question in which k = ±(a0, a1, a2, a3) and
T ,U, V,W are monomials in Z[x]. Since the relevant factors differ from Fσ (x

v1 , xv2)

(σ = 1, 2) only by monomial factors we infer that their kernels are irreducible. This
gives (xiv). It remains to consider the case r = 1. The change of signs of μ1i (1 � i � 3)
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in (87) leads to a replacement of Fσ (y1) by JFσ (y
−1
1 ) but does not affect the implication

(87) → (88). Therefore, changing the signs of μ1i if necessary we can assume that
v = v1 > 0. Hence by (90)

(95) 0 < ν11 < ν12 < ν13.

By (79), (85) and (95) we have

ν13 = max
1�j�3

|ν1j | � 8
log ‖q‖

log 2
exp
(
500‖Q0‖2(2|Q0|∗)2‖Q0‖+1).

Now by (82) and (79)

‖Q0‖ = ‖q‖,
|Q0|∗ � |Q0| + 1 � 2 max

t,j
|δtj | + 1 � 8

log ‖q‖
log 2

+ 1 < 13 log ‖q‖
and we get

ν13 � 12 log ‖q‖ exp
(
500‖q‖2(26 log ‖q‖)2‖q‖+1)
< exp

(
600‖q‖2(26 log ‖q‖)2‖q‖+1) < exp2(12 · 2‖q‖ log ‖q‖).

Let us set ν1j = νj (1 � j � 3). By (90) we have

nj = vνj (1 � j � 3).

By (82) and (89)

JQ0(y
μ11
1 , y

μ12
2 ) = J

(
a0 +

3∑
j=1

ajy
ν1j
1

)
.

The last assertion of (xiv) follows now from the implication (87)→ (88).
To estimateΩ

(
Kq(x)

)
we use Corollary to Lemma 1, Theorem 3 and Lemma 17. We

get

Ω
(
Kq(x)

)
� Ω
(
Lq(x)

)+Ω0
(
(a0, a3)

)
� log ‖q‖

2 logϑ0
+ log a2

0

2 log 2

<
( 1

2 logϑ0
+ 1

2 log 2

)
log ‖q‖. ��

Proof of Corollary 4 does not differ from the proof of Corollary in [3]. We note only that
if

a0 +
3∑
i=1

aiζ
ni/(n1,n2,n3) = 0, ζ 6 = 1

then q(x) is indeed reducible since none of the cyclotomic polynomials of index d (d |6)
is a quadrinomial. ��

Note added in proof. Very recently E. Dobrowolski [2a] has proved the following improvement ofc

Blanksby–Montgomery’s theorem.
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If α(j) are conjugates of an algebraic integer α different from 0 and roots of unity then∏
|α(j)|>1

|α(j)| > 1 + c
( log log n

log n

)3
, c > 0.

This result allows one to improve the estimates given in Lemma 1 and Theorem 1 and in particular
to obtain

log c(E)� (|KF | log ‖F‖)1/3(log 2|KF | + log2 ‖F‖)2/3.
Here neither the exponent 1/3 nor the exponent 2/3 can be lowered.
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Reducibility of lacunary polynomials IV

The aim of this paper is to make a further contribution to the problem of reducibility
of polynomials

(1) f (x) = a0 +
k∑
j=1

ajx
nj (0 = n0 < n1 < . . . < nk, a0ak �= 0)

for fixed integral coefficients aj and variable exponents nj . The non-reciprocal irreducible
factors of f (x) can be found by means of Theorem 2 in [3] and as to reciprocal factors the
conjecture proposed in [2] implies the existence of a constant C(a0, a1, . . . , ak) such that

either all reciprocal irreducible factors of f are cyclotomic or
k∑
j=1
γjnj = 0 for suitable

integers γj satisfying

0 < max
1�j�k

|γj | � C(a0, a1, . . . , ak).

We shall prove

Theorem. If f is given by (1)with aj integral, then either all reciprocal irreducible factors
of f are cyclotomic or there exist integers γ1, . . . , γk satisfying

k∑
j=1

γjnj = 0,(2)

0 < max
j=1,...,k

|γj | � max
0�j�k

log a2
j

log 2
(3)

and the number of reciprocal non-cyclotomic factors of f does not exceed the total number
of prime factors of (a0, ak) or finally the following system of inequalities is fulfilled

(4)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k−1∑
j=0

|aj | |nj − ni | > |ak|(nk − ni) if ni < nk/2,

k∑
j=1

|aj | |nj − ni | > |a0|ni if ni > nk/2,

k−1∑
j=1

|aj |
∣∣∣nj − nk

2

∣∣∣ > ∣∣|ak| − |a0|
∣∣nk

2
.
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This theorem supersedes Lemma 15 of [3] and implies the following

Corollary. If
k∑
j=0
ξ2j = 0 and |ξ | = 1 then ξ is a root of unity.

The corollary answers in the negative Problem 1 of Mahler [1]. The proof of the theorem
is based on two lemmata.

Lemma 1. For every positive real number r �= 1 and real numbers n,m satisfying
|n| > |m| we have

h(m, n, r) =
∣∣∣ rm − r−m
rn − r−n

∣∣∣ < ∣∣∣m
n

∣∣∣.
Proof. Since h(m, n, r) is an even function of m and n and

h(m, n, r−1) = h(m, n, r)
it is enough to prove the lemma for n > m � 0, r > 1. Now, the function g(r) =
m(rn − r−n)− n(rm − r−m) satisfies

g′(r) = mnr−1[(rn + r−n)− (rm + r−m)] = mnr−1(rn − rm)(1 − r−n−m) > 0

for all r > 1 hence, for such r , g(r) > g(1) = 0 and

h(m, n, r) = m

n
− g(r)

n(rn − r−n) <
m

n
. ��

c

Lemma 2. Let f be given by (1) with aj arbitrary complex numbers. If

(5) f (ξ) = f (ξ −1
) = 0

then either |ξ | = 1 or the system (4) is fulfilled.

Proof. Let ξ = reiϕ (r, ϕ real) and let � be a real number. From (5) we infer that

k∑
j=0

aj r
nj−�eiϕnj = 0 =

k∑
j=0

aj r
�−nj eiϕnj

hence
k∑
j=0

aj (r
nj−� − r�−nj )eiϕnj = 0.

Taking

� = ni and ν =
{
k if ni < nk/2,

0 if ni > nk/2,

we get

|nj − ni | � |nν − ni | (0 � j � k),
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also
k∑

j=0,j �=ν
aj (r

nj−ni − rni−nj )eiϕnj = −aν(rnν−ni − rni−nν )eiϕnν

hence dividing by rnν−ni − rni−nν and using Lemma 1 we get the first two inequalities
of (4). The last inequality is obtained similarly on taking � = nk/2. ��

Remark. This lemma supersedes Lemma 14 of [3].

Proof of Theorem. Suppose that f has a reciprocal irreducible factor g that is not cy-
clotomic. Let η be a zero of g. By Kronecker’s theorem either η has a conjugate ξ with
|ξ | �= 1 or η is not an algebraic integer. In the former case we use Lemma 2 and get the
conditions (4). In the latter case we use Lemma 13 of [3] and get the conditions (2) and (3).
Also the product of the leading coefficients of all reciprocal non-cyclotomic factors of f
must divide (a0, ak). Since all these coefficients are greater than 1 their number does not
exceed the total number of prime factors of (a0, ak). ��

Proof of Corollary. Let g be a minimal polynomial of ξ . Since g(ξ−1) = g(ξ) = 0,

g is reciprocal. We apply the theorem to the polynomial f (x) =
k∑
j=0
x2j−1. Since this

polynomial does not satisfy the conditions (4) (for i = 0) and (a0, ak) = 1 the number of
its reciprocal non-cyclotomic factors is 0. Hence g is cyclotomic and ξ is a root of unity.��
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On the number of terms of a power of a polynomial

To Paul Erdős with best wishes
on his 75th birthday

The conjecture made by Rényi and first published by Erdős [2], who supported it(1),
asserts that ifQk is the least number of non-zero coefficients of the square of a polynomial
with exactly k non-zero complex coefficients then

lim
k=∞Qk = ∞.

It has been proved by Erdős in the quoted paper that

Qk < C1k
1−C2

and the values of the positive constants C1 and C2 have been subsequently found by
Verdenius [9] (see also Freud [3]). He also established a similar inequality for cubes. It
is the principal aim of the present paper to prove an estimate for the number of non-zero
coefficients, called the number of terms, of an arbitrary power of a polynomial, which
contains as a special case the inequality

Qk >
log log k

log 2
.

Here is the general result.

Theorem 1. Let K be a field, f ∈ K[x], l ∈ N, f and f l have T � 2 and t terms,
respectively. If either char K = 0 or char K > l deg f then

t � l + 1 + (log 2)−1 log
(

1 + log(T − 1)

l log 4l − log l

)
.

Already for l = 2 there is a big gap between the obtained lower bound and Erdős’s upper
bound for t . Another open question concerns the number of terms of F

(
f (x)

)
, where F is

a fixed non-constant polynomial. If Qk(F ) is the minimal number of terms of F
(
f (x)

)
,

when f runs over all polynomials with exactly k terms then probably lim
k=∞Qk(F ) = ∞,

but the method of this paper is insufficient to prove it.
If char K is positive the number of terms of f ln may remain bounded in spite of the fact

that the number of terms of fn ∈ K[x] tends to infinity with n. The situation is described
by the following

(1) Erdős tells me that he arrived at the conjecture independently from Rényi.
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Theorem 2. Let char K > 0, f ∈ K[x], l ∈ N, f and f l have T � 2 and t terms,
respectively. If

lT−1(T 2 − T + 2) < char K

then

t � l + 1 + (log 2)−1 log
(

1 + log(T − 1)

l log 4l − log l

)
.

On the other hand, if l �= (char K)n (n = 0, 1, 2, . . . ) there exist polynomials
f ∈ K[x] with T arbitrarily large such that t � 2l.

Finally we have

Theorem 3. Let K be a field and f ∈ K[x]. If in the algebraic closure of K f has a
zero ξ of multiplicity exactly n then f has at least as many terms as (x − ξ)n.

The algebraic closure of K will be denoted by K̂ . The case char K = 0 of Theorem 3
has been proved by G. Hajós [5]. The special case of Theorem 3 for K = F2 and ξ = 1 has
been given as a problem in XXVIth International Mathematical Olympiad. A. M

↪akowski,
the head of the Polish delegation, insisted that there should be a common generalization
of this problem and of Hajós’s theorem. Hajós’s result, slightly extended serves as the first
of the three lemmata needed for the proof of Theorem 1.

Lemma 1. If g ∈ K[x]\ {0} has in the algebraic closure of K a zero ξ �= 0 of multiplicity
at least m and either char K = 0 or char K > deg g, then g has at least m+ 1 terms.

Proof. The proof given by Hajós [5] and rediscovered by Montgomery and Schinzel ([6],
Lemma 1) for K = C applies without change to the case char K = 0 or char K > deg g.��

Lemma 2. If f (x) ∈ K[x], f (0) �= 0, f (x)l ∈ K[xd ] then either char K | (l, d) or
f (x) ∈ K[xd ].

Proof. Let

f (x)l = g(xd), g(x) = γ0

∏
γ∈Γ

(x − γ )e(γ ),

where Γ is a subset of K \ {0}. We get

f (x)l = γ0

∏
γ∈Γ

(xd − γ )e(γ ).

Since for γ �= 0 the multiplicity of the zeros of xd − γ is either 1 or equal to the maximal
power of char K dividing d , we get either char K | (l, d) or l | e(γ ) for all γ ∈ Γ . It follows
that

f (x) = γ1

∏
γ∈Γ

(xd − γ )e(γ )/ l ∈ K̂[xd ].
c
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Since K[x] ∩ K̂[xd ] = K[xd ] we infer that

f (x) ∈ K[xd ]. ��

Lemma 3. Let H ∈ K[y, z], p ∈ Z. Define the sequence Hn = Hn(y, z;p) as follows

H0 = H, Hn+1 = ∂Hn

∂y
py + ∂Hn

∂z
z.

Then we have the following

(1) degy Hn � degy H, degz Hn � degz H ;

(2) Hn(x
p, x;p) =

n∑
k=1

c(k, n)xk
dkH(xp, x)

dxk
(n � 1)

c

for suitable coefficients c(k, n) ∈ K;

(3) If char K � l and a polynomial G irreducible over K divides (H0, H1, . . . , Hl−1),
then either Gl |H or for each term gyαzβ of G (g �= 0) pα + β is the same
mod char K if char K > 0, has the same value if char K = 0, briefly G is isobaric
mod char K with respect to the weights p, 1.

Proof. Directly from the definition of Hn we get

degy Hn+1 � degy Hn, degz Hn+1 � degz Hn

and formulae (1) follow by induction. The same method is used to prove (2) and (3).

(2) is true for n = 1 since

H1(x
p, x;p) = ∂H

∂y
(xp, x)pxp + ∂H

∂z
(xp, x)x = x dH(x

p, x)

dx
.

Assuming the truth of (2) for a fixed n we get

Hn+1(x
p, x;p) = ∂Hn

∂y
(xp, x;p)pxp + ∂Hn

∂z
(xp, x;p)x

= x dHn(x
p, x;p)
dx

= x
n∑
k=1

c(k, n)
(
kxk−1 d

kH(xp, x)

dxk
+ xk d

k+1H(xp, x)

dxk+1

)
,

c

which implies (2) with n replaced by n+ 1.

In order to prove (3) letH = GmU , where U �≡ 0 modG. We shall show by induction
on j � m that

(4) Hj(y, z;p) ≡ j !
(
m

j

)(
∂G

∂y
py + ∂G

∂z
z

)j
Gm−jU modGm−j+1.
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For j = 0 this is obviously true. Assuming it for a fixed j we get upon differentiation

∂Hj

∂y
≡ j !
(
m

j

)(
∂G

∂y
py + ∂G

∂z
z

)j
(m− j)Gm−j−1 ∂G

∂y
U modGm−j ,

∂Hj

∂z
≡ j !
(
m

j

)(
∂G

∂y
py + ∂G

∂z
z

)j
(m− j)Gm−j−1 ∂G

∂z
U modGm−j ,

hence

Hj+1(y, z;p) = ∂Hj

∂y
py + ∂Hj

∂z
z

≡ (j + 1)!
(
m

j + 1

)(
∂G

∂y
py + ∂G

∂z
z

)j+1

Gm−j−1U modGm−j

and the inductive proof of (4) is complete.
Taking there j = m, we get

Hm(y, z;p) ≡ m!
(∂G
∂y
py + ∂G

∂z
z
)m
U modG,

hence if m < l the assumption G | (H0, H1, . . . , Hl−1) implies

∂G

∂y
py + ∂G

∂z
z ≡ 0 modG.

However the degree of
∂G

∂y
py + ∂G

∂z
z does not exceed the degree of G. Hence

∂G

∂y
py + ∂G

∂z
z = cG, c ∈ K

and for each term gyαzβ (g �= 0) of G we have

pα + β = c,
where both sides are viewed as elements of K . If char K > 0 this means

pα + β ≡ cmod char K

and if char K = 0

pα + β = c. ��

Proof of Theorem 1. We shall prove the following equivalent inequality

(5) T � 1 +
( (4l)l
l

)2t−l−1−1
.

For T > 1 we have t > 1 hence (5) holds for t = 1. For t > 1 let

f (x)l =
t−1∑
j=0

ajx
mj ,
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where

aj �= 0, m0 < m1 < . . . < mt−1, (m1 −m0,m2 −m0, . . . , mt−1 −m0) = d.
We have

m0 = l ordx f ≡ 0 mod l,(
f (x)x−m0/l

)l ∈ K[xd ], f (x)x−m0/l
∣∣
x=0 �= 0,

hence by Lemma 2

f (x)x−m0/l ∈ K[xd ], f (x) = f0(x
d)xm0/l

and

(6) f0(x)
l = a0 +

t−1∑
j=1

ajx
nj ,

where nj = (mj −m0)/d . We get

(7) 0 = n0 < n1 < n2 < . . . < nt−1 � l deg f, (n1, . . . , nt−1) = 1

and since f and f0 have the same number of terms it is enough to prove the inequality (5)
for the number of terms of f0.

If t � l + 1 we apply Lemma 1. Since char K = 0 or char K > nt−1 the lemma is
applicable with g = f l0, m = l and it gives t � l + 1, hence t = l + 1. Every zero ξ of f l0
is of multiplicity � l, hence on differentiation

a0 +
l∑
j=1

aj ξ
nj = 0,

l∑
j=1

aj

(
nj

i

)
ξnj = 0 (1 � i < l).

Since char K = 0 or char K > nt−1 we have∣∣∣(nj
i

)∣∣∣0�i<l
1�j�l

=
∏

0�q<r<l

nr − nq
r − q �= 0,

hence aj ξnj are uniquely determined by a0. Since aj �= 0 and (n1, . . . , nt−1) = 1 there
is only one possible value for ξ . Then

f0(x) = c(x − ξ)deg f0 , c ∈ K, ξ �= 0

and Lemma 1 applies with g = f0,m = l deg f0. It gives l deg f0 +1 � l+1, deg f0 = 1,
T = 2, hence (5).

The further proof proceeds by induction for fields K algebraically closed. Assume that
(5) holds for lth powers with less than t � l + 2 terms and consider again the conditions
(6) and (7).

By Dirichlet’s theorem there exist integers p1, p2, . . . , pt−1 such that

(8)
∣∣∣ nj
nt−1

− pj

pt−1

∣∣∣ < 1

4lpt−1
(j = 1, 2, . . . , t − 2)



D9. On the number of terms of a power of a polynomial 455

and

0 < pt−1 � (4l)t−2.

The inequality pi < 0 or pi > pt−1 would imply

1

pt−1
<

∣∣∣ ni
nt−1

− pi

pt−1

∣∣∣ < 1

4lpt−1
,

a contradiction; hence we have

(9) 0 � pj � pt−1 � (4l)t−2 (j = 1, 2, . . . , t − 2).

Setting

(10) pt−1[n1, . . . , nt−1] = nt−1[p1, . . . , pt−1] + [r1, . . . , rt−1]
we get from (8)

|rj | < nt−1

4l
(j = 1, 2, . . . , t − 2), rt−1 = 0.

If max
1�i�t−2

|ri | = 0, then by (9), (7) and (10)

(4l)t−2 � pt−1 = (pt−1n1, . . . , pt−1nt−1) � nt−1,

hence

T � 1 + deg f0 = 1 + nt−1

l
� 1 + (4l)

t−2

l
� 1 +

( (4l)l
l

)2t−l−1−1
.

Therefore, assume that

(11) 0 < max
1�j�t−1

|rj | < nt−1

4l
, rt−1 = 0

and put

r = min
1�j�t−1

rj , F (y, z) = z−r
(
a0 +

t−1∑
j=1

ajy
pj zrj

)
.

By (9) and the choice of r we have

F(y, z) ∈ K[y, z], (
F(y, z), yz

) = 1.

(Note that by (7) and (8) no two terms of F are similar.). By (6) and (8) we have

(12) f0(x
pt−1)l = xrF (xnt−1 , x).

Let

(13) F(y, z) = F0(y, z)
lH(y, z); F0, H ∈ K[y, z],

where H is not divisible by the lth power of any polynomial in K[y, z] \ K . It follows
from (12) and (13) that every zero ofH(xnt−1 , x) except possibly x = 0 is as least l-tuple.
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Hence for any ξ ∈ K̂ \ {0}

ordx−ξ H(xnt−1 , x) � l ordx−ξ
dk

dxk
H(xnt−1 , x) (k < l)

and by (2) with p = nt−1

ordx−ξ H(xnt−1 , x) � l ordx−ξ Hm(xnt−1 , x; nt−1) (m < l).

Also, by (2)

ordx H(x
nt−1 , x) � ordx Hm(x

nt−1 , x; nt−1).

Thus finally

H(xnt−1 , x) |Hm(xnt−1 , x; nt−1)
l (1 � m < l)

and for indeterminates u1, . . . , ul−1

(14) H(xnt−1 , x)

∣∣∣ l−1∑
m=1

umHm(x
nt−1 , x; nt−1)

l .

Suppose first that (H,H1, . . . , Hl−1) �= 1, whereHm stands forHm(y, z; nt−1). Then
by the choice ofH and the assertion (3) of Lemma 3H , hence also F , has a factorG /∈ K

isobaric mod char K with respect to the weights nt−1, 1. Since (F, yz) = 1, G has at
least two terms. Let

F/G =
n∑
i=1

Gi,

whereGi are polynomials isobaric mod char K with respect to the weights nt−1, 1 and n
is minimal. Since G is isobaric mod char K with respect to the weights nt−1, 1,

F =
n∑
i=1

GGi

is the corresponding representation ofF . SinceG has at least two terms, the same is true for
GG1 hence F has at least two terms with weights congruent mod char K , if char K > 0,
equal if char K = 0. However the weights of the terms of F are pjnt−1 + rj − r =
pt−1nj − r (0 � j < t). Since nk are distinct the equality pt−1ni − r = pt−1nj − r ,
with i �= j , is impossible. The congruence pt−1ni − r ≡ pt−1nj − r mod char K implies
pt−1 ≡ 0 mod char K or ni ≡ nj mod char K . Since char K = 0 or char K > nt−1 the
latter case with i �= j is impossible and we get

0 < char K � pt−1.

Hence by (9)

T � 1 + deg f < 1 + char K

l
� 1 + pt−1

l
� 1 + (4l)

t−2

l
� 1 +

( (4l)l
l

)2t−l−1−1

and (5) holds.
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Suppose now that (H,H1, . . . , Hl−1) = 1. Then(
H,

l−1∑
m=1

umH
l
m

)
= 1.

Therefore the resultant R of H and
l−1∑
m=1

umH
l
m with respect to y is non-zero and in view

of (14)

H(xnt−1 , x) |R(x).
Now, the degree of R does not exceed

degy H degz

l−1∑
m=1

umH
l
m + degz H degy

l−1∑
m=1

umH
l
m.

In virtue of (1) we get

degR � 2l degy H degz H.

On the other hand, if there is no cancellation in H(xnt−1 , x) we have

degH(xnt−1 , x) � max(nt−1 degy H, degz H).

It follows that either

(15) degy H = degz H = 0

or

nt−1 � 2l degz H � 2l degz F � 2l(max ri − min ri) < nt−1

by (11), a contradiction.

If there is a cancellation in H(xnt−1 , x) then degy H �= 0 and

nt−1 � degz H � degz F < nt−1,

a contradiction again. Thus we have (15), i.e. H ∈ K and so by (13)

(16) F(y, z) = const F0(y, z)
l;

by (12)

f0(x
pt−1)l = const xrF0(x

nt−1 , x)l;
F0(x

nt−1 , x) = const x−r/ lf0(x
pt−1).

The number of terms of F(y, z) is t , the number of terms of F0(y, z) is T0 � T . Let

F0(y, z) =
T0∑
τ=1

bτ y
ατ zβτ , 〈ατ , βτ 〉 all different, bτ �= 0.
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By (11) there exists an index i < t − 1 such that∣∣∣∣pi pt−1
ri rt−1

∣∣∣∣ = −pt−1ri �= 0,

hence

T0 = card
{〈ατ ri − βτpi, ατ rt−1 − βτpt−1〉 : τ � T0

}
.

Now, for j = i or t − 1 let

Tj = card
{
ατ rj − βτpj : τ � T0

}
.

Clearly TiTt−1 � T0, hence for a suitable k ∈ {i, t − 1}
(17) T 2

k � T0.

Now, let us choose elements η, ζ of K such that all non-empty sums∑
ατ rk−βτ pk=const

bτ η
ατ ζ βτ

are non-zero. Then Tk is the number of terms of F0(ηx
rk , ζx−pk ). Let

s = ordx F0(ηx
rk , ζx−pk ), G(x) = x−sF0(ηx

rk , ζx−pk ) ∈ K[x].
We have by (16)

(18) G(x)l = const x−lsF (ηxrk , ζx−pk )

= const ζ−rxpkr−ls
(
a0 +

t−1∑
j=1

ajη
pj ζ rj xpj rk−rj pk

)
and the number of terms ofG(x)l is at most t−1 since two terms in the parenthesis on the
right hand side of (18), namely a0 and akηpk ζ rk xpkrk−rkpk , coalesce. Moreover we have

pj rk − rjpk = pt−1(pjnk − njpk) for all j < t;
thus

G(x)lxls−pkr ∈ K(xpt−1).

Since G(0) �= 0 we get from (18) and the above

(19) min
1�j<t

(pj rk − rjpk) � ls − pkr ≡ 0 mod pt−1,

hence

G(x)l ∈ K[xpt−1 ].
In virtue of Lemma 2

G(x) ∈ K[xpt−1 ]; G(x) = G0(x
pt−1), G0 ∈ K[y].
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The number of terms ofG0(x)
l is the same as that ofGl , hence at most t − 1. Moreover

by (18), (19), (9) and (11)

l degG0 = l degG

pt−1
� 1

pt−1

(
max

1�j<t
(pj rk − rjpk)− min

1�j<t
(pj rk − rjpk)

)
<

4nt−1

4l
� nt−1 < char K,

unless char K = 0. The inductive assumption applies and since the number of terms ofG0
is equal to that of G we get

Tk � 1 +
( (4l)l
l

)2t−l−2−1
.

Hence by (17)

T � T0 � T 2
k � 1 + 2

( (4l)l
l

)2t−l−2−1 +
( (4l)l
l

)2t−l−1−2
< 1 +

( (4l)l
l

)2t−l−1−1

and the inductive proof is complete. The assumption that K is algebraically closed does
not diminish the generality. ��

Lemma 4. Let K be any field, U a finite subset of K and P ∈ K[t1, . . . , tr ] \ {0}.
The equation P(t1, . . . , tr ) = 0 has no more than degP(card U)r−1 solutions
(t1, . . . , tr ) ∈ U r .

Proof. This is Lemma 8 in [8], p. 302(2). ��

Lemma 5. Letp be a prime,N =
n∑
ν=0
cνp

ν , where 0 � cν < p. The number of coefficients

of (x + 1)N non-divisible by p equals
n∏
ν=0
(cν + 1).

Proof. This is an immediate consequence of a theorem of Lucas about binomial coefficients
(see [1], p. 114). ��

Proof of Theorem 2. Put

f (x) =
T∑
j=1

Ajx
Nj , Nj all different, Aj �= 0 (1 � j � T )

and let us assign two vectors [i1, i2, . . . , il], [j1, j2, . . . , jl] ∈ {1, 2, . . . , T }l to the same
class if

l∑
λ=1

Niλ =
l∑
λ=1

Njλ.

(2) Page 1171 in this collection.
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Let C1,C2, . . . ,Cs be all distinct classes, so that

{1, 2, . . . , T }l =
s⋃
r=1

Cr .

We have

f (x)l =
s∑
r=1

∑
[i1,i2,...,il ]∈Cr

x
∑l
λ=1 Niλ

l∏
λ=1

Aiλ.

Since f (x)l has t terms we have for all but t classes Cr , say for all r > t

(20)
∑

[i1,i2,...,il ]∈Cr

x
∑l
λ=1 Niλ

l∏
λ=1

Aiλ = 0.

Let us consider the system of linear equations

(21)
l∑
λ=1

xiλ =
l∑
λ=1

xjλ for [i1, . . . , il], [j1, . . . , jl] ∈ Cr and all r � s.

This system with T unknowns has at least two linearly independent solutions namely
[1, 1, . . . , 1] and [N1, . . . , NT ]. Hence the matrix M of the system is of rank � � T − 2.
The linear space of solutions has a basis consisting of T − � vectors: v1, v2, . . . , vT−�
the components of which are minors of M of order � (see R. Fricke [4], p. 81). Since in
each row of the matrix M the sum of the positive elements and the sum of the negative
elements is at most l, by the result of [7] the minors in question are in absolute value at
most l�. Hence

(22) vi = [vi1, vi2, . . . , viT ], where |vij | � l� (1 � i � T − �).
Since every solution of (21) is a linear combination of v1, . . . , vT−� we have for suitable
u0
i ∈ Q (1 � i � T − �)

Nj =
T−�∑
i=1

u0
i vij (1 � j � T )

and since Nj are distinct

T∏
j,k=1
j<k

T−�∑
i=1

u0
i (vik − vij ) �= 0.

Since the polynomial

T∏
j,k=1
j<k

T−�∑
i=1

ui(vik − vij ) ∈ Q[u1, . . . , uT−�]

does not vanish identically and is of degree
(
T
2

)
it follows from Lemma 4 with
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U = {u ∈ Z : |u| � 1
2

(
T
2

)+ 1
2

}
that it does not vanish on the set UT−�. Hence there exist

integers u1
1, . . . , u

1
T−� such thatc

(23) |u1
i | � 1

2

(
T

2

)
+ 1

2
(1 � i � T − �)

and

(24)
T∏

j,k=1
j<k

T−�∑
i=1

u1
i (vik − vij ) �= 0.

Let us put

N1
j =

T−�∑
i=1

u1
i vij − min

1�k�T

T−�∑
i=1

u1
i vik (1 � j � T ).

c

By (23) and (24) we have for all j � T

(25) 0 � N1
j � (T − �)

((
T

2

)
+ 1

)
l� � (T 2 − T + 2)lT−2.

By (24) N1
j are all distinct. Since [N1

1 , . . . , N
1
T ] is a solution of (21) we have for all r � s

and suitable integers ν(r)

(26)
l∑
λ=1

N1
iλ
= ν(r)

for all vectors [i1, . . . , il] ∈ Cr . Let us put

f1(x) =
T∑
j=1

Ajx
N1
j .

The polynomial f1 has T terms and in virtue of (25)

l deg f1 � lT−1(T 2 − T + 2) < char K.

Moreover by (26) and (20)

f1(x)
l =

s∑
r=1

xν(r)
∑

[i1,i2,...,il ]∈Cr

l∏
λ=1

Aiλ =
t∑
r=1

xν(r)
∑

[i1,i2,...,il ]∈Cr

l∏
λ=1

Aiλ.

Hence f1(x)
l has at most t terms and by Theorem 1

t � l + 1 + (log 2)−1 log
(

1 + log(T − 1)

l log 4l − log l

)
.

This shows the first part of the theorem.
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In order to prove the second part, let us put char K = p, l = pαm, wherem �≡ 0 mod p,
m > 1. Take

fn(x) = (1 + x)(pϕ(m)+n+m−1)/m

and let Tn, tn be the number of terms of fn and f ln, respectively. We have

fn(x)
l = (1 + x)(pϕ(m)+n+m−1)pα = (1 + xpϕ(m)n+α )(1 + xpα )m−1

hence

tn � 2m � 2l.

On the other hand, if

pϕ(m) +m− 1

m
=

k∑
i=0

cip
i,

pϕ(m) − 1

m
=

k∑
i=0

dip
i (0 � ci, di < p, ck �= 0)

then k < ϕ(m); hence

pϕ(m)n +m− 1

m
=

k∑
i=0

cip
i +

n−1∑
ν=1

k∑
i=0

dip
ϕ(m)ν+i

is a reduced representation of (pϕ(m)n +m− 1)/m to the base p and, by Lemma 5

Tn =
k∏
i=0

(ci + 1)
( k∏
i=0

(di + 1)
)n−1

� 2n. ��
c

Lemma 6. If K is a field of characteristic p, ξ ∈ K̂ ,

(27) (x − ξ)pm
∣∣∣ p−1∑
j=0

xjfj (x
p), where fj ∈ K̂[y],

then

(y − ξp)m |fj (y) for all j < p.

Proof by induction on m. For m = 1, we have

fj (x
p) ≡ fj (ξp)mod (x − ξ)p,

hence

(x − ξ)p
∣∣∣ p−1∑
j=0

xjfj (ξ
p)

and on comparing the degrees we get fj (ξp) = 0 for all j < p; thus

y − ξp |fj (y).
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Assuming that the lemma is true with m replaced by m − 1 we get first, by applying the
case m = 1, that

fj (y) = (y − ξp)gj (y), gj ∈ K̂[y],
hence by (27)

(x − ξ)p(m−1)
∣∣∣ p−1∑
j=0

xjgj (x
p)

and by inductive assumption

(y − ξp)m−1 |gj (y) (0 � j < p),
which gives the assertion. ��

Lemma 7. Let K be a field of characteristic p,

f (x) =
p−1∑
j=0

xjfj (x
p) ∈ K[x], n ≡ r mod p, 0 � r < p.

If ξ ∈ K̂ is a zero of f of multiplicity exactly n, then

(28) for all nonnegative j � p
fj (x) = (x − ξp)(n−r)/pgj (x), gj ∈ K̂[x];

(29) for all nonnegative s < r

p−1∑
j=s

(
j

s

)
ξj−sgj (ξp) = 0;

(30)
p−1∑
j=r

(
j

r

)
ξj−rgj (ξp) �= 0.

Proof. Since (x − ξ)n−r |f (x), (28) follows from Lemma 6. Now the condition
(x − ξ)n ‖f (x) reduces to(3)

(x − ξ)r ‖g(x), where g(x) =
p−1∑
j=0

xjgj (x
p).

If r = 0 the condition (29) is void and (30) follows from g(ξ) �= 0. If r > 0 we write

g(x) = (x − ξ)rh(x), h(ξ) �= 0

and differentiating s � r times we find that

g(s)(ξ) = 0 for s < r, g(r)(ξ) = r!h(ξ) �= 0,

which gives (29) and (30). ��
(3) a ‖ b means that a | b and (a, b/a) = 1.



464 D. Polynomials in one variable

Remark. The implication given in Lemma 7 is, in fact, an equivalence.

Proof of Theorem 3. For ξ = 0 the theorem is clear. For ξ �= 0 in view of Lemma 1 we may
assume char K = p. We proceed by induction on n. For n = 1 the theorem is obviously
true. Assume it is true for all multiplicities less than n � 2 and let f have a zero ξ ∈ K of
multiplicity exactly n. Let

(31) f (x) =
p−1∑
j=0

xjfj (x
p), fj ∈ K[y]

and

(32) n =
k∑
i=1

cip
ni , 0 < ci < p, 0 � n1 < n2 < . . . < nk.

If n1 > 0, then by Lemma 6

(y − ξp)n/p |fj (y) (0 � j < p)
and for at least one j

(y − ξ)n/p ‖fj (y).
Hence, by the inductive assumption the number of terms of fj is at least that of (y−ξp)n/p,
i.e. that of (x − ξ)n.

If n1 = 0 we apply Lemma 7 and infer (28), (29), (30) with r = c1. (30) implies that
at least one of the elements gj (ξp) (c1 � j < p) is not zero.c

We assert that among the numbers gj (ξp) (0 � j < p) there are at least c1 + 1 different
from 0. Indeed, otherwise there would be at least p − c1 indices j with gj (ξp) = 0. Let
the remaining indices be j1, . . . , jc1 . The system of equations (29) gives

c1∑
t=1

(
jt

s

)
ξjt gjt (ξ

p) = 0 (0 � s < c1).

However ∣∣∣∣(jts
)∣∣∣∣0�s<c1

1�t�c1
=

∏
0�q<r<c1

jr − jq
r − q �= 0,

hence gjt (ξ
p) = 0 for all t and thus gj (ξp) = 0 for all j < p, contrary to (30).

Let now gj (ξp) �= 0 for j ∈ S, where S is a set of cardinality c1 + 1. We have for
j ∈ S

(y − ξp)(n−c1)/p ‖fj (y),
hence by the inductive assumption fj (y) has at least as many terms as

(y − ξp)(n−c1)/p, i.e. by Lemma 5 and by (32) at least
k∏
i=2
(ci + 1) terms. It follows that

f (x) has at least
k∏
i=1
(ci + 1) terms, but this is exactly by Lemma 5 the number of terms

of (x − ξ)n.
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Introduction and the statement of results

The problem of reducibility of binomials over Q was settled nearly a hundred years
ago by Vahlen [32]. His criterion was soon generalized to all fields of characteristic 0
by Capelli [3] and much later to all fields of positive characteristic by Rédei [18]. It is
the aim of the present paper to prove similar results for trinomials at least over algebraic
number fields or function fields in one variable. In the latter case, when the field in question
is rational, one variable can be replaced by any number of variables, and the results are
definitive.

In the sequel n, m denote positive integers, n > m,

n1 = n

(n,m)
, m1 = m

(n,m)
;

K is a field of characteristic π � 0 with π /| nm(n−m), K is an algebraic closure of K ,
y is a variable vector, and ζn is a primitive root of unity of order n in K .

Corrected following Errata, Acta Arith. 73 (1995), 399–400; Publ. Math. Debrecen, 56 (2000),
605–607.
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Theorem 1. Let n � 2m andA,B ∈ K(y)∗,A−nBn−m �∈ K . The trinomial xn+Axm+B
is reducible over K(y) if and only if either

(i) xn1 + Axm1 + B has a proper linear or quadratic factor over K(y)

or

(ii) there exists an integer l such that〈n
l
,
m

l

〉
:= 〈ν, μ〉 ∈ S0 :=

⋃
p prime

〈2p, p〉 ∪ {〈6, 1〉, 〈6, 2〉, 〈7, 1〉,
〈8, 2〉, 〈8, 4〉, 〈9, 3〉, 〈10, 2〉, 〈10, 4〉, 〈12, 2〉, 〈12, 3〉, 〈12, 4〉, 〈15, 5〉}

and A = uν−μAν,μ(v), B = uνBν,μ(v), where u, v ∈ K(y) and the polynomials
Aν,μ, Bν,μ are given in Table 1.

Table 1

ν, μ Aν,μ Bν,μ

2p, p −
(

1 +√
1 − 4v

2

)p
−
(

1 −√
1 − 4v

2

)p
vp

6, 1 4v(v2 + 3) −(v2 + 4v − 1)(v2 − 4v − 1)
c

6, 2 4(v + 1) −v2

7, 1
−(2v + 1)4(4v2 − 3v + 1)

× (v3 − 2v2 − v + 1)

v(2v − 1)(2v + 1)5(3v − 2)

× (v2 − v + 1)
c

8, 2 −v2 + 8v − 8 (2v − 2)2

8, 4 2v2 − 8v + 4 v4

9, 3 v3 − 81v + 243 27(v − 3)3

10, 2 4v3 − 8v + 4 −(v2 − 4v + 2)2

10, 4 v5(−v3 + 8v − 8) −4v8(v − 1)4

12, 2
1024(v − 4)8(2v − 3)(v2 − 6v + 6)

× (v2 − 2v + 2)
1024(v − 4)10(v3 − 8v + 8)2

12, 3
−729v(v − 1)7(2v − 1)(3v2 − 6v + 2)

× (3v2 − 3v + 1)
729(v − 1)9(3v3 − 3v + 1)3

12, 4 512(2v − 1)(2v2 + 2v − 1)(2v2 − 2v + 1) 1024(2v2 − 4v + 1)4

15, 5
5(5v − 5)7(5v4 − 5v3 − 5v2 + 5v − 1)

× (5v4 − 10v3 + 10v2 − 5v + 1)
(5v − 5)10(5v2 − 5v + 1)5

c
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Theorem 2. Let n � 2m andA,B ∈ L∗, whereL is a finite separable extension of K(y1)c

with KL of genus g > 0 and A−nBn−m �∈ K .
For g = 1 the trinomial xn + Axm + B is reducible over L if and only if at least one

of the following three conditions is satisfied:

(iii) xn1 + Axm1 + B has a proper linear or quadratic factor over L ;
(iv) there exists an integer l such that〈n

l
,
m

l

〉
:= 〈ν, μ〉 ∈ S0 and A = uν−μAν,μ(v), B = uνBν,μ(v),c

where u, v ∈ L and Aν,μ, Bν,μ are given in Table 1;
(v) there exists an integer l such that〈n

l
,
m

l

〉
:= 〈ν, μ〉 ∈ S1 := {〈7, 2〉, 〈7, 3〉, 〈8, 1〉, 〈9, 1〉, 〈14, 2〉, 〈21, 7〉}

and A = uν−μAν,μ(v,w), B = uνBν,μ(v,w), where u ∈ L, 〈v,w〉 ∈ Eν,μ(L),c

and the elliptic curveEν,μ and the polynomialsAν,μ, Bν,μ are given in Table 2. For
〈ν, μ〉 = 〈8, 1〉 there is a double choice.

For g > 1 the trinomial xn +Axm +B is reducible over L if and only if either (iii) or
(iv) holds or there exists an integer l such that〈n

l
,
m

l

〉
:= 〈ν, μ〉 ∈ Z2, ν < 24g

and xν + Axμ + B is reducible over L.

Theorem 3. Let L be a finite separable extension ofK(y), L∩K = K0, andA,B ∈ L∗,
A−nBn−m ∈ K . The trinomial xn+Axm+B is reducible overL if and only if there exists
a q | (m, n), q = 1, 4 or a prime and a C ∈ L such that

A = aC(n1−m1)q , B = bCn1q, a, b ∈ K0,

and

xn1q + axm1q + b is reducible over K0.

Theorem 1 has the following consequences.

Theorem 4. Let a ∈ K∗ and B ∈ K(y) \ K . The trinomial xn + axm + B is reducible
over K(y) if and only if for a certain t ∈ K(y) either B = −tn1 − atm1 or n1 � 4,
m1 = n1 − 1,

B = (−a)n1 tn1−1 fn1−1(t)
n1−1

fn1(t)
n1

, fl(t) = (1 +√
1 − 4t)l − (1 −√

1 − 4t)l

2l
√

1 − 4t

or there exists an integer l such that〈n
l
,
m

l

〉
:= 〈ν, μ〉 ∈ {〈4, 1〉, 〈4, 2〉, 〈6, 2〉, 〈6, 3〉, 〈6, 4〉, 〈6, 5〉, 〈7, 6〉, 〈8, 6〉}

andB = B∗
ν,μ(t), where the rational functionsB∗

ν,μ are given in Table 3. If 〈ν, μ〉 = 〈8, 6〉
we must have a = α2 − 2β2, where α, β ∈ K .
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Table 2

ν, μ Eν,μ Aν,μ Bν,μ

7, 2
w2 = v3 + 16v2

+ 64v + 80

2v2 − 8v − 48

+ w(2v − 4)

− (4v + 12 + w)
× (v2 + 12v + 32 + 4w)

7, 3

w2 = v3

− 675v

+ 13662

(−v3 + 27v2 + 3753v

− 34803 + w(6v − 666))

× (v − 39)

6(v − 39)2

× (−v2 − 12v + 693 + 6w)

× (9v2 + 162v − 4455

− w(v + 33))

w2 = v3 − 10v

+ 12

−8v3 + 20v2 + 8v − 32

+ w(3v2 − 12v − 10)

(w − 3v + 5)(−3v2 + 15v

− 17 + w(2v − 5))

8, 1

w2 = v3 − 20v

− 16

128(w − 2v − 8)4

× (v + 2)(v2 + 12v + 4)

× (2w − v2 + 4v + 4)

× (4w − v2 − 12)

64(w − 2v − 8)4(9v4 + 8v3

− 8v2 + 288v + 272

− w(v3 + 18v2 + 76v + 24))

× (v4 + 24v3 + 152v2

+ 96v + 16

+ w(v3 − 22v2 − 52v − 72))

9, 1
w2 = v3 + 18v

− 36

81(w − 2v − 9)4

× ((v7 + 27v6

+ 351v5 + 639v4

− 675v3 − 5589v2

+ 6318v − 7290)w

+ (−9v8 − 66v7 − 936v6

+ 1890v5 + 4995v4

− 5670v3 + 14580v2

− 72900v + 37179)
)

27(w − 2v − 9)5
(
(5v7 − 603v6

− 765v5 + 5661v4

+ 3213v3 + 29889v2

− 28674v + 10206)w

+ (−v9 + 63v8 + 1719v7

− 4959v6 − 10611v5 + 1917v4

+ 111456v3 − 145800v2

+ 207036v − 61236)
)

Theorem 5. Let n � 2m,A ∈ K(y)\K , b ∈ K∗. The trinomial xn+Axm+b is reducible
over K(y) if and only if for a certain t ∈ K(y)∗ either A = −tn1−m1 − bt−m1 or there
exists an integer l such that〈n

l
,
m

l

〉
:= 〈ν, μ〉 ∈

⋃
p prime

{〈2p, p〉} ∪ {〈6, 2〉, 〈8, 2〉, 〈8, 4〉, 〈9, 3〉},

A = A∗
ν,μ(t, b1) and b, b1 ∈ K satisfy a suitable equation, which together with the

rational function A∗
ν,μ is given in Table 4.
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Table 2 (cont.)

ν, μ Eν,μ Aν,μ Bν,μ

14, 2
w2 = v3

− 6v + 5

4(v − 2)7(4v4 − v3

− 34v2 + 51v − 18

+ w(v3 + 6v2 − 18v + 8))

−(v − 2)8(v3 − 12v + 14

+ w(2v − 6))2

21, 7

w2 = v3

− 1715v

+ 33614

∗)
147(w − 7v − 343)14

× (21v2 − 686v − 7203

− (v + 49)w)7

∗) Aν,μ = 3764768(w − 7v − 343)7
(
(−70v13 − 52822v12 + 19467098v11 + 3451790790v10

− 68568103744v9 − 7533659832748v8 + 155066962439572v7 + 6992189738638860v6

+ 111845300294417242v5 − 2615541950886590670v4 − 185207197444036469646v3

− 2167406145663758747314v2 − 17859482834686233287988v

− 18838244084537504480336)w + v15 + 2625v4 + 91584v13 − 411648706v12

− 8059651761v11 + 1191725696763v10 + 27401291878562v9 − 2107086579531888v8

− 82212564592345537v7 + 2560864878174600039v6 + 64436612556278953228v5

− 653044731700569035282v4 − 20619925798094466268271v3

− 399648258921266894946883v2 − 1749201525015966507411086v

− 9642297897576373802186512
)
.

Let us note that Theorems 4 and 5 contain as very special cases Lemmas 2 and 3
of [11], which are crucial for the determination obtained in that paper of all quadrinomials
in two variables reducible overK (l.c. Theorem 1). Combining the tools developed for the
proof of Theorems 1 and 3 with the Faltings theorem one obtains

Theorem 6. Let n � 2m, K be an algebraic number field and a, b ∈ K∗. The trinomial
xn+axm+b is reducible overK if and only if at least one of the following four conditions
is satisfied:

(vi) xn1 + axm1 + b has a proper linear or quadratic factor over K;

(vii) there exists an integer l such that 〈n/l,m/l〉 := 〈ν, μ〉 ∈ S0 and a = uν−μAν,μ(v),
b = uνBν,μ(v), where u, v ∈ K;

(viii) there exists an integer l such that 〈n/l,m/l〉 := 〈ν, μ〉 ∈ S1 anda= uν−μAν,μ(v,w),
b = uνBν,μ(v,w), where u ∈ K , 〈v,w〉 ∈ Eν,μ(K);

(ix) there exists an integer l such that 〈n/l,m/l〉 := 〈ν, μ〉 ∈ Z2 and a = uν−μa0,
b = uνb0, where u ∈ K , 〈a0, b0〉 ∈ Fν,μ(K) and Fν,μ(K) is a certain finite set,c

possibly empty.
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For 〈ν, μ〉 ∈ S0 ∪ S1 \ {〈9, 1〉} we can take

Fν,μ(K) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
{〈

2 · 713, 714
(

7 +√
21

2

)7〉
,

〈
2 · 713, 714

(
7 −√

21

2

)7〉}
if 〈ν, μ〉 = 〈21, 7〉, √21 ∈ K,

∅ otherwise.

Table 3

ν, μ B∗
ν,μ

4, 1
1 − a2t6

4t4

4, 2

(
t2 + a

2

)2

6, 2 −
(

4t4 + a
4t

)2

6, 3

(
t3 + a

3t

)2

6, 4 −
(
a2t4 + 8at2 + 16

16t3

)2

6, 5 a6 B6,1(t)
5

A6,1(t)
6

7, 6 a7 B7,1(t)
6

A7,1(t)
7

8, 6

(
(2α − 2β)t2 + (2α − 4β)t + (α − β))6
×
(
(2α + 2β)t2 − (2α + 4β)t + (α + β))2

4(2t2 − 1)8
, where α2 − 2β2 = a

Note that for any p ∈ K[x] \K there are only finitely many trinomials xn+axm+b ∈
K[x], ab �= 0, divisible by p and satisfying neither (vi) nor (vii) (see [12]).

Note that for 〈ν, μ〉 ∈ S1 \ {〈7, 2〉, 〈21, 7〉} the set Eν,μ(Q) is infinite, but
E7,2(Q) = {〈−4, 4〉, 〈−4,−4〉}, E21,7(Q) = {〈−49, 0〉}. Since B7,2(−4, 4) = 0 and
x7 + A7,2(−4,−4)x2 + B7,2(−4,−4) is divisible by x + 2 and A21,7(−49, 0) =
B21,7(−49, 0) = 0, for K = Q the cases 〈ν, μ〉 = 〈7, 2〉, 〈21, 7〉 can be disregarded.

The sets Fν,μ(K) are not uniquely determined. We propose the following conjecture.

Conjecture. For every algebraic number field K one can choose sets Fν,μ(K) such that

Σ =
⋃
〈ν,μ〉

⋃
〈a,b〉∈Fν,μ(K)

{xν + axμ + b} is finite.
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Even in the case K = Q one cannot choose Fν,μ(K) such that Σ is empty, as Table 5
at the end of the paper shows.

The above conjecture has the following simple consequences.

Consequence 1. For every algebraic number field K there exists a constant C1(K) such
that if n1 > C1(K) and a, b ∈ K∗ then xn + axm + b is reducible over K if and only
if (vi) holds.c

Consequence 2. For every algebraic number field K there exists a constant C2(K) such
that if a, b ∈ K then xn + axm + b has in K[x] an irreducible factor with at most C2(K)

non-zero coefficients.

Consequence 3. There are only finitely many integers b such that for some n �= 2m,
xn + bxm + 1 is reducible over Q.

Table 4

ν, μ Condition on b A∗
ν,μ

2p, p b = bp1 −
(
t +√t2 − 4b1

2

)p
−
(
t −√t2 − 4b1

2

)p
6, 2 b = −b2

1 4t (t3 + b1)

8, 2 b = b2
1

−4t8 + 12b1t
4 − b2

1

4t2

8, 4 b = b4
1 4t4 − 8b1t

2 + 2b2
1

9, 3 b = b3
1

t9 − 18b1t
6 + 27b2

1t
3 + 27b3

1

27t3

From this point to the end of the introduction reducibility is meant over Q. It is clear
from Table 5 that if C1(Q) exists we have C1(Q) � 52.

The problem of existence of C2(Q) was formulated in [21]. Bremner [1] has shown
that if C2(Q) exists we have C2(Q) � 8 (see also [6])(1).

Using Theorem 5 of [22] one can determine an explicit value c(a, b) such that if
a, b ∈ Q∗, n1 > c(a, b) and xn + axm + b is reducible then xn1 + axm1 + b has a
cyclotomic linear or quadratic factor.

The problem of existence of integers b with |b| > 2 such that for some n �= 2m the
trinomial xn+bxm+1 is reducible was formulated in [23]. First Coray (unpublished) and
then Bremner [2] have found an affirmative answer which is clear from Table 5, positions
28, 31, 48.

Here are some arithmetical applications of Theorems 4 and 5.

(1) The entry 43b in Table 5, due to J. Abbott, shows that if C2(Q) exists, then C2(Q) � 9.
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Theorem 7. For all a, b ∈ Z \ {0} and all n there exist only finitely many reducible
trinomials axn + bxm + c where c ∈ Z \ {0} without a factor x(m,n) − d apart from the
following

T1(x
l; t) = ax4l + bx2l + a

(
at2 + b

2a

)2

,

T2(x
l; t) = ax5l + bx4l − b

5

a5
· t2(t − 2)4

(t2 − 3t + 1)5
,

T3(x
l; t) = ax8l + bx6l + b

8

a7 B
∗
8,6(t),

where t ∈ Q and 〈α, β〉 occurring in the definition of B∗
8,6 is a fixed rational solution of

α2 − 2β2 = b/a.

Theorem 8. For all a, c ∈ Z \ {0} and all n there exist only finitely many reducible
trinomials axn + bxm + c where 2m � n, b ∈ Z \ {0} apart from the following

T4(x
l; t) = ax2pl + aA∗

2p,p(t, b1)x
pl + c, b

p
1 = c/a,

T5(x
l; t) = ax6l + aA∗

6,2(t, b1)x
2l + c, b2

1 = −c/a,
T6(x

l; t) = ax8l + aA∗
8,4(t, b1)x

4l + c, b4
1 = c/a,

where t, b1 ∈ Q.

The exceptions given in Theorem 7 and 8 are genuine as it follows from the identities

T1(x; t) = a
(
x2 + tx + at

2 + b
2a

)(
x2 − tx + at

2 + b
2a

)
,

T2(x; t) = a
(
x2 + b

a
· t (t − 2)

t2 − 3t + 1
x + b

2

a2 · t (t − 2)2

(t2 − 3t + 1)2

)
×
(
x3+ b

a
· −t + 1

t2 − 3t + 1
x2+ b

2

a2 · t (t − 2)

(t2 − 3t + 1)2
x + b

3

a3 · −t (t − 2)2

(t2 − 3t + 1)3

)
,

c

T3(x; t)

= a
(
x4 + a1x

3 + (a2
1 − b2

1)x
2 + (a1 + b1)(a1 − b1)

2x + (a1 + b1)(a1 − b1)
3

2

)
×
(
x4 − a1x

3 + (a2
1 − b2

1)x
2 − (a1 + b1)(a1 − b1)

2x + (a1 + b1)(a1 − b1)
3

2

)
,

where a1 = 2αt2 − 4βt + α, b1 = 2βt2 − 2αt + β,

T5(x
l; t) = a(x3 + 2tx2 + 2t2x + b1)(x

3 − 2tx2 + 2t2x − b1),

T6(x
l; t) = a(x4 + 2tx3 + 2t2x2 + 2tb1x + b2

1)(x
4 + 2tx3 + 2t2x2 − 2tb1x + b2

1),

from the divisibility

x2 − tx + b1 |T4(x; t)
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and from the remark that Ti(x; t) ∈ Z[x] for infinitely many t ∈ Q, at least if 2a |b
(1 � i � 3) and a | c (4 � i � 6). In particular, T2(x; t) furnishes a counterexample to an
assertion of Fried [9] (statement 13), probably the same as mentioned in general terms by
Fried himself in [10], p. 600.

Unfortunately, the finite sets of exceptional trinomials occurring in Theorems 7 and 8
cannot be effectively determined from the proofs of the theorems, since the latter use an
ineffective theorem of Siegel [28]. In the special case a = m = 1 an effective determination
has been achieved by Ribenboim [20]. In the case of Theorem 8 it is possible to achieve
the same under a less stringent assumption (m, n) = 1. This follows from

Theorem 9. Let a, b, c ∈ Z \ {0}, (a, b, c) = 1. If axn + bxm + c is reducible then at
least one of the following four conditions is satisfied :

(x) |b| � |a|m1 |c|n1−m1 + 1;

(xi) |b| < 2m1(n1 −m1)

log 2m1(n1 −m1)
|a|m/n|c|(n−m)/n, min{|a|, |c|} = 1, p

√
max{|a|, |c|} be-

longs to Z for some prime p |n1;
(xii) for some q | (m, n), q a prime or q = 4, q

√|a| ∈ Z, q
√|c| ∈ Z and if q = 2 then

(−1)n1ac > 0, while if q = 4 then ac > 0 and n1 ≡ 0 mod 2;
(xiii) 4 | (m, n), ac > 0, n1 ≡ 1 mod 2 and either 4

√|a| ∈ Z, 4
√

4|c| ∈ Z or 4
√

4|a| ∈ Z,
4
√|c| ∈ Z.

Theorem 9 can be regarded as a refinement of a theorem of Nagell [15], concerning
trinomials T (x; q, r) = xn + qxm + r , q, r ∈ Z. Nagell proves the following alternative
as the necessary condition for reducibility of T (x; q, r):

either |q| � |r|n−1 + 1 or p
√|r| ∈ Z for some prime p |n.

It is clear that (x) is stronger than the first term of the alternative and each of (xi), (xii),
(xiii) is stronger than the second term. However the proof of Theorem 9 is partly based on
Nagell’s idea.

Theorem 9 implies

Corollary 1. For every positive integer d there exist only finitely many trinomials
xn + bxm ± 1, where b ∈ Z, |b| > 2, n1 > d , with a factor of degree d and all of
them can be found effectively. Indeed, they satisfy n� d log d, b � d2 log d.

Corollary 1 gives a partial generalization of results of Bremner [2], who determined
all trinomials xn + bxm + 1, b ∈ Z \ {0}, with a cubic factor, and that of H. Tverberg,
who did the same for xn + bxm − 1 [31a]. Another generalization will be given below asc

Corollary 2 (to Theorem 10). The factorization found by Bremner

x6 + (4μ4 − 4μ)x2 − 1 = (x3 + 2μx2 + 2μ2x + 1)(x3 − 2μx2 + 2μ2x − 1)

(a special case of the factorization given above for T5(x; t)) shows that the condition
n1 > d cannot be omitted.

For the case of a, b or a, c fixed we have
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Theorem 10. There exist two effectively computable functions c0(d) and c1(d) with the
following property. If a, b, c ∈ Z \ {0}, (a, b, c) = 1,

aξn + bξm + c = 0 and [Q(ξ) : Q] � d
then either simultaneously

(xiv) n < max

{
c0(d), c1(d) log

|ab|
(a, b)

}
,

(xv) n < max

{
c0(d), c1(d) log

|bc|
(b, c)

}
,

(xvi) n < max {c0(d), 3c1(d) log |ac|}, provided n �= 2m

or
(xvii) ξ (n,m) = q, (1 ± i)q, (1 ±√−3)q, (3 ±√−3)q, q ∈ Q.

Corollary 2. For every positive integer d there exist only finitely many trinomials
xn + bxm + 1, where b ∈ Z, |b| > 2, n �= 2m with a proper factor of degree d.

I conclude the introduction by expressing my thanks to Professor J. Browkin(2), Pro-
fessor J.-L. Nicolas, Dr. A. Pokrzywa(3) and Dr. T. Regińska who performed computer
calculations used in this or in the previous version of the paper. Professor Nicolas has
moreover improved the original Lemma 12 and simplified the proof of Lemma 24. I thank
him for the permission to include his proofs. I thank Professor K. Rubin for his contribution
to the proof of Lemma 51. I thank also the organizers of the Austrian-Hungarian-Slovak
Number-Theory-Colloquium Graz 1992 who let me present the above results there.

PART I

Reducibility over function fields

1. Auxiliary results from the theory of algebraic functions

LetK(t, x) be a finite separable extension ofK(t) and let x be a zero of a polynomial
F(t, u) defined and irreducible over K , of degree d with respect to u.

For every τ ∈ K let

F(τ ) =
∞⋃
e=1

K
(
((t − τ)1/e)) and F(∞) =

∞⋃
e=1

K
(
(t−1/e)

)
.

Lemma 1. (a) Assume that F(t, u) = 0 has exactly d distinct solutions in the field F(τ ),
including e1 solutions belonging to K

(
((t − τ)1/e1)) conjugate over K

(
(t − τ)), …, er

solutions belonging toK
(
((t − τ)1/er )) conjugate overK

(
(t − τ)), where ei �≡ 0 mod π ,

(2) He used the programme GP/PARI by C. Batut, D. Bernardi, H. Cohen and M. Olivier.
(3) He used the programme MATHEMATICA, version 2.0, Wolfram Research, Inc., Champaign,

Ill., 1991.
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e1 + . . .+ er = d . Then the numerator of t − τ inK(t, x) has the factorization into prime
divisors of the form p

e1
1 · · · perr .

(b) Assume thatF(t, u) = 0 has exactly d distinct solutions in the field F(∞), including
f1 solutions belonging toK

(
(t−1/f1)

)
conjugate overK

(
(t−1)

)
, …, fs solutions belonging

toK
(
(t−1/fs )

)
conjugate overK

(
(t−1)

)
, where fi �≡0 mod π , f1+ . . .+fs = d. Then thec

denominator of t inK(t, x) has the factorization into prime divisors of the form q
f1
1 · · · qfss .

(c) Under the assumptions of (a) and (b) the Galois group of the polynomial F over
K(t) contains permutations of the type (e1, . . . , er ) and (f1, . . . , fs), respectively.

Proof. (a) and (b) are proved in [8], Ch. III, §2 under the assumption that charK = 0
formulated on p. 135. The proof however uses only the assumptions of (a) and (b). One
can compare [5], Ch. IV, §6.

To prove (c) we take e = l.c.m.
1�i�r

ei �≡ 0 mod π and consider the automorphism of the

field K
(
((t − τ)1/e)) given by

(t − τ)1/e → ζe(t − τ)1/e.
The zeros of F belonging toK

(
((t− τ)1/ei )) and conjugate overK

(
(t− τ)) are cyclically

permuted. This shows that the Galois group in question contains a permutation of the type
(e1, . . . , er ). For the type (f1, . . . , fs) the proof is similar. ��

Remark. The proof of (c) is modelled on the proof of a special case given by Turnwald [31].

Lemma 2. Let g be the genus of K(t, x).
(a) If the assumptions of Lemma 1(a) and (b) are satisfied for all τ ∈ K , we have

g = 1

2

∑
τ∈K

r∑
i=1

(ei − 1)+ 1

2

s∑
j=1

(fj − 1)− d + 1.

(b) If the field K(t, x) is rational, g = 0.
(c) If L is a field between K(t) and K(t, x), the genus of L does not exceed g.

Proof. For (a) see [8], Ch. III, §2, formula (36) and §3, formula (8). For (b) see [5], Ch. II,
§2, for (c) see [8], Ch. III, §2, formulae (9) and (10) or [5], Ch. VI, §2, Corollary 2. ��

2. Determination of the range of Tables 1 and 2 (Lemmas 3–27)

In all this section except Lemmas 26 and 27 it is assumed that (m, n) = 1, s(n−m)−
rn = 1, s > 0, r � 0.

Note that the condition π /| nm(n−m) implies π �= 2.

Lemma 3. The algebraic function x(t) defined by the equation

T (x; t r , t s) := xn + t rxm + t s = 0

has just one branch point t1 �= 0,∞ with one two-cycle given by the Puiseux expansions

x(t) = ξ1 ± (t − t1)1/2P11(±(t − t1)1/2), ξ1 �= 0,
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and the remaining expansions

x(t) = P1j (t − t1) (2 � j � n− 1).

Moreover, the branch point 0 has one m-cycle given by the Puiseux expansions

x(t) = ζ 2i+1
2m t(s−r)/mP01(ζ

(2i+1)n
2m t1/m) (0 � i < m)

and one (n−m)-cycle given by the Puiseux expansions

x(t) = ζ 2i+1
2(n−m)t

r/(n−m)P02(ζ
−(2i+1)n
2(n−m) t

1/(n−m)) (0 � i < n−m),
and the branch point ∞ with one n-cycle given by the Puiseux expansions

x(t) = ζ 2i+1
2n ts/nP21(ζ

(2i+1)m
2n t−1/n) (0 � i < n).

Here Pij are ordinary formal power series with Pij (0) �= 0.

Proof. The standard argument gives

t1 =
(
−m
n

)m (−n−m
n

)n−m
, ξ1 =

(
−m
n

)s−r (−n−m
n

)r
,

P11(0) =
( −2ξ2

1

nm(n−m)t1
)1/2

,

n−1∏
j=2

P1j (0) = (−1)n
ts1

ξ2
1

,

P01(0) = P02(0) = P21(0) = 1. ��

Lemma 4. The Galois group of T (x; t r , t s) over K(t) is the symmetric group Sn.

Proof. By Lemmas 1(c) and 3 the Galois group in question contains the following permu-
tations: a transposition, the product of an m-cycle and an (n − m)-cycle, and an n-cycle.
By Theorem 14 of Chapter I of [30] the group is either Sn or imprimitive. We wish to
eliminate the latter possibility.

Assume without loss of generality that m � n − m. By a suitable numbering we can
achieve that the product of two cycles is (1, . . . , m)(m+1, . . . , n). Further letμ, ν2, . . . , νq
be an imprimitivity system containing μ � m with νi � m for i � p exclusively. Since
(m, n) = 1 the group also contains the cycle (m + 1, . . . , n)m. Then according to the
definition of imprimitivity (m+1, . . . , n)m permutes the numbers νp+1, . . . , νq , therefore
{νp+1, . . . , νq} = {m+ 1, . . . , n} or ∅. In the first case, q � n−m+ p > n/2 and since
q |n, we have q = n. In the second case the imprimitivity system is contained in {1, . . . , m}
and since this holds for all μ � m, we have q |m. But (m, n) = 1 gives q = 1. ��

Remark. In the course of the proof we have obtained a generalization of Theorem 20 of
Chapter V of [30] corresponding to m = 1.

Definition 1. Let T (x; t r , t s) =
n∏
i=1
(x − xi(t)). We set

L(k,m, n) = K (t, τ1(x1, . . . , xk), . . . , τk(x1, . . . , xk)) ,

L∗(k,m, n) = K (t, τ1(x1, . . . , xk), . . . , τk(x1, . . . , xk)) ,
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where τj is the j th fundamental symmetric function.

Remark. By Lemma 4 and since

T (x; t r+n−m, ts+n) = tnT
(x
t
; t r , t s

)
,

L(k,m, n) and L∗(k,m, n) are determined by k,m, n up to an isomorphism fixing K(t)
and K(t), respectively.

Lemma 5. In L∗(k,m, n), the numerator of t − t1 has
(
n−2
k−1

)
prime divisors in the second

power and none in the higher ones.

Proof. By Lemma 1(a) the prime divisors of the numerator of t − t1 are in one-to-
one correspondence with the cycles of Puiseux expansions of a generating element of
L∗(k,m, n)/K(t) at t = t1, provided the relevant condition is satisfied. For the gen-

erating element we take y(t) =
k∑
j=1
aj τj (x1, . . . , xk), where a ∈ K is chosen so that

k∑
j=1
aj τj (xi1 , . . . , xik ) =

k∑
j=1
aj τj (x1, . . . , xk) implies {i1, . . . , ik} = {1, . . . , k}. By

Lemma 4 for each set {i1, . . . , ik} ⊂ {1, . . . , n} there is an automorphism of the field
K(x1(t), . . . , xn(t))/K(t) taking x1(t), . . . , xk(t) into xi1(t), . . . , xik (t), respectively.
Then at t = t1 we obtain

(
n
k

)
different expansions for y, including

k∑
j=1

aj
(
(ξ1 + (t − t1)1/2P11((t − t1)1/2))τj−1(P1i1(t − t1), . . . , P1ik−1(t − t1))

+ τj (P1i1(t − t1), . . . , P1ik−1(t − t1))
)
,

where {i1, . . . , ik−1} is any subset of cardinality k−1 of {2, . . . , n−1}. Since the cofactor
of (t − t1)1/2P11

(
(t − t1)1/2

)
equal to

k∑
j=1

aj τj−1(P1i1(t − t1), . . . , P1ik−1(t − t1)) = a
k−1∏
j=1

(1 + aP1ij (t − t1))

is non-zero and π �= 2, we have indeed
(
n−2
k−1

)
prime divisors in the second power in the

numerator of t − t1. All other prime divisors appear in the first power at most. ��

Lemma 6. For every d |n the number of subsets {i1, . . . , ik} of {1, 2, . . . , n} of cardinality
k > 0 such that

{i1 + d, i2 + d, . . . , ik + d} ≡ {i1, i2, . . . , ik} mod n

equals (
d

dk/n

)
if n |dk

and 0 otherwise.
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Proof. To every subset S in question we make correspond the set R of all positive integers
r � d such that there exists an s ∈ S with s ≡ r mod d. The condition S + d ≡ S mod n
implies that for every r ∈ R we have r + id ∈ S mod n for i = 1, . . . , n/d . Since for
r, r ′ ∈ R, r �= r ′ we have r+id �= r ′+i′d it follows that n

d
| k, hence there are no subsetsS in

question if n/| dk. If n |dkwe may choose arbitrarily a subsetR of {1, . . . , d} of cardinality
dk/n and obtain a set S satisfying S+d ≡ S mod n on taking S ≡ R+{0, d, . . . , n−d}.��

Lemma 7. For every d |n the number f (n, k, d) of subsets {i1, . . . , ik} of
{1, 2, . . . , n} of cardinality k > 0 such that

{i1 + δ, i2 + δ, . . . , ik + δ} ≡ {i1, i2, . . . , ik} mod n

holds for δ = d but for no smaller δ, satisfies

f (n, k, d) =

⎧⎪⎨⎪⎩
∑

δ |(d,dk/n)
μ(δ)

(
d/δ
dk/δ
n

)
if n |dk,

0 otherwise.

Proof. By Lemma 6 we have

∑
δ |d
f (n, k, δ) =

⎧⎨⎩
(
d

dk/n

)
if n |dk,

0 otherwise,

and Lemma 7 follows by the Möbius inversion formula. ��

Lemma 8. The denominator of t in L∗(k,m, n) has

1

n

∑
d |(n,k)

ϕ(d)

(
n/d

k/d

)
distinct prime divisors.

Proof. The function y(t) has the following Puiseux expansions at t = ∞:

Q(t; i1, . . . , ik)

=
k∑
j=1

aj τj
(
ζ

2i1+1
2n ts/nP21(ζ

(2i1+1)m
2n t−1/n), . . . , ζ

2ik+1
2n ts/nP21(ζ

(2ik+1)m
2n t−1/n)

)
,

where {i1, . . . , ik} runs through all subsets of {1, . . . , n} of cardinality k. The conjugates
of t1/n over K

(
(t−1/d)

)
, where d |n are ζ den t

1/n, where 0 � e < n/d. Therefore if P is
an ordinary power series the conjugates of P(t−1/n) over K

(
(t−1/d)

)
are P(ζ−den t−1/n),

where 0 � e < n/d . ThereforeQ(t; i1, . . . , ik) ∈ K
(
(t−1/d)

)
if and only if

Q(t; i1, . . . , ik) = Q(t; i1 + ed, . . . , ik + ed) (0 � e < n/d),
hence by the choice of a, if and only if

{i1 + d, . . . , ik + d} ≡ {i1, . . . , ik} mod n.
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Thus

Q(t; i1, . . . , ik) ∈ K
(
(t−1/d)

) \⋃
δ |d
δ<d

K
(
(t−1/δ)

)
if and only if

{i1 + δ, . . . , ik + δ} ≡ {i1, . . . , ik} mod n

for δ = d, but for no smaller δ |d . It follows by Lemma 7 that y(t) has, at t = ∞,
f (n, k, d) expansions belonging to K

(
(t−1/d)

) \ ⋃
δ |d, δ<d

K
(
(t−1/δ)

)
. These expansions

split into cycles of d conjugate expansions each, where n |dk, i.e. d = e n
(n,k)

, e | (n, k).
Hence the number of distinct prime divisors of the denominator of t equals

(1)
(n, k)

n

∑
e |(n,k)

1

e
f

(
n, k,

n

(n, k)
e

)
= (n, k)

n

∑
e |(n,k)

1

e

∑
δ |e
μ(δ)

( n
(n,k)

e
δ

k
(n,k)

e
δ

)

= 1

n

∑
δ′ |(n,k)

(
n/δ′

k/δ′

)
δ′
∑
δ |δ′
μ(δ)

δ
= 1

n

∑
δ′ |(n,k)

ϕ(δ′)
(
n/δ′

k/δ′

)
,

which proves the lemma. ��

Lemma 9. The numerator of t in L∗(k,m, n) has

1

m(n−m)
k∑
l=0

( ∑
d |(m,l)

ϕ(d)

(
m/d

l/d

))( ∑
d |(n−m,k−l)

ϕ(d)

(
(n−m)/d
(k − l)/d

))
distinct prime divisors.

Proof. The function y(t) has the following Puiseux expansions at t = 0:

Q(t; l; i1, . . . , ik) =
k∑
j=1

aj τj
(
ζ

2i1+1
2m t(s−r)/mP01(ζ

(2i1+1)n
2m t1/m),

. . . , ζ
2il+1
2m t(s−r)/mP01(ζ

(2il+1)n
2m t1/m), ζ

2il+1+1
2(n−m) t

r/(n−m)P02(ζ
−(2il+1+1)n
2(n−m) t1/(n−m)),

. . . , ζ
2ik+1
2(n−m)t

r/(n−m)P02(ζ
−(2ik+1)n
2(n−m) t1/(n−m))

)
,

where l runs from 0 to k, {i1, . . . , il} runs through all subsets of {0, 1, . . . , m − 1} of
cardinality l, and {il+1, . . . , ik} runs through all subsets of {0, . . . , n−m−1} of cardinality
k − l.

If P is an ordinary power series, the conjugates of P(t1/m) and P(t1/(n−m)) over
K
(
(t1/dd1)

)
, where d |m, d1 |n−m are P(ζ dem t

1/m) (0 � e < m/d) and P(ζ d1e1
n−mt1/(n−m))

(0 � e1 < (n−m)/d1), respectively. Therefore,

Q(t; l; i1, . . . , ik) ∈ K
(
(t1/dd1)

)
, d |m, d1 |n−m



D10. On reducible trinomials 481

if and only if

Q(t; l; i1, . . . , ik) = Q(t; l; i1 + ed, . . . , il + ed, il+1 + e1d1, . . . , ik + e1d1)

(0 � e < m/d, 0 � e1 < (n−m)/d1) ,

hence by the choice of a, if and only if

{i1, . . . , il} + d ≡ {i1, . . . , il} modm,

{il+1, . . . , ik} + d1 ≡ {il+1, . . . , ik} mod (n−m).
It follows from the definition of the function f in Lemma 7 that y(t) has, at t = 0,
k∑
l=0
f (m, l, d)f (n−m, k − l, d1) expansions belonging to

K
(
(t1/dd1)

) \ ⋃
δ |dd1
δ<dd1

K
(
(t1/δ)

)
, where d |m, d1 |n−m.

These expansions split into cycles of dd1 conjugate expansions each, where m |dl and
n−m |d1(k − l), i.e.

d = e m

(m, l)
, d1 = e1 n−m

(n−m, k − l) .

Hence the number of distinct prime divisors of the numerator of t is

k∑
l=0

(m, l)

m
· (n−m, k − l)

(n−m)
( ∑
e |(m,l)

1

e
f
(
m, l,

m

(m, l)
e
))

×
( ∑
e1 |(n−m,k−l)

1

e1
f
(
n−m, k − l, n−m

(n−m, k − l) e1
))
,

which by the formula (1) equals

1

m(n−m)
k∑
l=0

( ∑
d |(m,l)

ϕ(d)

(
m/d

l/d

))( ∑
d |(n−m,k−l)

ϕ(d)

(
(n−m)/d
(k − l)/d

))
. ��

Lemma 10. The genus g∗(k,m, n) of the field L∗(k,m, n) equals

1

2

(
n− 2

k − 1

)
− 1

2n

∑
d |(n,k)

ϕ(d)

(
n/d

k/d

)

− 1

2m(n−m)
k∑
l=0

( ∑
d |(m,l)

ϕ(d)

(
m/d

l/d

))( ∑
d |(n−m,k−l)

ϕ(d)

(
(n−m)/d
(k − l)/d

))
+ 1.

Proof. By Lemma 3 the only ramification points of y(t) may be t1, 0 and ∞. The lemma
follows now from Lemmas 2(a), 5, 8 and 9. ��
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Lemma 11. For all positive integers a, b, c with a > b and c � 2 we have(
ac

bc

)
� a

4

(
a

b

)(
2c

c

)
.

Proof. We assume without loss of generality that a � 2b. We have

(
ac

bc

)(
a

b

)−1

= cb−1

a−1∏
i=a−b

c−1∏
j=1
(ic + j)

b−1∏
i=0

c−1∏
j=1
(ic + j)

,

(
2c

c

)
= 2

c−1∏
j=1
(c + j)

(c − 1)! .

Hence

(
ac

bc

)(
a

b

)−1(2c

c

)−1

= 1

2
cb−1

c−1∏
j=1

(a − b)c + j
c + j ·

a−1∏
i=a−b+1

c−1∏
j=1
(ic + j)

b−1∏
i=1

c−1∏
j=1
(ic + j)

� 1

2
cb−1 (a − b)c + 1

c + 1
.

If b = 1 the right hand side equals

(a − 1)c + 1

2(c + 1)
� 2(a − 1)+ 1

6
� a

4
.

If b � 2 the right hand side is greater than or equal to

c
ac + 2

4(c + 1)
>
a

4
· c2

c + 1
� a

3
. ��

Lemma 12. We have

S =
∞∑
c=2

cϕ(c)

(
2c

c

)−1

< 7/8.

Proof (following J.-L. Nicolas). We have

S =
6∑
c=2

cϕ(c)

(
2c

c

)−1

+
∞∑
c=7

cϕ(c)

(
2c

c

)−1

= S1 + S2.

Now

S1 = 5821

6930
< 0.84.

Since ϕ(c) � c − 1 and for c � 7

c(c − 1)
(2c
c

)−1

(c + 1)c
(2c+2
c+1

)−1 � 45

16
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we have

S2 � 7 · 6 ·
(

14

7

)−1

· 45

29
< 0.02

and

S = S1 + S2 < 0.86 < 7/8. ��

Lemma 13. For all positive integers n and k we have∑
d |(n,k)

ϕ(d)

(
n/d

k/d

)
�
(

1 + 3.5

n

)(
n

k

)
.

Proof. By Lemma 11 with a = n/d , b = k/d, c = d, for d > 1 we have(
n

k

)
� n

4d

(
n/d

k/d

)(
2d

d

)
,

hence (
n

k

)−1 ∑
d |(n,k)

ϕ(d)

(
n/d

k/d

)
� 1 +

∑
d |(n,k)
d>1

ϕ(d)
4d

n

(
2d

d

)−1

< 1 + 4

n

∑
c�2

cϕ(c)

(
2c

c

)−1

< 1 + 3.5

n
,

c

by virtue of Lemma 12. ��

Lemma 14. We have for n � 2k � 6

(2) g∗(k,m, n) � 1 + 1

2n(n− 1)

(
n

k

)
p(k,m, n),

where

p(k,m, n) = k(n− k)− (n− 1)(n+ 3.5)

n

−

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

n(n+ 2.5)

n− 1
if m = 1, n− 1,

n(n− 1)(n+ 1.5)

(n− 2)2
if m = 2, n− 2,

(n+ 7)(m(n−m)+ 3.5)

m(n−m) if 2 < m < n− 2.

Proof. By Lemma 10,g∗(k,m, n) = g∗(k, n−m, n), thus it is enough to considerm � n/2.
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If m = 1, by Lemmas 10 and 13 we have

g∗(k, 1, n) � 1 + 1

2

(
n− 2

k − 1

)
− 1

2n

(
1 + 3.5

n

)(
n

k

)
− 1

2(n− 1)

1∑
l=0

(
1 + 3.5

n− 1

)(
n− 1

k − l
)

and the right hand side equals the right hand side of (2).
If m = 2, by Lemmas 10 and 13 we have

g∗(k, 2, n) � 1 + 1

2

(
n− 2

k − 1

)
− 1

2n

(
1 + 3.5

n

)(
n

k

)
− 1

4(n− 2)

2∑
l=0

( ∑
d |(2,l)

(
2/d

l/d

))(
1 + 3.5

n− 2

)(
n− 2

k − l
)

� 1 + 1

2

(
n− 2

k − 1

)
− 1

2n

(
1 + 3.5

n

)(
n

k

)
− 1

2(n− 2)

(
1 + 3.5

n− 2

)((
n− 2

k

)
+
(
n− 2

k − 1

)
+
(
n− 2

k − 2

))
� 1 + 1

2

(
n− 2

k − 1

)
− 1

2n

(
1 + 3.5

n

)(
n

k

)
− 1

2(n− 2)

(
1 + 3.5

n− 2

)(
n

k

)
and the right hand side equals the right hand side of (2).

If m � 3, by Lemmas 10 and 13 we have

g∗(k,m, n) � 1 + 1

2

(
n− 2

k − 1

)
− 1

2n

(
1 + 3.5

n

)(
n

k

)
− 1

2m(n−m)
×
{(

1 + 3.5

n−m
)(
n−m
k

)∑
d |m
ϕ(d)

+
k−1∑
l=1

(
1 + 3.5

m

)(
m

l

)(
1 + 3.5

n−m
)(
n−m
k − l

)
+
(

1 + 3.5

m

)(
m

k

) ∑
d |n−m

ϕ(d)

}

= 1 + 1

2

(
n− 2

k − 1

)
− 1

2n

(
1 + 3.5

n

)(
n

k

)
− 1

2m(n−m)
×
{(
m− 1 − 3.5

m

)(
1 + 3.5

n−m
)(
n−m
k

)
+
(

1 + 3.5

m

)(
1 + 3.5

n−m
) k∑
l=0

(
m

l

)(
n−m
k − l

)
+
(
n−m− 1 − 3.5

n−m
)(

1 + 3.5

m

)(
m

k

)}
.
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Now we use the identity

k∑
l=0

(
m

l

)(
n−m
k − l

)
=
(
n

k

)
and the inequalities

m− 1 − 3.5

m
> 0,

(
n−m
k

)
� (n−m)(n−m− 1)

n(n− 1)

(
n

k

)
,

n−m− 1 − 3.5

n−m > 0,

(
m

k

)
� m(m− 1)

n(n− 1)

(
n

k

)
and we obtain

g∗(k,m, n) � 1 + 1

2

(
n− 2

k − 1

)
− 1

2

(
n

k

){
1

n

(
1 + 3.5

n

)
+
(
m− 1 − 3.5

m

)(
1 + 3.5

n−m
)
(n−m)(n−m− 1)

n(n− 1)

+
(

1 + 3.5

m

)(
1 + 3.5

n−m
)

+
(
n−m− 1 − 3.5

n−m
)(

1 + 3.5

m

)
m(m− 1)

n(n− 1)

}
.

The right hand side of this inequality coincides with the right hand side of (2). ��

Lemma 15. We have g∗(k,m, n) � n/24 for all integers n,m and k satisfying
n � 2m > 0, (n,m) = 1 and n � 2k � 6 except for k = 3 and 〈n,m〉 = 〈6, 1〉 or
〈7, 1〉. Moreover, g∗(k,m, n) = 1 if and only if either k = 3 and 〈n,m〉 = 〈7, 2〉, 〈7, 3〉,
〈8, 1〉 or 〈9, 1〉, or k = 4 and 〈n,m〉 = 〈8, 1〉.

Proof. For k = 3, n � 20, for k = 4, n � 13, and for k = 5, n � 12 the lemma is proved
by direct calculation of g∗(k,m, n) from Lemma 10 kindly performed by J.-L. Nicolas. If
m = 1 we have

p(k, 1, n) = (k − 2)n− k2 − 6 − 3.5

n(n− 1)
> (k − 2)n− k2 − 7.

We obtain p(3, 1, n) > 5 for n � 21; p(4, 1, n) > 4 for n � 14; p(5, 1, n) > 7 for
n � 13. For k � 6, n � 2k we obtain p(k, 1, n) > k2 − 4k − 7 � 5.

If m = 2 we have

p(k, 2, n) = (k − 2)n− k2 − 7 − 9n2 − 4n− 14

n(n− 2)2
.

We obtain p(3, 2, n) > 4 for n � 21; p(4, 2, n) > 4 for n � 14; p(5, 2, n) > 4 for
n � 13; and p(k, 2, n) > k2 − 4k − 9 � 3 for k � 6, n � 2k.

If m � 3 we have

p(k,m, n) � (k − 2)n− k2 − 32

3
− 49n+ 63

6n(n− 3)
.
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This gives p(3,m, n) > 0.8 for n � 21; p(4,m, n) > 0.5 for n � 14; p(5,m, n) > 2 for
n � 13; and p(k,m, n) > k2 − 4k − 11.7 � 0.3 for k � 6, n � 2k.

The lemma follows now from (2). ��

Lemma 16. Let T (x; t r , t s) =
n∏
i=1
(x − xi(t)). In the field K(t, x1(t), x2(t)) we have the

factorizations

t ∼=

m−1∏
i=1

pmi

n−m−1∏
j=1

qn−mj rm(n−m)sm(n−m)

n−1∏
k=1

tnk

,

x1(t) =

m−1∏
i=1

ps−ri
n−m−1∏
j=1

qrj r
(s−r)(n−m)srm

n−1∏
k=1

tsk

,

x2(t) =

m−1∏
i=1

ps−ri
n−m−1∏
j=1

qrj r
rms(s−r)(n−m)

n−1∏
k=1

tsk

,

where pi , qj , r, s, tk (1 � i < m, 1 < j < n−m, 1 � k < n) are distinct prime divisors.
For t1 defined in Lemma 3 the numerator of t − t1 has (n− 2)(n− 3) prime factors in the
first power only, the remaining factors are double.

Proof. By Lemma 1(a), (b) the prime divisors of the numerator or the denominator of t− c
are in one-to-one correspondence with the cycles of the Puiseux expansions of a generating
element ofK(t, x1(t), x2(t))/K(t) at t = c or at t = ∞, respectively provided the relevant
conditions are satisfied. For the generating element we take y(t) = ax1(t)+bx2(t), where
a, b ∈ K are chosen so that for all i � n, j � n, i �= j we have either axi(t)+ bxj (t) �=
ax1(t) + bx2(t) or 〈i, j〉 = 〈1, 2〉. By Lemma 4 for each pair 〈i, j〉 with i � n, j � n,
i �= j there is an automorphism of the extensionK(t, x1(t), . . . , xn(t))/K(t) taking x1(t),
x2(t) into xi(t), xj (t), respectively. At t = 0 we obtain for y(t) the expansions

aζ 2i+1
2m t(s−r)/mP01(ζ

(2i+1)n
2m t1/m)+ bζ 2j+1

2m t(s−r)/mP01(ζ
(2j+1)n
2m t1/m)

(0 � i < m, 0 � j < m, i �= j),

aζ 2i+1
2m t(s−r)/mP01(ζ

(2i+1)n
2m t1/m)+ bζ 2j+1

2(n−m)t
r/(n−m)P02(ζ

−(2j+1)n
2(n−m) t1/(n−m))

(0 � i < m, 0 � j < n−m),

aζ 2i+1
2(n−m)t

r/(n−m)P02(ζ
−(2i+1)n
2(n−m) t

1/(n−m))+ bζ 2j+1
2m t(s−r)/mP01(ζ

−(2j+1)n
2m t1/m)

(0 � i < n−m, 0 � j < m),
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aζ 2i+1
2(n−m)t

r/(n−m)P02(ζ
−(2i+1)n
2(n−m) t

1/(n−m))

+ bζ 2j+1
2(n−m)t

r/(n−m)P02(ζ
−(2j+1)n
2(n−m) t1/(n−m))

(0 � i < n−m, 0 � j < n−m, i �= j).
The m(m − 1) expansions of the first set form m − 1 m-cycles corresponding to the

divisors p1, . . . , pm−1, which divide the numerators of x1(t), x2(t) in exactly the (s− r)th
power. Them(n−m) expansions of the second set form onem(n−m)-cycle corresponding
to the divisor r which divides x1(t) in the (s − r)(n − m)th power and x2(t) in the rmth
power.

The m(n − m) expansions of the third set form one m(n − m)-cycle corresponding
to the divisor s which divides x1(t) in the rmth power and x2(t) in the (s − r)(n−m)th
power. The (n−m)(n−m−1) expansions of the fourth set form n−m−1 (n−m)-cycles
corresponding to divisors q1, . . . , qn−m−1 which divide the numerators of x1(t), x2(t) in
exactly rth power.

Since x1(t) = 0 implies t = 0 we have found all factors of the numerator of x1(t) and
similarly of x2(t).

At t = ∞ we obtain for y(t) the expansions

aζ 2i+1
2n ts/nP21(ζ

(2i+1)m
2n t−1/n)+ bζ 2j+1

2n ts/nP21(ζ
(2j+1)m
2n t−1/n)

(0 � i < n, 0 � j < n, i �= j),
which form n− 1 n-cycles corresponding to the divisors t1, . . . , tn−1 dividing the denom-
inator of x1(t) and of x2(t) in exactly the sth power.

Since x1(t) = ∞ implies t = ∞ we have found all factors of the denominator of x1(t)

and similarly of x2(t).
At t = t1 we obtain for y(t) among others the expansions

aP1i (t − t1)+ bP1j (t − t1) (2 � i < n, 2 � j < n, i �= j)
which form (n− 2)(n− 3) 1-cycles corresponding to (n− 2)(n− 3) simple factors of the
numerator of t − t1. All the remaining expansions contain (t − t1)1/2. ��

Lemma 17. For all primes p,

p
√
t �∈ K (t, x1(t), . . . , xn(t)) = Ω.

Proof. The argument used in the proof of Lemma 16 applied to the field Ω gives that
the multiplicity of every prime divisor of the numerator and the denominator of t divides
m(n−m) and n, respectively. Since (m, n) = 1 we cannot have t = γ p, γ ∈ Ω . ��

Lemma 18. For every positive integer q prime to s, q �≡ 0 mod π , and every choice of
q-th roots we have[

K
(
t,

q
√
x1(t), . . . ,

q
√
xn(t)

) : K(t, x1(t), . . . , xn(t)
)] = qn.
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Proof. By Theorem 1 of [25] it is enough to prove that for every prime p |q,

(3)
n∏
j=1

x
αj
j = γ p, γ ∈ Ω = K(t, x1(t), . . . , xn(t)

)
implies αj ≡ 0 mod p for all j � n. Assume that (3) holds, but say α1 �≡ 0 mod p.

If for all j we have αj ≡ α1 mod p it follows from (3) that( n∏
j=1

xj

)α1 = γ ′p, γ ′ ∈ Ω,

and since
n∏
j=1
xj = (−1)nts where sα1 �≡ 0 mod p we obtain p

√
t ∈ Ω , contrary to

Lemma 17. Therefore, there exists an i � n such that αi �≡ α1 mod p. If i �= 2, by
Lemma 4 there exist automorphisms σ and τ ofΩ/K(t) such that σ(x2) = xi , σ(xi) = x2
and τ(x1) = x2, τ(x2) = xi , τ(xi) = x1. Applying σ and τ to (3) we obtain

x
α1
1 x

αi
2 x

α2
i

n∏
j �=1,2,i

x
αj
j = (γ σ )p,

x
αi
1 x

α1
2 x

α2
i

n∏
j �=1,2,i

x
αj
j = (γ τ )p,

hence on division (
x1

x2

)α1−αi
=
(
γ σ

γ τ

)p
= γ ′p, γ ′ ∈ Ω∗.

If i = 2 the same relation follows more simply on taking τ(x1) = x2, τ(x2) = x1. Since
α1 − αi �≡ 0 mod p we have 1 = a(α1 − αi)+ bp, a, b ∈ Z, hence

(4)
(x1

x2

)
=
(
γ ′a
(x1

x2

)b)p = δp, δ ∈ Ω∗.

The extensionK(t, x1, x2, δ)/K(t, x1, x2) is a normal subextension ofΩ/K(t, x1, x2)c

and since the latter has the symmetric Galois group, we have either δ ∈ K(t, x1, x2) or

δ ∈ K
(
t, x1, x2,

n∏
μ,ν=3
ν>μ

(xν − xμ)
)
.

Since the conjugates of δwith respect toK(t, x1, x2) are ζ jpδ, we have either δ∈K(t, x1, x2)

or p = 2 and δ = ε
n∏

μ,ν=3
ν>μ

(xν − xμ), ε ∈ K(t, x1, x2).

In the former case we compare the divisors on both sides of (4) and obtain by Lemma 16

δp ∼= r

s
,

a contradiction.
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In the latter case we have

δ = ε
n∏

μ,ν=1
ν>μ

(xν − xμ) · x1 − x2∏
ν>1
(xν − x1) · ∏

ν �=2
(xν − x2)

= η
n∏

μ,ν=1
ν>μ

(xν − xμ),

η ∈ K(t, x1, x2),

hence by (4)

x1

x2
= η2 discx T (x; t r , t s) = const η2t s(n−1)−1(t − t1).

By Lemma 16 t− t1 has at least one simple factor for n > 3, which occurs with a non-zero
exponent on the right hand side, but not on the left, a contradiction. For n = 3 the divisor
of the right hand side is a square, while that of the left hand side is not, a contradiction
again. ��

Lemma 19. Let n > 2, q �≡ 0 mod π , q � 2, yqiq = xi(t) (1 � i � n). Then[
K

(
t,
( n∑
i=1

yiq

)q) : K(t)
]
= qn−1.

Proof. Suppose first that (q, s) = 1. By Lemmas 4 and 18 all isomorphic injections of the
extension K(t, y1q, . . . , ynq)/K(t) into K(t)/K(t) are given by

(5) yiq → ζ αiq yσ(i)q (1 � i � n)

where σ is a permutation of {1, 2, . . . , n} and

(6) [α1, . . . , αn] ∈ (Z/qZ)n.

We shall show that there are exactly qn−1 distinct images of
( n∑
i=1
yiq
)q under transforma-

tions (5). Indeed if we apply (5) with σ(i) = i to
( n∑
i=1
yiq
)q we obtain

( n∑
i=1

ζ αiq yiq

)q
.

If this were equal to
( n∑
i=1
ζ
βi
q yiq

)q , for a vector [β1, . . . , βn] ∈ (Z/qZ)n with βj − β1 �=
αj − α1 for a certain j , we should obtain

y1q ∈ K(y2q, . . . , ynq) or yjq ∈ K(y1q, . . . , yj−1,q , yj+1,q , . . . , ynq),

contrary to Lemma 18. Thus the number of distinct images is at least equal to the number of

vectors satisfying (6) with α1 = 0, thus to qn−1. On the other hand,
( n∑
i=1
yiq
)q is invariant

c

under transformations (5) with α1 = α2 = . . . = αn, which form a group, hence the
number in question does not exceed qn−1.
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Suppose now that (q, s) �= 1. Taking an integer solution σ = s1, � = r1 of the equation
σ(n−m)− �n = 1 that satisfies (q, s1) = 1 we have

T (x; t r , t s) = t s−s1T
( x

t(s−s1)/n
; t r1 , ts1

)
,

hence if T (x; t r1 , ts1) =
n∏
i=1
(x − xi(t)) one can renumber the xi(t) so that

(
t (s1−s)/nqyiq

)q = xi(t).
Therefore, by the already proved case of the lemma[

K
(
t,
( n∑
i=1

t (s1−s)/nqyiq
)q) : K(t)] = qn−1

and the lemma follows in full generality. ��

Definition 2. Let q �≡ 0 mod π and yqiq = xi(t), where xi(t) are defined in Lemma 16.
We set

M(m, n, q) = K
(
t,
( n∑
i=1

yiq

)q)
, M∗(m, n, q) = K

(
t,
( n∑
i=1

yiq

)q)
.

Remark. By Lemma 19 and the final argument in its proof M(m, n, q) and M∗(m, n, q)
are determined bym, n, q up to an isomorphism which fixesK(t) andK(t), respectively.

Lemma 20. For n > 2 and (q, 2) = 1 or (q, s) = 1 the numerator of t − t1 has in
M∗(m, n, q) (qn−1 − qn−2)/2 factors in the second power.

Proof. Let us fix

y1q =
(
ξ1 + (t − t1)1/2P11((t − t1)1/2)

)1/q
,

y2q =
(
ξ1 − (t − t1)1/2P11(−(t − t1)1/2)

)1/q
,

so that

y1q + y2q ∈ K
(
(t − t1)

)
,(7)

(y1q − y2q)(t − t1)1/2 ∈ K((t − t1))(8)

and

(9) yjq =
(
Pi,j−1(t − t1)

)1/q ∈ K((t − t1)) (2 < j � n)

in an arbitrary way. Using Lemma 3 we obtain for
( n∑
i=1
yiq
)q the following Puiseux ex-

pansions at t = t1:(
y1q + ζ i2q y2q +

n∑
j=3

ζ
ij
q yjq

)q
, [i2, . . . , in] ∈ (Z/qZ)n−1.
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If such an expansion belongs to K
(
(t − t1)

)
then either

y1q + ζ i2q y2q +
n∑
j=3

ζ
ij
q yjq ∈ K

(
(t − t1)

)
or

2 |q and
(
y1q + ζ i2q y2q +

n∑
j=3

ζ
ij
q yjq

)
(t − t1)−1/2 ∈ K((t − t1)).

In the first case, by (7) and (9),

(1 − ζ i2q )y1q ∈ K
(
(t − t1)

)
and since P11(0) �= 0, i2 = 0.

In the second case, by (8),(
1 + ζ i2q

2
(y1q + y2q)+

n∑
j=3

ζ
ij
q yjq

)
(t − t1)−1/2 ∈ K((t − t1))

and since

1 + ζ i2q
2

(y1q + y2q)+
n∑
j=3

ζ
ij
q yjq ∈ K

(
(t − t1)

)
by (7) and (9), we obtain

1 + ζ i2q
2

(y1q + y2q)+
n∑
j=3

ζ
ij
q yjq = 0,

which contradicts Lemma 18 unless (s, q) > 1.

Therefore if (q, 2)=1 or (q, s)=1 we obtain qn−1 − qn−2 expansions for
( n∑
i=1
yiq
)q

belonging toK
(
((t − t1)1/2)

)\K((t − t1)), which correspond to (qn−1−qn−2)/2 distinct
prime divisors of the numerator of t − t1 inM∗(m, n, q). ��

Lemma 21. For every positive integer l the number of vectors [i1, . . . , il] ∈ (Z/qZ)l such
that

(10)
l∑
j=1

ζ
ij
q ζ

j−1
ql = 0

does not exceed ql−ϕ(lq)/ϕ(q).

Proof. We have [
Q(ζql) : Q(ζq)

] = ϕ(lq)

ϕ(q)
= �,



492 D. Polynomials in one variable

hence ζlq has ρ conjugates over Q(ζq). Let them be ζ rklq (k � ρ). It follows from (10) that

l∑
j=1

ζ
ij
q ζ

(j−1)rk
ql = 0

and since

det
(
ζ
(j−1)rk
ql

)
j,k�ρ =

ρ∏
μ,ν=1
ν>μ

(
ζ
rν
ql − ζ rμql

) �= 0

ζ
ij
q (j � ρ) are determined by ζ

ij
q (ρ < j � l), which gives the lemma. ��

Lemma 22. The denominator of t inM∗(m, n, q) has at most

qn−1
(1

n
+ n− 1

nqϕ(nq)/ϕ(q)

)
distinct prime divisors.

Proof. By Lemma 1(b) the prime divisors of the denominator of t correspond to the cycles

of the Puiseux expansions of
( n∑
i=1
yiq
)q at t = ∞, provided the relevant condition is

satisfied. By Lemma 3 we obtain for
( n∑
i=1
yiq
)q the following expansions at t = ∞:

(11)
( n∑
j=1

ζ
ij
q ζ

2j−1
2qn t

s/qnP21(ζ
(2j−1)m
n t−1/n)1/q

)q
where [i1, . . . , in] ∈ (Z/qZ)n, i1 = 0. Note that qn �≡ 0 mod π .

Let S be the set of vectors [i2, . . . , in] ∈ (Z/qZ)n−1 such that

1 +
n∑
j=2

ζ
ij
q ζ

j−1
qn = 0.

By Lemma 21 with l = n,

(12) card S � qn−ϕ(qn)/ϕ(q)−1.

If [i2, . . . , in] /∈ S the coefficient of t s/n in the expansion (11) equals

ζ2n

(
1 +

n∑
j=2

ζ
ij
q ζ

j−1
qn

)q
P21(0) �= 0,

hence we obtain an n-cycle. The number of cycles thus obtained is 1
n
(qn−1 − card S). The

number of the remaining cycles does not exceed card S. Therefore the total number of
cycles does not exceed

1

n
(qn−1 − card S)+ card S = qn−1

n
+
(

1 − 1

n

)
card S � qn−1

n

(
1 + n− 1

qϕ(qn)/ϕ(q)

)
c

by (12). ��



D10. On reducible trinomials 493

Lemma 23. The numerator of t inM∗(m, n, q) has at most

qn−2

m(n−m)
(

1 + m− 1

qϕ(mq)/ϕ(q)

)(
1 + n−m− 1

qϕ((n−m)q)/ϕ(q)

)
distinct prime divisors.

Proof. By Lemma 1(a) the prime divisors of the numerator of t correspond to the cycles of

the Puiseux expansions of
( n∑
i=1
yiq
)q at t = 0, provided the relevant condition is satisfied.

By Lemma 3 we obtain the following expansions

(13)
( m∑
j=1

ζ
ij
q ζ

2j−1
2mq t

(s−r)/qmP01(ζ
(2j−1)n
2m t1/m)1/q

+
n∑

j=m+1

ζ
ij
q ζ

2j−1
2(n−m)q t

r/q(n−m)P02(ζ
−(2j−1)n
2(n−m) t1/n−m)1/q

)q
,

where [i1, . . . , in] ∈ (Z/qZ)n, i1 = 0. Note that qm(n−m) �≡ 0 mod π .
Let S be the set of vectors [i2, . . . , im] ∈ (Z/qZ)m−1 such that

1 +
m∑
j=2

ζ
ij
q ζ

j−1
qm = 0

and T the set of vectors [im+1, . . . , in] ∈ (Z/qZ)n−m such that
n∑

j=m+1

ζ
ij
q ζ

j−1
q(n−m) = 0.

By Lemma 21,

card S � qm−ϕ(qm)/ϕ(q)−1, card T � qn−m−ϕ(q(n−m))/ϕ(q).
If [i2, . . . , im] /∈ S and [im+1, . . . , in] /∈ T the least two powers of t occurring with
non-zero coefficients in the (outer) parentheses in (13) are

t (s−r)/qm and t r/q(n−m).

Hence the expansion (13) contains with non-zero coefficients

t (s−r)/qm+(q−s)r/q(n−m) and t (q−1)(s−r)/qm+r/q(n−m).

The least common denominator of the two exponents is qm(n−m), hence we obtain

(qm−1 − card S)(qn−m − card T )

qm(n−m)
qm(n−m)-cycles.

If [i2, . . . , im] /∈ S and [im+1, . . . , in] ∈ T the least powers of t occurring with non-zero
coefficients in the parentheses of (13) are

t (s−r)/qm, t(s−r)/qm+μ/m, and t r/q(n−m)+ν/(n−m)
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for some positive integers μ ∈ M (M may be empty) and a positive integer ν satisfying

s − r
qm

+ μ

m
<

r

q(n−m) +
ν

n−m (μ ∈ M).
Hence the expansion (13) contains with non-zero coefficients

t (s−r)/m and t (q−1)(s−r)/qm+r/q(n−m)+ν/(n−m).

Indeed, if we had for some nonnegative integers aμ (μ ∈ M ∪ {0})c ∑
μ∈M∪{0}

aμ = q,
∑

μ∈M∪{0}
aμ

( s − r
qm

+ μ

m

)
= (q − 1)(s − r)

qm
+ r

q(n−m) +
ν

n−m ,

it would follow from the second equation

(n−m)(s − r)
∑

μ∈M∪{0}
aμ ≡ −(n−m)(s − r)+ rm ≡ −1 mod q,

contrary to the first equation.
The least common denominator of the two exponents is divisible by[

m,
mq

(m, q − 1)

]
= m2q

(m2, m(q − 1),mq)
= mq,

hence we obtain at most
(qm − card S) card T

qm

qm-cycles.
If [i2, . . . , im] ∈ S and [im+1, . . . , in] /∈ T the least powers of t occurring with non-zero

coefficients in the parentheses of (13) are

t (s−r)/qm+μ/m, tr/q(n−m) and t r/q(n−m)+ν/(n−m)

for a positive integer μ and some positive integers ν ∈ N (N may be empty), satisfying

r

q(n−m) +
ν

n−m <
s − r
qm

+ μ

m
(ν ∈ N).

By an argument similar to the one above the expansion (13) contains with non-zero coef-c

ficients

t r/(n−m) and t (q−1)r/q(n−m)+(s−r)/qm.

The least common denominator of the two exponents is divisible by[
n−m, (n−m)q

(n−m, q − 1)

]
= (n−m)2q(
(n−m)2, (n−m)(q − 1), (n−m)q) = (n−m)q,

hence we obtain at most
card S(qn−m − card T )

q(n−m)
q(n−m)-cycles.
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Finally if [i2, . . . , im] ∈ S and [im+1, . . . , in] ∈ T the least powers of t occurring in
the parentheses in (13) with non-zero coefficients are either

t (s−r)/qm+μ/m (μ ∈ M), tr/q(n−m)+ν/(n−m)

or

t (s−r)/qm+μ/m, tr/q(n−m)+ν/(n−m) (ν ∈ N),
where the setsM and N are non-empty and

s − r
qm

+ μ

m
<

r

q(n−m) +
ν

n−m (μ ∈ M)
or

r

q(n−m) +
ν

n−m <
s − r
qm

+ μ

m
(ν ∈ N),

respectively. In view of symmetry it suffices to consider the first case. Then, by an argument
similar to the one above, the expansion (13) contains with a non-zero coefficientc

t (q−1)(s−r)/qm+(q−1)μ/m+ν/q(n−m)+ν/m.

Since the exponent in its reduced form has q in the denominator we obtain at most

card S card T

q

q-cycles. Therefore the total number of distinct cycles does not exceed

(qm−1 − card S)(qn−m − card T )

qm(n−m) + (q
m−1 − card S) card T

qm

+ card S(qn−m − card T )

q(n−m) + card S · card T

q

= qn−1

qm(n−m) + card S

(
qn−m

q(n−m) −
qn−m

qm(n−m)
)

+ card T

(
qm−1

qm
− qm−1

qm(n−m)
)

+ card S card T

(
1

qm(n−m) −
1

qm
− 1

q(n−m) +
1

q

)
.

Since the coefficients are non-negative we can apply Lemma 21 and obtain the desired
estimate for the number of distinct cycles. ��

Lemma 24. For all positive integers l and q with q � 2 we have

qϕ(ql)/ϕ(q) � q(l − 1).

Proof (following J.-L. Nicolas). We observe first that

ϕ(l) � l log 2

log 2l
.
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Indeed, if l has k distinct prime factors p1, . . . , pk we have l � 2k , and so k � log l/ log 2 .
Hence

ϕ(l)

l
=

k∏
i=1

(
1 − 1

pi

)
�

k∏
i=1

(
1 − 1

i + 1

)
= 1

k + 1
� log 2

log 2l
.

Suppose now that

qϕ(ql)/ϕ(q) < q(l − 1).

Since ϕ(ql) � ϕ(q)ϕ(l) we obtain

2ϕ(l)−1 � qϕ(l)−1 < l − 1

and thus

l log 2

log 2l
� ϕ(l) < log(l − 1)

log 2
+ 1 <

log 2l

log 2
.

However, for all x > 0, log x = 4 log 4
√
x � (4/e) 4

√
x. Hence

l <
( log 2l

log 2

)2
�
( 4

e log 2

)2√
2l,

and thus

l < 2
( 4

e log 2

)4
< 41.

Since l > 2, ϕ(l) > 1 and

q < (l − 1)1/(ϕ(l)−1)

we find that either l ∈ {4, 6, 10, 12}, q = 2 or l = 6, q ∈ {3, 4}. In each of the six cases
we have

qϕ(ql)/ϕ(q) � q(l − 1),

which proves the lemma. ��

Lemma 25. For all positive integersm,n and q wheren > 2m, (m, n) = 1, qnm(n−m) �≡
0 mod π and q � 2 the genus g∗(m, n, q) ofM∗(m, n, q) is greater than nq/24 unless

(14) 〈q, n,m〉 ∈ {〈2, 3, 1〉, 〈2, 4, 1〉, 〈2, 5, 1〉, 〈2, 5, 2〉, 〈2, 6, 1〉, 〈3, 3, 1〉, 〈3, 4, 1〉,
〈4, 3, 1〉, 〈5, 3, 1〉},

and is greater than 1 unless (14) holds or

(15) 〈q, n,m〉 ∈ {〈2, 7, 1〉, 〈6, 3, 1〉, 〈7, 3, 1〉}.
If (14) or (15) holds and 〈q, n,m〉 �= 〈6, 3, 1〉 we have g∗(m, n, q) = 0 or 1, respectively.

Proof. By Lemma 2(a) and by Lemmas 21–23 together with Remark after Definition 2 we
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have

(16) g∗(m, n, q) � 1 + q
n−2

2

(
q − 1

2
− q
n

(
1 + n− 1

qϕ(qn)/ϕ(q)

)
− 1

m(n−m)
(

1 + m− 1

qϕ(qm)/ϕ(q)

)(
1 + n−m− 1

qϕ(q(n−m))/ϕ(q)
))
.

Hence by Lemma 24,

g∗(m, n, q) � 1 + q
n−2

2
γ (q, n,m),

where

γ (q, n,m) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
q − 1

2
− q + 1

n
− 1

n− 1

(
1 + 1

q

)
if m = 1,

q − 1

2
− q + 1

n
− 1

m(n−m)
(

1 + 1

q

)2

otherwise.

It is easy to check using (16) that the lemma holds if

(17) 〈q, n,m〉 ∈ {〈2, 7, 2〉, 〈2, 7, 3〉, 〈2, 8, 1〉, 〈2, 8, 3〉, 〈2, 9, 1〉, 〈3, 5, 1〉,
〈3, 5, 2〉, 〈4, 4, 1〉, 〈5, 4, 1〉, 〈8, 3, 1〉}.

If 〈q, n,m〉 satisfies neither (14) nor (15) nor (17) we have one of the following cases:

q = 2, m = 1, n � 10, γ (q, n,m) � 1/30,

g∗(m, n, q) � 1 + 2n−2

60
>
n

12
;

q = 2, m � 2, n � 9, γ (q, n,m) � 1/168,

g∗(m, n, q) � 1 + 2n−2

336
>
n

12
;

q = 3, m = 1, n � 6, γ (q, n,m) � 1/15 ,

g∗(m, n, q) � 1 + 2n−2

30
>
n

8
;

q = 3, m �= 2, n � 7, γ (q, n,m) � 1/4 ,

g∗(m, n, q) � 1 + 2n−2

8
>
n

8
;

q ∈ {4, 5}, n � 5, γ (q, n,m) � 1/5 ,

g∗(m, n, q) � 1 + 2n−2

10
>

5n

24
;
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q ∈ {6, 7, 8}, n � 4, γ (q, n,m) � 1/3 ,

g∗(m, n, q) � 1 + 2n−2

6
>
n

3
;

q � 9, n � 3, γ (q, n,m) = (q2 − 8q − 3)/6q ,

g∗(m, n, q) � 1 + q
n−3

12
(q2 − 8q − 3) >

qn

24
.

The last assertion of the lemma is proved by a direct use of the Lemma 2(a). ��

Lemma 26. Let n � 2m and A,B ∈ K(y)∗, A−nBn−m /∈ K . Then xn + Axm + B is
reducible over K(y) if and only if one of the following cases holds:
(18) xn1 + Axm1 + B has a proper linear or quadratic factor over K(y).
(19) There exists an integer l such that〈n

l
,
m

l

〉
:= 〈ν, μ〉 ∈ S0 :=

⋃
p prime

{〈2p, p〉} ∪ {〈6, 1〉, 〈6, 2〉, 〈7, 1〉,

〈8, 2〉, 〈8, 4〉, 〈9, 3〉, 〈10, 2〉, 〈10, 4〉, 〈12, 2〉, 〈12, 3〉, 〈12, 4〉, 〈15, 5〉}
and xν + Axμ + B is reducible over K(y).

Proof. The sufficiency is obvious. We proceed to prove the necessity.
If xn+Axm+B is reducible overK(y) then by Capelli’s lemma (see e.g. [18], p. 662,

or [26], p. 89) either

(20) xn1 + Axm1 + B is reducible over K(y)

or

(21) x(m,n) − ξ is reducible over K(y, ξ), where ξ is a zero of xn1 + Axm1 + B.

In the former case either (18) holds or xn1 +Axm1 +B has a factor of degree k, where
n � 2k � 6. In this case let us choose non-negative integers r and s such that

s(n1 −m1)− rn1 = 1.

We have

(22) A−n1sBn1r (xn1 + Axm1 + B)
= (A−sBrx)n1 + (A−n1Bn1−m1)r (A−sBrx)m1 + (A−n1Bn1−m1)s,

hence xn1 +(A−n1Bn1−m1)rxm1 +(A−n1Bn1−m1)s also has a factor of degree k overK(y).
Therefore the fieldL∗(k,m1, n1) defined in Definition 1 is a rational function field and

by Lemma 2(b), g∗(k,m1, n1) = 0. It follows by Lemma 15 that k = 3 and 〈n1,m1〉 =
〈6, 1〉 or 〈7, 1〉, hence (19) holds with l = (m, n) and 〈ν, μ〉 = 〈6, 1〉 or 〈7, 1〉.

Assume now that we have (21), but not (20). It follows by Capelli’s theorem that either

(23) ξ = ηp, where p is a prime, p | (m, n), η ∈ K(y, ξ)
or

(24) ξ = −4η4, where 4 | (m, n), η ∈ K(y, ξ).c
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If (23) or (24) holds then xpn1 +Axpm1 +B or x4n1 +Ax4m1 +B, respectively, is reducible
over K(y). Let

xn1 + t rxm1 + t s =
n1∏
i=1

(x − xi), y
q
iq = xi.

It follows from (22) that if t = A−n1Bn1−m1 one can take

q = p, yiq = (A−sBr)1/pηi if (23) holds,

q = 4, yiq = (A−sBr)1/4(1 + ζ4)ηi if (24) holds,

where ηi are the conjugates of η overK(y). Hence the fieldM∗(m1, n1, q) = K(t, (y1q +
. . .+ yn1q)

q) is parameterized as follows:

t = A−n1Bn1−m1 ,

(y1q + . . .+ yn1q)
q =
{
A−sBr(η1 + . . .+ ηn1)

p if (23) holds,

−4A−sBr(η1 + . . .+ ηn1)
4 if (24) holds.c

It follows by Lemma 2(b) thatg∗(m1, n1, q) = 0 and by Lemma 25 either 〈n1,m1〉 = 〈2, 1〉
or

〈q, n1,m1〉 ∈ {〈2, 3, 1〉, 〈2, 4, 1〉, 〈2, 5, 1〉, 〈2, 5, 2〉, 〈2, 6, 1〉,
〈3, 3, 1〉, 〈3, 4, 1〉, 〈4, 3, 1〉, 〈5, 3, 1〉}.

In the former case (19) holds, with 〈ν, μ〉 = 〈2p, p〉, l = (m, n)/p or 〈ν, μ〉 = 〈8, 4〉,
l = (m, n)/4. In the latter case (19) holds with 〈ν, μ〉 = 〈n1q,m1q〉, l = (m, n)/q. ��

Lemma 27. Let n > 2m, L be a finite separable extension of K(y1) with KL of genusc

g > 0, and A, B ∈ L∗, A−nBn−m /∈ K . The trinomial xn + Axm + B is reducible over
L if and only if either

(25) xn1 + Axm1 + B has a proper linear or quadratic factor over L

or there exists an integer l such that

(26)
〈n
l
,
m

l

〉
:= 〈ν, μ〉 ∈ Z2, ν < 24g and xν + Axμ + B is reducible over L.

If g = 1 the latter condition can be made more precise as follows: there exists an
integer l such that

(27)
〈n
l
,
m

l

〉
:= 〈ν, μ〉 ∈ S0 ∪ S1,

xν + Axμ + B is reducible over L and for 〈ν, μ〉 = 〈9, 1〉 it has a cubic factor over L.

Proof. The sufficiency of the condition is obvious. The proof of the necessity is similar to
that of Lemma 26.

If xn + Axm + B is reducible over L then either

(28) xn1 + Axm1 + B is reducible over L
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or

(29) x(m,n) − ξ is reducible over L(ξ), where ξ is a zero of xn1 + Axm1 + B.

In the former case either (25) holds orxn1+Axm1+B has a factor of degree k, wheren �
2k � 6. In this case we infer from (22) that xn1 + (A−n1Bn1−m1)rxm1 + (A−n1Bn1−m1)s

has a factor of degree k over L. Therefore the field L∗(k,m1, n1) defined in Definition 1
is isomorphic to a subfield of KL and by Lemma 2(c), g∗(k,m1, n1) � g.

It follows by Lemma 15 that n1 < 24g and if g = 1 then 〈n1,m1〉 ∈ S0 ∪ S1 with the
proviso that for 〈n1,m1〉 = 〈9, 1〉we have k = 3, hence (26) and (27) hold with l = (m, n)
and 〈ν, μ〉 = 〈6, 1〉, 〈7, 1〉, 〈8, 1〉 or 〈9, 1〉.

Assume now that we have (29), but not (28).
Then in the same way as in the proof of Lemma 26 we infer that for a suitable q | (m, n),

q = 4 or a prime, xn1q + Axm1q + B is reducible over L and the field M∗(m1, n1, q) isc

isomorphic to a subfield ofKL. Hence by Lemma 2(c) we have g∗(m1, n1, q) � g. Sincec

〈n1,m1〉 �= 〈2, 1〉 it follows by Lemma 25 that either 〈q, n1,m1〉 ∈ {〈2, 3, 1〉, 〈2, 4, 1〉,
〈2, 5, 1〉, 〈2, 6, 1〉, 〈3, 3, 1〉, 〈3, 4, 1〉, 〈4, 3, 1〉, 〈5, 3, 1〉} or n1q < 24g. Moreover if g = 1
the last inequality can be replaced by 〈q, n1,m1〉 ∈ {〈2, 7, 1〉, 〈6, 3, 1〉, 〈7, 3, 1〉} and the
case 〈q, n1,m1〉 = 〈6, 3, 1〉 is impossible because of the restriction on q. Thus (26) and
(27) follow with l = (m, n)/q, 〈ν, μ〉 = 〈n1q,m1q〉. ��

3. Determination of the content of Table 1 (Lemmas 28 to 40)

Lemma 28. Let K be any field of characteristic different from 2, and A,B ∈ K∗. The
trinomial x2m +Axm +B is reducible over K if and only if either

√
A2 − 4B belongs to

K or for some prime p |m,

(30) A = upA2p,p(v), B = u2pB2p,p(v), u, v ∈ K,
or 4 |m and

(31) A = u4A8,4(v), B = u8B8,4(v), u, v ∈ K.

Proof. The condition is necessary. Indeed, if x2 + Ax + B is reducible over K then√
A2 − 4B ∈ K. If x2 + Ax + B is irreducible over K , but x2m + Axm + B is re-

ducible it follows by Capelli’s lemma that xm − (−A+√
A2 − 4B

)
/2 is reducible over

K
(√
A2 − 4B

)
, hence by Capelli’s theorem either there is a prime p |m such that

(32)
−A+√

A2 − 4B

2
= ϑp, ϑ ∈ K(√A2 − 4B

)
,

or 4 |m and

(33)
−A+√

A2 − 4B

2
= −4ϑ4, ϑ ∈ K(√A2 − 4B

)
.

Since ϑ is of degree 2 over K it can be written in the form

(34) ϑ =
A1 +

√
A2

1 − 4B1

2
, A1, B1 ∈ K.
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Substituting (34) into (32) and taking traces and norms of both sides we obtain (30) with
u = A1, v = B1/A

2
1. Substituting (34) into (33) and taking traces and norms of both sides

we obtain (31) with u = A1, v = 2B1/A
2
1.

The condition is sufficient. If
√
A2 − 4B ∈ K this is obvious. If (30) holds

x2m + Axm + B is divisible by x2m/p − uxm/p + u2v, while if (31) holds it is equal
to (

xm + 2ux3m/4 + 2u2xm/2 + 2u3vxm/4 + u4v2)
× (xm − 2ux3m/4 + 2u2xm/2 − 2u3vxm/4 + u4v2

)
. ��

Lemma 29. Let K be any field, f ∈ K[x], f irreducible and separable over K , and n ac

positive integer. Then f (xn) is reducible over K if and only if either for a prime p |n,

f (xp) = c
p−1∏
j=0

g
(
ζ
j
px
)
,

or 4 |n, charK �= 2, and

f (−4x4) = c
3∏
j=0

g(ζ
j
4 x),

where g ∈ K[x] is monic and ζp = 1 if p = charK .

Proof. The condition is necessary. Indeed, let f (η) = 0. By Capelli’s lemma xn − η isc

reducible over K(η). By Capelli’s theorem we have η = ϑp, ϑ ∈ K(η) or charK �= 2,
η = −4ϑ4, ϑ ∈ K(η). Let ϑ1, . . . , ϑd be all the conjugates of ϑ with respect to K . Wec

take

g(x) =
d∏
i=1

(x − ϑi) ∈ K[x]
c

and find in the first case

f (xp) = a
d∏
i=1

(xp − ϑpi ) = a
d∏
i=1

p−1∏
j=0

(x − ζ−jp ϑi)

= a(−1)(p−1)d
p−1∏
j=0

d∏
i=1

(ζ
j
px − ϑi) = c

p−1∏
j=0

g(ζ
j
px),

c

in the second case

f (−4x4) = a
d∏
i=1

(−4x4 + 4ϑ4
i ) = a(−4)d

d∏
i=1

3∏
j=0

(x − ζ−j4 ϑi)

= a · 4d
3∏
j=0

d∏
i=1

(ζ
j
4 x − ϑi) = c

3∏
j=0

g(ζ
j
4 x).

c
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The condition is sufficient, since in the first case it gives g(xn/p) as a proper factor ofc

f (xn) in K[x].
In the second case we have

f (x4) = c
3∏
j=0

g
( 1

2ζ
j
4 (1 − ζ4)x

)
.

If ζ4 �∈ K then ζ j4 (1 − ζ4) for j = 0 and 1 are conjugate to each other over K , hence

h(x) =
1∏
j=0

g
( 1

2ζ
j
4 (1 − ζ4)x

) ∈ K[x],

and h(xn/4) is a proper factor of f (xn) in K[x]. ��

Remark. For n = 2 the lemma was proved by Selmer [27].

Lemma 30. Let K be a field of characteristic different from 2, and A,B ∈ K∗. The
trinomial x6 + Ax + B has a cubic factor in K[x] if and only if

(35) A = u5A6,1(v), B = u6B6,1(v),

where u, v ∈ K .

Proof. The condition (35) is sufficient, since it implies

x6 + Ax + B = (x3 + 2ux2 + 2u2(1 + v)x + u3(−v2 + 4v + 1)
)

× (x3 − 2ux2 + 2u2(1 − v)x + u3(v2 + 4v − 1)
)
.

On the other hand, if

x6 + Ax + B = (x3 + a1x
2 + b1x + c1)(x

3 + a2x
2 + b2x + c2)

we have

a2 + a1 = 0,

b2 + a1a2 + b1 = 0, c2 + a1b2 + b1a2 + c1 = 0,

a1c2 + b1b2 + c1a2 = 0, b1c2 + c1b2 = A, c1c2 = B.
If a1 = 0 we obtain a2 = 0, b1 + b2 = b1b2 = 0, hence b1 = b2 = 0 and A = 0,
contrary to A ∈ K∗. If a1 �= 0, we take a1 = 2u, b1 = 2u2(1 + v) and find a2 = −2u,
b2 = 2u2(1 − v), c1 = u3(−v2 + 4v + 1), c2 = u3(v2 + 4v − 1), which gives (35). ��

Lemma 31. Let K be a field of characteristic different from 2, and A,B ∈ K∗. The
trinomial x6 +Ax2 +B is reducible overK if and only if either x3 +Ax+B is reducible
over K or

(36) A = u4A6,2(v), B = u6B6,2(v),

where u, v ∈ K .
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Proof. The condition (36) is sufficient, since it implies

x6 + Ax2 + B = (x3 + 2ux2 + 2u2x − u3v)(x3 − 2ux2 + 2u2x + u3v).

On the other hand, if x6 + Ax2 + B is reducible and x3 + Ax + B is irreducible over K
we have, by Lemma 29,

x6 + Ax2 + B = (x3 + ax2 + bx + c)(x3 − ax2 + bx − c),
hence

2b − a2 = 0, b2 − 2ac = A, −c2 = B.
If a = 0 we obtain b = 0, henceA = 0, contrary toA ∈ K∗. If a �= 0 we take a = 2u,

c = −u3v and obtain (36). ��

Lemma 32. Let K be a field of characteristic different from 2, 7, and A,B ∈ K∗. Thec

trinomial x7 + Ax + B has a cubic factor in K[x] if and only if

(37) A = u6A7,1(v), B = u7B7,1(v),

where u, v ∈ K .

Proof. The condition (37) is sufficient, since it implies

x7 + Ax + B = (x4 + u(2v + 1)x3 + u2(2v + 1)2vx2

+ u3(2v + 1)2(v2 + 2v − 1)x + u4(2v − 1)(2v + 1)3(v2 − v + 1)
)

c

× (x3 − u(2v + 1)x2 + u2(1 − v)(2v + 1)2x + u3v(2v + 1)2(3v − 2)).

On the other hand, if

x7 + Ax + B = (x4 + a1x
3 + b1x

2 + c1x + d1)(x
3 + a2x

2 + b2x + c2)

we have

a2 + a1 = 0, b2 + a1a2 + b1 = 0, c2 + a1b2 + b1a2 + c1 = 0,

a1c2 + b1b2 + c1a2 + d1 = 0, b1c2 + c1b2 + d1a2 = 0,

c1c2 + d1b2 = A, d1c2 = B.
If a1 = 0 we obtain b2 = −b1, c2 = −c1, d1 = b2

1, 2b1c1 = 0, hence B = 0, contrary to
B ∈ K∗. If a1 �= 0 and b1 = − 1

2a
2
1 we obtain b2 = 3

2a
2
1 , c2 + c1 = −2a3

1 , a2
1(c2 + c1) =

3
2a

5
1 , a contradiction. If a1 �= 0 and b1 �= − 1

2a
2
1 we take v = b1/a

2
1 , u = a1/(2v + 1) and

obtain (37) by a simple elimination. ��

Lemma 33. Let K be a field of characteristic different from 2, and A,B ∈ K∗. The
trinomial x8 +Ax2 +B is reducible overK if and only if either x4 +Ax+B is reducible
over K or

(38) A = u6A8,2(v), B = u8B8,2(v),

where u, v ∈ K .



504 D. Polynomials in one variable

Proof. The condition (38) is sufficient, since it implies

x8 + Ax2 + B = (x4 + 2ux3 + 2u2x2 + u3vx + u4(2v − 2)
)

× (x4 − 2ux3 + 2u2x2 − u3vx + u4(2v − 2)
)
.

On the other hand, if x8 +Ax2 +B is reducible and x4 +Ax +B irreducible over K we
have, by Lemma 29,

x8 + Ax2 + B = (x4 + ax3 + bx2 + cx + d)(x4 − ax3 + bx2 − cx + d),
hence

2b − a2 = 0, 2d + b2 − 2ac = 0, bd − c2 = A, d2 = B.
If a = 0 we obtain b = 0, d = 0, B = 0, contrary to B ∈ K∗. If a �= 0 we take a = 2u,
c = u3v and obtain (38). ��

Lemma 34. Let K be a field of characteristic different from 3, and A,B ∈ K∗. The
trinomial x9 +Ax3 +B is reducible overK if and only if either x3 +Ax+B is reducible
over K or

(39) A = u6A9,3(v), B = u9B9,3(v),

where u, v ∈ K .

Proof. The condition (39) is sufficient, since it implies

x9 + Ax3 + B
= (x3 + 3ux2 + u2vx + u3(3v − 9)

)(
x3 + 3uζ 2

3 x
2 + u2vζ3x + u3(3v − 9)

)
× (x3 + 3uζ3x

2 + u2vζ 2
3 x + u3(3v − 9)

)
.

On the other hand, if x9 +Ax3 +B is reducible and x3 +Ax +B irreducible over K we
have, by Lemma 29,

x9 + Ax3 + B = (x3 + ax2 + bx + c)(x3 + aζ 2
3 x

2 + bζ3x + c)
× (x3 + aζ3x2 + bζ 2

3 x + c)
= (x3 + c)3 + a3x6 + b3x3 − 3(x3 + c)abx3,

hence

3c + a3 − 3ab = 0, 3c2 + b3 − 3abc = A, c3 = B.
If a = 0 we obtain c = 0, B = 0, contrary to B ∈ K∗. If a �= 0 we take a = 3u, b = u2v

and obtain (39). ��
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Lemma 35. Let K be a field of characteristic different from 2, and A,B ∈ K∗. The
trinomial x10 +Ax2 +B is reducible overK if and only if either x5 +Ax+B is reducible
over K or

(40) A = u8A10,2(v), B = u10B10,2(v),

where u, v ∈ K .

Proof. The condition (40) is sufficient, since it implies

x10 + Ax2 + B
= (x5 + 2ux4 + 2u2x3 + 2u3vx2 + u4(4v − 2)x + u5(−v2 + 4v − 2)

)
× (x5 − 2ux4 + 2u2x3 − 2u3vx2 + u4(4v − 2)x − u5(−v2 + 4v − 2)

)
.

On the other hand, if x10 +Ax2 +B is reducible and x5 +Ax+B irreducible overK we
have, by Lemma 29,

x10 +Ax2 + B = (x5 + ax4 + bx3 + cx2 + dx + e)(x5 − ax4 + bx3 − cx2 + dx − e),
hence

2b − a2 = 0, 2d + b2 − 2ac = 0, 2bd − 2ae − c2 = 0,

d2 − 2ce = A, −e2 = B.
If a = 0, we obtain b = c = d = 0,A = 0, contrary toA ∈ K∗. If a �= 0 we take a = 2u,
c = 2u3v and obtain (40). ��

Lemma 36. Let K be a field of characteristic different from 2, and A,B ∈ K∗. The
trinomial x10 + Ax4 + B is reducible over K if and only if either x5 + Ax2 + B is
reducible over K or

(41) A = u8A10,4(v), B = u10B10,4(v),

where u, v ∈ K .

Proof. The condition (41) is sufficient, since it implies

x10 + Ax4 + B
= (x5 + 2uvx4 + 2u2v2x3 + u3v4x2 + u4v4(2v − 2)x + 2u5v4(v − 1)2

)
× (x5 − 2uvx4 + 2u2v2x3 − u3v4x2 + u4v4(2v − 2)x − 2u5v4(v − 1)2

)
.

On the other hand, if x10 + Ax4 + B is reducible and x5 + Ax2 + B irreducible over K
we have, by Lemma 29,

x10 +Ax4 + B = (x5 + ax4 + bx3 + cx2 + dx + e)(x5 − ax4 + bx3 − cx2 + dx − e),
hence

2b − a2 = 0, 2d + b2 − 2ac = 0, 2bd − 2ae − c2 = A,
d2 − 2ce = 0, −e2 = B.
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If a = 0, we obtain b = d = 0, ce = 0 and AB = 0, contrary to A,B ∈ K∗. If a �= 0,
c = 0 we obtain d = 0, b = 0, a2 = 0, a contradiction. If a �= 0, c �= 0 we take v = 8c/a3,
u = a/2v and obtain (41). ��

Lemma 37. Let K be a field of characteristic different from 2, and A,B ∈ K∗. The
trinomial x12 +Ax2 +B is reducible overK if and only if either x6 +Ax+B is reducible
over K or

(42) A = u10A12,2(v), B = u12B12,2(v),

where u, v ∈ K .

Proof. The condition (42) is sufficient, since it implies

x12 + Ax2 + B = (x6 + 4u(v − 4)x5 + 8u2(v − 4)2x4 + 8u3v(v − 4)3x3

+ 32u4(v − 1)(v − 4)4x2 + 32u5(v − 4)4(3v2 − 12v + 10)x

+ 32u6(v − 4)5(v3 − 8v + 8)
)(
x6 − 4u(v − 4)x5 + 8u2(v − 4)2x4

− 8u3v(v − 4)3x3 + 32u4(v − 1)(v − 4)4x2

− 32u5(v − 4)4(3v2 − 12v + 10)x + 32u6(v − 4)5(v3 − 8v + 8)
)
.

On the other hand, if x12 +Ax2 +B is reducible, but x6 +Ax+B irreducible overK we
have, by Lemma 29,

x12+Ax2+B = (x6+ax5+bx4+cx3+dx2+ex+f )(x6−ax5+bx4−cx3+dx2−ex+f ),
hence

2b − a2 = 0, 2d + b2 − 2ac = 0, 2f − 2bd − 2ae − c2 = 0,

2bf + d2 − 2ce = 0, 2df − e2 = A, f 2 = B.
If a = 0, we obtain b = 0, d = 0, ce = 0, AB = 0, contrary to A,B ∈ K∗. If a �= 0,
c = 1

2a
3 we obtain b = 1

2a
2, d = 3

8a
4, f − ae = − 1

16a
6, a2f − a3e = − 9

64a
8,

a contradiction. If a �= 0, c �= 1
2a

3 we take v = 8c/a3, u = a/4(v − 4) and obtain (42).��

Lemma 38. Let K be a field of characteristic different from 3, and A,B ∈ K∗. The
trinomial x12 +Ax3 +B is reducible overK if and only if either x4 +Ax+B is reducible
over K or

(43) A = u9A12,3(v), B = u12B12,3(v),

where u, v ∈ K .
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Proof. The condition (43) is sufficient, since it implies

x12 + Ax3 + B

=
2∏
i=0

(
ζ i3x

4 + 3u(v − 1)x3 + 9u2v(v − 1)2ζ 2i
3 x

2 + 9u3(v − 1)3(3v − 1)ζ i3x

+ 9u4(v − 1)3(3v3 − 3v + 1)
)
.

On the other hand, if x12 +Ax3 +B is reducible and x4 +Ax+B irreducible overK we
have, by Lemma 29,

x12 + Ax3 + B =
2∏
i=0

(
ζ i3x

4 + ax3 + bζ 2i
3 x

2 + cζ i3x + d
)

= (x4 + cx)3 + (ax3 + d)3b3x6 − 3bx2(x4 + cx)(ax3 + d).
Hence

3c + a3 − 3ab = 0, 3c2 + 3a2d + b3 − 3abc − 3bd = 0,

c3 + 3ad2 − 3bcd = A, B = d3.

If a = 0, we obtain c = 0, A = 0, contrary to A ∈ K∗. If a �= 0, b = a2 we obtain
c = 2

3a
3, 1

3a
6 = 0, a contradiction. If a �= 0, b �= a2 we take v = b/a2, u = a/3(v − 1)

and obtain (43). ��

Lemma 39. Let K be a field of characteristic different from 2, and A,B ∈ K∗. The
trinomial x12 + Ax4 + B is reducible over K if and only if either x6 + Ax2 + B is
reducible over K or

(44) A = u8A12,4(v), B = u12B12,4(v),

where u, v ∈ K .

Proof. The condition (44) is sufficient, since it implies

x12 + Ax4 + B = (x6 + 4ux5 + 8u2x4 + 8u3(2v2 + 1)x3 + 64u4v2x2

+ 64u5v(−2v2 + 4v − 1)x + 32u6(−2v2 + 4v − 1)2
)

× (x6 − 4ux5 + 8u2x4 − 8u3(2v2 + 1)x3 + 64u4v2x2

− 64u5v(−2v2 + 4v − 1)x + 32u6(−2v2 + 4v − 1)2
)
.

On the other hand, if x12 + Ax4 + B is reducible and x6 + Ax2 + B irreducible over K
we have, by Lemma 29,

− 64x12 + Ax4 + B = −64
3∏
i=0

(ζ i4x
3 + aζ 2i

4 x
2 + bζ i4x + c)

= −64
(
(x3 + bx)2 − (ax2 + c)2

) (
(−x3 + bx)2 + (−ax2 + c)2

)
.
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Hence

2b2 − 4ac − (2b − a2)2 = 0, 16
(
(b2 − 2ac)2 + 2(2b − a2)c2

)
= A, 64c4 = B.

If a = 0, we obtain b = 0,A = 0, contrary toA ∈ K∗. If a �= 0 we take a = 2u, b = 4u2v

and obtain (44). ��

Lemma 40. Let K be a field of characteristic different from 5, and A,B ∈ K∗. The
trinomial x15 +Ax5 +B is reducible overK if and only if either x3 +Ax+B is reducible
over K or

(45) A = u10A15,5(v), B = u15B15,5(v),

where u, v ∈ K .

Proof. The condition (45) is sufficient, since it implies

x15 + Ax5 + B =
4∏
i=0

(
ζ 3i

5 x
3 + u(5v − 5)ζ 2i

5 x
2 + u2v(5v − 5)2ζ i5x

+ u3(5v − 5)2(5v2 − 5v + 1)
)
.

On the other hand, if x15 +Ax5 +B is reducible and x3 +Ax+B irreducible overK we
have, by Lemma 29,

x15 + Ax5 + B =
4∏
i=0

(
ζ 3i

5 x
3 + aζ 2i

5 x
2 + bζ i5x + c

)
.

Hence

−5bc + 5a2c + 5ab2 − 5a3b + a5 = 0,

−5ac3 − 5ab3c + 5a2bc2 + 5b2c2 + b5 = A, c5 = B.
If a = 0, we obtain bc = 0, AB = 0, contrary to A,B ∈ K∗. If a �= 0, b = a2 we
obtain a5 = 0, a contradiction. If a �= 0, b �= a2 we take v = b/a2, u = a/(5v − 5) and
obtain (45). ��

4. Determination of the content of Table 2 (Lemmas 41 to 48)

Lemma 41. Let K be a field of characteristic different from 2. The curve

(46) y2 = x4 + a1x
3 + 3a2x

2 + a3x + a4 = R(x),
where R ∈ K[x] is not a square over K , is equivalent to the curvec

(47) w2 = v3 − (4a4 − a1a3 + 3a2
2)v − (8a2a4 + a1a2a3 − a4a

2
1 − a2

3 − 2a3
2)
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under the following birational transformation over K:

(48a)

v = 2y + 2x2 + a1x + a2,

w = 4xy + a1y + 4x3 + 3a1x
2 + 6a2x + a3;

x = (v − a2)
2 − 4a4

2w + a1(v − a2)+ 2a3
,

y = 1

2
v − x2 − a1

2
x − a2

2
.

The zeros of the denominator in the above formula for x, lying on (47), correspond to the
point at infinity on (46) and to the points 〈x, y〉, where

x = 4(a3 + a1
√
a4)

a2
1 − 12a2 − 8

√
a4
, y = 1

2
v − x2 − a1

2
x − a2

2

with any choice of the square root.
Moreover, if R(x0) = 0, R′(x0) �= 0 for an x0 ∈ K there is a simpler birational

transformation over K:

(48b)

v =
1
3R

′′(x0)x +
(
2R′(x0)− 1

3R
′′(x0)x0

)
2(x − x0)

,

w = R′(x0)y

(x − x0)2
;

x = 2x0v +
(
2R′(x0)− 1

3R
′′(x0)x0

)
2v − 1

3R
′′(x0)

,

y = 4R′(x0)w(
2v − 1

3R
′′(x0)

)2 ,
where 1

3R
′′(x0) = 4x2

0 + 2a1x0 + 2a2.The two zeros of the denominator in the above
formula for x, lying on (47), correspond to the double point at infinity on (46).

Remark. Note that 4(a3 + a1
√
a4) and a2

1 − 12a2 − 8
√
a4 are not simultaneously 0 since

otherwise R(x) = (x2 + 1
2a1x −√

a4)
2.

Proof. The curve (46) is equivalent to the curve

(49) y2
1 = a4x

4
1 + a3x

3
1 + 3a2x

2
1 + a1x1 + 1 = R(x1)

via the involution I :

x1 = 1

x
, y1 = y

x2 .

On the other hand, the curve (49) has the rational point 〈0, 1〉. Applying to (49) the trans-
formation of Weierstrass as described in Theorem 3 of [16] with x0 = 0, y0 = 1 we find
that it is equivalent to the curve

(50) Y 2 = 4X3 − g2X − g3,
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where

g2 = 1

4
(4a4 − a1a3 + 3a2

2), g3 = 1

16
(8a2a4 + a1a2a3 − a4a

2
1 − a2

3 − 2a3
2),

via the birational transformation T :

X = y1 + 1 + 1
2a1x1 + 3a2

2x2
1

,

Y = y2
1

x3
1

− 1

4

R′(x1)

x2
1

+
(

1

x3
1

+ 1

4

a1

x2
1

)
y1;

x1 = Y + 1
2a1(X − 3

2a2)+ 1
4a3

2
(
X − 3

2a2
)2 − 1

2a4

,

y1 = 2Xx2
1 − 1 − 1

2
a1x1 − 3a2x

2
1 .

Finally, the curve (50) is equivalent to the curve (47) via the linear transformation L:

v = 4X, w = 4Y.

The birational transformation (48a) given in the lemma is a composition of I , T and L.
The birational transformation (48b) is obtained directly from Theorem 3 in [16] by

setting y0 = 0. ��

Lemma 42. Let K be a field of characteristic different from 2, and A,B ∈ K∗. The
trinomial x7 + ax2 + B has a cubic factor in K[x] if and only if either

(51) A = −2u5, B = u7, u ∈ K
or

(52) A = u5A7,2(v,w), B = u7B7,2(v,w),

where u ∈ K and

(53) 〈v,w〉 ∈ E7,2(K).

Proof. The condition is sufficient, since if (51) holds we have

x7 + Ax2 + B = (x4 − u2x2 − u3x + u4)(x3 + ux2 + u3)

and if (52) and (53) hold we have

x7 + Ax2 + B
= (x4 + 2ux3 − u2vx2 + u3(w + 4)x + u4(v2 + 12v + 4w + 32)

)
× (x3 − 2ux2 + u2(v + 4)x + u3(−4v − w − 12)

)
.

On the other hand, if x7 + Ax2 + B has a cubic factor we have

x7 + Ax2 + B = (x4 + a1x
3 + b1x

2 + c1x + d1)(x
3 + a2x

2 + b2x + c2),
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hence

a2 + a1 = 0, b2 + a1a2 + b1 = 0, c2 + a1b2 + b1a2 + c1 = 0,

a1c2 + b1b2 + c1a2 + d1 = 0, b1c2 + c1b2 + d1a2 = A,
c1c2 + d1b2 = 0, d1c2 = B.

If a1 = 0 we obtain a2 = 0, b2 = −b1, c2 = −c1, d1 = b2
1, c2

1 + b3
1 = 0 and on taking

b1 = −u2 we obtain (51).
If a1 �= 0 we take a1 = 2u, b1 = −u2v, c1 = u3(w + 4) and obtain (52)–(53). ��

Lemma 43. Let K be a field of characteristic different from 2, 3, and A,B ∈ K∗. The
trinomial x7 + Ax3 + B has a cubic factor in K[x] if and only if

(54) A = u4A7,3(v), B = u7B7,3(v),

where u ∈ K and

(55) 〈v,w〉 ∈ E7,3(K).

Proof. The condition is sufficient, since if it is satisfied we have

x7 + Ax3 + B
= (x4 + u(v − 39)x3 − 36u2(v − 39)x2 + 6u3(v − 39)(−w + 3v + 99)x

+ 6u4(v − 39)(−w(v + 33)+ 9v2 + 162v − 4455)
)

× (x3 − u(v − 39)x2 + u2(v − 3)(v − 39)x + u3(6w − v2 − 12v + 693)
)
.

On the other hand, if

x7 + Ax3 + B = (x4 + a1x
3 + b1x

2 + c1x + d1)(x
3 + a2x

2 + b2x + c2)

we have

a2 + a1 = 0, b2 + a1a2 + b1 = 0, c2 + a1b2 + b1a2 + c1 = 0,

a1c2 + b1b2 + c1a2 + d1 = A, b1c2 + c1b2 + d1a2 = 0,

c1c2 + d1b2 = 0, d1c2 = B.
If a1 = 0 we obtain a2 = 0, b2 = −b1, c2 = −c1, b1c1 = 0, B = 0, contrary to

B ∈ K∗.
If a1 �= 0 we take x = 2b2/a

2
1 , y = 4c2a

−3
1 + 4b2

2a
−4
1 + 2b2a

−2
1 − 2 and obtain

y2 = x4 − 2x3 + x2 − 4x + 4 = R(x).
If x = 2 we obtain b2 = a2

1 , b1 = 0, c2 = −a3
1 , c1 = 0, d1 = 0, B = 0, contrary to

B ∈ K∗. Since R(2) = 0, if x �= 2 we put

v = 39x − 6

x − 2
, w = 216y

(x − 2)2
.

By Lemma 41 we have (55) and v �= 39. On taking u = a1/(v − 39) we obtain (54). ��
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Lemma 44. Let K be a field and A,B ∈ K∗. The trinomial x8 + Ax + B has a cubic
factor in K[x] if and only if either

(56) A = −3u7, B = 2u8, u ∈ K
or

(57)
A = ((3v2 − 12v − 10)w − 8v3 + 20v2 + 8v − 32

)
u7,

B = (w − 3v + 5)
(
(2v − 5)w − 3v2 + 15v − 17

)
u8,

where u, v,w ∈ K and

(58) w2 = v3 − 10v + 12.

Proof. The condition is sufficient, since if (56) holds then

x8 + Ax + B = (x5 − u2x3 + u3x2 + u4x + 2u5)(x3 + u2x + u3)

and if (57) and (58) hold then

x8 + Ax + B
= (x5 − ux4 + u2(2 − v)x3 + u3(−w + v − 2)x2 + u4(−2w + v2 + v − 5)x

+ u5((2v − 5)w − 3v2 + 15v − 17)
)(
x3 − ux2 + (v − 1)x + (w − 3v + 5)

)
.

On the other hand, if

x8 + Ax + B = (x5 + a1x
4 + b1x

3 + c1x2 + d1x + e1)(x
3 + a2x

2 + b2x + c2)

we have

a2 + a1 = 0, b2 + a1a2 + b1 = 0, c2 + a1b2 + b1a2 + c1 = 0,

a1c2 + b1b2 + c1a2 + d1 = 0, b1c2 + c1b2 + d1a2 + e1 = 0,

c1c2 + d1b2 + e1a2 = 0, d1c2 + e1b2 = A, e1c2 = B.
If a1 = 0 we obtain a2 = 0, b2 = −b1, c2 = −c1, d1 = b2

1, e1 = 2b1c1, c2
1 + b3

1 = 0, and
(56) follows on taking u = c1/b1. If a1 �= 0, (57) and (58) follow on taking

u = a1, v = 2 − b1

a2
1

, w = −b1

a2
1

− c1

a3
1

. ��

Lemma 45. Let K be a field of characteristic different from 2, and A,B ∈ K∗. The
trinomial x8 + Ax + B has a quartic factor in K[x] if and only if either

(59) A = 3u7, B = 2u8, u ∈ K
or

(60)

A = 128(w − 2v − 8)4(v + 2)(v2 + 12v + 4)

× (2w − v2 + 4v + 4)(4w − v2 − 12),

B = 64(w − 2v − 8)4

× (9v4 + 8v3 − 8v2 + 288v + 272 − w(v3 + 18v2 + 76v + 24)
)

× (v4 + 24v3 + 152v2 + 96v + 16 + w(v3 − 22v2 − 52v − 72)
)
,
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where u, v,w ∈ K and

(61) w2 = v3 − 20v − 16.

Proof. The condition is sufficient, since if (59) holds we have

x8 + Ax + B = (x4 + ux3 + u2x2 + 2u3x + u4)(x4 − ux3 − u3x + 2u4).

If (60) and (61) hold we have

x8 + Ax + B = (x4 + 4(w − 2v − 8)x3 + 4(w − 2v − 8)(v2 − 8v − 20)x2

+ 8(w − 2v − 8)2(−20v − 24 + w(v − 2))x

+ 8(w − 2v − 8)2(9v4 + 8v3 − 8v2 + 288v + 272

− w(v3 + 18v2 + 76v + 24))
)

× (x4 − 4(w − 2v − 8)x3 + 4(w − 2v − 8)(4w − v2 − 12)x2

+ 8(w − 2v − 8)2(4v2 + 4v + 8 − w(v + 6))x

+ 8(w − 2v − 8)2(v4 + 24v3 + 152v2 + 96v + 16

+ w(v3 − 22v2 − 52v − 72))
)
.

On the other hand, if

x8 + Ax + B = (x4 + a1x
3 + b1x

2 + c1x + d1)(x
4 + a2x

3 + b2x
2 + c2x + d2)

we have

a2 + a1 = 0, b2 + a1a2 + b1 = 0, c2 + a1b2 + b1a2 + c1 = 0,

d2 + a1c2 + b1b2 + c1a2 + d1 = 0, a1d2 + b1c2 + c1b2 + d1a2 = 0,

b1d2 + c1c2 + d1b2 = 0, c1d2 + d1c2 = A, d1d2 = B.
If a1 = 0 we obtain a2 = 0, b2 = −b1, c2 = −c1, d2 = b2

1 − d1, 2b1c1 = 0,
b3

1 − 2b1d1 − c2
1 = 0, A = 0, contrary to A ∈ K∗.

If a1 �= 0 we take x1 = 2b1/a
2
1 , y1 = 4c1/a3

1 − 4b2
1/a

4
1 − 1 and obtain

y2
1 = x4

1 − 4x3
1 + 12x2

1 − 16x1 + 9 = R(x1).

If x1 = 2 we obtain y1 = ±3 hence either b1 = a2
1 , c1 = 2a3

1 , b2 = 0, c2 = −a3
1 ,

d1 = a4
1 , d2 = 2a4

1 and (59) holds with u = −a1 or b1 = a2
1 , c1 = 1

2a
3
1 , b2 = 0, c2 = 1

2a
3
1 ,

d1 = 1
4a

4
1 , d2 = − 1

4a
4
1 , A = 0, contrary to A ∈ K∗.

If x1 �= 2 we put

v = 2y1 + 2x2
1 − 4x1 + 4,

w = 4x1y1 − 4y1 + 4x3
1 − 12x2

1 + 24x1 − 16

and using Lemma 41 we obtain (61) with w − 2v − 8 �= 0. Now (60) follows on taking

u = a1

4(w − 2v − 8)
. ��
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Lemma 46. LetK be a field of characteristic different from 2 and 3, and A,B ∈ K∗. The
trinomial x9 + Ax + B has a cubic factor in K[x] if and only if either

√
13 ∈ K and

(62)

A = (−480053919711226727 ± 66936076602084894
√

13)u8,

B = 1
2 (−5712685878317063725 ± 66644985243629014605

√
13)u9,

where u ∈ K ,

or

(63) A = u8A9,1(v,w), B = u9B9,1(v,w),

where u ∈ K and

(64) 〈v,w〉 ∈ E9,1(K).

Proof. The condition is sufficient, since if (62) is satisfied we have with the suitable value
of

√
13

x9 + Ax + B
=
(
x3 + 183ux2 + (41175 + 549

√
13)u2x + 9879255 − 1774917

√
13

2
u3
)

×
(
x6 − 183ux5 − (7686 + 549

√
13)u2x4 + 8003871 + 2176785

√
13

2
u3x3

+ (491986899 − 334756044
√

13)u4x2

+ −461897936703 + 20279163483
√

13

2
u5x

+ 34367850319995 + 19666467995175
√

13

2
u6
)

and if (63) and (64) hold we have

x9 + Ax + B = (x3 + 3(w − 2v − 9)ux2 + 3(w − 2v − 9)(v2 − 9v − 9)u2x

+ 3(w − 2v − 9)2(6v2 − 21v − 9 − w(v + 3))u3)
× (x6 − 3(w − 2v − 9)ux5

+ 3(w − 2v − 9)(−v2 + 3v − 18 + 3w)u2x4

+ 3(w − 2v − 9)2(−15v + 36 + w(v − 6))u3x3 + 9(w − 2v − 9)2

× (−v4 − 21v3 + 30v2 − 117v + 351 + w(7v2 + 33v − 45)
)
u4x2

+ 9(w − 2v − 9)3
(
12v4 + 48v3 − 153v2 + 135v − 567

+ w(−2v3 − 24v2 − 90v + 54)
)
u5x + 9(w − 2v − 9)3

× (v6 + 219v5 − 9v4 − 792v3 − 2916v2 + 6804v − 6804

+ w(v5 − 60v4 − 228v3 − 81v2 − 972v + 1134)
)
u6)

On the other hand, if

x9 +Ax + B = (x6 + a1x
5 + b1x

4 + c1x3 + d1x
2 + e1x + f1)(x

3 + a2x
2 + b2x + c2)
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we find

a2 + a1 = 0, b2 + a1a2 + b1 = 0, c2 + a1b2 + b1a2 + c1 = 0,

a1c2 + b1b2 + c1a2 = 0, b1c2 + c1b2 + d1a2 + e1 = 0,

c1c2 + d1b2 + e1a2 + f1 = 0, d1c2 + e1b2 + f1a2 = 0,

e1c2 + f1b2 = A, f1c2 = B.

If a1 = 0 we obtain a2 = 0, b2 =−b1, c2 =−c1, d1 = b2
1, e1 = 2b1c1,f1−b3

1−c2
1 = 0,

3b1e1 = 0 and either b1 = 0, which gives A = 0, or c1 = 0, which gives B = 0, contrary
to the assumption.

If a1 �= 0 we take

x1 = 3b2/a
2
2, y1 = −18c2/a

3
2 − 15 + 36b2/a

2
2 − 9b2

2/a
4
2

and obtain

y2
1 = x4

1 − 8x3
1 + 54x2

1 − 144x1 + 117.

If

〈x1, y1〉 =
〈

225 ± 3
√

13

61
,

11478 ± 10545
√

13

612

〉
(62) follows on taking u = a2/183.

If

〈x1, y1〉 �=
〈

225 ± 3
√

13

61
,

11478 ± 10545
√

13

612

〉
we put

v = y1

2
+ x

2
1

2
− 2x1 + 9

2
, w = x1y1

2
− y1 + x

3
1

2
− 3x2

1 + 27

2
x1 − 18.

By Lemma 41 we obtain (64) and w − 2v − 9 �= 0. Hence (63) follows on taking u =
a2/183(w − 2v − 9). ��

Lemma 47. Let K be a field of characteristic different from 2, and A,B ∈ K∗. The
trinomial x14 +Ax2 +B is reducible overK if and only if either x7 +Ax+B is reducible
over K or

(65) A = u12A14,2(v,w), B = u14B14,2(v,w),

where u ∈ K and

(66) 〈v,w〉 ∈ E14,2(K).
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Proof. The condition is sufficient, since it yields

x14 + Ax2 + B =
∏
ε=±1

(
x7 + 2εu(v − 2)x6 + 2u2(v − 2)2x5

+ 2εu3(v − 2)2(v − 1)x4 + 2u4(v − 2)3vx3

+ 2εu5(v − 2)3(w + v2 − 3)x2

+ 2u6(v − 2)4(2w + v2 + 2v − 5)x

+ εu7(v − 2)4((2v − 6)w + v3 − 12v + 14)
)
.

On the other hand, if x14 +Ax2 +B is reducible, but x7 +Ax+B irreducible overK we
have, by Lemma 29,

x14 + Ax2 + B =
∏
ε=±1

(
x7 + εax6 + bx5 + εcx4 + dx3 + εex2 + f x + εg)

= (x7 + bx5 + dx3 + f x)2 − (ax6 + cx4 + ex2 + g)2.
Hence (cf. [1])

2b − a2 = 0, 2d + b2 − 2ac = 0, 2f + 2bd − 2ae − c2 = 0,

2bf + d2 − 2ag − 2ce = 0, 2df − 2cg − e2 = 0,

f 2 − 2eg = A, −g2 = B.
If a = 0 we obtain b = 0, d = 0, 2f − c2 = 0, 2ce = 0, 2cg + e2 = 0, e = 0,

AB = 0, contrary to A,B ∈ K∗.
If a �= 0 we put x1 = 4c/a3, y1 = 16e/a5 − 8c/a3 − 16c2/a6 + 2 and obtain

y2
1 = x4

1 + 2x3
1 − 6x2

1 + 3x1.

If x1 = 1 we obtain y1 = 0, c = a3/4, e = a5/16, b = a2/2, d = a4/8, f = a6/32,
g = a7/128, A = 0, contrary to A ∈ K∗.

If x1 �= 1 we put

v = 2x1 − 1

x1 − 1
, w = y1

(x1 − 1)2

and using Lemma 41 obtain (66) with v �= 2. Now (65) follows on takingu = a/2(v − 2).��

Lemma 48. Let K be a field of characteristic different from 2, 7 and A,B ∈ K∗. The
trinomial x21 +Ax7 +B is reducible overK if and only if either x3 +Ax+B is reducible
over K or

(67) A = 2 · 713u14, B = 714
(

7 ±√
21

2

)7

u21, u ∈ K
or

(68) A = u14A21,7(v,w), B = u21B21,7(v,w),
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where u ∈ K and

(69) 〈v,w〉 ∈ E21,7(K).

Proof. The conditions are sufficient since if (67) holds we have

x21 + Ax7 + B =
6∏
i=0

(
ζ 3i

7 x
3 + 7ζ 2i

7 ux
2 + 49ζ i7u

2x + 49u3
(

7 ±√
21

2

))
.

If (68) and (69) hold, we have

x21 + Ax7 + B =
6∏
i=0

(
ζ 3i

7 x
3 + 14ζ 2i

7 u(w − 7v − 343)x2

+ 14ζ i7u
2(w − 7v − 343)(v2 − 98v − 1715)x

+ 14u3(w − 7v − 343)2(−(49 + v)w + 21v2 − 686v − 7203)
)
.

On the other hand, if x21 +Ax7 +B is reducible and x3 +Ax+B irreducible overK we
have, by Lemma 29,

x21 + Ax7 + B =
6∏
i=0

(ζ 3i
7 x

3 + aζ 2i
7 x

2 + bζ i7x + c)

= x21 + (a7 − 7a5b + 7a4c + 14a3b2 − 21a2bc − 7ab3 + 7ac2 + 7b2c)x14

+ (b7 − 7b5ac + 7b4c2 + 14b3a2c2 − 21b2ac3 − 7ba3c3 + 7bc4 + 7a2c4)x7 + c7.

Hence

a7 − 7a5b + 7a4c + 14a3b2 − 21a2bc − 7ab3 + 7ac2 + 7b2c = 0.

If a = 0, we have bc = 0 and AB = 0, contrary to A,B ∈ K∗.
If a �= 0 we put

x1 = 7
b

a2 , y1 = −98
c

a3 − 49
b2

a4 + 147
b

a2 − 49

and obtain

y2
1 = x4

1 − 14x3
1 + 147x2

1 − 686x1 + 1029.

If x1 = 7 we obtain y1 = ±7
√

21, b = a2, c = 7±√
21

14 a3 and (67) follows on taking
u = a/7.

If x1 �= 1 we put

v = 2y1 + 2x2
1 − 14x1 + 49,

w = 4x1y1 − 14y1 + 4x3
1 − 42x2

1 + 294x1 − 686.

By Lemma 41 we obtain (69) and w − 7v − 343 �= 0. Hence (68) follows on taking
u = a/14(w − 7v − 343). ��
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5. Proof of Theorems 1, 2 and 3

Proof of Theorem 1. The theorem follows from Lemmas 26, 28 and 30–40. ��

Proof of Theorem 2. For n > 2m the theorem follows from Lemmas 27, 30–40 and 42–48.
For n = 2m it follows from Lemma 28. ��

For the proof of Theorem 3 we need two lemmas.

Lemma 49. Let L be a finite separable extension of K(y) and let L ∩ K = K0. Then
[L : K(y)] = [L : K0(y)].

Proof. Let L = K0(y, z) and let F be the minimal polynomial of z over K0(y), of degree
d. Suppose that [L : K(y)] < [L : K0(y)]. Then F is reducible over K(y), hence over
K1(y), where [K1 : K0] <∞. Since the coefficients of any monic factor of F belong to
the normal closure ofL overK(y), which is separable overK(y), we may assume without
loss of generality that K1/K0 is separable.[

Here the following inclusion has been usedc

(∗) K0(y)
sep ∩K1(y) ⊂ (Ksep

0 ∩K1)(y),

where K0 is a subfield of K1, y = 〈y1, . . . , yr 〉 is a variable vector, Ksep
0 and K0(y)

sep is
the separable closure of K0 and K0(y), respectively.

Here is a proof of (∗) by induction on r . For r = 0 (∗) is obvious. Assume (∗) is true
for y of r − 1 coordinates and let

t ∈ K0(y)
sep ∩K1(y).

We have F(y, t) = 0, where F ∈ K0[y, T ] and the discriminant D(y) of F(y, T ) with
respect to T is not zero. Let a ∈ K0[y] be the leading coefficient of F with respect to T ,
so that

(∗∗) G(y, at) = 0,

where G(y, T ) := adegT F−1F(y, T /a) is monic with respect to T . We have at ∈ K1[y],
hence( ∗
∗ ∗
)

at =
n∑
ν=0

aνy
n−ν
r , aν ∈ K1[y1, . . . , yr−1] (0 � ν � n).

Choose n+ 1 distinct elements η0, . . . , ηn of Ksep
0 such that(∗ ∗

∗ ∗
)

a(y1, . . . , yr−1, ηi)D(y1, . . . , yr−1, ηi) �= 0 (0 � i � n).

Since by (∗∗) and
( ∗
∗ ∗
)
G
(
y1, . . . , yr−1, ηi,

n∑
ν=0

aνη
n−ν
i

)
= 0
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and, by
(∗ ∗
∗ ∗
)
, the discriminant of G(y1, . . . , yr−1, ηi, T ) with respect to T is not zero, we

have
n∑
ν=0

aνη
n−ν
i ∈ K0(y1, . . . , yr−1)

sep.

Since det(ηn−νi ) �= 0 we have aν ∈ K0(y1, . . . , yr−1)
sep (0 � ν � n). By the inductive

assumption aν ∈ (Ksep
0 ∩K1)(y1, . . . , yr−1) (0 � ν � n) and by (∗∗)

t ∈ (Ksep
0 ∩K1

)
(y).
]

Then K1 = K0(ϑ). Let f be the minimal polynomial of ϑ over K0. Then f is irre-
ducible overL; indeed, the coefficients of its problematic monic factors overLwould have
to belong to L ∩K = K0. Hence

[L(ϑ) : L] = [K1 : K0]
and since L(ϑ) = K1(y, z) we have

[K1(y, z) : K0(y)] = [K1(y, z) : K0(y, z)][K0(y, z) : K0(y)] = d[K1 : K0].
On the other hand, [K1(y) : K0(y)] = [K1 : K0], hence

[K1(y, z) : K0(y)] = [K1(y, z) : K1(y)][K1(y) : K0(y)]
= [K1(y, z) : K1(y)][K1 : K0].

By comparison of the two above formulae,

[K1(y, z) : K1(y)] = d,
hence F is irreducible over K1. The obtained contradiction completes the proof. ��

Lemma 50. Under the assumptions of Theorem 3, if C0 ∈ L∗,C0 = c1Cq1 , where c1 ∈ K ,
C1 ∈ KL, q �≡ 0 mod π then there exist c ∈ K0 and C ∈ L∗ such that C0 = cCq .

Proof. LetK1 be the separable closure ofK0 inK and consider first the case where c1 ∈ K1
and C1 ∈ K1L.

Since K0 = L ∩K we have, by Lemma 49,

L = K0(y, z),

where z is a zero of a polynomial over K0(y) irreducible over K(y), of degree d, say.
Let G = Gal(K1/K0). We extend the action of G to K1L by putting yσ = y, zσ = z

for all σ ∈ G.
We have

C1 =
d−1∑
j=0

fj z
j , fj ∈ K1(y),

hence

Cσ1 =
d−1∑
j=0

f σj z
j for all σ ∈ G.
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On the other hand,

cσ1 (C
σ
1 )
q = Cσ0 = C0 = c1Cq1 ,

hence

Cσ1 = eσC1, eσ ∈ K1.

Since z is of degree d over K1(y) we obtain

f σj = eσ fj (0 � j < d).

Let i be the least index such that fi �= 0,

fi = g

h
, where g, h ∈ K1[y],

and let γ, χ be the coefficients of the first term in the inverse lexicographic order of g
and h, respectively.

We have (
γ

χ

)σ
= eσ γ

χ
,

hence (
C1
χ

γ

)σ
= C1

χ

γ
for all σ ∈ G.

It follows that

C := C1
χ

γ
∈ L

and the assertion holds with c = c1(γ /χ)q .
Consider now the general case. Since the extension K/K1 is purely inseparable there

exists an exponent e such that cπ
e

1 ∈ K1 and Cπ
e

1 ∈ K1L.
Since π /| q there exist integers r and s such that πer − qs = 1 and we obtain

C0 = cπer1

(
Cπ

er
1

Cs0

)q
= c2Cq2 , where c2 ∈ K1, C2 ∈ K1L.

The assertion follows by the already proved part of the lemma. ��

Proof of Theorem 3. The condition given in the theorem is sufficient, since if

xn1q + axm1q + b = f (x)g(x), f, g ∈ K0[x] \K0,

we have

xn + Axm + B = Cn1qf

(
x(m,n)/q

C

)
g

(
x(m,n)/q

C

)
.

On the other hand, A−nBn−m ∈ K implies A−nBn−m ∈ K0,

A = a0C
n1−m1
0 , B = b0C

n1
0 , a0, b0 ∈ K0, C0 ∈ L,
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and

C
−n1
0 (xn + Axm + B) =

(
x(m,n)

C0

)n1

+ a0

(
x(m,n)

C0

)m1

+ b0.

Thus if xn + Axm + B is reducible over L we infer by Capelli’s lemma that either xn1 +
a0x

m1 + b0 is reducible over L or else

x(m,n)

C0
− ξ

is reducible over L(ξ), where ξ is a zero of xn1 + a0x
m1 + b0. In the former case the

condition is satisfied with a = a0, b = b0, C = C0, q = 1. In the latter case by Capelli’s
theorem there exists a q | (m, n), q = 4 or a prime, such that

C0 = c1Cq1 , c1 ∈ {ξ−1,−4ξ−1}, C1 ∈ L(ξ),
and

xq

C0
− ξ is reducible over L(ξ).

By Lemma 50 we have C0 = cCq , c ∈ K0, C ∈ L and xq − cξ is reducible over L(ξ).
This implies, again by Capelli’s lemma, that xn1q + a0c

n1−m1xm1q + b0c
n1 is reducible

over L, hence over K0 and the condition follows with a = a0c
n1−m1 , b = b0c

n1 . ��

6. Proof of Theorems 4 and 5

Proof of Theorem 4. According to Theorem 1, if n � 2m, a ∈ K∗, B ∈ K(y) \ K and
xn + axm + B(y) is reducible over K(y) we have either (i) or (ii). In case (i), no matter
whether n � 2m or n < 2m, if xn1 +axm1 +B(y) has a linear factor overK(y), say x− t ,
t ∈ K(y), we have B(y) = −tn1 − atm1 . If n1 � 4 and the factor is quadratic of the form
x2− t , we find tn1/2+atm1/2+B(y) = 0 = (−1)n1 tn1/2+(−1)m1 tm1/2+B(y) and since
at least one of the numbers n1,m1 is odd, we have t1/2 ∈ K(y), hence xn1 + axm1 +B(y)
has a linear factor over K(y).

If n1 � 4 and the quadratic factor has the middle coefficient different from zero we
can write the factor in the form

x2 − ux + u2v =
(
x − u 1 +√

1 − 4v

2

)(
x − u 1 −√

1 − 4v

2

)
, u, v ∈ K(y),

and thus we obtain

un1

(
1 ±√

1 − 4v

2

)n1

+ aum1

(
1 ±√

1 − 4v

2

)m1

+ B(y) = 0,

whence

a = −un1−m1
fn1(v)

fm1(v)
, B(y) = un1vm1

fn1−m1(v)

fm1(v)
.
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The first of the above equations implies that the irreducible curve it describes is of genus 0.
We have

(70) fk(v) = const
[(k−1)/2]∏
j=1

(
v − 1

2 + 2 cos(2jπ/k)

)
hence (fm1 , fn1) = 1 and the condition on the genus implies that either n1 −m1 = 1 or

(71)

[
n1 − 1

2

]
= 1

or n1 −m1 = 2 and
[
n1−1

2

]
+
[
m1−1

2

]
= 2. The last condition gives 2

[
n1−1

2

]
= 3, which

is impossible, hence we have either n1 − m1 = 1 or, from (71), n1 = 4, m1 = 1. In the
first case we take t = v and obtain

u = −a fn1−1(t)

fn1(t)
, B = un1 tn1−1

fn1−1(t)
= (−a)n1 tn1−1 fn1−1(t)

n1−1

fn1(t)
n1

.

In the second case we take t = u−1 and find B = B∗
4,1(t).

In case (ii) we infer that the curve a = uν−μAν,μ(v)must have at least one irreducible
component of genus 0. Examining all the 13 cases we find that this condition is satisfied
if and only if 〈ν, μ〉 = 〈4, 2〉, 〈6, 2〉 or 〈6, 3〉.

In each case we take t = u and obtain

• for 〈ν, μ〉 = 〈4, 2〉,

v = t2 + a
2t2

, B = u4v2 = B∗
4,2(t);

• for 〈ν, μ〉 = 〈6, 2〉,

v = −4t4 + a
4t4

, B = −u6v2 = B∗
6,2(t);

• for 〈ν, μ〉 = 〈6, 3〉,

v = t3 + a
3t3

, B = u6v3 = B∗
6,3(t).

It remains to consider the case where n < 2m and xn1 + axm1 + B(y) has no proper
linear or quadratic factor. Then

xn1 + a

B(y)
xn1−m1 + 1

B(y)c

satisfies (ii), hence there exists an integer l and 〈ν, μ〉 ∈ S0 such that n = νl, n−m = μl
and

a

B(y)
= uν−μAν,μ(v), 1

B(y)
= uνBν,μ(v), u, v ∈ K(y).
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It follows that auμ = Aν,μ(v)/Bν,μ(v) and thus the curve in question has at least one
irreducible component of genus 0. Examining all the 13 cases we find that this holds if
and only if 〈ν, μ〉 = 〈6, 1〉, 〈6, 2〉, 〈7, 1〉 or 〈8, 2〉.

If 〈ν, μ〉 = 〈6, 1〉 or 〈7, 1〉 we take t = v and obtain

u = Aν,μ(t)

aBν,μ(t)
, B = u−νBν,μ(v)−1 = B∗

ν,ν−μ(t).

If 〈ν, μ〉 = 〈6, 2〉 we take t = uv and obtain

v = −at
2 + 4

4
, u = −4t

at2 + 4
, B = −u−6v−2 = B∗

6,4(t).

Finally, if 〈ν, μ〉 = 〈8, 2〉 and

au2 = −v2 + 8v − 8

(2v − 2)2

we have

a =
( v

u(2v − 2)

)2 − 2
( v − 2

u(2v − 2)

)2
,

hence

a = α2 − 2β2, α, β ∈ K.
Taking

t = (v − 2)− βu(2v − 2)

v − αu(2v − 2)

we find

v

u(2v − 2)
= α + 2α − 4βt

2t2 − 1
,

v − 2

u(2v − 2)
= β + t 2α − 4βt

2t2 − 1
,

hence

u−1 = α + β + (t + 1)
2α − 4βt

2t2 − 1
, v−1 =

(
2
(
α + 2α − 4βt

2t2 − 1

)
u− 1

)−1
,

B = u−8(2v − 2)−2 = B∗
8,6(t). ��

Proof of Theorem 5. According to Theorem 1, if n � 2m, A ∈ K(y) \ K , b ∈ K∗
and xn + A(y)xm + b is reducible over K(y) we have either (i) or (ii). In case (i) if
xn1 +A(y)xm1 + b has a linear factor overK(y), say x − t , t ∈ K(y)∗, we have A(y) =
−tn1−m1 − bt−m1 . If n1 � 4 and the factor in question is quadratic of the form x2 − t we
find

tn1/2 + A(y)tm1/2 + b = 0 = (−1)n1 tn1/2 + A(y)(−1)m1 tm1/2 + b
and since at least one of the numbers n1,m1 is odd, we have t1/2 ∈ K(y), hence xn1 +
A(y)xm1 + b has a linear factor over K(y).
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If n1 � 4 and the quadratic factor has the middle coefficient different from zero we
can write the factor in the form x2 − ux + u2v and thus we obtain

un1

(
1 ±√

1 − 4v

2

)n1

+ A(y)um1

(
1 ±√

1 − 4v

2

)m1

+ b = 0,

whence

A(y) = −un1−m1
fn1(v)

fm1(v)
, b = un1vm1

fn1−m1(v)

fm1(v)
.

The second of the above equations implies that the irreducible curve it describes is of
genus 0. In view of the formula (70) we have

(
fm1(v), vfn1−m1(v)

) = 1 and the condition
on the genus implies that

m1 +
[
n1 −m1

2

]
= 1,

which is impossible for n1 � 4.
In the case (ii) we infer that the curve b = uνBν,μ(v)must have at least one irreducible

component of genus 0. Examining all the 13 cases we find that this condition is fulfilled if
and only if 〈ν, μ〉 = 〈2p, p〉 (p a prime), 〈6, 2〉, 〈8, 2〉, 〈8, 4〉, 〈9, 3〉.

• If 〈ν, μ〉 = 〈2p, p〉 we have b = (u2v)p, hence

b1 := u2v ∈ K(y) ∩K = K, v = b1u
−2.

• If 〈ν, μ〉 = 〈6, 2〉 we have b = −(u3v)2, hence

b1 := u3v ∈ K(y) ∩K = K, v = b1u
−3.

• If 〈ν, μ〉 = 〈8, 2〉 we have b = (u4(2v − 2))2, hence

b1 := u4(2v − 2) ∈ K(y) ∩K = K, v = 1 + b1

2u4 .

• If 〈ν, μ〉 = 〈8, 4〉 we have b = (u2v)4, hence

b1 := u2v ∈ K(y) ∩K = K, v = b1u
−2.

• If 〈ν, μ〉 = 〈9, 3〉 we have b = (3u2(v − 3))3, hence

b1 := 3u3(v − 3) ∈ K(y) ∩K = K, v = 3 + b1

3u3 .

In every case we take t = u and obtain

A(y) = uν−μAν,μ(v) = A∗
ν,μ(t, b1). ��
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PART II

Reducibility over algebraic number fields
and, in particular, over Q

7. Proof of Theorem 6 and of the subsequent remarks

Proof of Theorem 6. We begin by defining the sets Fν,μ(K) for ν � 2μ. This is done
in several steps. First we put q = (μ, ν), ν1 = ν/q, μ1 = μ/q, choose the least non-
negative integers �, σ satisfying the equation σ(ν1 − μ1)− �ν1 = 1 and introduce fields
L(k, μ1, ν1) andM(μ1, ν1, q). Let L(k, μ1, ν1) = K(t, y), where y is integral overK[t]
with the discriminant D(t). By Lemma 19 the function (y1q + . . . + yν1q)

q generatingc

M(μ1, ν1, q) overK(t) is determined up to a conjugacy. Let φ be its minimal polynomial
over K[t]. We putc

Sν,μ(K) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⋃
2<k�ν1/2,g∗(k,μ1,ν1)>1

{t0 ∈ K :
D(t0) = 0 or t − t0 has in L(k, μ1, ν1)

a prime divisor of degree 1} if q = 1,

{〈t0, u0〉 ∈ K2 : there exists

a prime divisor p ofM(μ1, ν1, q)

such that t ≡ t0 mod p,

(y1q + . . .+ yν1q)
q ≡ u0 mod p}, if q > 1, g∗(μ1, ν1, q) > 1,

∅ otherwise.c

It follows from Lemmas 4 and 19 that [L(k, μ1, ν1) : K(t)] = [L∗(k, μ1, ν1) : K(t)]
and [M(μ1, ν1, q) : K(t)] = [M∗(μ1, ν1, q) : K(t)], hence K is the exact constant field
of L(k, μ1, ν1) andM(μ1, ν1, q). Therefore the conditions t ≡ t0, (y1q + . . .+ yν1q)

q ≡
u0 mod p, 〈t0, u0〉 ∈ K2 imply that either p is of degree 1 or 〈t0, u0〉 is a singular pointc

of φ = 0. By the Faltings theorem there are only finitely many prime divisors of degree 1c

in L(k, μ1, ν1) or M(μ1, ν1, q) if g∗(k, μ1, ν1) > 1 or g∗(μ1, ν1, q) > 1, respectively.
Hence the sets Sν,μ(K) are finite.

Now we introduce auxiliary sets

Tν,μ(K) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

⋃
t0∈Sν,μ(K)

{〈t�0 , tσ0 〉} if q = 1,⋃
〈t0,u0〉∈Sν,μ(K)

{〈t�0 u(μ−ν)/q0 , tσ0 u
−ν/q
0 〉} if q is a prime,⋃

〈t0,u0〉∈Sν,μ(K)
{〈t�0 (−u0/4)(μ−ν)/4 , tσ0 (−u0/4)−ν/4〉} if q = 4,

∅ otherwise.

[The formulae make sense only for u0 �= 0. The argument for u0 = 0 is given at the end
of D13 (page 604 in this volume).]c
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Finally, we put

Fν,μ(K) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{〈a, b〉 ∈ Tν,μ(K) : xν + axμ + b is reducible over K}
if 〈ν, μ〉 �∈ S0 ∪ S1, or 〈ν, μ〉 = 〈9, 1〉, √13 /∈ K,

{〈a, b〉 ∈ T9,1(K) : x9 + ax + b is reducible over K} ∪⋃
ε=±1

{〈−480053919711226727 + ε66936076602084894
√

13,

1
2 (−57126885878317063725 + ε66644985243629014605

√
13)
〉}
,

if 〈ν, μ〉 = 〈9, 1〉, √13 ∈ K,{〈
2 · 713, 714

(
7 +√

21

2

)7〉
,

〈
2 · 713, 714

(
7 −√

21

2

)7〉}
,

if 〈ν, μ〉 = 〈21, 7〉, √21 ∈ K,
∅ otherwise.

Since the sets Sν,μ(K) are finite, so are the sets Fν,μ(K). We proceed to prove that they
have all the other properties asserted in the theorem.

Assume that xn + axm + b is reducible over K . There are two possibilities:

(72) xn1 + axm1 + b is reducible over K

and

(73) xn1 + axm1 + b is irreducible over K .

In the case (72), xn1 + axm1 + b has a proper factor over K of degree k � n1/2. If
k � 2 we have (vi). If k > 2 and g∗(k,m1, n1) � 1, by Lemmas 15 and 30, 31, 42–46
we have (vii) or (viii) with l = (m, n), ν = n1, μ = m1 or one of the exceptional cases
(51), (56), (59), (62) with A = a, B = b. In the cases (51), (56), (59), xn1 + axm1 + b
has the linear factor x − u ∈ K[x], hence (vi) holds. In the case (62) we obtain (ix) with
l = (m, n), ν = 9, μ = 1 by the definition of Fν,μ(K).

Now, suppose that k > 2 and g∗(k,m1, n1) > 1. Then by Lemma 15, 〈n1,m1〉 /∈
S0 ∪ S1 \ {〈9, 1〉}. Put

(74) t0 = a−n1bn1−m1 .

If r, s are the least non-negative integers satisfying s(n1−m1)−rn1 = 1, by the identity (22)
the trinomial xn1 + t r0xm1 + t s0 has a factor of degree k overK . Hence there exists a prime
divisor P of L∗(k,m1, n1) such that t ≡ t0, y ≡ y0 mod P, where L∗(k,m1, n1) =c

K(t, y) and y0 ∈ K . Let p be a prime divisor of L(k,m1, n1) divisible by P. Sincec

t0, y0 ∈ K , either p is of degree 1 orD(t0) = 0. Thus t0 ∈ Sn1,m1(K), 〈t r0 , ts0〉 ∈ Fn1,m1(K)c

and (ix) holds with l = (m, n), ν = n1, μ = m1, a0 = t r0 , b0 = t s0 , u = asb−r .
In the case (73) by Capelli’s lemma

x(m,n) − ξ is reducible over K(ξ),

where ξn1 + aξm1 + b = 0.
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Further, by Capelli’s theorem, there exists a q | (m, n) such that either q is a prime and
ξ = ηq , η ∈ K(ξ) or q = 4 and ξ = −4η4, η ∈ K(ξ). In both cases

(75) xn1q + axm1q + b is reducible over K .

If g∗(m1, n1, q) � 1, by Lemmas 25 and 31, 33–40, 47, 48 we have either (vii) or (viii)
with l = (m, n)/q, ν = n1q, μ = m1q or (67) with A = a, B = b. In the last case we
have (ix) with l = (m, n)/7, ν = 21, μ = 7, by the definition of Fν,μ(K).

Now, suppose thatg∗(m1, n1, q) � 2 and (74) holds. Then by Lemma 25, 〈n1q,m1q〉 /∈
S0 ∪ S1. If η1, . . . , ηn1 are all the conjugates of η over K we have

xn1 + axm1 + b =

⎧⎪⎪⎨⎪⎪⎩
n1∏
i=1
(x − ηqi ) if q is a prime,

n1∏
i=1
(x + 4η4

i ) if q = 4,

and by (22),

xn1 + t r0xm1 + t s0 =

⎧⎪⎪⎨⎪⎪⎩
n1∏
i=1
(x − a−sbrηqi ) if q is a prime,

n1∏
i=1
(x + 4a−sbrη4

i ) if q = 4.

Hence there exists a prime divisor P ofM∗(m1, n1, q) such that

t ≡ t0, (y1q + . . .+ yn1q)
q ≡ u0 mod P,

where

(76) u0 =
{
a−sbr (η1 + . . .+ ηn1)

q if q is a prime,

−4a−sbr (η1 + . . .+ ηn1)
4 if q = 4.

Let p be a prime divisor ofM(m1, n1, q) divisible by P. Since t0, u0 ∈ K we have

t ≡ t0, (y1q + . . .+ yn1q)
q ≡ u0 mod p.

Hence 〈t0, u0〉 ∈ Sn1q,m1q and

(77)

〈t r0um1−n1
0 , ts0u

−n1
0 〉 ∈ Tν,μ(K) if q is a prime,〈

t r0

(−u0

4

)m1−n1

, t s0

(−u0

4

)−n1
〉
∈ Tν,μ(K) if q = 4.

By (74) and (76) the above pairs equal

〈a(η1 + . . .+ ηn1)
qm1−qn1 , b(η1 + . . .+ ηn1)

−qn1〉
and since

xqn1 + a(η1 + . . .+ ηn1)
qm1−qn1xm1q + b(η1 + . . .+ ηn1)

−qn1

= (η1 + . . .+ ηn1)
−qn1
(
(x(η1 + . . .+ ηn1))

qn1 + a(x(η1 + . . .+ ηn1))
qm1 + b)
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Tν,μ(K) can be replaced in (77) by Fν,μ(K), by virtue of (75). Thus (ix) holds with

l = (m, n)

q
, ν = n1q, μ = m1q, u = η1 + . . .+ ηn1 .

Assume now that one of the cases (vi)–(ix) holds. (vi) and (ix) imply the reducibility of
xn + axm + b in an obvious way, and so do (vii) and (viii) by Lemmas 30–40 and 42–48,
respectively.

The proof of Theorem 6 is complete. ��

The remark following Theorem 6 can be summarized as

Lemma 51. For 〈ν, μ〉 ∈ S1 the sets Eν,μ(Q) are infinite, except that

E7,2(Q) = {〈−4, 4〉, 〈−4,−4〉}, E21,7(Q) = {〈−49, 0〉}.

Proof. The curve E7,2 is equivalent via an affine transformation to a curve listed in the
tables [17a] as curve 35A (I owe this information to Professor Karl Rubin). The curves
E7,3, E9,1 and E14,2 have rational points of infinite order 〈3, 108〉, 〈16, 62〉 and 〈5, 10〉,
respectively. Also the two curves to be taken as E8,1, namely w2 = v3 − 10v + 12 and
w2 = v3 − 20v − 16 have rational points of infinite order 〈3, 3〉 and 〈5, 3〉, respectively.
It remains to find all rational points on the curve

E21,7 : w2 = v3 − 1715v + 33614.

The discriminant of the cubic on the right hand side is −28 ·79 and using Nagell’s theorem
(see [4], Theorem 22.1) we easily find that the only rational point of finite order is 〈−49, 0〉.
In order to show that there are no rational points of infinite order we notice that by Lemma 41
the curve E21,7 is birationally equivalent over Q to the curve

y2 = x4 + 294x2 − 343.

By Theorem 8 of [19] the number of generators of infinite order of the group of rational
points on the above curve equals �1+�2−2 where 2�1 is the number of solvable equations

(78) s(x4 − 588sx2y2 + s2 · 87808y4) = z2

and 2�2 the number of solvable equations

(79) t (t2x4 + 294tx2y2 − 343y4) = z2

where s and t run through the square-free divisors of 87808 and of 343 respectively. The
left hand side of (78) is negative for negative s, hence the only relevant values of s are
1, 2, 7 and 14, while the relevant values of t are ±1, ±7. For s = 1 and 7 the equation
(78) has solutions 〈x, y, z〉 = 〈1, 0, 1〉 and 〈0, 1, 5488〉, respectively. For t = 1 and −7 the
equation (79) has solutions 〈1, 0, 1〉 and 〈0, 1, 49〉, respectively. However, (78) for s = 2
and (79) for t = −1 are insoluble in Z2 hence �1 = �2 = 1 and �1 + �2 − 2 = 0. ��
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8. Deduction of Consequences 1–3 from Conjecture

Consequence 1 is immediate. In order to deduce Consequence 2 we prove

Lemma 52. For every field K and every polynomial f ∈ K[x] of degree d, f (xn) has
over K an irreducible factor with at most 2d + 1 non-zero coefficients.

Remark. A special case of this lemma with K = Q and d = 1 was proved in [21].

Proof. Let h(x) be a factor of f (x) irreducible over K(ζ4), let h(ξ) = 0 and let e bec

the maximal exponent dividing n such that ξ = ηe, η ∈ K(ζ4, ξ). By Capelli’s theorem
xn/e − η is irreducible over K(ζ4, ξ), hence by Capelli’s lemma

g(x) = NK(ζ4,ξ)/K(ζ4)(xn/e − η)
is irreducible over K(ζ4), divides f (xn) and has at most [K(ζ4, ξ) : K(ζ4)] + 1 � d + 1c

non-zero coefficients. If g ∈ K[x] we have more than asserted. If g(x) �∈ K[x], g and its
conjugate g over K are coprime and f1 = gg ∈ K[x] is irreducible over K . Moreover,
the number of non-zero coefficients of f1 does not exceed 2d + 1. ��

Deduction of Consequence 2. Suppose that xn + axm + b is reducible over K . Then by
Consequence 1, n1 � C1(K) or xn1 + axm1 + b has a factor of degree � 2. Hence byc

Lemma 52, xn + axm + b = (x(m,n))n1 + a(x(m,n))m1 + b has an irreducible factor with
at most 2C1(K)+ 1 non-zero coefficients. Hence one can take C2(K) = 2C1(K)+ 1. ��

From this point onwards reducibility means reducibility over Q. In order to deduce
Consequence 3 we show

Lemma 53. The trinomial xn + bxm ± 1, where (n,m) = 1, n > 2, b ∈ Z, |b| > 2, has
no linear or quadratic factor.

Proof. In view of symmetry we may assume n < 2m,m > 1. Linear factors being excluded
by |b| > 2 we write a supposed quadratic factor as (x−α)(x−β), whereα, β are conjugate
units. It follows that

b = αn − βn
βm − αm

and since (αn − βn, αm − βm) = (α(m,n) − β(m,n)) = α − β and b ∈ Z we obtain

(80)
αm − βm
α − β = ±1.

Since |b| > 2, α and β cannot be roots of unity, thus they are real and

max{|α|, |β|} � 1 +√
5

2
, min{|α|, |β|} �

√
5 − 1

2
.

Hence (80) implies m = 2, n = 3 and the existence of a quadratic factor would imply the
existence of a linear factor, a contradiction. ��
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Deduction of Consequence 3. By Theorem 6, Lemma 53 and Conjecture the existence of
infinitely many integers b with xn+ bxm± 1 reducible for some n �= 2m would imply the
existence of fixed n �= 2m and infinitely many integers b with xn + bxm + 1 reducible.
This, however, is impossible by Theorem 8, since for a = c = 1 the condition b2

1 = −c/a
is not satisfied by any rational b1. ��

Remark. The proof of Theorem 8 to be given in §9 is independent of the present section,
thus there is no danger of a vicious circle.

9. Proof of Theorems 7 and 8

Lemma 54. If g(t) ∈ Q(t) takes infinitely many integer values for rational values of t ,
then

(81) either g ∈ Q[t] or g(t) = P(t)

Q(t)
, P,Q ∈ Q[t], degP � degQ,

whereQ is a power of a linear polynomial or of an irreducible quadratic polynomial with
a positive discriminant.

Proof. This is the result of [13]. ��

Lemma 55. Let F ∈ Q[x, y] \ Q. There exists a finite (possibly empty) subset S(F ) of
Q(t) with the following properties:

(82) If g ∈ S(F ) then F(x, g(t)) has a zero in Q(t) and (81) holds.

(83) The set of integers y∗ �∈ ⋃
g∈S(F )

g(Q) such that F(x, y∗) has an integer zero is finite.

Proof. Assume first that F is irreducible over C. If the genus of the curve F(x, y)=0 is
positive we take S(F ) = ∅ and (83) follows from Siegel’s theorem. If the genus is zero, by
the Hilbert–Hurwitz theorem all but finitely many rational points on the curve are given by
x∗ = f (t∗), y∗ = g(t∗), f, g ∈ Q(t), where t∗ ∈ Q. We take S(F ) = {g(t)} if g satisfies
(81), S(F ) = ∅ otherwise and (83) follows from Lemma 54.

Assume now that F is reducible over C, but irreducible over Q. Then the number of
rational points on F(x, y) is finite (see [4], p. 196), hence it suffices to take S = ∅.

Assume finally that F =
k∏
i=1
Fi , where Fi are irreducible over Q. Then we take

S(F ) =
k⋃
i=1
S(Fi). ��

Lemma 56. Let F ∈ Q[x, y] be irreducible over Q. Then there exists a finite (possibly
empty) subset R(F) of Q(t) with the following properties:

(84) If g ∈ R(F) then F(x, g(t)) is reducible over Q(t) and (81) holds.

(85) The set of integers y∗ �∈ ⋃
g∈R(F)

g(Q) such that F(x, y∗) is reducible over Q is finite.

Proof. This follows from Lemma 55 in the same way as Theorem 33 of [26] follows fromc

Lemma 1 there for K = Q, r = s = 1. ��
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Remark. Similar results are stated without proof by M. Fried: in [9] in the special case
F(x, y) = f (x)−y, in [10] in general. In the former case the possibilityg �∈ Q[t] is omitted
by mistake (acknowledged in [10], p. 600), in the latter case the condition degP � degQ
in (81) is replaced by degP = degQ, the possibility ofQ being a power of a linear form is
omitted and there is no restriction on the discriminant ofQ. These changes are permissible,
since ifQ is a power of a linear form, we may replace g by g(a + t−1), whereQ(a) = 0;
ifQ is a power of an irreducible quadratic form and degP � degQ, we may replace g by
g(a + t−1), where P(a) �= 0.

Proof of Theorem 7. Applying Lemma 56 with F(x, y) = axn + bxm + y we infer from
(84) and Theorem 4 that if n1 = 5, m1 = 4 then

R(F) =
{
−at5 − bt4, a

(b
a

)5 t2(t − 2)4

(t2 − 3t + 1)5

}
;

if n1 = 2, m1 = 1 and 2 | (m, n) then

R(F) =
{
−at2 − bt, a

(at2 + b
2a

)2
}
;

if n1 = 4, m1 = 3 and 2 | (m, n) then

R(F) =
{
−at4 − bt3,

a

(
(2α − 2β)t2 + (2α − 4β)t + (α − β))6((2α + 2β)t2 − (2α + 4β)t + (α + β))2

4(2t2 − 1)8

}
,

where α2 − 2β2 = b/a, α, β ∈ Q fixed; otherwise

R(F) = {−atn1 − btm1
}

and (85) implies the theorem. The only point which requires a proof is that the function

g(t) =
(
−b
a

)n1

tn1−1 fn1−1(t)
n1−1

fn1(t)
n1

occurring in Theorem 4 satisfies the condition (81) only for n1 = 5. To see this let us
observe that by (70),c

(tfn−1(t), fn1(t)) = 1,

hence g(t) in a reduced form has the denominator

fn1(t)
n1 =

[(n1−1)/2]∏
j=1

(
t − 1

2 + 2 cos(2jπ/n1)

)n1

.

Therefore for n1 > 6, g(t) has at least three different poles, and for n1 = 4 or 6 itsc

numerator is of greater degree than the denominator. ��
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Proof of Theorem 8. Applying Lemma 56 with F(x, y) = axn + yxm + c we infer from
(84) and Theorem 5 that if n = 2m then

R(F) =
⋃
p |m
p prime

b1= p
√
c/a∈Q

{
−a
(
t +
√
t2 − 4b1

2

)p
− a
(
t −
√
t2 − 4b1

2

)p}

∪
{
a(4t4 − 8t2b1 + 2b2

1)
}
,

where the last summand occurs only if 4 |m and b1 = 4
√
c/a ∈ Q; if n1 = 3, m1 = 1,

2 | (m, n) and
√−ac ∈ Q then

R(F) = {4at4 − 4t
√−ac};

otherwise, R(F) = ∅ and (85) implies the theorem. ��

10. Proof of Theorem 9 and of Corollary 1

Lemma 57. Let A ∈ C and T (x) = xn + Axm + 1. If |A| > 2, exactly m zeros of T (x)
(counting the multiplicities) satisfy the inequality

(86)

∣∣∣∣log |x| + 1

m
log |A|

∣∣∣∣ < 1

m
log

|A|
|A| − 1

and the remaining n−m zeros satisfy the inequality

(87)

∣∣∣∣log |x| − 1

n−m log |A|
∣∣∣∣ < 1

n−m log
|A|

|A| − 1
.

Remark. Under the conditions of the lemma all zeros of T (x) are simple, but we do not
need this in the sequel.

Proof. Since |Axm + 1| � |A|−1 > 1 = |x|n for |x| = 1, by Rouché’s theorem T (x) has
as many zeros inside the unit circle as Axm+ 1, hencem. For each of these zeros we have

± ∣∣Axm∣∣ � |x|n ± 1 � |x|m ± 1,c

hence

1

|A| + 1
� |x|m � 1

|A| − 1
,

and

log
|A|

|A| + 1
� m log |x| + log |A| � log

|A|
|A| − 1

,

which gives (86). The remaining n−m zeros of T (x) are outside the unit circle and satisfy

± ∣∣xn∣∣ � ± ∣∣Axm∣∣+ 1 < ± ∣∣Axm∣∣+ |x|m ,
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hence

|A| − 1 � |x|n−m � |A| + 1,

log
|A| − 1

|A| � (n−m) log |x| − log |A| � log
|A| + 1

|A| ,

which gives (87). ��

Lemma 58. In the notation of Lemma 57, if (m, n) = 1 and

(88) |A| � 2m(n−m)
log 2m(n−m) ,

then the trinomial T (x) has no proper monic factor f ∈ C[x] \ C with |f (0)| = 1.

Proof. The condition (88) implies |A| � e, hence T (x) has no zero on the unit circle,
which settles the case n < 4. Since |f (0)| = 1 implies

∣∣T (0)f−1(0)
∣∣ = 1 it is enough to

consider the case where n � 4, deg f � n/2. Let

f (x) =
r∏
j=1

(x − ξj )
s∏
k=1

(x − ηk),

where ξj satisfy (86) and ηk satisfy (87). The condition |f (0)| = 1 gives

r∑
j=1

log
∣∣ξj ∣∣+ s∑

k=1

log |ηk| = 0,

hence by (86) and (87)

(89)

∣∣∣∣ rm − s

n−m
∣∣∣∣ log |A| �

(
r

m
+ s

n−m
)

log
|A|

|A| − 1
.

Since (m, n) = 1 we have (m, n − m) = 1 and r(n − m) − sm = 0 would imply
r ≡ 0 modm, s ≡ 0 mod (n−m), hence either r = s = 0 or r = m, s = n − m,
deg f = n contrary to the assumption. Hence

(90) |r(n−m)− sm| � 1.

Moreover, if r � (m+ 1)/2 we have

r(n−m)− sm = rn− (r + s)m � m+ 1

2
n− mn

2
= n

2
� 2,

similarly if s � (n−m+ 1)/2 we have

r(n−m)− sm = (r + s)(n−m)− sn � n(n−m)
2

− n(n−m+ 1)

2
= −n

2
� −2.

Thus

(91) |r(n−m)− sm)| � 2, unless r � m/2 and s � (n−m)/2.
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The inequalities (89)–(91) give

(92)
log |A|
m(n−m) � log

|A|
|A| − 1

.

However, t log t
t−1 is a decreasing function of t > 1, hence

|A| log
|A|

|A| − 1
� e log

e

e − 1

and (92) gives

|A| log |A|
m(n−m) � e log

e

e − 1
.

Thus, by (91),

2
(

1 − log log 2m(n−m)
log 2m(n−m)

)
� e log

e

e − 1

and

2(1 − e−1) � e log
e

e − 1
,

which is false. ��

Lemma 59. If a, b, c ∈ Z \ {0}, n>m are positive integers and |b|> |a|m |c|n−m+1 then
every monic factor f ∈ Q[x] \ Q of axn + bxm + c satisfies |f (0)| = |c/a|(deg f )/n.

Proof. Assume first that 2m � n. Let f (x) =
d∏
j=1
(x − ϑj ). For every j we have

aϑn−mj = −b − cϑ−mj
and both sides are algebraic integers since the left hand side may have in the denominator
only those prime ideals p of Q(ϑj ) for which ordp ϑj < 0, and the right hand side only
those p for which ordp ϑj > 0. Hence

aϑn−mj ≡ −cϑ−mj mod b (1 � j � d),

where the congruence is taken in the ring of algebraic integers. Multiplying the obtained
congruences we obtain

ad
(
(−1)df (0)

)n−m ≡ (−1)dcd
(
(−1)df (0)

)−m mod b.c

If both sides of the congruence are equal then

(93) |f (0)| =
∣∣∣ c
a

∣∣∣d/n ,
otherwise

(94) |a|d |f (0)|n−m + |c|d |f (0)|−m � |b| .
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By the same argument applied to the polynomial

g(x) = axn + bxm + c
af (x)c

we infer that either

(95)

∣∣∣∣ c

af (0)

∣∣∣∣ = ∣∣∣ ca
∣∣∣(n−d)/n

or

(96) |a|n−d
∣∣∣∣ c

af (0)

∣∣∣∣n−m + |c|n−d
∣∣∣∣ c

af (0)

∣∣∣∣−m � |b| .

However (95) implies (93), hence we have either (93), i.e. the assertion of the lemma, or
simultaneously (94) and (96). Let us put, for t > 0,

ϕd(t) = |a|d tn−m + |c|d t−m.
The conjunction of (94) and (96) can be written as

(97) min

{
ϕd(|f (0)|), ϕn−d

(∣∣∣∣ cf (0)
∣∣∣∣)} � |b| .

On the other hand, we have af (0) ∈ Z and cf (0)−1 ∈ Z, hence |a|−1 � |f (0)| � |c|
and we infer from (97) that

(98) M := max
|a|−1�t�|c|

min{ϕd(t), ϕn−d(|c/a| t−1)} � |b| .

Now, the function ϕd(t) has no local maximum in (0,∞), and the same applies to
ϕn−d(|c/a| t−1).

Consider first the case d � m. The inequality (98) with the above remark implies that

max{ϕd(|a|−1), ϕd(|c|)} � M � |b| .
In view of d � m � n−m we have

(99)
ϕd(|a|−1) = |a|d+m−n + |c|d |a|m � 1 + |c|n−m |a|m ,
ϕd(|c|) = |a|d |c|n−m + |c|d−m � |a|m |c|n−m + 1,

hence

(100) |a|m |c|n−m + 1 � |b| ,
contrary to the assumption.

Consider now the case m < d < n−m. The equation

ϕd(t) = ϕn−d(|c/a| t−1)

implies

tn−2m = |c|n−m−d |a|m−d ;
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moreover, denoting the positive root of the latter equation by t0, we have

|a|−1 � t0 � |c| ,
ϕd(t) < ϕn−d(|c/a| t−1) for t < t0,

ϕd(t) > ϕn−d(|c/a| t−1) for t > t0.

Hence, by (98) and the subsequent remark

M = max{ϕd(|a|−1), ϕd(t0), ϕn−d(|a|−1)} � |b| .
Now

ϕd(|a|−1) = |a|d+m−n + |c|d |a|m � 1 + |c|n−m |a|m ,
ϕd(t0) = (|a|m |c|n−m)(n−m−d)/(n−2m) + (|a|m |c|n−m)(d−m)/(n−2m)

� |a|m |c|n−m + 1,

ϕn−d(|a|−1) = |a|m−d + |c|n−d |a|m � 1 + |c|n−m |a|m
hence (100), contrary to the assumption.

Consider next the case d � n−m. Then

max{ϕn−d(|c|), ϕn−d(|a|−1)} � M � |b|
and since n− d � m, by (99) we have again (100), contrary to the assumption.

Finally, assume that 2m > n. Then 2(n − m) < n and since f (0)−1xdf (x−1) is a
monic factor of cxn+ bxn−m+ a we infer from the already proved case of the lemma that∣∣∣f (0)−1

∣∣∣ = ∣∣∣a
c

∣∣∣d/n ,
which gives the assertion. ��

Lemma 60. If a, b, c ∈ Z\{0}, n > m are positive integers, (m, n) = 1 and axn+bxm+c
is reducible then either

(101) |b| � |a|m |c|n−m + 1

or simultaneously

min{|a| , |c|} = 1, |b| � 2m(n−m)
log 2m(n−m) |a|

m/n |c|(n−m)/n

and

p
√

max{|a| , |c|} ∈ Z for some prime p |n,

Proof. Suppose that

(102) axn + bxm + c = f (x)g(x), where f, g ∈ Q[x] \ Q and f is monic.

If (101) does not hold we have, by Lemma 59,

(103) |f (0)| =
∣∣∣ c
a

∣∣∣(deg f )/n
, hence

∣∣∣ c
a

∣∣∣1/p ∈ Q for some prime p |n.
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Choose any value of (c/a)1/n and put

(104) A = bc−1
( c
a

)m/n
.

By (102) we have

c(xn + Axm + 1) = f
(( c
a

)1/n
x

)
g

(( c
a

)1/n
x

)
.

The polynomial

f1(x) =
( c
a

)−(deg f )/n
f

(( c
a

)1/n
x

)
is a proper monic factor of xn + Axm + 1 and, by (103),

|f1(0)| =
∣∣∣∣( ca )−(deg f )/n

f (0)

∣∣∣∣ = 1.

Hence by Lemma 58,

|A| � 2m(n−m)
log 2m(n−m)

and by (104),

|b| � 2m(n−m)
log 2m(n−m) |a|

m/n |c|(n−m)/n .

If min{|a| , |c|} � 2, then

|a|m |c|n−m + 2

|a|m/n |c|(n−m)/n � 2n + 2

2
>

n2/2

log n2/2
� 2m(n−m)

log 2m(n−m) ,

thus |b| < |a|n |c|n−m + 2 and (101) holds. If min{|a| , |c|} = 1, (103) gives
p
√

max{|a| , |c|} ∈ Z for some prime p |n. ��

Lemma 61. If f ∈ Z[x] is a primitive irreducible polynomial with leading coefficient l,

f (ξ) = 0 and ξ = ηp, η ∈ Q(ξ),

then p
√|l| ∈ Z, p

√|f (0)| ∈ Z; moreover, if p = 2 then

(105) (−1)deg f lf (0) > 0.

Proof. Let (η) = a/b, where a, b are integral ideals of Q(ξ), (a, b) = 1. We have (ξ) =
ap/bp and b−p is the content of x − ξ , hence |l| (Nb)−p is the content of f and since f
is primitive, |l| = (Nb)p, p

√|l| = Nb ∈ Z, N denoting the absolute norm in Q(ξ). Now

(106) (−1)deg f f (0)

l
= Nξ = (Nη)p,

hence p
√|f (0)| = |Nη| p√|l| ∈ Q. Moreover, if p = 2 then (106) implies (105). ��
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Lemma 62. In the notation of Lemma 61, if

(107) f (ξ) = 0 and ξ = −4η4, η ∈ Q(ξ), deg f ≡ 1 mod 2

then lf (0) > 0 and either 4
√|l| ∈ Z, 4

√
4 |f (0)| ∈ Z or 4

√
4 |l| ∈ Z, 4

√|f (0)| ∈ Z.

Proof. Let

(2) =
k∏
j=1

p
ej
j , Npj = 2fj ,

be the factorization of (2) into prime ideals of Q(ξ).
The equality (ξ) = (4η4) implies that

(ξ) =
k∏
j=1

p
aj
j

a

b
, aj ≡ 2ej mod 4 (1 � j � k),

where a, b are integral ideals of Q(ξ), (a, b) = 1 and (2, ab) = 1. Arguing as in the proof
of Lemma 61 we infer that

|l| = 2
∑′ |aj |fj (Nb)4

where the sum
∑′ is taken over all j with aj < 0, and

f (0)

l
= (−1)deg f Nξ = 4deg f (Nη)4.

Hence lf (0) > 0 and if
∑′
ajfj ≡ 0 mod 4 we have

4
√|l| ∈ Z, 4

√
4 |f (0)| = 2(deg f+1)/2 |Nη| 4

√|l| ∈ Q.

If
∑′
ajfj ≡ 2 mod 4 we have

4
√

4 |l| ∈ Z, 4
√|f (0)| = 2(deg f−1)/2 |Nη| 4

√
4 |l| ∈ Q. ��

Proof of Theorem 9. If t (x) := axn1 + bxm1 + c is reducible then by Lemma 60 we
have either (x) or (xi). If t (x) is irreducible we apply Capelli’s lemma to t (x(m,n)) =
axm + bxn + c and we infer that it is reducible if and only if

x(m,n) − ξ is reducible over Q(ξ),

where t (ξ) = 0. However, by Capelli’s theorem the last binomial is reducible if and only
if either

ξ = ηp, where η ∈ Q(ξ), p a prime, p | (m, n),
or

ξ = −4η4, where η ∈ Q(ξ), 4 |n.
These conditions give (xii) and (xiii) in virtue of Lemmas 61 and 62. ��

Proof of Corollary 1. Replacing x by x−1, if necessary, we may assume n � 2m. Since
n1 > d and xn + bxm ± 1 has a factor of degree d, by Capelli’s lemma xn1 + bxm1 ± 1 is
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reducible. Hence by Theorem 9,

(108) |b| < 2m1(n1 −m1)

log 2m1(n1 −m1)
� 2(n−m)2

log 2(n−m)2 .

On the other hand, since |b| > 2, xn + bxm ± 1 has no cyclotomic factors, and also no
reciprocal factors since xn + bxm ± 1 − (xn ± bxn−m ± 1) = b(xm ± xn−m). Therefore
by Smyth’s result [29] at least one zero ϑ of the factor of degree d satisfies the inequality

log |ϑ | � logϑ0

d
, where ϑ3

0 − ϑ0 − 1 = 0.
c

Hence by Lemma 57,c

logϑ0

d
� 1

n−m log
|b|2

|b| − 1
,

and by (108),

logϑ0

d
� log(n−m)

n−m .

This gives n � 2(n − m) � d log d and by (108), |b| � d2 log d. The constants in the
Vinogradov symbols are effective. ��

11. Proof of Theorem 10 and of Corollary 2

Lemma 63. Let K be an algebraic number field, ξ, η ∈ K∗ and (ξ, η) = c/d, where c, d
are integral ideals of K . Then

(ξn − ηn, ξm − ηm)
∣∣∣ cn−(m,n)

dm−(m,n)
(
ξ (m,n) − η(m,n)).

Proof. Let K1 be an extension of K such that c = (γ ) and d = (δ) are principal ideals
of K1. We have then

ξ = γ

δ
ξ1, η = γ

δ
η1,

where ξ1, η1 are integers of K1 and (ξ1, η1) = 1. Clearly

(109) (ξn − ηn, ξm − ηm)
∣∣∣ γ n
δm
(ξn1 − ηn1 , ξm1 − ηm1 ).

Let (m, n) = rn− sm, where r, s are positive integers. We have

ξn1 − ηn1 | ξ rn1 − ηrn1 , ξm1 − ηm1 | ξ sm1 − ηsm1 ,
hence

(ξn1 − ηn1 , ξm1 − ηm1 )
∣∣∣ ξ rn1 − ηrn1 − ξ (m,n)1 (ξ sm1 − ηsm1 ) = ηsm1 (ξ (m,n)1 − η(m,n)1 )

and by symmetry

(ξn1 − ηn1 , ξm1 − ηm1 ) | ξ sm1

(
ξ
(m,n)
1 − η(m,n)1

)
.
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Since (ξ1, η1) = 1 it follows that

(ξn1 − ηn1 , ξm1 − ηm1 ) | ξ (m,n)1 − η(m,n)1 = δ(m,n)

γ (m,n)

(
ξ (m,n) − η(m,n)),

and the lemma follows from (109). ��

Lemma 64. In the notation of Lemma 63 let l = [K : Q], l0 = [Q(ξ/η) : Q]. If ξ/η is
not a root of unity we have

log |N(ξn − ηn)| = n log
Nc

Nd
+ n l

l0
logM(ξ/η)+O

( l
l0

logM(ξ/η)+ l
)

log n
c

whereN is the absolute norm inK ,M(ξ/η) is the Mahler measure of ξ/η and the constant
in the O symbol depends only on l0.

Proof. Let ξ/η = α/β, where α, β ∈ Q(ξ/η) = K0, α, β are integers and (α, β) = d0.
Let S be the set of all isomorphic injections of K0 into C and N0 be the absolute norm
in K0.

In the notation of [24] we have

(110)
w(α/β) := log

∏
σ∈S

max
{|ασ |, |βσ |}− logN0d0

= logM(α/β) = logM(ξ/η),

since N0d
−1
0

∏
σ∈S
βσ is the leading coefficient of the primitive irreducible polynomial

N0d
−1
0

∏
σ∈S
(βσ x−ασ )which has α/β as a zero. Therefore, by Lemmas 1 and 2 from [24],

c

for all σ ∈ S we have

log
∣∣(ασ )n − (βσ )n∣∣ = n log max

{|ασ |, |βσ |}+O(l0 + logM(ξ/η)) log n,c

where the constant in theO symbol depends only on l0 and is effectively computable. This
gives

log |N0(α
n − βn)| = n log

∏
σ∈S

max
{|ασ |, |βσ |}+O(l0 + logM(ξ/η)) log n

and by (110),

log |N0(α
n − βn)| = n logN0d0 + n logM(ξ/η)+O(l0 + logM(ξ/η)) log n,

which gives at once

log |N(αn − βn)| = n logNd0 + n l
l0

logM(ξ/η)+O
(
l + l

l0
logM(ξ/η)

)
log n.

c

On the other hand, (
ξn − ηn
αn − βn

)
= (ξ, η)n

(α, β)n
= cn

dndn0
,
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hence

log |N(ξn − ηn)| = n log
Nc

Nd
+ n l

l0
logM(ξ/η)+O

(
l + l

l0
logM(ξ/η)

)
log n. ��

Proof of Theorem 10. Suppose that the minimal polynomial of ξ , say f (x), is of degree
e � d. If for every zero η of f we have ξ/η equal to a root of unity then ξe/Nξ is a root
of unity and

ξ (m,n) = r
√
g ζs,

where g is a positive integer, not a power with exponent greater than 1 and dividing r . If
ξ (m,n) ∈ Q we have the case (xvii); otherwise ξ (m,n) has a conjugate

η(m,n) = ξ (m,n)ζ jt , j �≡ 0 mod t.

Since

(111) aξn + bξm + c = aηn + bηm + c = 0

and ζ jn/(m,n)t = ζ jm/(m,n)t = 1 is impossible we obtain

ξ (m,n) ∈ Q(ζt ), hence r
√
g ∈ Q(ζs, ζt ).

It follows (see [17]) that r = 1 or 2. If r = 1 then by Mann’s theorem [14], s |6 and we
have (xvii). If r = 2 the equation

a
(√
g ζs
)n/(m,n) + b(√g ζs)m/(m,n) + c = 0

gives a representation of
√
g as a linear combination of two roots of unity. Hence squaring

and using Mann’s theorem again we obtain s = 8, g = 2q2 or s = 12, g = 3q2, q ∈ Q,
which gives (xvii).

It remains to consider the case where for a certain zero η of f we have ξ/η different
from roots of unity. Let K = Q(ξ, η) be of degree l and let (ξ, η) = c/d, where c, d are
integral ideals of K , (c, d) = 1. We infer from (111) that

cm | c, dn−m |a,
hence

(112) m logNc � l log |c|, (n−m) logNd � l log |a|.
On the other hand,

(113) a(ξn − ηn) = b(ηm − ξm),
hence

ξn − ηn
∣∣∣∣ b

(a, b)
(ηm − ξm)

and

ξn − ηn
∣∣∣∣ b

(a, b)
(ξn − ηn, ξm − ηm).
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By Lemma 63 this gives

(ξn − ηn)
∣∣∣∣ b

(a, b)

cn−(m,n)

dm−(m,n)
(
ξ (m,n) − η(m,n)),

hence

log |N(ξn − ηn)| � l log
|b|
(a, b)

+ (n− (m, n)) logNc

− (m− (m, n)) logNd + log |N(ξ(m,n) − η(m,n))|.
Now we apply Lemma 64 and obtain

n(logNc − logNd) + n l
l0

logM(ξ/η)+O
( l
l0

logM(ξ/η)+ l
)

log n

� l log
|b|
(a, b)

+ (n− (m, n)) logNc − (m− (m, n)) logNd

+ (m, n)(logNc − logNd)+ (m, n) l
l0

logM(ξ/η)

+
( l
l0

logM(ξ/η)+ l
)

log (m, n)

and thus by (112),

(114)

(n− (m, n)) logM(ξ/η) � l0 log
|b|
(a, b)

+ (n−m)l0
l

logNd

+O(logM(ξ/η)+ l0) log n

� l0 log
|ab|
(a, b)

+O(logM(ξ/η)+ l0) log n.

Let B0(l0) be the constant in the O symbol,

B1(l0) = inf logM(θ),

where the infimum is taken over all algebraic numbers θ of degree l0 different from roots
of unity. By Dobrowolski’s theorem [7] or by earlier results B1(l0) > 0. Let c0(d) be a
unique solution of the equation

n

log n
= 4 sup

l0�d(d−1)
B0(l0)

(
1 + l0

B1(l0)

)
.

Since (m, n) � 1
2n, l0 � d(d − 1) for n > c0(d) the inequality (114) implies

1

2
n logM(ξ/η) � l0 log

|ab|
(a, b)

+ 1

4
n logM(ξ/η),

hence (xiv) holds with

c1(d) = sup
l0�d(d−1)

4l0
B1(l0)

.

(xv) is obtained from (xiv) on replacing ξ by ξ−1, with c taking the role of a.
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In order to obtain (xvi) we assume without loss of generality that n < 2m. (If n > 2m
we replace ξ by ξ−1, then m is replaced by n−m.) We infer from (113) that

ξm − ηm |a(ξn − ηn)
and since ξm − ηm |a(ξm − ηm) we have

ξm − ηm |a(ξn − ηn, ξm − ηm).
By Lemma 63 this gives

(ξm − ηm)
∣∣∣ (a) cn−(m,n)

dm−(m,n)
(
ξ (m,n) − η(m,n)),

hence

log |N(ξm − ηm)| � l log |a| + (n− (m, n)) logNc

− (m− (m, n)) logNd + log
∣∣N(ξ (m,n) − η(m,n))∣∣.

Now we apply Lemma 64 and obtain

m logNc −m logNd +m l

l0
logM(ξ/η)+O

( l
l0

logM(ξ/η)+ l
)

logm

� l log |a| + (n− (m, n)) logNc − (m− (m, n)) logNd

+ (m, n) logNc − (m, n) logNd + (m, n) l
l0

logM(ξ/η)

+O
(
l

l0
logM(ξ/η)+ l

)
log (m, n),

thus by (112)

(m− (m, n)) logM(ξ/η) � l0 log |a| + (n−m)l0
l

logNc

+O(logM(ξ/η)+ l0) logm

� l0 log |ac| +O(logM(ξ/η)+ l0) log n.

Since n < 2m, by considering a few cases we findm− (m, n) � n/3, hence for n > c0(d)
we obtain

1

3
logM(ξ/η) � l0 log |ac| + 1

4
n logM(ξ/η),

which implies (xvi) by the definition of c1(d). ��

Proof of Corollary 2. If ξ is a zero of the factor in question, then ξ is an algebraic unit,
hence (xvii) would imply that ξ is a root of unity, impossible for |b| > 2. Therefore by
Theorem 10 we have (xvi), which for a = c = 1 gives n < c0(d). However, by Theorem 8,
for every n there exist only finitely many reducible trinomials xn+bxm+1 with n �= 2m.��
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Table 5. Sporadic trinomials over Q

The table contains all reducible trinomials xn+Axm+B, n � 2m,A,B ∈ Z \ {0} known to the
author, which satisfy neither (vi) nor (vii) nor (viii) and have the following properties: 1) for every
divisor d > 1 of (n,m), xn/d +Axm/d +B is irreducible, 2) (An, Bn−m) is free from n(n−m)th
powers, 3) if n−m is odd then A > 0, if n, m are both odd, then B > 0.

Number Trinomial Factor Discoverer

1 x8 + 3x3 − 1 x3 + x − 1 Łutczyk

2 x8 + 23 · 3x3 + 25 x3 − 2x2 + 4 Nicolas

3 x8 + 22 · 33x3 + 35 x3 + 3x2 + 9x + 9 Nicolas

4 x8 + 3 · 5 · 73 · 59x3 − 23 · 75 · 113 x3 − 7x2 − 98x + 2156 Schinzel

5 x9 − 22 · 19x + 25 · 3 x4 − 2x2 − 4x + 6 Schinzel

6 x9 + 25x2 − 26 x3 − 2x2 + 4x − 4 Nicolas

7 x9 + 34x2 − 2 · 33 x3 + 3x + 3 Nicolas

8 x9 + 36x2 − 2 · 36 x3 − 3x2 + 9 Browkin

9 x9 + 35x4 − 22 · 36 x3 − 3x2 + 18 Browkin

10 x9 + 24 · 35x4 − 28 · 36 x3 + 6x2 + 36x + 72 Nicolas

11 x10 + 33 · 11x − 35 x3 + 3x − 3 Schinzel

11a x10 + 36 · 11x + 2 · 38 x3 + 3x2 + 9x + 18 Cisłowska

12 x10 + 26 · 33 · 56 · 11x − 27 · 35 · 55 · 19 x4 − 60x2 − 300x + 5400 Browkin

12a
x10 + 26 · 5 · 76 · 11 · 631x

+ 27 · 77 · 17 · 19 · 73
x3 + 14x2 + 392x + 3332 Cisłowska

13 x10 + 3x3 − 23 x4 + x3 − x − 2 Morain

14 x10 + 25x3 − 26 x5 − 2x4 + 8x − 8 Morain

15 x10 + 32 · 11x3 + 2 · 33 x3 + 3x + 3 Nicolas

16 x11 + 22 · 3x + 23 x5 − 2x4 + 2x3 − 2x2 + 2 Nicolas

17 x11 + 23 · 33 · 23x2 − 24 · 35 x3 + 6x − 6 Browkin

18 x11 + 22 · 23x3 + 23 · 3 x3 + 2x2 + 4x + 2 Morain
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Table 5 (cont.)

Number Trinomial Factor Discoverer

19 x11 + x4 + 22 x5 − x3 − x2 + 2 Jonassen

20 x11 − 33 · 52 · 23x5 + 38 · 54 x3 − 15x − 45 Browkin

21 x12 + 26 · 32x + 24 · 23 x3 + 2x2 + 4x + 2 Browkin–Schinzel

22 x12 + 25 · 34 · 13x + 24 · 34 · 23 x3 + 6x + 6 Browkin

23 x12 + 26x5 − 28 x3 − 2x2 + 4x − 4 Morain

23a x12 + 5 · 36x5 − 2 · 39 x4 + 3x3 + 9x2 + 27 Browkin

24 x13 + 28 · 3x + 210 x3 + 2x2 + 4x + 4 Browkin

25 x13 + 28 · 3 · 53x − 212 · 7 x3 − 4x2 + 8x − 4 Browkin–Schinzel

26 x13 + 28 · 3 · 56 · 53x + 211 · 57 · 13 x3 + 20x + 100 Browkin

27 x13 − 26 · 3 · 55 · 53x3 + 28 · 58 · 11 x3 + 20x − 100 Browkin

28 x13 + 3x4 − 1 x3 + x2 − 1 Coray

29 x13 + 26 · 3x4 − 29 x3 + 2x2 + 4x + 4 Browkin

30 x13 + 33 · 53x4 − 22 · 36 x3 − 3x2 + 6 Browkin

31 x13 + 3x6 + 1 x4 − x + 1 Coray

32 x13 + 24 · 3x6 − 28 x3 − 2x2 + 4x − 4 Browkin

34 x14 + 22x5 − 1 x3 + x2 − 1 Bremner

35 x14 + 22 · 36x5 + 311 x4 − 3x3 + 9x2

− 18x + 27
Morain

36 x15 − 37 · 56 · 31x + 22 · 38 · 55 · 29 x3 + 15x − 45 Browkin

36a x15 − 36x6 + 39 x5 + 3x4 + 9x3

+ 18x2 + 27x + 27
Chaładus

37 x15 − 24 · 73 · 31x7 + 211 · 3 · 75 x3 − 14x − 28 Browkin

38 x16 + 7x3 + 3 x3 − x2 + 1 Bremner
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Table 5 (cont.)

Number Trinomial Factor Discoverer

39 x16 + 23 · 7x3 − 32 x3 + x2 + x − 1 Bremner

40 x16 + 28x7 + 212 x4 − 2x3 + 4x2

− 8x + 8
Morain

41 x16 + 28 · 7x7 − 215 x3 + 2x2 − 8 Bremner

42 x17 + 103x + 23 · 7 x3 − x2 + x + 1 Bremner

43 x17 + 212 · 103x4 − 216 · 32 x3 + 2x2 + 4x − 8 Browkin

43a x19 + 7 · 28x7 − 215 x4 − 2x3 + 4x2 − 4x + 8 John Abbott

43b x20 + 7 · 212x2 + 216

x10 + 4x9 + 8x8 + 8x7

+ 32x4 + 128x3

+ 256x2 + 320x + 256

John Abbott

44 x21 + 211 · 13x5 + 214 · 3 x3 − 2x2 + 4 Browkin

45 x22 + 214 · 23x − 215 · 13 x3 + 2x2 − 4 Browkin

46 x24 + 211 · 7x + 28 · 47 x3 − 2x2 + 2 Browkin–Schinzel

47 x26 + 27 · 3 · 53x3 + 28 · 47 x3 − 2x2 + 2 Browkin–Schinzel

48 x33 + 67x11 + 1 x3 + x + 1 Bremner

49 x39 + 29 · 3 · 157x13 + 213 x3 + 2x + 2 Browkin

50 x46 + 226 · 47x7 − 231 · 32 x3 − 2x2 + 4x − 4 Browkin

51 x51 − 231 · 103x5 + 234 · 47 x3 − 2x2 + 4x − 4 Browkin

52 x52 + 234 · 3 · 53x + 235 · 103 x3 + 2x2 + 4x + 4 Browkin
c
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On a conjecture of Posner and Rumsey
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Dedicated to the memory of Professor Hans Zassenhaus

Abstract. In 1965 Posner and Rumsey made a conjecture concerning common divisors of infinitely
many monic polynomials over Q having fewer than i non-constant terms. The conjecture is proved
here for i = 3 and disproved for i � 4.

1. Introduction

In 1965 C. Posner and H. Rumsey, Jr. [13] considered polynomials that divide infinitely
many trinomials and, more generally, i-nomials. In the introduction to their paper they
defined a trinomial as a polynomial axm−bxn−c, with distinct positive integersm, n and
a, b, c not all zero; in the concluding remarks they defined an i-nomial as a polynomial
with i or fewer non-zero coefficients. The two definitions are incompatible since x3 +
x2 + x is a trinomial according to the second definition, but not according to the first. The
generalization of trinomials according to the first definition is polynomials of the form

i−1∑
j=1

ajx
mj + ai, with m1 > m2 > . . . > mi−1 > 0, aj not all zero.

We call monic polynomials of the above form standard i-nomials. We can now state the
general conjecture of Posner and Rumsey, formulated in the last paragraph of [13]: If a
polynomial with rational coefficients divides infinitely many standard i-nomials over Q,
it divides a non-zero polynomial of degree less than i in xr over Q, for some r � 1.
For i = 2 the conjecture is obvious. The paper [13] is devoted almost exclusively to the
case i = 3. The authors succeed in proving the following. If p ∈ Q[x] divides infinitely
many standard trinomials over Q, then p(x) divides an at most cubic polynomial in xr and
the cubic polynomial divides infinitely many standard trinomials over Q. (The result is
phrased a little differently since instead of fixing the leading coefficient the authors do not
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distinguish polynomials differing by a constant multiple.) We shall prove that the Posner
and Rumsey conjecture is true in a rather strong sense for i = 3 and false for i � 4. More
precisely we shall prove the following theorem:

Theorem 1. Let p ∈ Q[x] \ Q, k be the number of distinct roots of p(x), K the splitting
field of p(x) over Q, d = [K : Q], S the set of places ofK consisting of all infinite places
and all valuations induced by the prime ideal factors of the non-zero roots of p(x), and
s = card S. If p(x) divides more than

(1) (4sd)s
6·2180d+8sk

standard trinomials over Q, then it divides a linear or quadratic polynomial in xr over Q

for some integer r � 1.

It should be observed that the bound in (1) depends only on d, k and s, but not on the
size of the coefficients of p(x). We note that following our proof of Theorem 1, Theorem 1
can be easily generalized to the case where the ground field is not necessarily Q, but an
arbitrary algebraic number field. We do not work out this generalization in the present
paper.

The following more general qualitative result provides a criterion for a polynomial to
divide infinitely many standard trinomials over a field of characteristic 0.

Theorem 2A. LetK be a field of characteristic 0. A polynomialp ∈ K[x] divides infinitely
many standard trinomials overK if and only if it divides a linear or quadratic polynomial
in xr over K for some integer r � 1.

Theorem 2A can be refined as follows:

Theorem 2B. Let K be a field of characteristic 0. For each polynomial p ∈ K[x] there
exists a finite set F of standard trinomials over K such that if T (x) = xm + axn + b ∈
K[x] \ F , ab �= 0 and p |T , then

p
∣∣ q(x(m,n)) ∣∣ T (x),

where q ∈ K[x], deg q � 2.

The following theorem disproves the conjecture of Posner and Rumsey for every i � 4.

Theorem 3A. For every i � 2 there exists a polynomial p ∈ Q[x] that divides infinitely
many standard quadrinomials over Q, but that does not divide any non-zero polynomial
of degree less than i in xr over Q for any integer r � 1.

The quadrinomials of the form constructed in the proof of Theorem 3A have the constant
term zero. For polynomials with the constant term non-zero the relevant problem is harder
and we can only prove

Theorem 3B. For every i � 2 there exists a polynomial p ∈ Q[x] that divides infinitely
many standard quintinomials over Q with the constant term non-zero, but does not divide
any non-zero polynomial of degree less than i in xr over Q for any integer r � 1.
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The proofs of Theorem 1 and Theorems 2A and 2B are based on known results on
S-unit equations, while the proof of Theorems 3A and 3B is quite elementary. The following
problem remains open.

Problem. Let K be a field of characteristic 0. Is it true that a polynomial p ∈ K[x] with
p(0) �= 0 divides infinitely many standard k-nomials with the constant term non-zero if
and only if either p divides a non-zero polynomial of degree less than k in xr over K for
any integer r � 1 or divides a standard

[
k+1

2

]
-nomial?c

2. Proofs

To prove Theorem 1, we need some results on S-unit equations.
Let K be an algebraic number field of degree d over Q, MK the set of places on K ,

S a finite subset of MK containing all infinite places, s the cardinality of S, and US the
multiplicative group of S-units in K . For n � 2, consider the S-unit equation

(2) α1u1 + . . .+ αnun = 1 in u1, . . . , un ∈ US,
where α1, . . . , αn are elements of K∗, the set of non-zero elements of K . A solution
u1, . . . , un is called non-degenerate if α1u1 + . . . + αnun has no non-empty vanishing
subsum. For n = 2, all solutions are non-degenerate. Denote by νs(α1, . . . , αn) the number
of non-degenerate solutions of (2). Evertse [4] proved the following

Lemma 1. We have

νS(α1, α2) � 3 × 7d+2s for all (α1, α2) ∈ (K∗)2.

In the general case, Schlickewei [14] showed

Lemma 2. For n � 2 we have

νS(α1, . . . , αn) � (4sd!)236nd!·s6 for all (α1, . . . αn) ∈ (K∗)n.

Further, if K/Q is a normal extension then d! can be replaced by d.

We call two n-tuples (α1, . . . , αn) and (β1, . . . , βn) in (K∗)n (and the corresponding
S-unit equations) S-equivalent if there are S-units ε1, . . . , εn such that βi = εiαi for
i = 1, . . . , n. If (α1, . . . , αn) and (β1, . . . , βn) are S-equivalent then νS(α1, . . . , αn) =
νS(β1, . . . , βn). Evertse et al. [7, Theorem 1] proved that in case n = 2, Eq. (2) has at most
two solutions for all but finitely many S-equivalence classes of pairs (α1, α2) ∈ (K∗)2.
The proof of this result depends among other things on the fact that

νS,n := νS(1, . . . , 1︸ ︷︷ ︸
n times

) <∞ for all n � 5.

Following the proof of Theorem 1 of [7], it is easy to show that apart from at most

(3) νS,5 + 12νS,3 + 30ν2
S,2
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S-equivalence classes of pairs (α1, α2) ∈ (K∗)2, the equation

(4) α1u1 + α2u2 = 1 in u1, u2 ∈ US
has at most two solutions (see, e.g., Győry [8]; some generalizations to the case n � 2 are
given in a paper of Győry and Tijdeman (in preparation)). Together with Lemma 2, this
gives immediately the following

Lemma 3. Apart from at most

2(4sd!)2180d!s6

S-equivalence classes of pairs (α1, α2) ∈ (K∗)2, Eq. (4)has at most two solutions. Further,
if K/Q is a normal extension then d! can be replaced by d.

Proof of Theorem 1. Let p(x) ∈ Q[x] \ Q be a polynomial satisfying the assumptions of
Theorem 1. We may assume without loss of generality that p(x) is monic. Let T (x) be an
arbitrary but fixed standard trinomial over Q which is divisible by p(x). Then T (x) can
be written in the form

(5) T (x) = xm + axn + b with some m > n and a, b ∈ Q.

First consider the case when p(x) is divisible by x. Then we have p(x) = xtp1(x)with
some integer t � 1 and some monic polynomial p1(x) ∈ Q[x] which is not divisible by x.
This implies that b = 0. If p1(x) is not constant then a �= 0, n � t , and p1(x) |xm−n + a
over Q. In this case p(x) |q(xr) over Q for q(x) = (x − (−a)n)x and r = n(m − n). If
p1(x) is constant then p(x) |q(xr) for q(x) = x and r = t , and our theorem is proved.

Next consider the case when p(x) is not divisible by x. By the result of Hajós [9]; see
also [10, Lemma 1], T (x) cannot have a zero of multiplicity � 3 except 0. Consequently,
we may write

p(x) = p1(x)p
2
2(x),

where p1, p2 are relatively prime square-free monic polynomials in Q[x].
If, in T (x), a = 0 or b = 0 then the assertion of Theorem 1 easily follows. Hence, in

what follows, we assume that ab �= 0. Let ξ1, . . . , ξk be the roots of p1(x) · p2(x). These
roots are all distinct and different from 0. Further, they are all S-units inK . It follows from
p(x) |T (x) that

(6) ξmj + aξnj + b = 0 for j = 1, . . . , k.

This implies that for j = 1, . . . , k, (ξmj , ξ
n
j ) is a solution of the S-unit equation

(7) (−1/b)u+ (−a/b)v = 1 in u, v ∈ US.
(A) First consider those trinomials T (x) = xm + axn + b (ab �= 0) over Q for which

p(x) |T (x) and for which the corresponding Eq. (7) has at most two solutions in US . Fix
such a trinomial T (x) = xm + axn + b. Then among the pairs 〈ξmj , ξnj 〉, j = 1, . . . , k,
there are at most two different ones, say 〈u1, v1〉, and 〈u2, v2〉. These pairs are conjugate
or both rational, and they may be identical. Hence we obtain that

p1(x)p2(x) |q(xm) over Q,
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where

q(x) =
{
(x − u1)(x − u2) if u1/u2 is not a root of unity,

(xN − uN1 )2 if u1/u2 is a root of unity of order N ,

and q(x) ∈ Q[x]. This proves our theorem in the case when p(x) has no multiple root or
when u1/u2 is a root of unity.

There remains the case when p(x) has multiple root and u1/u2 is not a root of unity.
Then p2

2(x) |T (x), whence p2(x) |T ′(x) and so

p2(x)

∣∣∣ a m− n
m

xn + b over Q.

Consequently, for each root ξj of p2(x), we have ξnj ∈ Q. This implies that ξmj ∈ Q.
Since ξmj is equal to u1 or u2 for each j , 1 � j � k, it follows that u1 and u2 are rational
numbers. Further, this implies that ξmj and ξnj are rational numbers for j = 1, . . . , k. If ξmj
assume the same value, say u1, for j = 1, . . . , k, then p(x) | (xm − u1)

2 and Theorem 1
is proved. Hence assume that there are i and j for which ξmi �= ξmj .

We use now a refinement of an argument of Posner and Rumsey [13]. Denote by t the
least positive integer for which ξ tj ∈ Q for j = 1, . . . , k. Then t depends only on p(x).
Further, t divides both m and n. Put m = tm1, n = tn1 with m1, n1 ∈ N. Let ξi be one
of the multiple roots of p(x), and let ξj be any other root of p(x) for which ξmj �= ξmi .
Since u1/u2 is not a root of unity, it follows that ξj /ξi also is not a root of unity. Further,
T (ξj ) = T (ξi) = T ′(ξi) = 0, whence

(8)

∣∣∣∣∣∣∣
ξmj ξnj 1

ξmi ξni 1

mξm−1
i nξn−1

i 0

∣∣∣∣∣∣∣ = 0.

Putting ϑ = (ξj /ξi)t , ϑ is a non-zero rational number which is not a root of unity; i.e.,
ϑ is different from ±1. Further, we get from (8) that

(9) m1(ϑ
n1 − 1) = n1(ϑ

m1 − 1).

We can write ϑ = e/f with coprime rational integers e, f such that e �= ±f . Then it
follows from (9) that

(10) m1f
m1−n1(en1 − f n1) = n1(e

m1 − f m1).

A prime factor p of em1 − f m1 is called primitive if p /| eh − f h for each integer h with
0 < h < m1. Suppose that m1 > 6. Then, by a theorem of Zsigmondy [15] and Birkhoff
and Vandiver [1], em1 −f m1 has a primitive prime factorp. It follows from (10) thatp |m1;
i.e., m1 = pm2 with some positive integer m2. But

0 ≡ em1 − f m1 ≡ em2 − f m2 (mod p),

which is a contradiction. Hence m1 � 6, and 1 � n1 < m1. The number of pairs 〈m1, n1〉
having this property is

(6
2

) = 15(1). Hence, if p(x) divides more than 15 trinomials of

(1) Using a more explicit version of the theorem of Zsigmondy and Birkhoff and Vandiver, this
bound of 15 could be still further improved.
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the form xm + axn + b (ab �= 0) over Q for which the corresponding Eq. (7) has at most
two solutions and for which the roots u1, u2 of the corresponding polynomial q(x) have
the property that u1/u2 is not a root of unity, then among these trinomials there are two
different ones, say xm + a1x

n + b1 and xm + a2x
n + b2, in which the exponents m, n are

the same. But then p(x) |xn + c for some c ∈ Q which proves our theorem.
Thus we have proved that if p(x) divides more than 15 trinomials of the form xm +

axn + b (ab �= 0) over Q for which the corresponding Eq. (7) has at most two solutions
then the assertion of the theorem follows.

(B) Next consider those trinomials T (x) = xm + axn + b (ab �= 0) over Q for which
p(x) |T (x) and for which the corresponding Eq. (7) has at least three solutions in US . If
xm+ axn+ b and xm

′ + a′xn′ + b′ are such trinomials and if the corresponding equations
of the form (7) are S-equivalent then a′ = aε, b′ = bη with some ε, η ∈ U0

S := US ∩ Q∗.
Hence it follows from Lemma 3 that there is a subset A of (Q∗)2 with cardinality at most

C1 := 2(4sd)2
180d ·s6

such that for each trinomial xm + axn + b under consideration, a = εa0, b = ηb0 with
some ε, η ∈ U0

S and some 〈a0, b0〉 ∈ A . Fix such a pair 〈a0, b0〉 ∈ A , and consider
all the trinomials of the form xm + εa0x

n + ηb0 with ε, η ∈ U0
S , which are divisible

by p(x) over Q. If xm + εa0x
n + ηb0 and xm + ε′a0x

n + η′b0 are such trinomials then
p(x) |xn + c with some c ∈ Q∗ and the assertion follows. Hence it is enough to deal with
those trinomials for which the pairs 〈m, n〉 are pairwise distinct. Put

C2 := 3 × 7d+2s ,

and assume that the maximal number of such trinomials is greater than C2k
2 . Then among

the pairs 〈m, n〉 associated with these trinomials there are more than Ck2 distinct m or
distinct n. We may assume without loss of generality that in the pairs 〈m, n〉 in question,
m1, . . . , mu are pairwise distinct for u > Ck2 . (One can proceed in a similar way if there
are more than Ck2 distinct values for n.) Then

p(x) |Ti(x) = xmi + εia0x
ni + ηib0 over Q for i = 1, . . . , u,

and hence, for each i,

(−1/b0)(ξ
mi
j /ηi)+ (−a0/b0)(εiξ

ni
j /ηi) = 1 for j = 1, . . . , k,

where εi, ηi ∈ U0
S for i = 1, . . . , u. It follows from Lemma 1 that for each j with

1 � j � k, ξmij /ηi can assume at most C2 values. Hence, by the assumption u > Ck2 ,
there are distinct i1 and i2 with 1 � i1, i2 � u such that

ξ
mi1
j /ηi1 = ξmi2j /ηi2 for j = 1, . . . , k.

We may assume that mi1 > mi2 . Putting r = mi1 −mi2 and η = ηi1/ηi2 , we get

ξ rj = η for j = 1, . . . , k.

Consequently, p1(x)p2(x) |xr − η and so p(x) | (xr − η)2 over Q, which proves the
assertion of our theorem.
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Thus we have proved that if there are more than C1 · C2k
2 standard trinomials T (x) =

xm + axn + b (ab �= 0) with p(x) |T (x) for which the corresponding Eq. (7) has more
than two solutions then the assertion of Theorem 1 follows.

Finally, we obtain that if p(x) divides more than

15 + C1 · C2k
2

standard trinomials over Q then the assertion follows. Since d/2 � s, our theorem is
proved. ��

To prove Theorem 2A, we need some further lemmas. Now letK be a finitely generated
extension field of Q, Γ a finitely generated subgroup of the multiplicative group K∗ of
non-zero elements of K , and α1, . . . , αn ∈ K∗ (n � 2). As a generalization of Eq. (2),
consider the generalized unit equation

(11) α1u1 + . . .+ αnun = 1 in u1, . . . , un ∈ Γ.
The degeneracy of a solution u1, . . . , un can be defined in the same way as in case of
Eq. (2). The following lemma is a generalization of non-explicit character of Lemmas 1
and 2.

Lemma 4. The number of non-degenerate solutions of (11) is at most C1 = C1(n, Γ ),
where C1 is a number depending only on n and Γ .

For a proof, see Evertse and Győry [6]. In this generality, the finiteness of the number of
non-degenerate solutions of (11) was earlier claimed by van der Poorten and Schlickewei
[11]; see also their recent paper [12]. We note that for n = 2 an explicit expression for C1c

was given in [5].
Consider now the case n = 2; i.e., the equations of the form

(12) α1u1 + α2u2 = 1 in u1, u2 ∈ Γ.
Equivalence of pairs and generalized unit equations can be defined in the same way as in
the number field case.

The next lemma is a qualitative generalization of Lemma 3.

Lemma 5. Apart from finitely many equivalence classes of pairs (α1, α2) ∈ (K∗)2,
Eq. (12) has at most two solutions.

This result is due to Evertse et al. [7]. In fact, this was explicitly stated in [7] only for
the case when K is an algebraic number field, but it was indicated at p. 464 in [7] how to
prove this general version.

Lemma 6. Let ϑ be a non-zero element of K which is not a root of unity. Then there are
only finitely many pairs 〈m, n〉 of positive integers with m > n such that

(13)
ϑm − 1

m
= ϑn − 1

n
.
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It is enough to prove Lemma 6 in the number field case since (13) implies that ϑ isc

algebraic. The following lemma will be established in a quantitative form for two reasons.
On one hand, this explicit version is interesting in itself. Further, together with Lemmas 1
to 3, it makes it possible to generalize Theorem 1 to the case of polynomials considered
over an arbitrary but fixed algebraic number field.

In what follows, c1, c2, . . . , c8 denote effectively computable positive absolute con-
stants.

Lemma 7. If ϑ is an algebraic number of degree d > 1, different from zero and roots of
unity, m > n � 1 are integers and (13) holds, then

(14) m � c1d
(log d)4

(log log ed)3
.

For d = 1, a more explicit version of Lemma 7 was implicitly proved in the proof of
our Theorem 1.

To prove Lemma 7, we need the following:

Lemma 8. If x ∈ C satisfies |x| � x0 > 1 and xm/m − xn/n = a ∈ C where x0 < 2,
|a| � 1, then

m � −c2 log log x0

log x0
.

Proof of Lemma 8. The equation xm/m − xn/n = a gives |x|m/m − |x|n/n �
|xm/m− xn/n| = |a| � 1. Now |x|n/n as a function of n is decreasing for n � 1/ log |x|
and increasing for n > 1/ log |x|. Hence we obtain

|x|m
m

� max
{
|x| + 1,

|x|m−1

m− 1
+ 1
}

� max
{

2|x|, |x|
m−1

m− 1
+ 1
}
.

Thus either

|x|m−1 � 2m

or

|x|m−1
( |x|
m

− 1

m− 1

)
� 1.

The first inequality gives

(m− 1) log x0 � log 2m,

whence
m− 1

log 2m
� (log x0)

−1, and so m � −c3 log log x0

log x0
.

The second inequality gives either

|x|
m

− 1

m− 1
� 1

m(m− 1)
, i.e., m � |x| + 1

|x| − 1
� x0 + 1

x0 − 1
� −c4 log log x0

log x0
,
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or

|x|m−1 � m(m− 1), whence (m− 1) log x0 � logm(m− 1),

i.e.,

m � −c5 log log x0

log x0
. ��

Proof of Lemma 7. We shall consider three cases: (1) ϑ is an algebraic integer, (2) ϑ−1 is
an algebraic integer, (3) neither ϑ nor ϑ−1 is an algebraic integer.

In the Case 1, we choose a conjugate ϑ ′ of ϑ such that

log |ϑ ′| > c6
d

(
log log ed

log d

)3

.

It exists by Dobrowolski’s theorem [3] and it also satisfies (13). Using Lemma 8 with

x = ϑ ′, x0 = exp

{
c7

d

(
log log ed

log d

)3}
,

where c7 is a suitable positive absolute constant, we obtain (14).
In the Case 2, we choose a conjugate θ of ϑ−1 such that

log |θ | > c6
d

(
log log ed

log d

)3

.

It exists by Dobrowolski’s theorem and it satisfies (13) with n replaced by m − n. Using
Lemma 8 with

x = θ, x0 = exp

{
c7

d

(
log log ed

log d

)3}
we obtain (14).

In the Case 3, there exist prime ideals p and q of Q(ϑ) such that ordp ϑ > 0, ordq ϑ < 0.
Then Eq. (13) gives

ordp(m− n) � n, ordq n � m− n,
hence

(m− n)d � 2n, nd � 2m−n,
(
m2

4

)d
� 2m,

and so m � c8d log d . ��

Proof of Theorem 2A. Let K be a field of characteristic 0. For constant polynomials
p ∈ K[X], the assertion is trivial. Hence we deal only with the case when p(x) is not
constant.

Using an argument of Posner and Rumsey [13] applied in the case K = Q, we prove
first that if a non-constant polynomial p ∈ K[X] divides a polynomial of the form s(xr)
for some integer r � 1, where s(x) is linear or quadratic, then p(x) divides infinitely many
standard trinomials over K . Indeed, the space of polynomials over K modulo s(x) is at
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most two-dimensional. Hence for every pair of positive integers m, n with m > n there
are a, b, c ∈ K such that at least one of a and b is different from 0 and that s(x) divides
the trinomial T (x) = axm+ bxn+ c overK . This implies that s(xr) divides T (xr). Since
p(x) divides s(xr), our claim is proved.

Conversely, suppose that p(x) divides infinitely many standard trinomials Tk(x) over
K for k = 1, 2, . . . . We show that then p(x) divides a polynomial of the form s(xr) for
some r � 1, where s(x) is linear or quadratic. First we prove this in the particular case
when K is a finitely generated extension field of Q. For this purpose, it suffices to repeat
the proof of our Theorem 1 in this generality, without giving quantitative estimates and
with the following changes. Replace Q by K; replace US by Γ , the multiplicative group
generated by the non-zero roots of p(x) in the splitting field of p(x) over K; and apply
Lemmas 4 to 6 in place of Lemmas 2 to 3 and the theorem of Zsigmondy or Birkhoff and
Vandiver, respectively.

Next consider the general case (whenK is an arbitrary field of characteristic 0). Denote
by a0, a1, . . . , an the coefficients of p(x), and by K0 the subfield of K generated by
a0, . . . , an over Q. Then K0 is finitely generated over Q. Since the standard trinomials
Tk(x) are divisible by p(x), they can be written in the form

Tk(x) = xmk + xnk
(
bk,0 +

Nk∑
i=1

bk,iwk,i

)
+
(
ck,0 +

Nk∑
i=1

ck,iwk,i

)
,

where bk,i , ck,i ∈ K0 (i = 0, 1, . . . , Nk) and 1, wk,i (i = 1, . . . , Nk) are linearly indepen-
dent elements of K over K0, Nk � 2. Let

xmk + bk,0xnk + ck,0 = p(x)qk,0(x)+ rk,0(x)
and

bk,ix
nk + ck,i = p(x)qk,i(x)+ rk,i(x)

over K0, where deg rk,i < degp for i = 0, 1, . . . , Nk . The divisibility p(x) |Tk(x) gives

rk,0(x)+
Nk∑
i=1

rk,i(x)wk,i ≡ 0 (mod p(x)),

whence rk,i(x) = 0 (i = 0, . . . , Nk) and thus p(x) |bk,ixnk + ck,i over K0 for i =
1, . . . , Nk . This implies the required assertion unless bk,i = ck,i = 0 for i = 1, . . . , Nk
and for all k. But in this case the trinomials Tk(x) = xmk + bk,0xnk + ck,0 have their
coefficients in K0, and we can use the truth of the assertion for the ground field K0. This
completes the proof of Theorem 2A. ��

For the proof of Theorem 2B we need two lemmas.

Lemma 9. Let x1, x2, y1, y2 be roots of unity. If

D =

∣∣∣∣∣∣∣
1 1 1

x1 x2 1

y1 y2 1

∣∣∣∣∣∣∣ = 0
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then either two rows or two columns of the determinant are identical.

Proof.D is the sum of six roots of unity. By Theorem 6 of [2] there are three possibilities:

(a) the sum can be split into three parts each consisting of two terms and each equal to 0;
(b) the sum can be split into two parts each consisting of three terms, proportional in

some order to 1, ζ3, ζ 2
3 , where ζ3 is a primitive root of unity of order 3;

(c) the six terms are proportional in some order to −ζ3, −ζ 2
3 , ζ5, ζ 2

5 , ζ 3
5 , ζ 4

5 .

The lemma follows by a tedious but straightforward consideration of cases(2). ��

Lemma 10. Let p(x) be a common factor of (xM − c)2 ∈ K[x] and of T (x) = xm +
axn + b ∈ K[x], where ab �= 0. Then

p(x)
∣∣ q(x(m,n)) ∣∣ T (x),

where q ∈ K[x], deg q � 2.

Proof. Since p(x) | (xM − c)2 and p(0) �= 0, p has no zero of multiplicity greater than 2.
Assume first that p has a double zero ξ . Then T (ξ) = T ′(ξ) = 0, which gives

ξm = bn

m− n , ξn = − bm

a(m− n) .
For every other zero ζ of p, ζ/ξ is a root of unity, hence

ζm = bnx

m− n , ζ n = − bmy

a(m− n) ,
where x, y are roots of unity. The equation T (ζ ) = 0 gives

nx −my +m− n = 0.

By taking complex conjugates we obtain n/x −m/y +m− n = 0. These two equations
in x and y imply x = y = 1; ζm = ξm, ζ n = ξn,

ζ (m,n) = ξ (m,n) ∈ K.
It follows that p(x) |q(x(m,n)), where q = (x − ξ (m,n))2.

If p(x) has no multiple zeros it suffices to show that for S = {ξ (m,n) : p(ξ) = 0} we
have #S � 2. Indeed, we then take q(x) = ∏

u∈S
(x − u).

Suppose that #S � 3. Then there exists a zero ξ of p and two distinct roots of unity
ζ
e1
M , ζ e2M different from 1 such that

(15) ξmζ
ei(m/(m,n))
M + aξnζ ei (n/(m,n))M + b = 0 (i = 0, 1, 2),

where we have put e0 = 0. Since ab �= 0 we have∣∣∣∣∣∣∣
1 1 1

ζ
e1(m/(m,n))
M ζ

e1(n/(m,n))
M 1

ζ
e2(m/(m,n))
M ζ

e2(n/(m,n))
M 1

∣∣∣∣∣∣∣ = 0.

(2) For a simpler proof, due to J. Browkin, see this collection, D15, proof of Lemma 1, p. 633.
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By Lemma 9 we have either for some distinct i, j ∈ {0, 1, 2}
(16) ζ

ei (m/(m,n))
M = ζ ej (m/(m,n))M , ζ

ei (n/(m,n))
M = ζ ej (n/(m,n))M

or

(17) ζ
e1(m/(m,n))
M = 1, or ζ

e1(n/(m,n))
M = 1, or ζ

e1(m/(m,n))
M = ζ e1(n/(m,n))M .

Now (16) gives ζ eiM = ζ ejM , a contradiction; (17) gives, in view of (15),

ζ
e1(m/(m,n))
M = ζ e1(n/(m,n))M = 1,

hence ζ e1M = 1, a contradiction. ��

Proof of Theorem 2B. To prove Theorem 2B we follow the proof of Theorem 2A and at a
crucial point we use Lemma 10. ��

Proof of Theorems 3A and 3B. Let i � 2 be an arbitrary integer, and consider the
polynomial

(18) p(x) = xp + 2x + 2

for some fixed prime p � i. As is known, p(x) is irreducible over Q. Further, p(x) divides
infinitely many standard quadrinomials over Q and infinitely many standard quintinomials
over Q with the constant term different from 0; namely, we have

p(x) | (xp + 2x + 2)xq = xp+q + 2xq+1 + 2xq,

p(x) | (xp + 2x + 2)(xp + q) = x2p + 2xp+1 + (2 + q)xp + 2qx + 2q

for any integer q � 1.
Suppose now that there are a non-zero polynomial s(x) in Q[x] with degree less than

i and an integer r � 1 such that

(19) p(x) divides s(xr) over Q.

Since p(x) is irreducible, we may assume that s(x) is also irreducible over Q. Further, its
degree, denoted by t , is positive. Denote by ξ1, . . . , ξp the roots of p(x), and by γ1, . . . , γt
the roots of s(x). Then (19) implies that (x − ξ1) divides xr − γj for some j (1 � j � t)
over Q. Thus we have

(20) ξ r1 = γj .
Hence γj ∈ Q(ξ1). But the field Q(ξ1) is of degree p over Q, where p is a prime. This
implies that either γj ∈ Q or γj is of degree p over Q. But the latter case cannot hold
because γj is of degree at most i−1 and p � i. Hence γj ∈ Q and so t = 1. Consequently,
it follows from (20) that

ξ rj = ξ r1 for j = 1, . . . , p.

There are rth roots of unity ζj such that ξj = ζj ξ1 for j = 1, . . . , p. Comparing the
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coefficients of xp−1 in the representation (18) and
p∏
j=1
(x − ξj ) of p(x), we get

0 = ξ1 + . . .+ ξp = ξ1(ζ1 + . . .+ ζp),
whence

ζ1 + . . .+ ζp = 0.

Hence the coefficient of x in p(x) =
p∏
j=1
(x − ξj ) is

ξ1 · · · ξp
ξ1

+ . . .+ ξ1 · · · ξp
ξp

= ξ1 · · · ξp
ξ1

(ζ−1
1 + . . .+ ζ−1

p )

= ξ1 · · · ξp
ξ1

(ζ1 + . . .+ ζp) = 0,

which contradicts the fact that in (18), the coefficient of x in p(x) is equal to 2. This
completes the proof of Theorems 3A and 3B. ��
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Reducibility of lacunary polynomials XII

In memory of Paul Erdős

E. Bombieri and U. Zannier [1] have recently proved an important theorem, which
permits improving most of the results of papers VII, VIII, X and XI of this series. In order
to state the results I shall use the same notation as in those papers, explained below, together
with a new usage of the matrix notation.

N and N0 are the sets of positive and non-negative integers, respectively, Q is the field
of algebraic numbers.

Bold face letters denote vectors written horizontally, x = [x1, . . . , xk], x−1 =
[x−1

1 , . . . , x−1
k ] and similarly for z; ab is the scalar product of a and b.

The set of k × l integral matrices is denoted by Mk,l(Z), and the identity matrix of
order k by I k . For a matrix A = (aij ) ∈ Mk,l(Z) we put

h(A) = max
i,j

|aij |, xA =
[ k∏
i=1

x
ai1
i , . . . ,

k∏
i=1

x
ail
i

]
.

For a Laurent polynomial F ∈ K[x, x−1], where K is any field, if F =
k∏
i=1
x
αi
i F0(x),

where F0 ∈ K[x] and (F0,
k∏
i=1
xi) = 1 we put

JF = F0.

A polynomial F is reciprocal if JF(x−1) = ±F(x).
A polynomial is irreducible over K if it is not reducible over K and not a constant. For

K = Q we omit the words “over Q”. If F = c
s∏
σ=1
F
eσ
σ , where c ∈ K∗, Fσ are irreducible

over K and pairwise coprime, and eσ � 1 (1 � σ � s), we write

F
can=
K

const
s∏
σ=1

Feσσ

and call this a canonical factorization of F over K . If K = Q, then
can=
K

is replaced by
can= .

If

JF
can=
K

const
s∏
σ=1

Feσσ
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we put

KF = const
∏∗

Feσσ ,

and if K = Q

LF = const
∏∗∗

Feσσ ,

where
∏∗ is taken over all Fσ that do not divide J (x

tα − 1) for any α ∈ Zk \ {0} and
∏∗∗

is taken over all Fσ that are not reciprocal. The leading coefficients (i.e. the coefficients of
the first term in the inverse lexicographic order) ofKF andLF are equal to that of F . Note
that KF depends only on F and the prime field of K , which in this paper is always Q.

If T is any transformation of K[x, x−1] into itself and F ∈ K[x, x−1] then

KF(T x) = K(F(T x)
)
,

and if K = Q

LF(T x) = L(F(T x)
)
.

The Bombieri–Zannier theorem can be stated as follows.

Theorem BZ. Assume that P,Q ∈ Q[x] and n ∈ Zk . If (P,Q) = 1, but(
KP(xn),KQ(xn)

) �= 1, then there exists a γ ∈ Zk such that

γn = 0 and 0 < h(γ ) � c1(P,Q),

where c1(P,Q) depends only on P andQ.

In the sequel ci(. . . ) denote effectively computable positive numbers depending only
on the parameters displayed in parentheses. Theorem BZ extends Theorem 1 of [7] from
k � 3 to arbitrary k in the crucial case [K : Q] < ∞ and immediately implies that in
Theorem 2 of [7],

c2(P,Q)N
k−min{k,6}/(2k−2) (logN)10

(log logN)9

can be replaced by

c2(P,Q)N
k−1.

Theorems 3 and 5 of [7] can now be extended in the following manner.

Theorem 1. LetF ∈ Z[x]\{0}, k0 be the number of variables with respect to whichF is of
positive degree, and ||F || be the sum of squares of the coefficients ofF . AssumeKF = LF .
For every vector n ∈ Zk such that F(xn) �= 0 there exist a matrix M = (μij ) ∈ Mk,k(Z)

and a vector v ∈ Zk such that

(1) 0 � μij < μjj � exp(9k0 · 2||F ||−5) (i �= j), μij = 0 (i < j),c

(2) n = vM,
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and either

(3) KF(zM)
can= const

s∏
σ=1

Fσ (z)
eσ

implies

(4) KF(xn)
can= const

s∏
σ=1

Fσ (x
v)eσ

or there exists a γ ∈ Zk such that

(5) γn = 0 and 0 < h(γ ) � c3(F,M).

Theorem 4 of [7] is extended as follows.

Theorem 2. Let F ∈ Q[x] \ {0}, n ∈ Zk \ {0}. If JF(xn) is not reciprocal, thenKF(xn)

is reducible if and only if there exist a matrix N ∈ Mr,k(Z) of rank r and a vector v ∈ Zr

such that

h(N) � c4(F ),(6)

n = vN ,(7)

KF(yN ) = F1F2, y = [y1, . . . , yr ], Fi ∈ Q[y] (i = 1, 2),(8)

KFi(x
v) �∈ Q (i = 1, 2).(9)

Further we have

Theorem 3. Let F ∈ Q[x] \ {0}, n ∈ Zk \ {0}, K be the field generated over Q by the
ratios of the coefficients of F(xn) and K̂ be its normal closure. Assume that F ∈ K[x],
F(xn) �= 0 and for all embeddings τ of K into K̂ ,

(10)
JF (x−n)

JF τ (xn)
�∈ K̂.

If KF(xn) is reducible over K there exist a matrix N ∈ Mr,k(Z) of rank r and a vector
v ∈ Zr such that

h(N) � c5(F )(11)

n = vN(12)

and JF(yN ) is reducible over K̂ , where y = [y1, . . . , yr ].

This theorem implies

Corollary 1. Let a = [a0, . . . , ak] ∈ Q∗k+1, n = [n1, . . . , nk] ∈ Nk , 0 < n1 < n2 < . . .

. . . < nk and let K = Q(a1/a0, . . . , ak/a0). If a0 ∈ K andK(a0+
k∑
j=1
ajx

nj ) is reducible
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over K , then there exist a matrix N0 ∈ M[(k+1)/2],k(Z) and a vector v0 in Z[(k+1)/2] such
that

(13) h(N0) � c6(a)
and

(14) n = v0N0

Corollary 2. Under the assumptions of Corollary 1 the number of vectors n such that

nk � N and K
(
a0 +

k∑
j=1
ajx

nj
)

is reducible over K is less than c7(a)N [(k+1)/2].

Corollary 3. Let a = [a0, . . . , ak] ∈ C∗k+1 be such that a0 ∈ K = Q(a1/a0, . . . ,

. . . , ak/a0). The number of integer vectors n = [n1, . . . , nk] such that 0 < n1 < . . .

. . . < nk ≤ N and K(a0 +
k∑
j=1
ajx

nj ) is reducible over K is less than c8(a)Nk−1.

Corollary 1 improves in the case K = Q and extends Theorem 2 of [3], Corollary 2
drastically improves Theorem 1 of [5]. The exponent [(k + 1)/2] cannot be further im-
proved, as will be shown by an example, the gist of which is in [3]. Corollary 3 improves
Theorem 2 of [6] and the Theorem of [8].

Further we have

Theorem 4. Let F ∈ Q[x] \ {0}. There exist two finite subsets R and S of
k⋃
r=1

Mr,k(Z)

with the following property. If n ∈ Zk \ {0} and JF(xn) is not reciprocal, thenKF(xn) is
reducible if and only if the equation n = vN is soluble in v ∈ Zr and N ∈ R ∩ Mr,k(Z)

but insoluble in v ∈ Zs and N ∈ S ∩ Ms,k(Z) for each s < r .

The reducibility condition given in Theorem 4 is more readily verifiable than that of
Theorem 2, because of the relation (9) occurring in the latter. It is conjectured that a similar
reducibility condition holds without the assumption that JF(xn) is not reciprocal and over
any finite extension of Q.

The proofs of Theorems 1–4 are based on several lemmas.

Lemma 1. For every polynomial P ∈ Q[x] \ {0},
LKP = LP.

Proof. See [2], Lemma 11. ��

Lemma 2. For every polynomial F ∈ Z[x] and every vector n ∈ Zk such that F(xn) �= 0
there exist a matrix M = (μij ) ∈ Mk,k(Z) and a vector v ∈ Zk such that

(15) 0 � μij < μjj � exp(9k · 2‖F‖−5) (i �= j), μij = 0 (i < j),c

(16) n = vM,
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and either

LF(zM)
can= const

s∏
σ=1

Feσσ

implies

LF(xn)
can= const

s∏
σ=1

Fσ (x
v)eσ ,

or there exists a vector γ ∈ Zk such that

γn = 0 and 0 < h(γ ) � c9(k, F ).

Proof. See [2], Lemma 12, where c9(k, F ) is given explicitly. ��

Lemma 3. If F ∈ Q[x] is irreducible and non-reciprocal and a matrix M ∈ Mk,k(Z) is
non-singular, then

LF(zM) = JF(zM).

Proof. See [7], Lemma 17. ��

Lemma 4. If F ∈ Q[x] \ {0}, KF = LF , M ∈ Mk,k(Z) and det M �= 0, then

(17) KF(zM) = LF(zM).

Proof. By Lemma 1 we have, for every polynomial P ∈ Q[x] \ {0},
(18) LP |KP |JP.

Assume first that F is irreducible. If F = cxi , c ∈ Q, then JF(zM) = c, hence
KF(zM) = LF(zM) = c. IfF |J (x tα−1) for an α ∈ Zk \{0}, thenF(zM) |J (zM tα−1),
hence KF(zM) ∈ Q and (18) implies (17). If F �= cxi for all c ∈ Q and all i � k, and
F /| J (x tα − 1) for all α ∈ Zk \ {0}, then KF = F , hence KF = LF implies that F is
not reciprocal. By Lemma 3 we have LF(zM) = JF(zM) and (18) implies (17).

Assume now that

F
can= c

s∏
σ=1

Feσσ , c ∈ Q∗.

Then

KF = c
s∏
σ=1

KFeσσ , LF = c
s∏
σ=1

LFeσσ ,

which together with KF = LF and (18) implies

KFσ = LFσ (1 � σ � s).



568 D. Polynomials in one variable

By the part of the lemma already proved, KFσ (zM) = LFσ (zM), hence

KF(zM) = c
s∏
σ=1

KFσ (z
M)eσ = c

s∏
σ=1

LFσ (z
M)eσ = LF(zM). ��

Lemma 5. Let + ∈ Q[x] be irreducible, γ = (γ1, . . . , γk) ∈ Zk , (γ1, . . . , γk) = 1. Then
J+(x

tγ ) is irreducible.

Proof. See [4], Lemma 11. ��

Lemma 6. IfF ∈ Q[x] andKF ∈ Q, then for every vector v ∈ Zk we haveKF(xv) ∈ Q.

Proof. It is enough to prove the lemma forF irreducible and different from cxi (1 � i � k),
c ∈ Q∗. The condition KF ∈ Q gives

F |J (x tα − 1), where α ∈ Zk \ {0}.
If αv �= 0 the conclusion follows at once, but the case αv = 0 remains to be considered.

Let α = aγ , where a ∈ N, γ ∈ Zk and the coordinates of γ are relatively prime. We
have

J (x
tα − 1) =

∏
d |a
Jφd(x

tγ ),

where φd is the cyclotomic polynomial of order d. By Lemma 5, Jφd(x
tγ ) is irreducible.

Hence F = cJφd(x
tγ ) for a c ∈ Q∗ and a divisor d of a. The equality αv = 0 gives

vtγ = (0), hence JF(xv) = cφd(1) ∈ Q. ��

Proof of Theorem 1. Let c1 have the meaning of Theorem BZ and c9 the meaning of
Lemma 2. We may assume without loss of generality that F ∈ Q[x1, . . . , xk0 ] and apply
Lemma 2 with k replaced by k0, n replaced by n0 = [n1, . . . , nk0 ], and z replaced by
z0 = [z1, . . . , zk0 ]. Let M0 and v0 be the matrix and the vector the existence of which is
asserted in Lemma 2. We put

(μij )i,j�k0 = M0, μii = 1 if i > k0, μij = 0 if i > k0 or j > k0 and i �= j ;
[v1, . . . , vk0 ] = v0, vi = ni if i > k0.

This together with (15) and (16) gives (1) and (2). Moreover, by Lemma 2, either

(19) LF(zM) = LF(zM0
0 )

can= const
s0∏
σ=1

F 0
σ (z0)

e0
σ

implies

(20) LF(xn) = LF(xn0)
can= const

s0∏
σ=1

F 0
σ (x

v0)e
0
σ ,

or there exists a γ 0 ∈ Zk0 such that

(21) γ 0n0 = 0 and 0 < h(γ 0) � c9(k0, F ).
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By Lemma 4 the left hand sides of (3) and (19) coincide. Since the canonical factorization
is essentially unique we have s = s0 and we may assume that Fσ = F 0

σ , eσ = e0
σ (1 �

σ � s). Therefore
(
JFσ (z

−1), Fσ (z)
) = 1 for all σ � s and the number

(22) c3(F,M) = max
{
c9(k0, F ), max

1�σ�s
c1
(
JFσ (z

−1), Fσ (z)
)}

is well defined. We now show that it has the property claimed in the theorem.
By (3) we have

(23) F (zM) = F0(z)

s∏
σ=1

Fσ (z)
eσ ,

where KF0 ∈ Q. Hence on substitution z = xv we obtain, by (2),

F(xn) = F0(x
v)

s∏
σ=1

Fσ (x
v)eσ ,

and, on applying K to both sides, by Lemma 6 we infer that

KF(xn) = const
s∏
σ=1

KFσ (x
v)eσ .

IfKFσ (xv) = LFσ (xv) for all σ � s, then since Fσ (xv) = F 0
σ (x

v0), (20) implies (4),
while (21) and (22) imply (5) with γ = [γ 0, 0, . . . , 0]. If KFσ (xv) �= LFσ (x

v) for at
least one σ � s, then KFσ (xv) has an irreducible reciprocal factor. Hence(

KFσ (x
−v), KFσ (x

v)
) �= 1

and by Theorem BZ there is a γ ∈ Zk such that

γn = 0 and 0 < h(γ ) � c1
(
JFσ (z

−1), Fσ (z)
)
,

which gives (5) by virtue of (22). ��

Lemma 7. Let F ∈ Q[x] with KF �∈ Q. If n ∈ Zk and KF(xn) ∈ Q, then there exists a
vector γ ∈ Zk such that

(24) γn = 0 and 0 < h(γ ) � c10(F ).

Proof. See [7], Lemma 18. ��

Lemma 8. Let G ∈ Q[x] \ {0}, n ∈ Zk \ {0}, K be the field generated over Q by the
ratios of the coefficients of G(xn) and K̂ be its normal closure. Assume that G ∈ K[x],
G(xn) �= 0 and

(25) JG(x−n)/JGτ (xn) �∈ K̂ for all embeddings τ of K into K̂.

There exist a matrix M ∈ Mk,k(Z) and a vector v ∈ Zk such that

det M �= 0, h(M) � c11(G),(26)

n = vM,(27)
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and either

(28) KG(xn) is irreducible over K,

or there exists a vector γ ∈ Zk such that

(29) γn = 0 and 0 < h(γ ) � c12(G),

or

(30) JG(zM) = G1G2, Gi ∈ K̂[z] \ K̂

and if K = Q

(31) KGi(x
v) �∈ Q (i = 1, 2).

Proof. Let T be the set of all embeddings of K into K̂ . The assumption (25) implies

(32)
JG(x−1)

JGτ (x)
�∈ K̂ for all τ ∈ T ,

hence, in particular, JG �∈ K̂ . If JG is reducible over K̂ or K = Q and KG is reducible
we have (26), (27) and (30) with M = I k , v = n (provided c11(G) � 1) and for K = Q

we may additionally assume that

(33) KGi �∈ Q (i = 1, 2).

In this last case we have either (31) or, denoting by li the leading coefficient of G,

Kl−1
i Gi(x

n) ∈ Q for an i � 2.

However, l−1
i Gi belongs to a finite set S of monic non-constant divisorsD of JG in Q[z]

satisfying KD �∈ Q by virtue of (33). Hence, by Lemma 7, (29) holds provided

c12(G) � max
D∈S c10(D).

It remains to consider the case where JG is irreducible over K̂ , or K = Q and KG is
irreducible.

IfJG is irreducible over K̂ , let l be the leading coefficient ofJG(xn). SinceJG(xn)has
the same coefficients as G(xn), by the definition of K , τ1 �= τ2 implies for all τ1, τ2 ∈ T ,(

l−1JG(xn)
)τ1 �= (l−1JG(xn)

)τ2
and since both sides are monic,

(34)

(
l−1JG(xn)

)τ2(
l−1JG(xn)

)τ1 �∈ K̂.

It follows that JGτ2/JGτ1 �∈ K̂ , and since JGτ1 , JGτ2 are both irreducible over K̂ ,
(JGτ1 , JGτ2) = 1. IfF is the polynomial over Z with the least positive leading coefficient
divisible by JG and irreducible over Q we find that

JNK/QG =
∏
τ∈T
JGτ |F
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and, since JNK/QG ∈ Q[x] \ Q, we infer that

(35) JNK/QG/F ∈ Q∗.

Moreover, by (32), (
JF(x−1), F

) = 1,

which implies LF = F and, by (18), KF = LF .
If K = Q and KG is irreducible we define F as the polynomial over Z which is a

scalar multiple of G with the least positive leading coefficient. Thus we have (34) and
infer, by (32) and (18), that KF = LF .

Hence in any case Theorem 1 applies to F . By virtue of that theorem and of (34)
there exist a matrix M ∈ Mk,k(Z) and a vector v ∈ Zk such that (26), with c11(G) =
9k0 · 2||F ||−5, and (27) hold and either

(36) KNK/QG(z
M)

can= const
s∏
σ=1

Fσ (z)
eσ

implies

(37) KNK/QG(x
n)

can= const
s∏
σ=1

Fσ (x
v)eσ ,

or there exists a γ 1 ∈ Zk such that

γ 1n = 0 and 0 < h(γ 1) � c3(F,M) = c13(G,M).

In the latter case we have (29) provided

c12(G) � max c13(G,M),

where maximum is taken over all matrices M ∈ Mk,k(Z) satisfying (26). In the former

case on the right hand side of (36) we have
s∑
σ=1
eσ � 1. Indeed, if K �= Q, then by

Lemma 3,

LF(zM) = JF(zM),
hence by (18),

KF(zM) = JF(zM) �∈ Q.

If K = Q the same argument works with F replaced by KG.

If
s∑
σ=1
eσ = 1, then by (37), KNK/QG(x

n) is irreducible, hence we have (28). If

s∑
σ=1
eσ � 2, then we have (30). Indeed, otherwise JG(zM) would be irreducible over K̂

and would satisfy

(38) JG(zM) |Fσ (z)
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for a σ � s. Since

JG(xn) = JG((xv)M
)

(34) implies that JG(zM)τ2/JG(zM)τ1 �∈ K̂ for any two distinct elements τ1, τ2 of T .
Since JG(zM)τ1 , JG(zM)τ2 are both irreducible over K̂ ,(

JG(zM)τ1 , JG(zM)τ2
) = 1

and by (38),

JNK/QG(z
M) =

∏
τ∈T
JG(zM)τ

∣∣ Fσ (z),
contrary to (36) under the assumption

s∑
σ=1
eσ � 2. The contradiction obtained shows (30).

IfK = Q the same assumption together with (37) shows the existence of a factorization (30)
satisfying (31). Indeed, according to the definition of canonical factorization, Fσ (xv) �∈ Q

for all σ � s. ��

Proof of Theorem 2. The reducibility condition given in the theorem is clearly suffi-
cient. We proceed to prove that it is necessary. Assume that the condition is necessary
for Q[x1, . . . , xk−1], c4(F ) being defined for all polynomials in less than k variables for
which it is needed (for k = 1 this is an empty statement); assume that F ∈ Q[x], JF(xn)

is not reciprocal and KF(xn) is reducible.

Consider first the case where F is of positive degree with respect to all k variables, so
that k is determined by F . For k = 1 this is the only case.

If the matrix M and the vector v appearing in Lemma 8 forG = F have the properties
(30) and (31) we take N = M , r = k, Fi = (KF,Gi) (i = 1, 2) and obtain h(N) �
c11(F ). Otherwise, by Lemma 8, there exists a vector γ ∈ Zk such that γn = 0 and
0 < h(γ ) � c12(F ). For k = 1 this completes the proof, since γn = 0 implies n = 0.

For k > 1 the integer vectors perpendicular to γ form a lattice, say Λ. It is easily seen
(cf. for instance Lemma 6 in [2]) that Λ has a basis that written in the form of a matrix
B ∈ Mk−1,k(Z) satisfies

(39) h(B) � k

2
c12(F ).

Let us put

(40) F̃ = JF (̃xB), where x̃ = [x1, . . . , xk−1].
Since n ∈ Λ we have n = mB for an m ∈ Zk−1. Clearly

(41) JF (xn) = J F̃ (xm),

thus, by assumption, J F̃ (xm) is not reciprocal andKF̃ (xm) is reducible. By the inductive
assumption there exist a matrix Ñ ∈ Mr,k−1(Z) of rank r � k − 1 and a vector v ∈ Zr
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such that

h(Ñ) � c4(F̃ ),(42)

m = vÑ;(43)

KF̃ (yÑ ) = F1F2, Fi ∈ Q[y], KFi(xv) �∈ Q (i = 1, 2).

Let us take N = ÑB. It follows from (40) that J F̃ (yÑ ) = JF(yN ) and from (43) that
n = vN ; moreover, since rank B = k−1, rank N = r . Thus N and v have all the properties
required in the theorem apart from (6); it remains to establish (6) by an appropriate choice
of c4(F ). We have, by (39) and (42),

h(N) � (k − 1)h(Ñ)h(B) �
(
k

2

)
c4(F̃ )c12(F ).

However, F̃ is determined by F and B via (40) and, by virtue of (39), B runs through a
finite set of matrices depending only on F . Hence c4(F̃ ) � c14(F ) and the theorem holds
with

c4(F ) = max
{
c11(F ),

(
k

2

)
c12(F )c14(F )

}
.

Consider now the case whereF is of positive degree with respect to less than k variables.
We may assume that F ∈ Q[̃x]. By the inductive assumption there exist a matrix N0 ∈
Mk−1,r0(Z) of rank r0 and a vector v0 ∈ Zr0 such that

h(N0) � c4(F ), [n1, . . . , nk] = v0N0,

KF(y
N0
0 ) = F1F2, y0 = [y1, . . . , yr0 ],

Fi ∈ Q[y0], KFi(x
v0) �∈ Q (i = 1, 2).

We put r = r0 + 1, N =
(

N0 0
0 1

)
, v = [v0, nk] and easily verify that conditions (6)–(9)

are satisfied. ��

Proof of Theorem 3. We proceed in the same way as in the proof of the necessity part of
Theorem 2, with K instead of Q, using Lemma 8 without the formula (31). Therefore we
point out only the argument not needed in the proof of Theorem 2. Before applying the
inductive assumption to F̃ (xm) we have to check that F̃ ∈ K [̃x] and that

(44)
J F̃ (̃x−m)

J F̃ τ (̃xm)
�∈ K̂

for all embeddings τ of K into K̂ .
Now F̃ ∈ K [̃x] follows from F ∈ K[x] and from the definition of F̃ by the formula

(40), while (44) follows from (10) and (41). ��
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Lemma 9. If aj �= 0 (0 � j � k) are complex numbers and the rank of a matrix
(νij ) ∈ Mr,k(Z) is greater than (k + 1)/2, then

J
(
a0 +

k∑
j=1

aj

r∏
i=1

x
νij
i

)
is absolutely irreducible.

Proof. See [3], Corollary to Theorem 1. The proof of Theorem 1 given there shows less
than stated in the theorem, but only in the case of positive characteristic of the ground
field, so the Corollary is fully justified. ��

Proof of Corollary 1. We apply Theorem 3 with F = a0 +
k∑
j=1
ajxj and infer that if

K
(
a0 +

k∑
j=1
ajx

nj
)

is irreducible over K , then either

(45)
J
(
a0 +∑k

j=1 ajx
−nj )

aτ0 +∑k
j=1 a

τ
j x
nj

∈ K̂

for an embedding τ of K into K̂ , or there exist a matrix N = (νij ) ∈ Mr,k(Z) of rank r
and a vector v ∈ Zr such that h(N) � c4(F ), n = vN and

(46) J
(
a0 +

k∑
j=1

aj

r∏
i=1

y
νij
i

)
is reducible over K̂.

Let us put c6(a) = max{2, c4(F )}.
If (45) holds, then nj +nk−j = nk (1 � j < k) and we satisfy (13) and (14) by taking

v0 =
{
[n1, . . . , nk/2] if k is even,

[n1, . . . , n(k−1)/2, nk] if k is odd;

N0 =

⎛⎜⎜⎜⎜⎜⎜⎝

1 −1

1 . .
.

. . . −1
1 −1

1 2 2 . . . 2 2

⎞⎟⎟⎟⎟⎟⎟⎠ if k is even,

N0 =

⎛⎜⎜⎜⎜⎜⎜⎝

1 −1

1 . .
.

. . . −1
1 1

1 1 . . . 1 1

⎞⎟⎟⎟⎟⎟⎟⎠ if k is odd,

where the empty places (but not the dots) denote zeros.
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If (46) holds, then by Lemma 9 r � (k + 1)/2. If r = [(k + 1)/2] we take N0 = N ,
v0 = v; if r < (k + 1)/2 we amplify N and v by inserting zeros. ��
Proof of Corollary 2. For each matrix N0 ∈ M[(k+1)/2],k(Z) the number of vectors
n ∈ Zk with h(n) � N for which there exists a v0 ∈ Z[(k+1)/2] satisfying (14) is less than
c15(N0)N

[(k+1)/2]. Hence Corollary 2 follows from Corollary 1 with

c7(a) =
∑
c15(N0),

where the sum is taken over all matrices N0 ∈ M[(k+1)/2],k satisfying (13). ��

Remark 1. If k > 1 and
k∑
j=0
aj = 0, then the polynomial a0 +

k∑
j=1
ajx

nj is reducible for

all vectors n in question. This shows that replacing a0 +
k∑
j=1
ajx

nj by K
(
a0 +

k∑
j=1
ajx

nj
)

is really needed in order to obtain a non-trivial result.

Example. Here is the example announced in the introduction showing that the exponent
[(k + 1)/2] is best possible in Corollary 2, and hence also in Corollary 1.

If k = 2l−1 we take a0 = 4, aj = 2 (1 � j � l), aj = 1 (l < j < 2l), nj = nl+nj−l
(l < j < 2l). It follows that

a0 +
k∑
j=1

ajx
nj =

(
2 +

l−1∑
j=1

xnj
)
(2 + xnl ).

The two factors on the right hand side are not reciprocal, hence K
(
a0 +

k∑
j=1
ajx

nj
)

is

reducible. The numberX of relevant vectors n with nk � N is at least equal to the number
of increasing sequences n1 < n2 < . . . < nl with nl � [N/2], hence

X �
([N/2]

l

)
� c16(l)N

l for N � 2l,

where c16(l) > 0.
If k = 2l we take a0 = 4, aj = 2 (1 � j � l), al+1 = 3, aj = 1 (l + 1 < j � 2l),

nj = nl + nj−l (l < j < 2l), n2l = 2nl + n1. It follows that

a0 +
k∑
j=1

ajx
nj =

(
2 +

l−1∑
j=1

xnj + xnl+n1
)
(2 + xnl ).

The two factors on the right hand side are not reciprocal, hence K
(
a0 +

k∑
j=1
ajx

nj
)

is

reducible. The numberX of relevant vectors n with nk � N is at least equal to the number
of increasing sequences n1 < n2 < . . . < nl with nl � [N/3], hence

X �
([N/3]

l

)
� c17(l)N

l for N � 3l,

where c17(l) > 0.
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Lemma 10. For every k + 1 non-zero complex numbers a0, . . . , ak such that a0 ∈ K =
Q(a1/a0, . . . , ak/a0) there exist k+1 algebraic numbers α0, . . . , αk−1, αk = 1 such that if

0 = n0 < n1 < . . . < nk andK
( l∑
j=0
ajx

nj
)

is reducible over K then eitherK
( l∑
j=0
αjx

nj
)

is reducible over K0 = Q(α0, . . . , αk−1), or there is a vector γ ∈ Zk such that γn = 0
and

(47) 0 < h(γ ) � c18(a).

Proof. See [6], Lemma 5. ��

Proof of Corollary 3. Let αi have the meaning of Lemma 10. By Corollary 2 the number of

relevant vectors n for which nk � N andK
( k∑
j=0
αjx

nj
)

is reducible over Q(α0, . . . , αk−1)

is less than c7(α)N [(k+1)/2]. For a fixed α ∈ Zk \{0} the number of relevant vectors n ∈ Zk

with nk � N such that γn = 0 is less than c19(γ )N
k−1. Hence Corollary 3 holds with

c8(a) = c7(α)+
∑
c19(γ ),

where the sum is taken over all vectors γ ∈ Zk satisfying (47). ��

Remark 2. It seems likely that by improving Lemma 10 one can replace the exponent k−1
in Corollary 3 by [(k + 1)/2].

Proof of Theorem 4. We begin by defining subsets Si and Ri of Mk−i,k(Z) (0 � i < k)
inductively, as follows:

(48) S0 = {I k},
and supposing that Si is already defined, y = [y1, . . . , yk−1],
(49) Ri =

{
MN : N ∈ Si, M ∈ Mk−i,k−i (Z), det M �= 0,

h(M) � c11
(
F(yN )

)
, KF(yMN ) is reducible

}
,

and for i < k − 1

(50) Si+1 =
{
N ∈ Mk−i−1,k(Z) : rank N = k − i − 1,

h(N) � 1
2 (k − i)2 max

N1∈Si
{
h(N1)max{max c12

(
F(yN1)

)
,

max∗(k − 1)c10(D)h(M)}
}}

where max∗ is taken over all M ∈ Mk−i,k−i (Z) with det M �= 0, h(M) � c11
(
F(yN1)

)
and all monic irreducible divisorsD ofKF(yMN1). (IfKF(yMN1) belongs to Q we take
max∗ = 0.)
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In this way Ri and Si are defined for all i < k and we put

R =
k−1⋃
i=0

Ri, S =
k−1⋃
i=1

Si.

We first prove that the condition given in the theorem is necessary. By (48) there exist
indices i such that

n = uU , U ∈ Sk−i , u ∈ Zi .

Let r be the least such index and

(51) n = vN , N ∈ Sk−r , v ∈ Zr .

By Lemma 8 ifKF(xn) = KF(xvN ) is reducible, then there exists a matrix M ∈ Mr,r (Z)

such that

det M �= 0, h(M) � c11
(
F(yN )

)
, y = [y1, . . . , yr ],(52)

v = v1M, v1 ∈ Zr(53)

and either KF(yMN ) is reducible, or there exists a vector γ ∈ Zr such that

γ v = 0 and 0 < h(γ ) � c12
(
F(yN )

)
.

The second possibility can only hold for r > 1 since for r = 1 it gives v = 0 and by (51),
n = 0. For r > 1 the vectors v perpendicular to γ form a lattice Λ in Zr . This lattice has
a basis that written in the form of a matrix B ∈ Mr−1,r (Z) satisfies

rank B = r − 1,(54)

h(B) � r

2
h(γ ) � r

2
c12
(
F(yN )

)
(55)

(cf. Lemma 6 in [2]). Since v ∈ Λ we have

v = wB, w ∈ Zr−1,

hence, by (51),

(56) n = wBN , BN ∈ Mr−1,k(Z).

Since, by (50) and (51), rank N = r , it follows from (54), by linear algebra, that

rank BN = r − 1.

Moreover, by (55),

h(BN) � rh(B)h(N) � r2

2
h(N)c12

(
F(yN )

)
and, by (50), BN ∈ Sk−r+1, contrary, in view of (56), to the definition of r . The contra-
diction obtained proves thatKF(yMN ) is reducible, hence MN ∈ Rk−r by (49). By (51)
and (53) we have

n = v1MN ,
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while by the definition of r the equation n = uU is insoluble in u ∈ Zi , U ∈ Sk−i forc

i < r . Thus the condition given in the theorem is necessary.
Now we prove that it is sufficient. Assume that for a certain matrix N ∈ Rk−r (1 �

r � k),
(57) n = vN , v ∈ Zr ,

but

(58) n �= uU for all s < r, u ∈ Zs , U ∈ Sk−s .
Then by (49)

n = vMN1, N1 ∈ Sk−r , M ∈ Mr,r (Z), det M �= 0,

h(M) � c11
(
F(yN1)

)
, y = [y1, . . . , yr ]

and

KF(yMN1) = F1F2, F1, F2 ∈ Q[y] \ Q.

Hence

(59) KF(xn) = KF1(x
v)KF2(x

v).

Suppose that for an i � 2 we haveKFi(xv) ∈ Q. ThenKD(xv) ∈ Q for an irreducible
monic factor D of KF , hence by Lemma 7 there exists a vector γ ∈ Zr such that

γ v = 0, 0 < h(γ ) � c10(D).

Again this can occur only for r > 1 and, repeating the argument about the lattice given
above, we find a matrix B ∈ Mr−1,r (Z) such that

rank B = r − 1, h(B) � r

2
h(γ ) � r

2
c10(D);

v = wB, w ∈ Zr−1.

It follows that

n = wBMN1, BMN1 ∈ Mr−1,k(Z),(60)

rank BMN1 = r − 1,

h(BMN1) � r2h(B)h(M)h(N1) � r3

2
c10(D)h(M)h(N1),

hence by (50),

BMN1 ∈ Sk−r+1,

which together with (59) contradicts (58). The contradiction obtained shows thatKFi(xv)

�∈ Q (i = 1, 2), hence by (59), KF(xn) is reducible. ��
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On reducible trinomials II

To Professor Kálmán Győry on his 60th birthday

Abstract. It is shown that if a trinomial has a binomial factor then under certain conditions the
cofactor is irreducible.

1. Introduction

This paper is a sequel to [5]. In that paper we considered an arbitrary field K of
characteristic π , the rational function field K(y), where y is a variable vector, a finite
algebraic extension L of K(y1) and a trinomial

(i) T (x;A,B) = xn + Axm + B, where n > m > 0, π /| mn(n−m)
and either A,B ∈ K(y)∗, A−nBn−m �∈ K or A,B ∈ L, A−nBn−m �∈ K .

A necessary and sufficient condition was given for reducibility ofT (x;A,B) overK(y)
orL respectively, provided in the latter case thatL is separable. (This proviso was only made
in the errata [6](1).) As a consequence a criterion was derived for reducibility of T (x; a, b)
over an algebraic number field containing a, b. In each case it was assumed that n � 2m,
but this involved no loss of generality, since xn +Axm +B and xn +AB−1xn−m +B−1

are reducible simultaneously. Let

(ii) n1 = n/(n,m), m1 = m/(n,m).
One case of reducibility of T (x;A,B) over the field Ω = K(y) or L is that
xn1 + Axm1 + B has in Ω[x] a linear factor. The aim of this paper is to prove that ifc

n1 is sufficiently large and xn1 + Axm1 + B has in Ω[x] a linear factor F(x), but not a
quadratic factor, then T (x;A,B)F(x(m,n))−1 is irreducible over Ω . More precisely, we
shall prove using the notation introduced in (i) and (ii) the following three theorems.

Theorem 1. Let n1 > 5 and A,B ∈ K(y)∗, A−nBn−m �∈ K . If xn1 + Axm1 + B has in
K(y)[x] a linear factor, F(x), but not a quadratic factor, then T (x;A,B)F(x(m,n))−1 is
irreducible over K(y).

Theorem 2. Let n1 > 3 and A,B ∈ L∗, where L is a finite separable extension of K(y1)

with KL of genus g and A−nBn−m �∈ K . If xn1 + Axm1 + B has in L[x] a linear factor

(1) In this volume it is added to Theorem 2 and Lemma 27.
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F(x), but not a quadratic factor, then

(iii) T (x;A,B)F(x(m,n))−1 is reducible over L

if and only if there exists an integer l such that〈n
l
,
m

l

〉
=: 〈ν, μ〉 ∈ N2 : ν < max{17, 8g}

and
xν + Axμ + B
F(x(μ,ν))

is reducible over L. Moreover, if g = 1, then (iii) implies n1 � 6.

Theorem 3. Let n1 > 6, K be an algebraic number field and a, b ∈ K∗. If the trinomial
xn1 + axm1 + b has in K[x] a monic linear factor F(x), but not a quadratic factor, then
T (x; a, b)F (x(m,n))−1 is reducible overK if and only if there exists an integer l such that
〈n/l,m/l〉 =: 〈ν, μ〉 ∈ N2 and a = uν−μa0, b = uνb0, F = u(μ,ν)F0

(
x/u(μ,ν)

)
, wherec

u ∈ K∗, 〈a0, b0, F0〉 ∈ F 1
ν,μ(K) and F 1

ν,μ(K) is a certain finite set, possibly empty.

There is no principal difficulty in determining in Theorems 1, 2 for g = 1, and 3
all cases of reducibility when n1 � 6 in much the same way as it was done in [5] for
T (x;A,B) or T (x; a, b), however this seems of secondary interest. On the other hand, it
is natural to ask what happens when xn1 +Axm1 +B has a quadratic factor. We intend to
return to this question in the next paper of this series.

In analogy with a conjecture proposed in [5] we formulate

Conjecture. For every algebraic number field K one can choose sets F 1
ν,μ(K) such thatc

the set ∑1 =
⋃
ν,μ,F

⋃
〈a,b,F 〉∈F 1

ν,μ

{xν + axμ + b} is finite.

2. 16 lemmas to Theorems 1–2

Lemma 1. If in a transitive permutation group G the length of a cycle C ∈ G is at least
equal to the length of a block of imprimitivity, then it is divisible by the latter.

Proof. Let C = (a1, . . . , aν), aν+i := ai (i = 1, 2, . . . ) and let B1, B2, . . . be conjugate
blocks of imprimitivity. Letμ be the least positive integer such that for some i, ai and ai+μ
belong to the same block B. If μ = 1, then by induction ai ∈ B for all i, hence ν � |B|
and, since ν � |B| by the assumption, we have ν = |B|.

If μ > 1 we may assume, changing if necessary the numeration of the ai and of the
blocks, that

ai ∈ Bi (1 � i � μ), aμ+1 ∈ B1.

It follows by induction on i that

(1) akμ+i ∈ Bi (1 � i � μ, k = 0, 1, . . . ),
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hence, in particular, i ≡ j mod ν implies i ≡ j mod μ, thus μ | ν.
If a ∈ B1 then C(a) ∈ B2, hence C(a) �= a and there exists aj such that a = aj . By

(1) we have

j ≡ 1 mod μ.

Thus among aj (1 � j � ν, j ≡ 1 mod μ) occur all elements of B1 and only such
elements. However aj in question are distinct, hence

ν

μ
= |B1| and |B1|

∣∣ ν. ��

Lemma 2. If (m, n) = 1 the polynomial R1(x, t) = (xn + txm − (1 + t))/(x − 1) is
absolutely irreducible. The algebraic function x(t) defined by the equation R1(x, t) = 0
has just n−2 branch points ti �= −1,∞ with one 2-cycle given by the Puiseux expansions

x(t) = ξi ± (t − ti )1/2Pi1
(±(t − ti )1/2), ξi �= 0 (1 � i � n− 2)

and the remaining expansions

x(t) = Pij (t − ti ) (2 � j � n− 2).

At the branch point −1, x(t) has one m-cycle given by the Puiseux expansions

x(t) = ζ 2i+1
2m (t + 1)1/mPn−1,1

(
ζ 2i+1

2m (t + 1)1/m
)
(0 � i � m)

and the remaining expansions at this point are

x(t) = Pn−1,j (t + 1) (2 � j � n−m).
At the branch point ∞, x(t) has one (n−m)-cycle given by the Puiseux expansions

x(t) = ζ 2i+1
2(n−m)t

1/(n−m)Pn1
(
ζ 2i+1

2(n−m)t
1/(n−m)),

and the remaining expansions at this point are

x(t) = Pnj (t−1) (2 � j � m).
Here Pij are ordinary formal power series with Pij (0) �= 0 and ζq is a primitive root of
unity of order q. For a fixed i the values ξi (if i � n− 2) and Pij (0) (j > 1) are distinct.c

Proof. The polynomial R1(x, t) is absolutely irreducible since it can be written as

xn − 1

x − 1
+ t x

m − 1

x − 1

and, since (m, n) = 1, we have
(
(xn − 1)/(x − 1), (xm − 1)/(x − 1)

) = 1.
If τ is a finite branch point of the algebraic function x(t) we have for some ξ

(2) R1(ξ, τ ) = R′
1x(ξ, τ ) = 0,

hence also T (ξ ; τ,−τ − 1) = T ′
x(ξ ; τ,−τ − 1) = 0, which gives either ξ = 0, τ = −1

or

τ �= 0, ξn−m = −m
n
τ, ξm = n

n−m
τ + 1

τ
.
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If τ = −n/m, then ξn−m = 1, ξm = 1 and, since (m, n) = 1, ξ = 1. However
R′

1x(1,−n/m) = n(n− 1)/2− (n/m) ·m(m− 1)/2 = n(n−m)/2 �= 0 thus for τ �= −1

(2) implies (−(m/n)τ)m = ((n/(n−m))(τ + 1)/τ
)n−m, τ �= −n/m, which gives

(−m)m(n−m)n−mτn − nn(τ + 1)n−m = 0.

The only multiple root of this equation is τ = −n/m and it has multiplicity 2. Denoting
the remaining roots by ti (1 � i � n− 2) we find ti �= 0,−1,(

−m
n
ti

)m =
(

n

n−m
ti + 1

ti

)n−m
,

hence for a uniquely determined ξi �= 0, 1

ξn−mi = −m
n
ti, ξmi = n

n−m
ti + 1

ti

and R1(ξi, ti) = R′
1x(ξi, ti) = 0.

Further,

R′′
1x(ξi, ti) =

n(n−1)ξn−1
i − n(n−1)ξn−2

i +m(m−1)tiξ
m−1
i −m(m−1)tiξ

m−2
i

(ξi − 1)2

= n(n− 1)ξn−2
i +m(m− 1)tiξ

m−2
i

ξi − 1
= ξm−2

i

m(m− n)ti
ξi − 1

�= 0

and

R′
1t (ξi , ti) =

ξmi − 1

ξi − 1
= mti + n
(ξi − 1)(n−m) �= 0.

It follows that the Taylor expansion of R1(x, t) at 〈ξi, ti〉 has the lowest termsc

1

2
R′′

1x(ξi, ti)(x − ξi)2 and R′
1t (ξi , ti)(t − ti ),

which implies the existence at the point ti of the two-cycle with the expansions given in
the lemma. The remaining expansions are obtained using the fact that R1(x, ti) has n− 3
distinct zeros, different from 0 and ξi . These zeros are Pij (0) (2 � j � n − 2). The
assertions concerning branch points −1 and ∞ are proved in a standard way. ��

Lemma 3. If (m, n) = 1, the discriminant D1(t) of R1(x, t) with respect to x equals

c(t + 1)m−1
n−2∏
i=1

(t − ti ), c ∈ K∗.
c

Proof. Since R1 is monic with respect to x we have

D1(t) =
∏
i<j

(xi − xj )2,

where R1(x, t) =
n−1∏
j=1
(x − xj ). Using Lemma 2 we find that the only possible zeros of
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D1(t) are ti (1 � i � n− 2) and −1. Taking for xj the Puiseux expansion of x(t) at thesec

points we find the exponents with which t − ti and t + 1 divide D1(t). ��

Lemma 4. If (m, n) = 1 the Galois group of the polynomial R1(x, t) over K(t) is the
symmetric group Sn−1.

Proof. Since, by Lemma 2, R1(x, t) is absolutely irreducible, the group G in question is
transitive. By Lemma 1(c) of [5] and Lemma 2 G contains a transposition (for n > 2), an
m-cycle and an (n−m)-cycle, where we may assume m � n−m. IfG were imprimitive
with blocks of imprimitivity of length b, 1 < b < n − 1 we should have 2b � n − 1,
b � n − m and by Lemma 1, b |m and b | (n,m), b = 1, a contradiction. Thus G is
primitive and since it contains a transposition it must be symmetric by Theorem 14 in
Chapter 1 of [7]. ��

Definition 1. Let (m, n) = 1, R1(x, t) =
n−1∏
i=1

(
x − xi(t)

)
. We set

L1(k,m, n) = K
(
t, τ1(x1, . . . , xk), . . . , τk(x1, . . . , xk)

)
L∗

1(k,m, n) = K
(
t, τ1(x1, . . . , xk), . . . , τk(x1, . . . , xk)

)
,

where τj is the j -th fundamental symmetric function.

Remark. By Lemma 4 the fields L1(k,m, n) and L∗
1(k,m, n) are determined by k,m, n

up to an isomorphism fixing K(t) and K(t), respectively.

Lemma 5. The numerator of t − ti in L∗
1(k,m, n) has

(
n−3
k−1

)
prime divisors in the second

power and none in the higher ones.

Proof. The proof is analogous to the proof of Lemma 5 in [5]. ��

Lemma 6. The numerator of t + 1 in L∗
1(k,m, n) has

1

m

k∑
l=0

(
n−m− 1

k − l
) ∑
d |(m,l)

ϕ(d)

(
m/d

l/d

)
distinct prime divisors.

Proof. By Lemma 1(a) of [5] the prime divisors of the numerator of t + 1 are in one-to-
one correspondence with the cycles of the Puiseux expansions of a generating element of
L∗

1(k,m, n) at t = −1 provided the lengths of these cycles are not divisible by π . For the

generating element we take y(t) =
k∑
j=1
aj τj (x1, . . . , xk), where a ∈ K if K is finite and

a ∈ K otherwise, is chosen so that
k∑
j=1
aj τj (xi1 , . . . , xik ) =

k∑
j=1
aj τj (x1, . . . , xk) implies
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{i1, . . . , ik} = {1, . . . , k}. By Lemma 4 for each set {i1, . . . , ik} ⊂ {1, . . . , n− 1} there is
an automorphism of the extension

K(t, x1(t), . . . , xn−1(t))/K(t)

taking x1(t), . . . , xk(t) into xi1(t), . . . , xik (t), respectively. Thus at t = −1 we obtain the
following Puiseux expansions for y(t)

Q(t, l, i1, . . . , ik) =
k∑
j=1

aj τj

(
ζ

2i1+1
2m (t + 1)1/mPn−1,1

(
ζ

2i1+1
2m (t + 1)1/m

)
, . . . ,

ζ
2il+1
2m (t + 1)1/mPn−1,1

(
ζ

2il+1
2m (t + 1)1/m

)
,

Pn−1,il+1(t + 1), . . . , Pn−1,ik (t + 1)
)

where l runs from 0 to k, {i1, . . . , il} runs through all subsets of {0, 1, . . . , m − 1} of
cardinality l and {il+1, . . . , ik} runs through all subsets of {2, 3, . . . , n−m} of cardinality
k − l.

To see this note that the fundamental symmetric functions ofQ(t, l, i1, . . . , ik) coincide
with the fundamental symmetric functions of the conjugates of y(t) over K(t).

If P is an ordinary formal power series, the conjugates of P
(
(t + 1)1/m

)
over

K
(
((t + 1)1/d)

)
, where d |m, are P

(
ζ dem (t + 1)1/m

)
(0 � e < m/d). Therefore

Q(t, l, i1, . . . , ik) ∈ K
((
(t + 1)1/d

))
, where d |m,

if and only if

Q(t, l, i1, . . . , ik) = Q(t, l, i1 + ed, . . . , il + ed, il+1, . . . , ik) (0 � e < m/d),

hence by the choice of a if and only if

{i1, . . . , il} + d ≡ {i1, . . . , il} modm.

It follows by Lemma 7 of [5] that y(t) has at t = −1 exactly

k∑
l=0

f (m, l, d)

(
n−m− 1

k − l
)

expansions belonging to K
(
((t + 1)1/d)

) \ ⋃
δ<d

K
(
((t + 1)1/δ)

)
, where d |m and

f (m, l, d) =

⎧⎪⎨⎪⎩
∑

δ |(d,dl/m)
μ(δ)

(
d/δ
dl/δ
m

)
if m |dl,

0 otherwise.

These expansions split into cycles of d conjugate expansions each, where m |dl, i.e.

d = e m

(m, l)
, e | (m, l).
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Hence the number of distinct prime divisors of the numerator of t + 1 is

k∑
l=0

m

(m, l)

∑
e |(m,l)

1

e
f
(
m, l,

em

(m, l)

)(n−m− 1

k − l
)
,

which, by the formula (1) of [5], equals

1

m

k∑
l=0

(
n−m− 1

k − l
) ∑
d |(m,l)

ϕ(d)

(
m/d

l/d

)
. ��

Lemma 7. The denominator of t in L∗
1(k,m, n) has

1

n−m
k∑
l=0

(
m− 1

k − l
) ∑
d |(n−m,l)

ϕ(d)

(
(n−m)/d
l/d

)
distinct prime divisors.

Proof. The proof is analogous to the proof of Lemma 6. ��

Lemma 8. If n � 6, (m, n) = 1, n − 1 � 2k � 4, the genus g∗1(k,m, n) of L∗
1(k,m, n)

satisfies g∗1(k,m, n) � n/6.

Proof. By Lemma 2 the only branch points of y(t)may be ti (1 � i � n− 2), −1 and ∞.
It follows now from Lemma 2(a) of [5], and Lemmas 5, 6 and 7 thatc

g∗1(k,m, n) =
1

2

(
n− 3

k − 1

)
(n− 2)− 1

2m

k∑
l=0

(
n−m− 1

k − l
) ∑
d |(m,l)

ϕ(d)

(
m/d

l/d

)

− 1

2(n−m)
k∑
l=0

(
m− 1

k − l
) ∑
d |(n−m,l)

ϕ(d)

(
(n−m)/d
l/d

)
+ 1.

Using this formula we verify the lemma by direct calculation for n = 6, 7, 8. To proceed
further we first establish the inequality

(3) g∗1(k,m, n) � 1 + 1

2(n− 1)

(
n− 1

k

)
p1(k,m, n),

where

p1(k,m, n) = k(n− k − 1)−

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

n2 − n+ 3.5

n− 1
if m = 1, n− 1,

(n− 1)(n2 − 3n+ 5.5)

(n− 2)2
if m = 2, n− 2,

n
(

1 + 3.5

m(n−m)
)

if 2 < m < n− 2.
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Indeed, by Lemma 13 of [5] we have for l > 0∑
d |(m,l)

ϕ(d)

(
m/d

l/d

)
�
(

1 + 3.5

m

)(
m

l

)
and trivially for l � 0 ∑

d |(m,l)
ϕ(d)

(
m/d

l/d

)
� m
(
m

l

)
.

Similar inequalities hold with m replaced by n−m. Hence, for m = 1

g∗1(k,m, n) =
1

2

(
n− 3

k − 1

)
(n− 2)− 1

2

1∑
l=0

(
n− 2

k − l
)

− 1

2(n− 1)

∑
d |(n−1,k)

ϕ(d)

(
(n− 1)/d

k/d

)
+ 1

� 1 + k(n− k − 1)

2(n− 1)

(
n− 1

k

)
− 1

2

(
n− 1

k

)
− 1

2(n− 1)

(
1 + 3.5

n− 1

)(
n− 1

k

)
,

for m = 2

g∗1(k,m, n) � 1

2

(
n− 3

k − 1

)
(n− 2)− 1

2

2∑
l=0

(
n− 3

k − l
)(

2

l

)

− 1

2(n− 1)

k∑
l=k−1

(
1 + 3.5

n− 2

)(
n− 2

l

)
+ 1

= 1 + k(n− k − 1)

2(n− 1)

(
n− 1

k

)
− 1

2

(
n− 1

k

)
− 1

2(n− 1)

(
1 + 3.5

n− 2

)(
n− 1

k

)
,

c

for m between 2 and n− 2

m− 1 − 3.5

m
> 0, n−m− 1 − 3.5

n−m > 0,(
n−m− 1

k

)
� n−m− 1

n− 1

(
n− 1

k

)
,

(
m− 1

k

)
� m− 1

n− 1

(
n− 1

k

)
;

g∗1(k,m, n) � 1

2

(
n− 3

k − 1

)
(n− 2)− 1

2m

(
n−m− 1

k

)
m

− 1

2m

k∑
l=1

(
n−m− 1

k − l
)(

1 + 3.5

m

)(
m

l

)
− 1

2(n−m)
(
m− 1

k

)
(n−m)

− 1

2(n−m)
k∑
l=1

(
m− 1

k − l
)(

1 + 3.5

n−m
)(
n−m
l

)
+ 1

= 1

2

(
n− 3

k − 1

)
(n− 2)− 1

2m

(
n−m− 1

k

)(
m− 1 − 3.5

m

)
−
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− 1

2m

(
1 + 3.5

m

) k∑
l=0

(
n−m− 1

k − l
)(
m

l

)
− 1

2(n−m)
(
m− 1

k

)(
n−m− 1 − 3.5

n−m
)

− 1

2(n−m)
(

1 + 3.5

n−m
) k∑
l=0

(
m− 1

k − l
)(
n−m
l

)
+ 1

� 1 + k(n− k − 1)

2(n− 1)

(
n− 1

k

)
− n−m− 1

2m(n− 1)

(
n− 1

k

)(
m− 1 − 3.5

m

)
− 1

2m

(
1 + 3.5

m

)(
n− 1

k

)
− m− 1

2(n−m)(n− 1)

(
n− 1

k

)(
n−m− 1 − 3.5

n−m
)

− 1

2(n−m)
(

1 + 3.5

n−m
)(
n− 1

k

)
.

In each case the right hand side of the obtained inequality coincides with the right hand
side of (3). Now for n � 9,

p1(k,m, n) � p1(2,min{m, 3}, n) � min
m�3

p1(2,m, 9) = 1.25,

hence by (3)

g∗1(k,m, n) � 1 + 1.25

2(n− 1)

(
n− 1

2

)
>
n

4
. ��

Lemma 9. Let n � 3, (m, n) = 1, R1(x, t) =
n−1∏
i=1
(x − xi(t)). In the field

K(t, x1(t), x2(t)) we have the factorizations

t + 1 ∼=

m−1∏
i=1

pmi

n−m−1∏
j=1

qmj

n−m−1∏
j=1

rmj

(n−m−1)(n−m−2)∏
k=1

sk

n−m−1∏
j=1

tn−mj

m−1∏
i=1

un−mi

m−1∏
i=1

vn−mi

(m−1)(m−2)∏
l=1

wl

,

x1(t) ∼=

m−1∏
i=1

pi
n−m−1∏
j=1

qj

n−m−1∏
j=1

tj
m−1∏
i=1

ui

,

x2(t) ∼=

m−1∏
i=1

pi
n−m−1∏
j=1

rj

n−m−1∏
j=1

tj
m−1∏
i=1

vi

where pi , qj , rj , sk , tj , ui , vi , wl are distinct prime divisors. For ti defined in Lemma 2
the numerator of t − ti has (n − 3)(n − 4) factors in the first power only, the remaining
factors are double.
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Proof. By Lemma 1(a)(b) of [5] the prime divisors of the numerator or the denominator
of t − c are in one-to-one correspondence with the cycles of the Puiseux expansions
of a generating element of K(t, x1(t), x2(t))/K(t) at t = c or t = ∞, respectively,
provided the lenghts of the cycles are not divisible by π . For the generating element
we take y(t) = ax1(t) + bx2(t), where a, b ∈ K are chosen so that for all i < n,
j < n, i �= j we have either axi(t) + bxj (t) �= ax1(t) + bx2(t) or 〈i, j〉 = 〈1, 2〉. By
Lemma 4 for each pair 〈i, j〉 with i < n, j < n there is an automorphism of the extension
K(t, x1(t), . . . , xn(t))/K(t) taking x1(t), x2(t) into xi(t), xj (t), respectively. At t = −1
we obtain for y(t) the expansions

aζ 2i+1
2m (1+ t)1/mPn−1,1

(
ζ 2i+1

2m (1+ t)1/m)+ bζ 2j+1
2m (1+ t)1/mPn−1,1

(
ζ

2j+1
2m (1+ t)1/m)c

(0 � i < m, 0 � j < m, i �= j),
aζ 2i+1

2m (1 + t)1/mPn−1,1
(
ζ 2i+1

2m (1 + t)1/m)+ bPn−1,j (1 + t)c

(0 � i < m, 2 � j � n−m),
aPn−1,j (1 + t)+ bζ 2i+1

2m (1 + t)1/mPn−1,1
(
ζ 2i+1

2m (1 + t)1/m)c

(0 � i < m, 2 � j � n−m),
aPn−1,i (1 + t)+ bPn−1,j (1 + t) (2 � i � n−m, 2 � j � n−m, i �= j).c

The m(m − 1) expansions of the first set form m − 1 m-cycles corresponding to
the divisors p1, . . . , pm−1, that divide the numerators of x1(t), x2(t) in exactly first power.
(Note that ordpμ x1 = m ordt+1(1+t)1/mPn−1,1(ζ

2i+1
2m (1+t)1/m) forμ < m and similarlyc

for x2.) The m(n − m − 1) expansions of the second set form n − m − 1 m-cycles
corresponding to the divisors q1, . . . , qn−m−1, that divide the numerator of x1(t) in exactly
first power and do not divide the numerator of x2(t).

Them(n−m− 1) expansions of the third set form n−m− 1m-cycles corresponding
to the divisors r1, . . . , rn−m−1 that divide the numerator of x2(t) in exactly first power and
do not divide the numerator of x1(t). The (n−m−1)(n−m−2) expansions of the fourth
set form as many 1-cycles corresponding to the divisors that divide the numerator of 1+ t
in exactly first power and divide the numerator of neither x1(t) nor x2(t).

Since x1(t) = 0 implies t = −1 we have found all factors of the numerator of x1(t)

and similarly of x2(t).
At t = ∞we obtain fory(t) again four sets of expansions that correspond to the four sets

of divisors: tj (1 � j � n−m−1), ui , vi (1 � i � m−1) and wl (1 � l � (m−1)(m−2))cc

occurring in the denominator of 1 + t , x1(t) and x2(t).
Since x1(t) = ∞ implies t = ∞ no other divisor occurs in the denominator of x1(t),

or of x2(t).
At t = ti we obtain for y(t) among others the expansions

aPij + bPik (1 � i � n− 2, 2 � j � n− 2, 2 � k � n− 2, j �= k)c

which form (n− 3)(n− 4) 1-cycles corresponding to (n− 3)(n− 4) simple factors of the
numerator of t − ti . All the remaining expansions contain (t − ti )1/2. ��
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Lemma 10. If (m, n) = 1, for all primes p
p
√
t + 1 �∈ K(t, x1(t), . . . , xn−1(t)

) =: Ω.c

Proof. The argument used in the proof of Lemma 9 applied to the field Ω gives that the
multiplicity of every prime divisor of the numerator and the denominator of t + 1 divides
m and n−m, respectively. Since (m, n) = 1 we cannot have 1 + t = γ p, γ ∈ Ω . ��

Lemma 11. Let (m, n) = 1, n � 3. For every positive integer q �≡ 0 mod π and for every
choice of q-th roots we have[

K
(
q
√
x1(t), . . . ,

q
√
xn−1(t)

)
: K(t, x1(t), . . . , xn−1(t)

)] = qn−1.

Proof. By Theorem 1 of [4] it is enough to prove that for every prime p |q

(4)
n−1∏
j=1

x
αj
j = γ p, γ ∈ Ω = K(t, x1(t), . . . , xn−1(t)

)
implies αj ≡ 0 mod p for all j < n. Assume that (4) holds, but say α1 �≡ 0 mod p.

If for all j we have αj ≡ α1 mod p it follows from (4) that(n−1∏
j=1

xj

)α1

= γ ′p, γ ∈ Ω,

and since
n−1∏
j=1

xj = (−1)n−1(t + 1)

we obtain p
√
t + 1 ∈ Ω , contrary to Lemma 10. Therefore, there exists an i � n− 1 such

that αi �≡ α1 mod p, and in particular n � 3. Changing, if necessary, the numeration of xi
we may assume that i = 2. By Lemma 4 there exists an automorphism τ ofΩ/K(t) such
that τ(x1) = x2, τ(x2) = x1, τ(xi) = xi (i �= 1, 2). Applying τ to (4) we obtain

x
α2
1 x

α1
2

n−1∏
j=1

x
αj
j = (γ τ )p ,

c

hence on division (
x1

x2

)α1−α2

=
(
γ

γ τ

)p
.

Since α1 − α2 �≡ 0 mod p it follows that

(5)
x1

x2
= δp, δ ∈ Ω.

The extensionK(t, x1, x2, δ)/K(t, x1, x2) is a normal subextension of Ω/K(t, x1, x2) of
degree 1 or p and, since by Lemma 4 the latter has the symmetric Galois group, we have
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either δ ∈ K(t, x1, x2), or p = 2,

δ ∈ K
(
t, x1, x2

n−1∏
μ,ν=3
ν>μ

(xν − xμ)
)
\K(t, x1, x2).

In the former case we compare the divisors on both sides of (5) and obtain

δp ∼=

n−m−1∏
j=1

qj
m−1∏
i=1

vi

n−m−1∏
j=1

rj
m−1∏
i=1

ui

,

c

a contradiction.
In the latter case, since the conjugates of δ with respect toK(t, x1, x2) are ±δ we have

δ = ε
n−1∏
μ,ν=3
ν>μ

(xν − xμ), ε ∈ K(t, x1, x2),

hence

δ = ε
n−1∏
μ,ν=1
ν>μ

(xν − xμ) · x1 − x2∏
ν>1
(xν − x1) · ∏

ν �=2
(xν − x2)

c

= η
n−1∏
μ,ν=1
ν>μ

(xν − xμ), η ∈ K(t, x1, x2).

It follows by (5) and Lemma 3 that

x1

x2
= η2 discx R1(x, t) = const η2(t + 1)m−1

n−2∏
i=1

(t − ti ).

For n � 5, by Lemma 9, t− t1 has at least one simple factor, which occurs with a non-zero
exponent on the right hand side, but not on the left, a contradiction. On the other hand for
n = 3 or 4 the divisor of the right hand side is a square, of the left hand side is not. ��

Lemma 12. Let n � 3, (n,m) = 1, q �≡ 0 mod π , q � 2 and yqiq = xi(t) (1 � i < n).
Then [

K

(
t,
(n−1∑
i=1

yiq

)q) : K(t)
]
= qn−2.

Proof. By Lemmas 4 and 11 all embeddings ofK(t, y1q, . . . , yn−1,q)/K(t) intoK(t)/K(t)
are given by

(6) yiq → ζ αiq yσ(i)q (1 � i < n),
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where σ is a permutation of {1, 2, . . . , n− 1} and

(7) 〈α1, . . . , αn−1〉 ∈ (Z/qZ)n−1.

We shall show that there are exactly qn−2 distinct images of
(n−1∑
i=1
yiq
)q under transforma-

tions (6). Indeed, if we apply (7) with σ(i) = i to
(n−1∑
i=1
yiq
)q we obtain

(n−1∑
i=1

ζ αiq yiq

)q
.

If this were equal to
(n−1∑
i=1
ζ
βi
q yiq

)q for a vector 〈β1, . . . , βn−1〉 ∈ (Z/qZ)n−1 with

βj − β1 �= αj − α1 for a certain j we should obtain

y1q ∈ K(y2q, . . . , yn−1,q), or yjq ∈ K(y1q, . . . , yj−1,q , yj+1,q , . . . , yn−1,q),

contrary to Lemma 11. Thus the number of distinct images is at least equal to the number of

vectors satisfying (7) with α1 = 0, thus to qn−2. On the other hand,
(n−1∑
i=1
yiq
)q is invariant

under transformations (6) with α1 = α2 = . . . = αn−1, which form a group, hence the
number in question does not exceed qn−2. ��

Definition 2. Let (m, n) = 1, q �≡ 0 mod π and yqiq = xi(t), where xi(t) are defined in
Definition 1. We set

M1(m, n, q) = K
(
t,
(n−1∑
i=1

yiq

)q)
, M1∗(m, n, q) = K

(
t,
(n−1∑
i=1

yiq

)q)

Remark. By Lemma 12, for n � 3, M1(m, n, q) and M1∗(m, n, q) are determined by
m, n, q up to an isomorphism which fixes K(t) and K(t), respectively.

Lemma 13. For n > 3 the numerator of t − ti has (qn−2 − qn−3)/2 factors in the secondc

power inM1∗(m, n, q).

Proof. Let us put for each i � n− 2

yi1q = ξ1/q
i

∞∑
k=0

(
1/q

k

)
ξ−k/q(t − ti )k/2Pi1

(
(t − ti )1/2

)k
,

yi2q = ξ1/q
i

∞∑
k=0

(−1)k
(

1/q

k

)
ξ−k/q(t − ti )k/2Pi1

(−(t − ti )1/2)k,
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so that for j = 1, 2

y
q
ijq = ξi + (−1)j−1(t − ti )1/2Pi1

(
(−1)j−1(t − ti )

)
,

yi1q + yi2q ∈ K
(
(t − ti )

)
,(8)

(yi1q − yi2q)(t − ti )1/2 ∈ K((t − ti ))(9)

and choose in an arbitrary way

(10) yijq =
(
Pi,j−1(t − ti )

)1/q ∈ K((t − ti )) (2 < j < n).

It follows from Lemma 2 that over the field K
(
(t − ti )

)
n−1∏
j=1

q−1∏
α=0

(
x − ζ αq yjq

)
= R1(x

q, t) =
n−1∏
j=1

q−1∏
α=0

(
x − ζ αq yijq

)
,

thus the corresponding fundamental symmetric functions of ζαq yjq (1 � j < n, 0 � α < q)
and of ζαq yijq coincide. Hence

q−1∏
α2=0

· · ·
q−1∏
αn−1=0

(
x −
(
y1q +

n−1∑
j=2

ζ
αj
q yjq

)q)

=
q−1∏
α2=0

· · ·
q−1∏
αn−1=0

(
x −
(
yi1q +

n−1∑
j=2

ζ
αj
q yijq

)q)
,

which means that
(n−1∑
i=1
yjq
)q has the following Puiseux expansions at t = ti

(
yi1q + ζ α2

q yi2q +
n−1∑
j=3

ζ
αj
q yijq

)q
, 〈α2, . . . , αn−1〉 ∈ (Z/qZ)n−2.

If such an expansion belongs to K
(
(t − ti )

)
, then either

yi1q + ζ α2
q yi2q +

n−1∑
j=3

ζ
αj
q yijq ∈ K

(
(t − ti )

)
or 2 |q and (

yi1q + ζ α2
q yi2q +

n−1∑
j=3

ζ
αj
q yijq

)
(t − ti )1/2 ∈ K((t − ti )).

In the former case, by (8) and (10)

(1 − ζ α2
q )yi1q ∈ K

(
(t − ti )

)
and since Pi1(0) �= 0, α2 = 0.
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In the latter case, by (9), on multiplying it by (ζ αiq − 1)/2 and adding(
1 + ζ α2

q

2
(yi1q + yi2q)+

n−1∑
j=3

ζ
αj
q yijq

)
(t − ti )1/2 ∈ K((t − ti ))

and, since

1 + ζ α2
q

2
(yi1q + yi2q)+

n−1∑
j=3

ζ
αj
q yijq ∈ K

(
(t − ti )

)
by (8) and (10), we obtain

(11)
1 + ζ α2

q

2
(yi1q + yi2q)+

n−1∑
j=3

ζ
αj
q yijq = 0.

However the left hand side is an expansion at t = ti of

1 + ζ α2
q

2
(yiq + y2q)+

n−1∑
j=3

ζ
αj
q yjq,

hence (11) contradicts for n > 3 the linear independence of yjq (1 � j < n) over K
resulting from Lemma 11.

Therefore for n > 3 we obtain qn−2 − qn−3 expansions for
(n−1∑
j=3
yjq
)q belonging to

K
((
(t−ti )1/2

))\K((t−ti )), which correspond to (qn−2−qn−3)/2 distinct prime divisors
of the numerator of t − ti inM1∗(m, n, q). ��

Lemma 14. The numerator of t + 1 inM1∗(m, n, q) has at most

qmax{n−3,m−1}

m

(
1 + m− 1

qϕ(mq)/ϕ(q)

)
distinct prime divisors.

Proof. By Lemma 1(a) in [5] the prime divisors of the numerator of t + 1 correspond to

the cycles of the Puiseux expansions of
(n−1∑
j=1
yjq
)q at t = −1 provided the lengths of these

c

cycles are not divisible by π . By Lemma 2 and the argument about symmetric functions
used in the proof of Lemma 13 we obtain the expansions

(12)

( m∑
j=1

ζ
αj
q ζ

2j−1
2mq (t + 1)1/qmPn−1,1

(
ζ

2j−1
2m (t + 1)1/m

)1/q
c

+
n−1∑
j=m+1

ζ
αj
q Pn−1,j−m+1(t + 1)1/q

)q
,
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where 〈α1, . . . , αn−1〉 ∈ (Z/qZ)n−1, α1 = 0. Note that qm �≡ 0 mod π . Let S be the set
of vectors 〈α2, . . . , αm〉 ∈ (Z/qZ)m−1 such that

1 +
m∑
j=2

ζ
αj
q ζ

j−1
qm = 0.

By Lemma 21 of [5]

(13) card S � qm−ϕ(qm)/ϕ(q)−1.

If n � m + 2 and 〈α2, . . . , αm〉 �∈ S the least power of t + 1 occurring in the first or the
second sum in (12) is (t + 1)1/qm and (t + 1)ν0 , respectively, where ν0 is a nonnegative
integer. Hence the expansion (12) contains with a non-zero coefficient

(14) (t + 1)1/m and (t + 1)(q−1)/qm+ν0 .

Indeed, if we had for some nonnegative integers aμ (μ = 0, 1, . . . )

∞∑
μ=0

aμ = q and
∞∑
μ=0

aμ

(
1

qm
+ μ

m

)
= q − 1

qm
+ ν0

it would follow from the second formula that
∞∑
μ=0

aμ ≡ q − 1 mod q, contrary to the first

formula.
The least common denominator of the two exponents in (14) is[

m,
qm

(qm, q − 1)

]
= qm2

(qm2, (q − 1)m, qm)
= qm,

c

hence we obtain at most

(qm−1 − card S)qn−m−1

qm

qm-cycles.
If n � m + 2 and 〈α2, . . . , αm〉 ∈ S the least power of t + 1 occurring in the first or

the second sum in (12) is (t + 1)1/qm+μ0/m and (t + 1)ν0 , respectively, where μ0 ∈ N and
ν0 ∈ N. Hence the expansion (12) contains with a non-zero coefficient

(t + 1)(q−1)/qm+(q−1)μ0/m+ν0 if
1

qm
+ μ0

m
< ν0

and

(t + 1)1/qm+μ0/m+(q−1)ν0 otherwise.

Since both exponents in the reduced form have q in the denominator we obtain at most

card S · qn−m−1

q

q-cycles.
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If n = m+1 and 〈α2, . . . , αm〉 �∈ S the least power of t+1 occurring in the parentheses
in (12) is (t+1)1/qm, thus the expansion (12) contains with a non-zero exponent (t+1)1/m

and we obtain at most (qm−1 − card S)/m m-cycles.
Finally if n = m+ 1 and 〈α2, . . . , αm〉 runs through S we bound the number of cycles

by card S. Therefore by (13), if n � m+ 2 the total number of cycles does not exceed

(qm−1 − card S)qn−m−1

qm
+ card S · qn−m−1

q

= qn−3

m

(
1 + (m− 1) card S

qm−1

)
� qn−3

m

(
1 + (m− 1)

qϕ(qm)/ϕ(q)

)
,

if n = m+ 1 the total number of cycles does not exceed

(qm−1 − card S)

m
+ card S = qm−1

m

(
1 + (m− 1) card S

qm−1

)
= qm−1

m

(
1 + (m− 1)

qϕ(qm)/ϕ(q)

)
. ��

Lemma 15. The denominator of t has inM1∗(m, n, q) at most

qmax{n−3,n−m−1}

n−m
(

1 + n−m− 1

qϕ(q(n−m))/ϕ(q)

)
distinct prime divisors.

Proof. Proof is analogous to the proof of Lemma 14. ��

Lemma 16. For all positive integers m, n and q where n > 3, n > m, (n,m) = 1,
qnm(n − m) �≡ 0 mod π and q � 2, the genus g1∗(m, n, q) of M1∗(m, n, q) is greater
than nq/8 unless nq � 16. Moreover g1∗(m, n, q) > 1 unless n < 6.

Proof. By Lemma 2(a) of [5] and by Lemmas 13–15 we have

g1∗(m, n, q) � 1 + q
n−3

2

(
q − 1

2
(n− 2)− q

max{0,m−n+2}

m

(
1 + m− 1

qϕ(qm)/ϕ(q)

)
− q

max{0,2−m}

n−m
(

1 + n−m− 1

qϕ(q(n−m))/ϕ(q)

))
.

Hence, by Lemma 24 of [5]

g1∗(m, n, q) � 1 + q
n−3

2
γ1(q, n,m),

where

γ1(q, n,m) =

⎧⎪⎨⎪⎩
q − 1

2
(n− 2)− 1 − q + 1

n− 1
if m = 1 or m = n− 1,

q − 1

2
(n− 2)−

( 1

m
+ 1

n−m
)(

1 + 1

q

)
otherwise.
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For n � 6 we have qn−3 � 2
3nq, γ1(q, n,m) � 2

5 , hence g1∗(m, n, q) > 2nq/15 >
nq/8 > 1; for 6 > n > 3 g∗1(m, n, q) � nq/8 implies nq � 16. ��

3. Proof of Theorems 1 and 2

Proof of Theorem 1. LetF(x) = x−C, whereC ∈ K(y). SinceF(x) |xn1 +Axm1 +B we
obtainB = −Cn1−ACm1 ,C �= 0. FromA−nBn−m �∈ K we infer that t := ACm1−n1 �∈ K .
We have the identity

(15) Q(x) := xn1 + Axm1 + B
F(x)

= Cn1−1 (C
−1x)n1 + t (C−1x)m1 − (t + 1)

C−1x − 1
.

If T (x;A,B)F(x(m,n))−1 is reducible over K(y), then by Capelli’s Lemma (see e.g. [1],
p. 662) either

(16) Q(x) is reducible over K(y),

or

(17) x(m,n) − ξ is reducible over K(y, ξ), where ξ is a zero ofQ(x).

In the former caseQ(x) has inK(y)[x] a factor xk+
k∑
i=1
aix

k−i , where, by the assumption,

2 � k � (n1 − 1)/2. The identity (15) implies that the field L∗
1(k,m1, n1) defined in

Definition 1 is a rational function field parametrized as follows:

t = ACm1−n1 , τi(x1, . . . , xk) = (−1)iaiC
−i (1 � i � k).

By Lemma 2(b) of [5] g∗1(k,m1, n1) = 0.
Assume now that we have (17) but not (16). It follows by Capelli’s theorem that either

(18) ξ = ηp, where p is a prime, p | (m, n), η ∈ K(y, ξ),
or

(19) ξ = −4η4, where 4 | (m, n), η ∈ K(y, ξ).
Let

xn1 + txm1 − (t + 1)

x − 1
=
n1−1∏
j=1

(x − xj ), y
q
jq = xj .

It follows from (15) that if t = ACm1−n1 one can take

q = p, yjq = C−1/pηj if (18) holds,

q = 4, yjq = (1 + ζ4)C−1/4ηj if (19) holds,

where ηj are conjugates of η over K(y). Hence the field

M1∗(m1, n1, q) = K
(
t, (y1q + . . .+ yn1−1,q)

q
)



598 D. Polynomials in one variable

is parametrized by rational functions as follows

t = ACm1−n1 ,

(y1q + . . .+ yn1−1,q)
q =
{
C−1(η1 + . . .+ ηn1−1)

p if (18) holds,

−4C−1(η1 + . . .+ ηn1−1)
4 if (19) holds,

and, by Lemma 2(b) of [5], g1∗(m1, n1, q) = 0, contrary to Lemma 16. ��

Proof of Theorem 2. The sufficiency of the condition is obvious. The proof of the necessity
is similar to that of Theorem 1.

Let F(x) = x − C, where C ∈ L,

Q(x;A,B) = xn1 + Axm1 + B
F(x)

.

Since F(x) |xn1 + Axm1 + B and B �= 0 we have C �= 0, B = −Cn1 − ACm1 . Since
A−nBn−m �∈ K , we have t := ACm1−n1 �∈ K .

If T (x;A,B)F(x(m,n))−1 = Q(x(m,n);A,B) is reducible over L then either

(20) Q(x) := Q(x;A,B) is reducible over L

or

(21) x(m,n) − ξ is reducible over L(ξ) where ξ is a zero ofQ.

In the former case Q has in L[x] a factor of degree k, where by the assumption
2 � k � (n1 − 1)/2 and it follows from the identity (15) that the field L∗

1(k,m1, n1) is
isomorphic to a subfield of KL. Hence, by Lemma 2(c) of [5], g∗1(k,m1, n1) � g and, by
Lemma 8, n1 � 6 max{1, g}. In particular, for g = 1 we have n1 � 6. The condition given
in the theorem holds with l = (m, n), 〈ν, μ〉 = 〈n1,m1〉.

Assume now that we have (21), but not (20). Then in the same way as in the proof of
Theorem 1 we infer that for a certain q | (m, n), q = 4 or a prime

(22) xq − ξ is reducible over L(ξ)

and the field M1∗(m1, n1, q) is isomorphic to a subfield of KL. Hence, by Lemma 2(c)
of [5], we have g1∗(m1, n1, q) � g, thus by Lemma 16 for n1 > 3 we have n1q <

max{17, 8g} and g > 1 for n1 � 6. On the other hand, by (22),Q(xq) is reducible over L.
Hence the condition given in the theorem holds with l = (m, n)/q, 〈ν, μ〉 = 〈n1q,m1q〉.��

4. Two lemmas to Theorem 3

Lemma 17. LetL be a finite extension of a fieldK , q a prime different from charK . There
exists a finite subset F = F(q, L/K) of K∗ of cardinality at most qordq [L:K] such that if

(23) c ∈ K∗, γ ∈ L, c = γ q,
then there exist f ∈ F and e ∈ K∗ such that

(24) c = f eq.
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Proof. Let

(25) A = {a ∈ K∗ : a = αq, α ∈ L}
and let B be a finite subset of A with the property that for all functions x : B → Z

(26)
∏
a∈B
ax(a) = bq, b ∈ K implies x(a) ≡ 0 mod q for all a ∈ B.

It follows from Theorem 1 of [4] that for every choice of q-th roots[
K
(
q
√
a : a ∈ B) : K] = qcardB,

hence by (25), in view of B ⊂ A,

qcardB
∣∣ [L : K]

and cardB � ordq [L : K]. Among all subsets B of A with the property (26) let us choose
one of maximal cardinality and denote it by A0. We assert that the set

F =
{∏
a∈A0

ax(a) : x(A0) ⊂ {0, 1, . . . , q − 1}
}

has the property asserted in the lemma. Indeed

cardF = qcardA0 � qordq [L:K].

On the other hand, if c ∈ A0, (24) holds with f = c, e = 1. If c �∈ A0 the setB = A0 ∪{c}c

has more elements than A0. By definition of A0 it has not the property (26). Hence there
exist integers x(a) (a ∈ A0) and x(c) such that cx(c)

∏
a∈A0

ax(a) = bq , b ∈ K and either

(27) x(c) ≡ 0 mod q and for at least one a ∈ A0 : x(a) �≡ 0 mod q

or

(28) x(c) �≡ 0 mod q.

The case (27) is impossible, since it implies∏
a∈A0

ax(a) = (bc−x(c)/q)q,
contrary to the choice of A0.

In the case (28) there exist integers y and z such that

−x(c)y = 1 + qz
and we obtain (24) with

f =
∏
a∈A0

aq{−x(a)y/q}, e = b−yc−z
∏
a∈A0

a−[x(a)y/q],

where {·} and [·] denote the fractional and the integral part, respectively. ��
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Lemma 18. Let q be a prime or q = 4. For every finite extension K(ξ) of a field K there
exists a finite subset S(q,K, ξ) of K such that if c ∈ K∗ and

(29)
cξ = ηq, η ∈ K(ξ)∗ if q is a prime,

cξ = −4η4, η ∈ K(ξ)∗ if q = 4,

then

(30) c = deq, where d ∈ S(q,K, ξ), e ∈ K∗.

Proof. Assume first that q is a prime. If there is no c ∈ K∗ such that (29) holds we put
S(q,K, ξ) = ∅. Otherwise we have

(31) c0ξ = ηq0 , η0 ∈ K(ξ)∗, c0 ∈ K∗

and the equations (29) and (31) give

c/c0 = (η/η0)
q .

Hence, by Lemma 17

c/c0 = f eq, where f ∈ F(q,K(ξ)/K), e ∈ K∗,

and in order to satisfy (30) it is enough to put

S(q,K, ξ) = {c0f : f ∈ F(q,K(ξ)/K)}.
Assume now that q = 4. Again if there is no c such that (29) holds we put S(q,K, ξ) = ∅.
Otherwise, we have

(32) c0ξ = −4η4
0, η0 ∈ K(ξ)∗, c0 ∈ K∗

and the equations (29) and (32) give

(33) c/c0 = (η/η0)
4 .

By Lemma 17 applied with q = 2

(34) c/c0 = f e2, f ∈ F (2,K(ξ)/K), e ∈ K∗.

If for a given f ∈ F (2,K(ξ)/K) there exists ef ∈ K∗ such that

(35) f e2
f = ϑ4, ϑ ∈ K(ξ)

the equations (33)–(35) give(
e/ef
)2 = (η/η0ϑ)

4 , hence e/ef = ± (η/η0ϑ)
2

and another application of Lemma 17 gives

e/ef = ±f1e
2
1, f1 ∈ F(2,K(ξ)/K), e1 ∈ K∗.

Hence, by (34)

c/c0 = f e2
f f

2
1 e

4
1
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and in order to satisfy (30) it is enough to put

S(q,K, ξ) =
⋃

f∈F(2,K(ξ)/K)
ef exists

{c0f e2
f f

2
1 : f1 ∈ F(2,K(ξ)/K)}. ��

5. Proof of Theorem 3

We begin by defining the sets F 1
ν,μ(K). This is done in three steps. First we put

q = (μ, ν), ν1 = ν/q,μ1 = μ/q and introduce the fieldsL1(k, μ1, ν1) andM1(μ1, ν1, q)

as defined in Definitions 1, 2. SinceK is infinite we haveL1(k, μ1, ν1) = K(t, y(t)), where
y(t) is defined up to a conjugacy overK(t) in the proof of Lemma 6. Let+1

k be the minimal
polynomial of y(t) over K(t). It follows from the definition of y(t) that +1

k ∈ K[t, z].
By Lemma 12 the function (y1q + . . .+ yν1−1,q)

q generatingM1(μ1, ν1, q) over K(t) is
determined up to a conjugacy. Let -1

q be its minimal polynomial overK(t). Since yiq are
integral over K[t] we have -1

q ∈ K[t, z]. If ν1 > 6 we put

S1
ν,μ(K) =

⎧⎨⎩
⋃

2<2k<ν1

{t0 ∈ K : +1
k(t0, z) has a zero in K} if q = 1,

{t0 ∈ K : -1
q (t0, z) has a zero in K} if q > 1.

Since for ν1 > 6 and k > 1 or q > 1 we have g∗1(k, μ1, ν1) > 1 or g1∗(μ1, ν1, q) > 1,
respectively, it follows by the Faltings theorem that the sets S1

ν,μ(K) are finite. Now we
put

T 1
ν,μ(K) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

⋃
t0∈S1

ν,μ(K)

{〈t0,−t0 − 1, 1〉} if q = 1,

⋃
t0∈S1

ν,μ(K)

{〈t0dν1−μ1 ,−(t0 + 1)dν1 , d〉 : ∃ξ0 d ∈ S(q,K, ξ0),

ξ
ν1
0 + t0ξμ1

0 − (t0 + 1) = 0} if q is a prime or q = 4,

∅ otherwise

(S(q,K, ξ) is defined in Lemma 18);

F 1
ν,μ(K) =

{
〈a, b, x − d〉 : 〈a, b, d〉 ∈ T 1

ν,μ(K)

and
xν + axμ + b
xq − d is a polynomial reducible over K

}
.

Since the sets S1
ν,μ(K) and the sets S(q,K, ξ0) are finite, so are the sets F 1

ν,μ(K). We
proceed to prove that they have all the other properties asserted in the theorem.

By the assumption n1 > 6 and xn1 + axm1 + b has in K[x] a linear factor F(x) but
not a quadratic factor. Let F(x) = x − c, where c ∈ K∗, so that b = −cn1 − acm1 . Put

(36) t0 = acm1−n1 , Q(x; a, b) = xn1 + axm1 + b
F(x)

.
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Assume that

xn + axm + b
F(x(m,n))

= Q(x(m,n); a, b) is reducible over K.

By Capelli’s lemma either

(37) Q(x; a, b) is reducible over K

or

(38) x(n,m) − ξ is reducible over K, whereQ(ξ ; a, b) = 0.

In the case (37)Q(x; a, b) has a factor inK[x] of degree k such that 1 < k � (n1 − 1)/2,

say
k∏
i=1
(x − ξi). It follows from the identity

(39)
xn1 + t0xm1 − (t0 + 1)

x − 1
= c1−n1Q(cx; a, b)

that the left hand side has the factor
k∏
i=1
(x − c−1ξi), thus τi(c−1ξ1, . . . , c

−1ξk) ∈ K
(1 � i � k) and at least one value of the algebraic function y(t) at t = t0 lies in K , hence
t0∈S1

n1,m1
(K). It follows that 〈t0,−t0−1, 1〉∈T 1

n1,m1
(K), 〈t0,−t0−1, x−1〉∈F 1

n1,m1
(K)

and the condition given in the theorem holds with l = (m, n), ν = n1, μ = m1, a0 = t0,
b0 = −t0 − 1, F0 = x − 1, u = c.

In the case (38) note that

(40) Q(ξ ; a, b) = 0 implies ξ �= 0.

Further, by Capelli’s theorem, there exists a q | (m, n) such that

(41)
either q is a prime and ξ = ηq, η ∈ K(ξ)∗

or q = 4 and ξ = −4η4, η ∈ K(ξ)∗.
If η1, . . . , ηn1−1 are all the conjugates of η over K we have

Q(x; a, b) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

n1−1∏
i=1

(x − ηqi ) if q is a prime,

n1−1∏
i=1

(x + 4η4
i ) if q = 4,

hence

(42) Q(xq; a, b) is reducible over K.
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By the identity (39) it follows that

xn1 + t0xm1 − (t0 + 1)

x − 1
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

n1−1∏
i=1

(x − c−1η
q
i ) if q is a prime,

n1−1∏
i=1

(x + 4c−1η4
i ) if q = 4.

Hence -1
q (t0, u0) = 0, where

u0 =
{
c−1(η1 + . . .+ ηn1−1)

q if q is a prime,

−4c−1
(
η1 + . . .+ ηn1−1

)4 if q = 4,

and, since η1 + . . .+ ηn1−1 ∈ K , we have u0 ∈ K , t0 ∈ Sn1,m1(K).

Further, it follows from (39) and (40) that ξ0 = c−1ξ is a zero of the polynomial(
xn1 + t0xm − (t0 + 1)

)
/(x − 1) and, by (41), cξ0 = ηq or −4η4, where η ∈ K(ξ0)∗ and

q is a prime or q = 4, respectively.

By Lemma 18 c = deq , where d ∈ S(q,K, ξ0), e ∈ K , hence

〈t0dn1−m1 ,−(t0 + 1)dn1 , d〉 ∈ T 1
n1q,m1q

(K).

By (39)

xn1q + t0dn1−m1xm1q − (t0 + 1)dn1

xq − d = (cd−1)1−n1Q
(
(ex)q; a, b),

hence, by (42)

xn1q + t0dn1−m1xm1q − (t0 + 1)dn1

xq − d is reducible over K

and 〈t0dn1−m1 ,−(t0 + 1)dn1 , x − d〉 ∈ F 1
n1q,m1q

(K). Thus the condition given in the
theorem holds with l = (m, n)/q, ν = n1q,μ = m1q, a0 = t0dn1−m1 , b0 = −(t0+1)dn1 ,
F0 = x − d, u = e.

Assume now that for an integer l : n/l = ν, m/l = μ and a = uν−μa0, b = uνb0,
F(x) = u(ν,μ)F0(x/u

(ν,μ)), where u ∈ K∗, 〈a, b, F0〉 ∈ F 1
ν,μ(K). Then by the definitionc

of F 1
ν,μ(K)

xν + axμ + b
F0(x(μ,ν))

is a polynomial reducible over K,

and by the substitution x  → xl/uwe obtain reducibility of T (x; a, b)F (x(n,m))−1 overK .

The proof of Theorem 3 is complete. ��
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6. Addendum to the paper [5](2)

The formulae for Tν,μ(K) in [5], p. 62 (p. 525 in this volume) make sense only for u0 �=
0. If u0 = 0 one should write instead, both for q prime and q = 4, 〈tρ0 d(ν−μ)/q, tσ0 dν/q〉,c

where d ∈ S(q,K, ξ0) and ξν/q0 + tρ0 ξμ/q0 + tσ0 = 0. S(q,K, ξ) is the set defined in
Lemma 18 above.

If xn + axm + b is reducible over K and xn1 + axm1 + b is irreducible over K , then
retaining the notation of [5] and putting ξ0 = a−sbrξ we argue as follows.

Since asb−r ξ0 = ξ = ηq or −4η4, where η ∈ K(ξ)∗ and q is a prime or q = 4,
respectively, we have by Lemma 18 above

asb−r = deq, d ∈ S(q,K, ξ0), e ∈ K.
Since, by (74) t0 = a−n1bn1−m1 we obtain

a = as(n1−m1)−rn1 = t r0 (deq)n1−m1 = t r0dn1−m1en1q−m1q,

b = bs(n1−m1)−rn1 = t s0(deq)n1 = t r0dn1eqn1 .

By (75) xn1q + t r0dn1−m1xm1q + t s0dn1 is reducible over K , hence 〈t r0dn1−m1 , ts0d
n1〉 ∈

Fn1q,m1q and (ix) holds with l = (m, n)/q, ν = n1q, μ = m1q, u = e.

References

[3] L. Rédei, Algebra I. Akademische Verlagsgesellschaft, Geest & Portig, Leipzig 1959. (3).

[4] A. Schinzel, On linear dependence of roots. Acta Arith. 28 (1975), 161–175; this collection:
C7, 238–252.

[5] −−, On reducible trinomials. Dissert. Math. (Rozprawy Mat.) 329 (1993); this collection:
D10, 466–548.

[6] −−, Errata to [5]. Acta Arith. 73 (1995), 399–400.

[7] N. Tschebotaröw, Grundzüge der Galoisschen Theorie. Übersetzt und bearbeitet von
H. Schwerdtfeger, Noordhoff, Groningen–Djakarta 1950.

(2) The corrections listed in the original paper are put in this volume directly to the text of D10.
(3) [1] and [2] are moved to D10 since they concern the items added to Table 5 there.



Andrzej Schinzel
Selecta

Originally published in
Periodica Mathematica Hungarica 43 (2001), 43–69

On reducible trinomials III

Dedicated to Professor András Sárközy
on the occasion of his 60th birthday

Abstract. It is shown that if a trinomial has a trinomial factor then under certain conditions the
cofactor is irreducible.

1.

This paper is a sequel to [7] and [8]. We considered in these papers an arbitrary fieldK
of characteristic π , the rational function field K(y), where y is a variable vector, a finite
separable extension L of K(y1) and a trinomial

(i) T (x;A,B) = xn + Axm + B, where n > m > 0, π /| mn(n−m)
and either A,B ∈ K(y)∗, A−nBn−m �∈ K or A,B ∈ L∗, A−nBn−m �∈ K .

Let

(ii) n1 = n/(n,m), m1 = m/(n,m)
and let F(x) be a monic factor xn1 + Axm1 + B of maximal possible degree d � 2. The
reducibility of T (x;A,B)F(x(m,n))−1 over K(y) or L was studied in [7] for d = 0 and
in [8] for d = 1. Here we study the reducibility of the above quotient for d = 2 and in this
way complete the proof of the following theorems (the notation introduced in (i) and (ii)
being retained).

Theorem 1. LetA,B ∈ K(y)∗,A−nBn−m �∈ K , F be a monic factor of xn1 +Axm1 +B
in K(y)[x] of maximal possible degree d � 2. If n1 > max{5, 7 − 2d} then
T (x;A,B)F(x(m,n))−1 is irreducible over K(y).

Theorem 2. Let L be a finite separable extension of K(y1) with KL of genus g and
A−nBn−m �∈ K and let F be a monic factor of xn1 + Axm1 + B in K(y)[x] of maximal
possible degree d � 2. If n1 > d + 2, then

(iii) T (x;A,B)F(x(n,m))−1 is reducible over L

if and only if there exists an integer l such that 〈n/l,m/l〉 =: 〈ν, μ〉 ∈ N2,
ν < max

{
9d2 − 8d + 16, 24g/(2d + 1)

}
and (xν + Axμ + B)/F(x(ν,μ)) is reducible

over L.
Moreover, if g = 1, then (iii) implies n1 � max{6, 9 − 3d}.
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Theorem 3. Let K be an algebraic number field and a, b ∈ K∗. If F is a monic factor of
xn1 +axm1 +b inK[x] of maximal possible degree d � 2 and n1 > max{6, 9−3d}, then
T (x; a, b)F (x(n,m))−1 is reducible overK if and only if there exists an integer l such thatc

〈n/l,m/l〉 =: 〈ν, μ〉 ∈ N2 and a = uν−μa0, b = uνb0, F = ud(μ,ν)F0
(
x/u(μ,ν)

)
, wherec

u ∈ K∗, 〈a0, b0, F0〉 ∈ Fdν,μ(K) and Fdν,μ(K) is a certain finite set, possibly empty.

In analogy with a conjecture proposed in [7] we formulate

Conjecture. For every algebraic number field K and each d � 2 one can choose sets
Fdν,μ(K) such that the set∑d =

⋃
ν,μ,F

⋃
〈a,b,F 〉∈Fdν,μ

{xν + axμ + b} is finite.

For d = 0 or 1 Theorems 1–3 have been proved in [7] or [8], respectively. Proofs for
d = 2 given in Section 3 are preceded in Section 2 by 23 lemmas.

2.

Lemma 1. Let polynomials fn be given by the formulae

fn = 1√
t − 4

((√
t +√

t − 4

2

)n
−
(√

t −√
t − 4

2

)n)
if n is odd,

fn = 1√
t (t − 4)

((√
t +√

t − 4

2

)n
−
(√

t −√
t − 4

2

)n)
if n is even.

The polynomial fn is monic separable of degree [(n− 1)/2] with

fn(0) =
{
(−1)(n−1)/2 if n is odd,

(−1)n/2−1n/2 if n is even;
fn(4) =

{
n if n is odd,

n/2 if n is even

and (n,m) = 1 implies (fn, fm) = 1.
Moreover

Tk

(√
t

2

)2

≡ 1 mod fk

and

(1) fn ≡ t {n/2}−{m/2}Tn−m
(√
t

2

)
fm mod fn−m,

where Tk is the Chebyshev polynomial of the first kind, defined by

cos kx = Tk(cos x).
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Proof. We have (see [5], Exercise 1.2.20)

fn = t−{(n−1)/2}Un−1

(√
t

2

)
,

where Uk is the Chebyshev polynomial of the second kind, defined by the equation

sin(k + 1)x

sin x
= Uk(cos x).

Now the properties of fn except formula (1) follow from the well known properties of
Chebyshev polynomials (see [5], Exercise 1.2.15 (i) and Remark 1 on p. 233). Formula (1)
follows from the identity

Un−1(x) = Tn−m(x)Um−1(x)+ Tm(x)Un−m−1(x). ��

Lemma 2. The discriminant of a trinomial axn+bxm+c, where n > m > 0, (n,m) = 1,
a �= 0, equals

(−1)n(n−1)/2an−m−1cm−1 (mm(n−m)n−mbn − nnamcn−m) .
Proof. See [3]. ��

Lemma 3. Let (n,m) = 1, α = [n/2] − [m/2], β = [(n+m)/2] − [m/2], i.e.

〈α, β〉 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

〈
n−m

2
,
n+ 1

2

〉
if n ≡ m ≡ 1 mod 2,〈

n−m− 1

2
,
n− 1

2

〉
if n ≡ 1, m ≡ 0 mod 2,〈

n−m+ 1

2
,
n

2

〉
if n ≡ 0, m ≡ 1 mod 2,

T (x, t) = fmxn − tαfnxm + tβfn−m,
R2(x, t) = T (x, t)

x2 − xt + t .

R2(x, t) is a polynomial and its discriminant with respect to x equals

(2) discx R2(x, t)

= (−1)n(n−1)/2tγ (t − 4)f n−m−1
m fm−1

n−m
(
mm(n−m)n−mtδf nn − nntεf mm f n−mn−m

)
E(t)2

,

where

E(t) = 2mnt {(n−m)/2}Tn−m
(√
t

2

)
fmfn −m2t2{(n−1)/2}f 2

n − n2t2{(m−1)/2}f 2
m



608 D. Polynomials in one variable

and

〈γ, δ, ε〉 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

〈
n2 − 5n+m+ 5

2
, 0,
n−m

2

〉
if n ≡ m ≡ 1 mod 2,〈

n2 − 6n−m+ 11

2
, 0,
m

2

〉
if n ≡ 1, m ≡ 0 mod 2,〈

n2 − 5n+ 6

2
,
n

2
, 0

〉
if n ≡ 0, m ≡ 1 mod 2.

Proof. We have

x2 − tx + t = (x − u(u+ v))(x − v(u+ v)),
where

u =
√
t +√

t − 4

2
, v =

√
t −√

t − 4

2

and using the definition of fk we easily find

T
(
u(u+ v), t) = T (v(u+ v), t) = 0,

hence R2(x, t) is a polynomial.

From the well known properties of discriminants and resultants it follows that

(31)

discx T (x, t)

= discx R2(x, t) · discx(x
2 − tx + t) · resx

(
R2(x, t), x

2 − tx + t)2
= discx R2(x, t)(t

2 − 4t)R2
(
u(u+ v), t)2R2

(
v(u+ v), t)2.

We have by Lemma 2

(32)

discx T (x, t)

= (−1)n(n−1)/2f n−m−1
m t(m−1)βf m−1

n−m
× (mm(n−m)n−mtnαf nn − nnf mm t(n−m)βf n−mn−m

)
= (−1)n(n−1)/2t (m−1)β+min{nα,(n−m)β}f n−m−1

m fm−1
n−m

× (mm(n−m)n−mtδf nn − nntεf mm f n−mn−m
)
.

In order to compute R2(u(u+ v), t) we differentiate the equality

T (x, t) = (x2 − tx + t)R2(x, t)

at x = u(u+ v) and obtain

T ′
x

(
u(u+ v), t) = (2u(u+ v)− t)R2

(
u(u+ v), t).

Similarly

T ′
x

(
v(u+ v), t) = (2v(u+ v)− t)R2

(
v(u+ v), t),
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hence

(4)

R2
(
u(u+ v), t)R2

(
v(u+ v), t)

= (4t − t2)−1T ′
x

(
u(u+ v), t)T ′

x

(
v(u+ v), t)

= (4t − t2)−1
(
nfmu

n−1(u+ v)n−1 −mtαfnum−1(u+ v)m−1
)

×
(
nfmv

n−1(u+ v)n−1 −mtαfnvm−1(u+ v)m−1
)

= (t2 − 4t)−1(mntαfmfn (un−m + vn−m) (u+ v)n+m−2

− n2f 2
m(u+ v)2n−2 −m2t2αfn(u+ v)2m−2)

= (t2 − 4t)−1
(

2mntα+(n+m−2)/2Tn−m
(√
t

2

)
fmfn

− n2tn−1f 2
m −m2t2α+m−1f 2

n

)
= (t2 − 4t)−1 tmin{α+(n+m−2)/2+{(n−m)/2}, n−1, 2α+m−1}

×
(

2mnt {(n−m)/2}Tn−m
(√
t

2

)
fmfn

−m2t2{(n−1)/2}f 2
n − n2t2{(m−1)/2}f 2

m

)
.

Since

(m− 1)β + min{nα, (n−m)β}
− 2 min

{
α + n+m− 2

2
+
{
n−m

2

}
, n− 1, 2α +m− 1

}
+ 1 = γ

(2) follows from (3)–(4). ��

Lemma 4. If (m, n) = 1,

D(t) := (t − 4)
(
mm(n−m)n−mtδf nn − nntεf mm f n−mn−m

)
E(t)−2

is a separable polynomial of degree
(
n−2

2

)
.

Proof. We easily check thatE(t) is a polynomial of degree n−1 with the leading coefficient
m(n−m) and that E(4) = 0. Moreover

E(t) ≡ −m2t2{(m−1)/2}fn(t)2 mod fm

and, by Lemma 1,

E(t) ≡ 2mnt {(n−m)/2}+{n/2}−{m/2}Tn−m
(√
t

2

)2

f 2
m

−m2t2{(n−1)/2}+2{n/2}−2{m/2}Tn−m
(√
t

2

)2

f 2
m − n2t2{(m−1)/2}f 2

m
c

≡ t2{(m−1)/2}f 2
m(2mn−m2 − n2) ≡ −(n−m)2t2{(m−1)/2}f 2

m mod fn−m.
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Hence, by Lemma 1,

(fmfn−m, E) = 1

and, by Lemma 3,

D ∈ K[t].
Moreover,

degD = 1 + deg
(
mm(n−m)n−mtδf nn − nntεf mm f n−mn−m

)− 2 degE

= 1 +
(
n

2

)
− 2(n− 1) =

(
n− 2

2

)
.

In order to prove that D is separable, assume that (t − a)2 |D(t). Then

(t − a)2
(
E(t)

t − 4

)2 ∣∣∣∣ mm(n−m)n−mtδf nn − nntεf mm f n−mn−m
c

and

(t − a) E(t)
t − 4

∣∣∣∣ mm(n−m)n−mf n−1
n

(
δtδ−1fn + ntδf ′

n

)
− nnf m−1

m f n−m−1
n−m

(
εtε−1fmfn−m + tεmf ′

mfn−m + tε(n−m)fmf ′
n−m
)
.

c

Since (fn, fmfn−m) = 1 and εδ = 0 it follows that either

(51) (t − a) E(t)
t − 4

∣∣∣∣ ∣∣∣∣ fn tfmfn−m
nf ′
n εfmfn−m + tmf ′

mfn−m + t (n−m)fmf ′
n−m

∣∣∣∣
if δ = 0, or

(52) (t − a) E(t)
t − 4

∣∣∣∣ ∣∣∣∣ tfn fmfn−m
δfn + tnf ′

n mf ′
mfn−m + (n−m)fmf ′

n−m

∣∣∣∣
if ε = 0.

However, the degree of the determinants on the right hand side in each case does not
exceed

deg fn + deg fm + deg fn−m = n− 2 < n− 1 = degE(t).

Hence each divisibility (5) would imply that the relevant determinant is zero, hence either

D1 := εfmfn−mfn + tmf ′
mfn−mfn + t (n−m)fmf ′

n−mfn − tnf ′
nfmfn−m = 0

if δ = 0,c

or

D2 := mtf ′
mfn−mfn + (n−m)tfmf ′

n−mfn − δfmfn−mfn − ntfmfn−mf ′
n = 0

if ε = 0.
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We calculate the coefficients of tn−2 in D1 and D2. The coefficient of tn−2 in D1 is

n−m
2

+ m(m− 1)

2
+ (n−m)(n−m− 2)

2
− n(n− 1)

2
= m(n−m)

if m ≡ 1 mod 2,

m

2
+ m(m− 2)

2
+ (n−m)(n−m− 1)

2
− n(n− 1)

2
= m(n−m)

if m ≡ 0 mod 2.

The coefficient of tn−2 in D2 is

m(m− 1)

2
+ (n−m)(n−m− 1)

2
− n

2
− n(n− 2)

2
= m(n−m).

Since π /| m(n−m), our assumption has led to a contradiction. ��

Lemma 5. If (n,m) = 1 the polynomial R2(x, t) is absolutely irreducible.

Proof. The polynomials R2(x, t) and t1−βxn−2R2(tx
−1, t) are simultaneously reducible

and since the latter is obtained from the former on replacing m by n−m, it is enough to
prove the lemma for 2m � n.c

We note first that the highest homogeneous part of R2(x, t) equals the ratio of the
highest homogeneous part of T (x, t) and of x2 − xt + t , hence equals

t [(m−1)/2]xn − t [n/2]−[m/2]+[(n−1)/2]xm

x2 − tx = t [(m−1)/2]xm−1 x
n−m − tn−m
x − t .

It follows that for m � 2 every factor of R2(x, t) of degree at most 2 with respect to x
is a scalar multiple of

ϕ(x, t) = x + a1t + b1 or x2 + (a2t + b2)x + (ct2 + dt + e),
where if m = 1, ζq is a primitive root of unity of order q

a1 = −ζ jn−1 (0 < j < n− 1)(6)

a2 = −ζ j1n−1 − ζ j2n−1 (0 < j1 < j2 < n− 1), c = ζ j1+j2n−1 .(7)

However ϕ(x, 0) |R2(x, 0) = xn−2, hence

x + b1 |xn−2, or x2 + b2x + e |xn−2,

thus b1 = b2 = e = 0.
If x + a1t |R2(x, t) we have R2(−a1t, t) = 0, hence

(8) fm(t)(−a1t)
n − tαfn(t)(−a1t)

m + tβfn−m(t) = 0

and since n > β, fn−m(0) �= 0 we have α +m = β,[n
2

]
−
[m

2

]
+m =

[
n+m

2

]
−
[m

2

]
;
[n

2

]
=
[
n−m

2

]
;

m = 1, n odd, the coefficient of tn−1 on the left hand side of (8) is −(n− 2)a1 + 1, hence
−(n− 2)a1 + 1 = 0, which contradicts (6) for n > 3.
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Consider first the case 2m � n � 6. Since (m, n) = 1 we have m � 2. By the above
argument R2(x, t), of degree n − 2, has no linear factor, hence if it is reducible, n = 6,
m = 1 and R2(x, t) has a quadratic factor ϕ = x2 + a2tx+ (ct2 + dt). Substituting t = 1
we get

x2 + a2x + c + d
∣∣∣∣ x6 − 1

x2 − x + 1
,

hence

a2 = 0, 1, 1 − ζ3, 1 − ζ 2
3 , ζ3, ζ

2
3 ,

contrary to (7).
Consider now the case n � 7. If R2(x, t) is the product of two factors of degree r and

s with respect to x, where 1 � r � s, then T (x, t) is the product of two factors of degree
r + 2 and s. If r � [n/2] − 2, we have 2 < r + 2 � n/2 and by Lemma 26 of [7], n = 7,
m = 1, r = 1, which we already know to be impossible.

If r = [n/2]− 1, then s = n− 2− r = [(n− 1)/2] satisfies 2 < s � n/2, hence again
by Lemma 26 of [7], n = 7,m = 1, s = 3, r = 2. ThereforeR2(x, t) has a quadratic factor
ϕ(x, t) = x2 + a2tx + ct2 + dt . Substituting x = 0 we obtain ct2 + dt | t3(t2 − 4t + 3),
hence either d = 0, or d = −c, or d = −3c. The case d = 0 is excluded, since then

R2(x, t)would have a linear factor x+ t (a2 +
√
a2

2 − 4c)/2. Substituting t = 3 we obtainc

x2 + 3a2x + 9c + 3d
∣∣∣ x7 + 33x

x2 − 3x + 3
= x

3∏
j=0

(
x − ζ j6

√−3
)
, ζ6 = 1 +√−3

2
.

c

d = −c gives 6c = −3ζ j+k6 (0 � j < k � 3), d = −3c gives 3a2 = −ζ j6
√−3, whichc

both are impossible, since by (7) a2 and c are algebraic integers. ��

Lemma 6. If (m, n) = 1 and ti (1 � i � [(m − 1)/2]) is a zero of fm(t), then the
algebraic function x(t) given by the equationR2(x, t) = 0 has at t = ti one (n−m)-cycle
given by the Puiseux expansions

x(t) = ζ jn−m(t − ti )−1/(n−m)Pi1
(
ζ
−j
n−m(t − ti )1/(n−m)

)
and the remaining expansions

x(t) = Pij (t − ti ) (j = 2, . . . , m− 1),

where Pij are ordinary formal power series with Pij (0) �= 0 (j = 1, . . . , m− 1).c

Proof is standard. One uses the fact that (fm, tf ′
mfnfn−m) = 1. ��

Lemma 7. If (m, n) = 1 and ti ([(m− 1)/2] < i � [(m− 1)/2] + [(n−m− 1)/2]) is
a zero of fn−m(t), then the algebraic function x(t) has at t = ti one m-cycle given by the
Puiseux expansions

x(t) = ζ jm(t − ti )1/mPi1
(
ζ
j
m(t − ti )1/m

)
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and the remaining expansions

x(t) = Pij (t − ti ) (j = 2, . . . , n−m− 1),

where Pij are ordinary formal power series with Pij (0) �= 0.

Proof is standard. One uses the fact that (fn−m, tf ′
n−mfmfn) = 1. ��

Lemma 8. If (m, n) = 1, the algebraic function x(t) has at t = 0

one m-cycle and (n−m− 2)/2 two-cycles, if n ≡ m ≡ 1 mod 2,

one (n−m)-cycle and (m− 2)/2 two-cycles, if n ≡ 1, m ≡ 0 mod 2,

(n/2)− 1 two-cycles, if n ≡ 0, m ≡ 1 mod 2.

They are given by the following Puiseux expansions.
If n ≡ m ≡ 1 mod 2

x(t) = ζ jmt(m+1)/2mP
1,1
01 (ζ

2j
m t

1/m) (0 � j < m),
x(t) = ±t1/2P 1,1

0j (±t1/2) (1 < j � (n−m)/2);
if n ≡ 1, m ≡ 0 mod 2

x(t) = ζ jn−mt(n−m−1)/2(n−m)P 1,0
01 (ζ

−2j
n−mt1/(n−m)) (0 � j < n−m),

x(t) = ±t1/2P 1,0
0j (±t1/2) (1 < j � m/2);

if n ≡ 0, m ≡ 1 mod 2

x(t) = ±t1/2P 0,1
0j (±t1/2) (1 � j � n/2 − 1),

where Pρ,σ0j are ordinary formal power series with Pρ,σ0j (0) �= 0.

Proof is standard using the fact that fm(0)fn(0)fn−m(0) �= 0. ��

Lemma 9. If (n,m) = 1 the algebraic function x(t) has at t = ∞ no branching and the
Puiseux expansions are given by

x(t) = tP∞j (t−1) (1 � j < n−m),
x(t) = P∞j (t−1) (n−m � j � n− 2),

where P∞j are ordinary formal power series with P∞j (0) �= 0.

Proof is standard. ��

Lemma 10. If (n,m) = 1 the discriminant d of the fieldK(t, x(t)) equals the numerator
of

tζ f n−m−1
m fm−1

n−mD(t),
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where

(9) ζ =

⎧⎪⎨⎪⎩
(n+m− 4)/2 if n ≡ m ≡ 1 mod 2,

(2n−m− 4)/2 if n ≡ 1, m ≡ 0 mod 2,

(n− 2)/2 if n ≡ 0, m ≡ 1 mod 2.

Proof. Let θ = fmx(t). The element θ of K(t, x(t)) is a zero of the polynomial
f n−1
m T (x/fm, t) monic with respect to x, hence θ is t-integral.

The discriminant of θ ,

d(θ) = f (n−3)(n−4)
m discx R2(x, t)

and by a well known theorem (see [2], p. 464).c

t-discriminant of K(x(t), t) differs from d(θ) by a square factor. In view of Lemma 4
we have
t-discriminant of K(x(t), t) = tζ f ϑmf ιn−mD(t).
The exponents ζ, ϑ, ι can be read off from Lemmas 6, 7, 8 together with Dedekind’s

theorem for discriminants (see [2], p. 463). By the same theorem and Lemma 9 the de-
nominator of t does not contribute anything to the discriminant of K(t, x(t)). ��

Lemma 11. If (m, n) = 1 for each zero τ ofD(t) the algebraic function x(t) has at t = τ
one two-cycle given by the Puiseux expansion

x(t) = ξτ1 +
(±(t − τ)1/2)pτ Pτ1

(±(t − τ)1/2)
and the remaining expansions

x(t) = Pij (t − τ) (1 < j � n− 3),

where ξτ1 �= 0, pτ is a positive integer and Pτ1 are ordinary formal power series with
Pτ1(0) �= 0. Moreover, (t − τ)pτ /2Pτ1

(
(t − τ)1/2) �∈ K((t − τ)).

Proof. Since (fn, fmfn−m) = 1 we have (D, fmfn−mfn) = 1 hence, by Lemmas 4 and 10,
each factor t − τ , where D(τ) = 0, occurs exactly once in the discriminant d of the field
K(t, x(t)). It follows by Dedekind’s theorem that t − τ has in the above field exactly one
factor in the second power and all the other factors are simple. Therefore by Lemma 1(a) of
[7] the algebraic function x(t) has at t = τ one two-cycle given by the Puiseux expansion

x(t) = Lτ1
(
(t − τ)1/2)

and the remaining expansions

x(t) = Lτj (t − τ) (1 < j � n− 3),

where Lτj are ordinary formal Laurent series with

Lτ1
(
(t − τ)1/2) �∈ K((t − τ)).

However

τfm(τ)fn−m(τ) �= 0 and T
(
x(t), t

) = 0,
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hence Lτj do not contain negative powers of the variable and their constant term is non-
zero. ��

Lemma 12. If (m, n) = 1 and min{m, n − m} � 2 the extension K
(
t, x(t)

)
/K(t) is

primitive.

Proof. Suppose that there exists a field L such that K(t) ⊂ L ⊂ K(t, x(t)) and[
K(t, x(t)) : L] = r satisfies 1 < r < n−2. Let dL be the discriminant ofL. By the com-

position theorem for discriminants ([2], p. 443) we have dL |d. However, by Lemma 10,
if (m, n) = 1 and min{m, n − m} � 2 the only non-separable unitary divisor of d is tζ ,
hence

drL | tζ and r deg dL � ζ.

On the other hand,

deg dL � 2
(n− 2

r
− 1
)

(see [2], p. 627),
c

hence

2(n− 2 − r) � ζ.

Since r |n− 2 we have r � (n− 2)/2 and we obtain

n− 2 � ζ
which contradicts (9). ��

Lemma 13. If (m, n) = 1 the monodromy group of R2(x, t) = 0 is the symmetric
group Sn−2.

Proof. By Lemma 5 group G in question is transitive hence it is Sn−2 for n � 4. If n > 4
by Lemma 2(c) of [7] G contains a transposition, since, by Lemma 4, D has at least one
zero and Lemma 11 applies.

Therefore (see [9], Ch. I, Theorem 14) G is symmetric if and only if it is primitive. If
min{m, n − m} � 2 primitivity follows from Lemma 12. If min{m, n − m} > 2 assume
thatG is imprimitive with blocks of imprimitivity of length b. Then by Lemma 1 of [8] and
by Lemmas 6, 7 we have b | max{m, n−m}, but b |n− 2, hence b | min{m, n−m} − 2,
b < min{m, n−m} and, again by the same argument,b | min{m, n−m}. Thusb | (m, n−m)
and since (m, n−m) = 1, b = 1. ��

Definition 1. Let (m, n) = 1, R2(x, t) =
n−2∏
i=1

(
x − xi(t)

)
. We set

L2(k,m, n) = K
(
t, τ1(x1, . . . , xk), . . . , τk(x1, . . . , xk)

)
,

L∗
2(k,m, n) = K

(
t, τ1(x1, . . . , xk), . . . , τk(x1, . . . , xk)

)
,

where τj is the j -th fundamental symmetric function.
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Remark. By Lemma 13 the fields L2(k,m, n) and L∗
2(k,m, n) are determined by k,m, n

up to an isomorphism fixing K(t) and K(t), respectively.

Lemma 14. If (n,m) = 1, D(τ) = 0 the numerator of t − τ in L∗
2(k,m, n) has

(
n−4
k−1

)
prime divisors in the second power and none in the higher ones.

Proof. Given Lemma 11 the proof is analogous to the proof of Lemma 5 in [7]. ��

Lemma 15. If n � 5, (m, n) = 1, n − 2 � 2k then either the genus g∗2(k,m, n) of
L∗

2(k,m, n) satisfies

g∗2(k,m, n) >
5n

24
, or n � 6.

Moreover, g∗2(k,m, n) = 0 implies n = 5.

Proof. It follows from Lemma 2(a) of [7] and from Lemmas 4 and 14 that

g∗2(k,m, n) � 1

2

(
n−4

k−1

)(
n−2

2

)
−
(
n−2

k

)
+ 1 =

(
n−2

k

)(
k(n− k − 2)

4
− 1

)
+ 1.

For k � 2 and n � 2k + 2 we obtain

g∗2(k,m, n) �
(

2k

k

)(
k(n− 2)

8
− 1

)
+ 1 � 6 · n− 6

4
+ 1 >

5n

24
, or n � 6.

For k = 1 we find from Lemma 2(a) of [7] and Lemmas 4, 8 and 11 that

g∗2(k,m, n) � 1

2

(
n− 2

2

)
+ 1

2
ζ − (n− 2)+ 1

� 1

2

(
n− 2

2

)
+ [n/2] − 1

2
− (n− 2)+ 1 >

5n

24
, or n � 6.

For n = 6 we obtain from the above inequalities g∗2(k,m, n) � 1, which proves the last
statement of the lemma. ��

Lemma 16. Let (m, n) = 1,

R2(x, t) =
n−2∏
i=1

(
x − xi(t)

)
.

In the field K(t, x1(t), x2(t)
)

for each zero ti of fm we have the factorization

t − ti ∼=

n−m−1∏
h=1

pn−mih

m−2∏
j=1

qn−mij

m−2∏
j=1

rn−mij

(m−2)(m−3)∏
k=1

sik

(n−m−1)(n−m−2)∏
h=1

th ·
(n−m−1)(m−1)∏

j=1
uj ·

(n−m−1)(m−1)∏
j=1

vj ·
(m−1)(m−2)∏

k=1
wk

c (
i �
[
m− 1

2

])
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and for each zero ti of fn−m we have the factorization

t − ti ∼=

m−1∏
h=1

pmih

n−m−2∏
j=1

qmij

n−m−2∏
j=1

rmij

(n−m−2)(n−m−3)∏
k=1

sik

(n−m−1)(n−m−2)∏
h=1

th ·
(n−m−1)(m−1)∏

j=1
uj ·

(n−m−1)(m−1)∏
j=1

vj ·
(m−1)(m−2)∏

k=1
wk([

m− 1

2

]
< i �

[
m− 1

2

]
+
[
n−m− 1

2

])
.

Besides

t ∼=

∏
p|t

pν(p)

(n−m−1)(n−m−2)∏
h=1

th ·
(n−m−1)(m−1)∏

j=1
uj ·

(n−m−1)(m−1)∏
j=1

vj ·
(m−1)(m−2)∏

k=1
wk

,

x1(t) ∼=

[(m−1)/2]+[(n−m−1)/2]∏
i=[(m−1)/2]+1

(m−1∏
h=1

pih ·
n−m−2∏
j=1

qij

) ∏
p|t

pν1(p)

[(m−1)/2]∏
i=1

(n−m−1∏
h=1

pih ·
m−2∏
j=1

qij

) (n−m−1)(n−m−2)∏
h=1

th ·
(n−m−1)(m−1)∏

j=1
uj

,

x2(t) ∼=

[(m−1)/2]+[(n−m−1)/2]∏
i=[(m−1)/2]+1

(m−1∏
h=1

pih ·
n−m−2∏
j=1

rij

) ∏
p|t

pν2(p)

[(m−1)/2]∏
i=1

(n−m−1∏
h=1

pih ·
m−2∏
j=1

rij

) (n−m−1)(n−m−2)∏
h=1

th ·
(n−m−1)(m−1)∏

j=1
vj

.

c

Here p, pih, qij , rij , sik , th, uj , wk are prime divisors, ν(p) = ordp t , ν1(p) = ordp x1(t),
ν2(p) = ordp x2(t) are nonnegative integers.

If D(τ) = 0, t − τ has in the field K
(
t, x1(t), x2(t)

)
exactly (n − 4)(n − 5) simple

factors, the remaining factors are double.

Proof is analogous to the proof of Lemma 10 in [8]. ��

Lemma 17. If (m, n) = 1, κ =
{
β + n− 3 if m = 2,

β − 1 otherwise,
then for all primes p

p

√
tκfn−m(t)
fm(t)

�∈ K(t, x1(t), . . . , xn−2(t)
) =: Ω.

Proof. By Lemma 1(a)(b) of [7] the prime divisors of the numerator or the denominator of
t − c in Ω are in one-to-one corespondence with the cycles of the Puiseux expansions of
a generating element of Ω/K(t) at t = c or t = ∞, respectively, provided the lengths of
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the cycles are not divisible by π . For the generating element we take y(t) =
n−2∑
i=1
aixi(t),

where a is chosen inK so that for every permutation σ(i) of {1, . . . , n− 2} different from

the identity we have y(t) �=
n−2∑
i=1
aixσ(i)(t). By Lemma 13 for each permutation σ there

is an automorphism of the extension Ω/K(t) taking xi in xσ(i) (1 � i � n − 2). By
Lemma 6 at t = ti (1 � i � [(m− 1)/2]) we obtain for y(t) the expansions

n−m∑
j=1

aσ(j)ζ
j−1
n−m(t − ti )−1/(n−m)Pi1

(
ζ

1−j
n−m(t − ti )1/(n−m)

)
+

n−2∑
j=n−m+1

aσ(j)Pi,j−n+m+1(t − ti ),

whereσ runs through all permutations of {1, . . . , n−2}.They split intoH =(n−2)!/(n−m)
cycles of length n−m.

By Lemma 9 at t = ∞ we obtain for y(t) the (n− 2)! expansions

n−m−1∑
j=1

aσ(j)ζ
j
n−mP∞1

(
ζ
−j
n−mt−1)+ n−2∑

j=n−m
aσ(j)P∞,j−n+m+2(t

−1),

which do not split into any cycles of length greater than 1. Therefore,

t − ti ∼=

H∏
h=1

Pn−mih

(n−2)!∏
k=1

Qk

(
1 � i �

[
m− 1

2

])
,

where Pih,Qk are prime divisors of Ω .
Similarly, if [(m − 1)/2] < i � [(m − 1)/2] + [(n − m − 1)/2] we obtain in Ω the

factorization

t − ti ∼=

J∏
j=1

Pmij

(n−2)!∏
k=1

Qk

([
m− 1

2

]
< i �

[
m− 1

2

]
+
[
n+m− 1

2

])
,

where Pij are prime divisors of Ω and J = (n− 2)!/m.
Finally,

t ∼=

∏
P|t

Pν(P)

(n−2)!∏
k=1

Qk

,

where ν(P) = ordP t is a positive integer.
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It follows hence that

tκfn−m(t)
fm(t)

∼=

∏
P|t

Pκν(P)
[(m−1)/2]+[(n−m−1)/2]∏

i=[(m−1)/2]+1

J∏
j=1

Pmij

(n−2)!∏
k=1

Q
κ+[(n−m−1)/2]−[(m−1)/2]
k

[(m−1)/2]∏
i=1

H∏
h=1

Pn−mih

.

c

Now κ+[(n−m−1)/2]−[(m−1)/2] = 2n−5, ifm = 2 and n−m−1, otherwise. Since
(n−m− 1, n−m) = 1, if [(m− 1)/2] � 1 the denominator of the fraction in question is
not a p-th power. If [(m− 1)/2] = 0 andm = 1, n � 4 we have [(n−m− 1)/2] � 1, the
numerator contains simple factors and the fraction again is not a p-th power. There remain
the cases n = 3 and m = 2, n odd > 3. In the former case

tκfn−m(t)
fm(t)

= t

clearly is not a p-th power in Ω = K(t).
In the latter case the numerator of the fraction in question contains prime divisors in

the second power, while the denominator in the odd power 2n − 5, hence the fraction is
not a p-th power. ��

Lemma 18. Let (m, n) = 1, n � 4. For every positive integer q �≡ 0 mod π and for every
choice of q-th roots we have[

K

(
t,

q
√
tλx1(t), . . . ,

q

√
tλxn−2(t)

)
: K (t, x1(t), . . . , xn−2(t))

]
= qn−2,

where

λ =
{

1 if m = 2,

0 otherwise.

Proof. By Theorem 1 of [6] it is enough to prove that for every prime p |q

(10)
n−2∏
j=1

(
tλxj
)αj = ωp, ω ∈ Ω = K(t, x1(t), . . . , xn−2(t)

)
implies αj ≡ 0 mod p for all j � n− 2. Assume that (10) holds, but say, α1 �≡ 0 mod p.

If for all j we have αj ≡ α1 mod p, it follows from (10) that( n−2∏
j=1

tλxj

)α1

= ωp1 , ω1 ∈ Ω
c

and since α1 �≡ 0 mod p

n−2∏
j=1

tλxj = (−1)n−2tλ(n−2) t
β−1fn−m(t)
fm(t)

= (−1)n−2 t
κfn−m(t)
fm(t)
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we obtain

p

√
tκfn−m(t)
fm(t)

∈ Ω,

contrary to Lemma 17.
Therefore, there exists an i � n− 2 such that αi �≡ α1 mod p. Changing, if necessary,

the numeration of the xj we may assume that i = 2. By Lemma 13 there exists an
automorphism σ of Ω stable on K(t) such that

σ(x1) = x2, σ (x2) = x1, σ (xi) = xi (i �= 1, 2).

Applying σ to both sides of (10) we obtain

(
tλx1
)α2 (

tλx2
)α1

n−2∏
j=3

(
tλxj
)αj = (ωσ )p,

c

hence on division (
x1

x2

)α1−α2

=
( ω
ωσ

)p
.

Since α1 − α2 �≡ 0 mod p it follows that

(11)
x1

x2
= ωp2 , ω2 ∈ Ω.

The extensionK(t, x1, x2, ω2)/K(t, x1, x2) is a normal subextension ofΩ/K(t, x1, x2)

of degree 1 or p and since, by Lemma 13, the latter has the symmetric Galois group, we
have either

ω2 ∈ K(t, x1, x2)

or p = 2 and

ω2 ∈ K
(
t, x1, x2,

n−2∏
μ,ν=3
ν>μ

(xν − xμ)
)
\K(t, x1, x2).

c

In the former case we compare the divisors on both sides of (11) and obtain by Lemma 16,

(ω2)
p =

⎛⎜⎝
[
m−1

2

]∏
i=1

m−2∏
j=1

rij

⎞⎟⎠
⎛⎜⎝
[
m−1

2

]
+
[
n−m−1

2

]∏
i=
[
m−1

2

]
+1

n−m−2∏
j=1

qij

⎞⎟⎠ (n−m−1)(m−1)∏
j=1

vj

⎛⎜⎝
[
m−1

2

]∏
i=1

m−2∏
j=1

qij

⎞⎟⎠
⎛⎜⎝
[
m−1

2

]
+
[
n−m−1

2

]∏
i=
[
m−1

2

]
+1

n−m−2∏
j=1

rij

⎞⎟⎠ (n−m−1)(n−m−2)∏
j=1

uj

c

×
∏
p|t

pν1(p)−ν2(p),
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a contradiction, since for n � 4, (m, n) = 1 we have

either

[
m− 1

2

]
(m− 2) > 0 or

[
n−m− 1

2

]
(n−m− 2) > 0.

In the latter case, since the conjugates of ω2 with respect to K(t, x1, x2) are ±ω2 we
have

ω2 = ω3

n−2∏
μ,ν=3
ν>μ

(xν − xμ), ω3 ∈ K(t, x1, x2),

hence

ω2 = ω3

n−2∏
μ,ν=1
ν>μ

(xν − xμ) · x1 − x2∏
ν �=1
(xν − x1) ·∏ν �=2(xν − x2)

= ω4

n−2∏
μ,ν=1
ν>μ

(xν − xμ),

where ω4 ∈ K(t, x1, x2). It follows by (11) and by Lemma 3 that
x1

x2
= ω2

4 discx R2(x, t) = (−1)n(n−1)/2ω2
4t
γ f n−m−1
m fm−1

n−mD(t).

For n � 6 the polynomial D(t) has at least one zero τ and, by Lemma 16, t − τ has at
least one simple factor inK(t, x1, x2), hence we have on the right hand side a factor which
does not occur on the left, a contradiction. On the other hand, for n = 4 or 5 the prime
divisor q11 enters the left hand side with the exponent ±1, while the right hand side with
an even exponent. ��

Lemma 19. Let n � 4, (m, n) = 1, q �≡ 0 mod π , q � 2 and yqiq = xi(t) (1 � i � n−2).c

Then [
K

(
t,

( n−2∑
i=1

yiq

)q)
: K(t)

]
= qn−3.

Proof. By Lemma 13 and 18 all embeddings of K
(
t, tλ/qy1q, . . . , t

λ/qyn−2,q
)

into K(t)
stable on K(t) are given by

(12) tλ/qyiq  → ζ αiq t
λ/qyσ(i)q (1 � i � n− 2),

where σ is a permutation of {1, 2, . . . , n− 2} and

(13) 〈α1, . . . , αn−2〉 ∈ (Z/qZ)n−2.

We shall show that there are exactly qn−3 distinct images of

(
n−2∑
i=1
yiq

)q
under trans-

formations (12). Indeed, if we apply (12) with σ(i) = i to

(14)
(n−2∑
i=1

yiq

)q = t−λ(n−2∑
i=1

tλ/qyiq

)q
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we obtain

t−λ
(n−2∑
i=1

ζ αiq t
λ/qyiq

)q
.

If this were equal to t−λ
(n−2∑
i=1
ζ
βi
q t
λ/qyiq

)q
for a vector 〈β1, . . . , βn−2〉 ∈ (Z/qZ)n−2 with

c

βj − β1 �= αj − α1 for a certain j we should obtain

tλ/qy1q ∈ K
(
tλ/qy2q, . . . , t

λ/qyn−2,q
)
,

or

tλ/qyjq ∈ K
(
tλ/qy1q, . . . , t

λ/qyj−1,q , t
λ/qyj+1,q , . . . , t

λ/qyn−2,q
)
.c

The obtained contradiction with Lemma 18 shows that the number of distinct images is
at least equal to the number of vectors satisfying (13) with α1 = 0, thus to qn−3. On the

other hand by (14)
(n−2∑
i=1
yiq

)q
is invariant under transformations (12) with α1 = α2 = . . .

. . . = αn−2, which form a group of order q(n − 2)!, hence the number in question does
not exceed qn−3. Therefore[

K

(
t,
( n−2∑
i=1

yiq

)q) : K(t)
]
= qn−3. ��

Definition 2. Let (m, n) = 1, q �≡ 0 mod π and yqiq = xi(t), where xi(t) are defined in
Definition 1. We set

M2(m, n, q) = K
(
t,
( n−2∑
i=1

yiq

)q)
, M2∗(m, n, q) = K

(
t,
( n−2∑
i=1

yiq

)q)
.

Remark. By Lemma 19 for n � 4, (m, n) = 1,M2(m, n, q) andM2∗(m, n, q) are deter-
mined by m, n, q up to an isomorphism which fixes K(t) and K(t), respectively.

Lemma 20. For n > 4, (m, n) = 1 andD(τ) = 0 the numerator of t− τ inM2∗(m, n, q)
has (qn−3 − qn−4)/2 factors in the second power.

Proof. Let us put for each zero τ of D in the notation of Lemma 11c

yτ1q = ξ1/q
τ

∞∑
k=0

(
1/q

k

)
ξ−k/q(t − τ)pτ k/2Pτ1

(
(t − τ)1/2)k

yτ2q = ξ1/q
τ

∞∑
k=0

(−1)pτ k
(

1/q

k

)
ξ−k/q(t − τ)pτ k/2Pτ1

(−(t − τ)1/2)k,
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so that for j = 1, 2

y
q
τjq = ξτ (−1)pτ (j−1)(t − τ)pτ /2Pτ1

(
(−1)j−1(t − τ)1/2),

yτjq �∈ K
(
(t − τ)),(15)

yτ1q + yτ2q ∈ K
(
(t − τ)),(16)

(yτ1q − yτ2q)(t − τ)1/2 ∈ K((t − τ))(17)

and choose in an arbitrary way

(18) yτjq =
(
Pτ,j−1(t − τ)

)1/q ∈ K((t − τ)) (2 < j � n− 2).

It follows from Lemma 11 that over the field K
(
(t − τ))

n−2∏
j=1

n−1∏
α=0

(
x − ζ αq yjq

)
= R2(x

q, t)

n−2∏
j=1

n−1∏
α=0

(
x − ζ αq yτjq

)
,

thus the symmetric polynomials of ζαq yjq (1 � j � n− 2, 0 � α < q) and of ζαq yτjq are
the same. Hence

q−1∏
α2=0

· · ·
q−1∏
αn−2=0

(
x −
(
y1q +

n−2∑
j=2

ζ
αj
q yjq

)q)

=
q−1∏
α2=0

· · ·
q−1∏
αn−2=0

(
x −
(
yτ1q +

n−2∑
j=2

ζ
αj
q yτjq

)q)
,

which means that
( n−2∑
j=1
yjq

)q
has the following Puiseux expansions at t = τ

(
yτ1q + ζ α2

q yτ2q +
n−2∑
j=3

ζ
αj
q yτjq

)q
, 〈α2, . . . , αn−2〉 ∈ (Z/qZ)n−3.

If such an expansion belongs to K
(
(t − τ)), then either

yτ1q + ζ α2
q yτ2q +

n−2∑
j=3

ζ
αj
q yτjq ∈ K

(
(t − τ)),

or 2 |q and (
yτ1q + ζ α2

q yτ2q +
n−2∑
j=3

ζ
αj
q yτjq

)
(t − τ)1/2 ∈ K((t − τ)).

In the former case, by (16) and (18),

(1 − ζ α2
q )yτ1q ∈ K

(
(t − τ)),

and, by (15), 1 − ζ α2
q = 0, α2 = 0.c
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In the latter case, by (17), on multiplying it by (ζ α2
q − 1)/2 and adding(

1 + ζ α2
q

2
(yτ1q + yτ2q)+

n−2∑
j=3

ζ
αj
q yτjq

)
(t − τ)1/2 ∈ K((t − τ))

and since, by (16) and (18),

1 + ζ α2
q

2
(yτ1q + yτ2q)+

n−2∑
j=3

ζ
αj
q yτjq ∈ K

(
(t − τ)),

we obtain

(19)
1 + ζ α2

q

2

(
yτ1q + yτ2q

)+ n−2∑
j=3

ζ
αj
q yτjq = 0.

However, the left hand side is an expansion at t = τ of

1 + ζ α2
q

2

(
y1q + y2q

)+ n−2∑
j=3

ζ
αj
q yjq,

hence (19) contradicts for n > 4 the linear independence of yjq (1 � j � n− 2) over Kc

resulting from Lemma 18.

Therefore, for n > 4 we obtain qn−3 − qn−4 expansions for
( n−2∑
j=1
yjq

)q
belonging

c

to K
((
(t − τ)1/2)) \ K((t − τ)), which correspond to (qn−3 − qn−4)/2 distinct prime

divisors of the numerator of t − τ inM2∗(m, n, q) each occurring in the second power. ��

Lemma 21. For every zero ti of fm (1 � i � [(m − 1)/2]) the numerator of t − ti in
M2∗(m, n, q) has at most

qn−4

n−m
(

1 + n−m− 1

qϕ((n−m)q)/ϕ(q)

)
c

distinct prime divisors.

Proof. Given Lemma 6 the proof is similar to the proof of Lemma 14 in [8]. ��

Lemma 22. For every zero ti of fn−m ([(m−1)/2] < i � [(m−1)/2]+[(n−m−1)/2])
the numerator of t − ti inM2∗(m, n, q) has at most

qn−4

m

(
1 + m− 1

qϕ((n−m)q)/ϕ(q)

)
c

distinct prime divisors.

Proof. Given Lemma 7 the proof is similar to the proof of Lemma 14 in [8]. ��

Lemma 23. For all positive integers m, n, where m < n, n � 5, (n,m) = 1 and all q
being 4 or a prime such that qmn(n − m) �≡ 0 mod π , either the genus g2∗(m, n, q) of
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M2∗(m, n, q) is greater than 5nq/24 or nq < 36. Moreover, if g2∗(m, n, q) � 1, then
n = 5.

Proof. By Lemma 2(a) of [7] and by Lemmas 20–22 we have

g2∗(m, n, q)

� 1 + q
n−4

2

(
q − 1

2

(
n− 2

2

)
+
[
m− 1

2

](
q − 1

n−m
(

1 + n−m− 1

qϕ((n−m)q)/ϕ(q)

))
+
[
n−m− 1

2

](
q − 1

m

(
1 + m− 1

qϕ(neq)/ϕ(q)

))
− 2q

)
.

c

For n = 5 we obtain

g2∗(m, n, q) � 1 + q
2

(
3

2
q − 3

2
+ q − 1 − 2q

)
= 1 + q

4
(q − 5) >

25

24
q

for q � 11.

For n = 6 we have m = 1 or m = 5, hence

g2∗(m, n, q) � 1 + q
2

2
(3q − 3 + 2q − 2 − 2q) = 1 + q

2

2
(3q − 5) >

30

24
q.

For n � 7 simpler

g2∗(m, n, q) � 1 + q
n−4

2

(q − 1

2
· 10 − 2q

)
= 1 + q

n−4

2
(3q − 5) >

5qn

24
.

The last two inequalities show that g2∗(m, n, q) > 1 for n � 6. ��

Proof of Theorem 1. The case where degF = 0 or 1 has been considered in [7] or [8],
respectively. Hence, let without loss of generality

F(x) = x2 − V x +W = (x − z1)(x − z2), where V,W ∈ K(y), z1, z2 ∈ K(y),
Q(x;A,B) = xn1 + Axm1 + B

F(x)
.

Since F(x) |xn1 + Axm1 + B has a double factor, by Lemma 2

m
m1
1 (n1 −m1)

n1−m1(−A)n1 − nn1
1 B

n1−m1 = 0

and A−n1Bn1−m1 ∈ K , contrary to A−nBn−m �∈ K .

The equations zn1
i +Azm1

i +B = 0 (i = 1, 2) give either zm1
1 − zm1

2 = zn1
1 − zn1

2 = 0,
whence z1 = z2, or zm1

1 − zm1
2 �= 0 and

A = − z
n1
1 − zn1

2

z
m1
1 − zm1

2

, B = (z1z2)
m1
z
n1−m1
1 − zn1−m1

2

z
m1
1 − zm1

2

,
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hence

(20)

A = −V 2{(n1−1)/2}−2{(m1−1)/2}W [(n1−1)/2]−[(m1−1)/2]

× fn1

(V 2

W

)
fm1

(V 2

W

)−1

= −
(W
V

)n1−m1
(V 2

W

)[n1/2]−[m1/2]
fn1

(V 2

W

)
fm1

(V 2

W

)−1
,

B = V 2{(n1−m1−1)/2}−2{(m1−1)/2)}Wm1+[(n1−m1−1)/2]−[(m1−1)/2]

× fn1−m1

(V 2

W

)
fm1

(V 2

W

)−1

=
(W
V

)n1
(V 2

W

)[(n1+m1)/2]−[m1/2]
fn1−m1

(V 2

W

)
fm1

(V 2

W

)−1
.

It follows that

(21) A−n1Bn1−m1

= (−1)n1
(V 2

W

)ρ
fn1

(V 2

W

)−n1
fn1−m1

(V 2

W

)n1−m1
fm1

(V 2

W

)m1
,

where

ρ =

⎧⎪⎨⎪⎩
(n1 −m1)/2 if n1 ≡ m1 ≡ 1 mod 2,

m1/2 if n1 ≡ 1, m1 ≡ 0 mod 2,

−n1/2 if n1 ≡ 0, m1 ≡ 1 mod 2,

hence A−nBn−m �∈ K , implies V 2/W �∈ K . Moreover, by (20)

(22) fm

(
V 2

W

)
Q(x;A,B) =

(
W

V

)n1−2

R1
2

(
V

W
x,
V 2

W

)
,

whereR1
2(x, t) isR2(x, t)with the parametersm, n replaced bym1, n1. The same formula

is valid, by continuity or a similar argument, if z1 = z2.
IfT (x;A,B)F(x(m,n))−1 = Q(x(m,n);A,B) is reducible overK(y), then by Capelli’s

lemma (see [4], p. 662), either

(23) Q(x) := Q(x;A,B) is reducible over K(y),

or

(24) x(m,n) − ξ is reducible over K(y, ξ), whereQ(ξ ;A,B) = 0.

In the former caseQ(x) has inK(y)[x] a factor xk+
k∑
i=1
aix

k−i , where 1 � k � (n−2)/2
c

and the field L∗
2(k,m1, n1) is parametrized by rational functions as follows

t = V 2

W
, τi(x1, . . . , xk) = (−1)iai

( V
W

)−i
(1 � i � k).

By Lemma 2(b) of [7] g∗2(k,m1, n1) = 0, contrary to Lemma 15. Assume now that we
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have (24), but not (23). It follows by Capelli’s theorem that either

(25) ξ = ηp, where p is a prime, p | (m, n), η ∈ K(y, ξ),
or

(26) ξ = −4η4, where 4 | (m, n), η ∈ K(y, ξ),
Let

R1
2(x, t) =

n1−2∏
j=1

(x − xj ), y
q
jq = xj .

It follows from (22) that if t = V 2/W one can take

q = p, yjq =
( V
W

)1/p
ηj , if (25) holds,

q = 4, yjq =
( V
W

)1/4
ηj , if (26) holds,

where ηj are conjugates of η over K(y). Hence the field

M2∗(m1, n1, q) = K
(
t, (y1q + . . .+ yn1−2, q)

q
)

is parametrized by rational functions as follows:

t = V 2/W, (y1q + . . .+ yn1−2, q)
q =
{
(V/W)(η1 + . . .+ ηn1−2)

p if (25) holds,

−4(V/W)(η1 + . . .+ ηn1−2)
p if (26) holds

and, by Lemma 2(b) of [7], g2∗(m1, n1, q) = 0, contrary to Lemma 23. ��

Proof of Theorem 2. The case where degF = 0 or 1 has been considered in [7] and [8],
respectively, hence let F = x2 − V x +W , where V,W ∈ L;

Q(x;A,B) = xn1 + Axm1 + B
F(x)

.

The sufficiency of the condition is obvious. The proof of the necessity is similar to the
proof of Theorem 1.

SinceF(x) |xn1 +Axm1 +B andAB �= 0 we have VW �= 0 and sinceA−nBn−m �∈ K
is follows from the identity (21) that V 2/W �∈ K .c

If T (x;A,B)F(x(m,n))−1 = Q(x(m,n);A,B) is reducible over L, then by Capelli’s
lemma

(27) Q(x) := Q(x;A,B) is reducible over L,

or

(28) x(m,n) − ξ is reducible over L(ξ), whereQ(ξ ;A,B) = 0.

In the former case Q has in L[x] a factor of degree k, where 1 � k � (n − 2)/2 and it
follows from the identity (22) that the fieldL∗

2(k,m1, n1) is isomorphic to a subfield ofKL.
Hence, by Lemma 2(c) of [7], g∗2(k,m1, n1) � g and, by Lemma 15, either n1 < (24/5)g,
or n � 6. The condition given in the theorem holds with l = (m, n), 〈ν, μ〉 = 〈n1,m1〉.
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Moreover, again by Lemma 15, g = 1 implies n1 = 5. Assume now that we have (28),
but not (27). Then in the same way as in the proof of Theorem 1 we infer that for a certain
q | (m, n), q = 4 or a prime

(29) xq − ξ is reducible over L(ξ),

and the field M2∗(m1, n1, q) is isomorphic to a subfield of KL. Hence, by Lemma 2(c)
of [7] we have g2∗(m1, n1, q) � g, thus, by Lemma 23, we have either n1q < (24/5)g
or n1q < 36. On the other hand, by (29),Q(xq) is reducible over L. Hence the condition
given in the theorem holds with l = (n,m)/q, 〈ν, μ〉 = 〈n1q,m1q〉. Moreover, again by
Lemma 23, g = 1 implies n1 = 5. ��

Proof of Theorem 3. The case where degF = 0 or 1 has been considered in [7] or [8],
respectively. Therefore, let degF = 2. Replacing Lemmas 8 and 16 of [8] by Lemmas 15
and 23 above we can proceed as in the proof of Theorem 3 of [8]. We begin by defining the
setsF 2

ν,μ(K). This is done in three steps. First we put q = (μ, ν), ν1 = ν/q,μ1 = μ/q and
introduce the field L2(k, μ1, ν1) andM2(μ1, ν1, q) as defined in Definitions 1, 2. SinceK
is infinite we haveL2(k, μ1, ν1) = K(t, y(t)), where y(t) is defined up to a conjugacy over

K(t) as
k∑
j=1
aj τj (x1, . . . , xk), x1, . . . , xk being k distinct zeros of R∗

2(x, t) and a being

chosen so that y(t) has
(
ν−2
k

)
distinct conjugates over K(t). Here R∗

2(x, t) is R2(x, t)c

with parameters m, n replaced by μ1, ν1. Let φ2
k be the minimal polynomial of y(t) over

K[t] (it need not be monic). By Lemma 19 the function
(
y1q + . . .+ yν1−2,q

)q generating
M2(μ1, ν1, q) overK(t) is determined up to a conjugacy. Letψ2

q be its minimal polynomial
over K[t].

If ν1 > 6, we put

S2
ν,μ(K)

=
⎧⎨⎩

⋃
0�2k�ν1−2

{t0 ∈ K : fμ1(t0) �= 0, φ2
k (t0, z) has a zero in K} if q = 1,

{t0 ∈ K : fμ1(t0) �= 0, ψ2
k (t0, z) has a zero in K} if q > 1.

Since for ν1 > 6 and k � 1 or q > 1 we have, by Lemma 15, g∗2(k, μ1, ν1) > 1, or, by
Lemma 23, g2∗(μ1, ν1, q) > 1, it follows by the Faltings theorem (see [1]) that the sets
S2
ν,μ(K) are finite. Now we put

T 2
ν,μ(K) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⋃
t0∈S2

ν,μ(K)

{〈
−t [ν1/2]−[μ1/2]

0 fν1(t0)fμ1(t0)
−1,

t
[(ν1+μ1)/2]−[μ1/2]
0 fν1−μ1(t0)fμ1(t0)

−1,−t0, t0
〉}

if q = 1,⋃
t0∈S2

ν,μ(K)

{〈
−dν1−μ1 t

[ν1/2]−[μ1/2]
0 fν1(t0)fμ1(t0)

−1,

dν1 t
[(ν1+μ1)/2]−[μ1/2]
0 fν1−μ1(t0)fμ1(t0)

−1,−dt0, d2t0

〉
:

∃ξ0 d ∈ S(q,K, ξ0), R∗
2(ξ0, t0) = 0

}
if q is a prime, or q = 4,

∅, otherwisec
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where S(q,K, ξ0) is defined in Lemma 18 of [8], not uniquely, as a finite subset ofK with
the property that if c ∈ K∗ and

cξ0 = ηq, η ∈ K(ξ0)∗ if q is a prime,

cξ0 = −4η4, η ∈ K(ξ0)∗ if q = 4,

then

c = deq, where d ∈ S(q,K, ξ0), e ∈ K∗.

Finally we put

F 2
ν,μ(K) =

{
〈a, b, x2 + f x + g〉 : 〈a, b, f, g〉 ∈ T 2

ν,μ(K),

xν + axμ + b
x2q + f xq + g is reducible over K

}
.

Since the sets S2
ν,μ(K) and the sets S(q,K, ξ0) are finite, the latter by Lemma 18 of [8], so

are the sets F 2
ν,μ(K). We proceed to prove that they have all the other properties asserted

in the theorem. By the assumption n1 > 6 and xn1 + axm1 + b has in K[x] a quadratic
factor F(x). Let

(30) F (x) = x2 − vx + w, Q(x; a, b) = xn1 + axm1 + b
F(x)

.

Since b �= 0 we have w �= 0. Putting t0 = v2/w we have by the identity (22)

(31) fm1(t0)Q(x; a, b) =
(w
v

)n1−2
R1

2

(w
v
x, t0

)
,

thus fm1(t0) = 0 would imply t [(n1+m1)/2]−[m1/2]−1
0 fn1−m1(t0) = R1

2(0, t0) = 0, contrary
to
(
fm1(t), tfn1−m1(t)

) = 1. Therefore, fm1(t0) �= 0. Assume now that

xn + axm + b
F
(
x(m,n)

) = Q(x(m,n); a, b) is reducible over K.

By Capelli’s lemma either

(32) Q(x; a, b) is reducible over K,

or

(33) x(m,n) − ξ is reducible over K, whereQ(ξ ; a, b) = 0.

In the case (32)Q(x; a, b) has a factor inK[x] of degree k � (n1 − 2)/2, say
k∏
i=1
(x− ξi).

It follows from the identity (31) that R1
2(x, t0) has the factor

k∏
i=1

(
x − v

w
ξi

)
∈ K[x],

thus τi((v/w)ξ1, . . . , (v/w)ξk) ∈ K (1 � i � k) and at least one value of the algebraic
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function y(t) at t = t0 lies in K . Hence t0 ∈ S2
n1,m1

(K),c 〈−t [n1/2]−[m1/2]
0 fn1(t0)fm1(t0)

−1,

t
[(n1+m1)/2]−[m1/2]
0 fn1−m1(t0)fm1(t0)

−1,−t0, t0
〉 ∈ T 2

n1,m1
(K),

and the condition given in the theorem holds with l = (m, n), ν = n1, μ = m1, F0 =
x2 − t0x + t0, u = w/v.

In the case (33) note that ξ �= 0, since b �= 0. By Capelli’s theorem, there exists a
q | (m, n) such that

(34) either q is a prime and ξ = ηq, η ∈ K(ξ), or q = 4 and ξ = −4η4, η ∈ K(ξ).c

If η1, . . . , ηn1−2 are all the conjugates of η over K we have

Q(x; a, b) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

n1−2∏
i=1

(x − ηqi ) if q is a prime,

n1−2∏
i=1

(x + 4η4
i ) if q = 4,

hence

(35) Q(xq; a, b) is reducible over K.

By the identity (31) it follows that

R1
2(x, t0) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

n1−2∏
i=1

(x − (v/w)ηqi ) if q is a prime,

n1−2∏
i=1

(x + 4(v/w)η4
i ) if q = 4.

Hence ψ2
q (t0, u0) = 0, where

u0 =
{
(v/w)(η1 + . . .+ ηn1−2)

q if q is a prime,

−4(v/w)(η1 + . . .+ ηn1−2)
4 if q = 4

and since η1 + . . .+ ηn1−2 ∈ K we have u0 ∈ K , t0 ∈ S2
n1,m1

(K).

Further, it follows from (31) and (33) that ξ0 = (v/w)ξ is a zero of R1
2(x, t0) and by

(34)

w

v
ξ0 = ηq or −4η4, where η ∈ K(ξ0) and q is a prime or q = 4, respectively.

By the definition of S(q,K, ξ0)

w

v
= deq, where d ∈ S(q,K, ξ0), e ∈ K,c
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hence〈−dn1−m1 t
[n1/2]−[m1/2]
0 fn1(t0)fm1(t0)

−1,

dn1 t
[(n1+m1)/2]−[m1/2]
0 fn1−m1(t0)fm1(t0)

−1,−dt0, d2t0
〉 ∈ T 2

n1q,m1q
(K).

By the identity (31)

R1
2

(xq
d
, t0

)
=
( v
w

)n1−2
fm1(t0)Q

(
(ex)q; a, b),

hence by (35) R1
2(x

q/d, t0) is reducible over K and〈−dn1−m1 t
[n1/2]−[m1/2]
0 fn1(t0)fm1(t0)

−1,

dn1 t
[(n1+m1)/2]−[m1/2]
0 fn1−m1(t0)fm1(t0)

−1, x2 − dt0x + d2t0
〉 ∈ Fn1q,m1q(K).

Thus the condition given in the theorem holds with l = (n,m)/q, ν = n1q, μ = m1q,

a0 = −dn1−m1 t
[n1/2]−[m1/2]
0 fn1(t0)fm1(t0)

−1,

b0 = dn1 t
[(n1+m1)/2]−[m1/2]
0 fn1−m1(t0)fm1(t0)

−1,

F0 = x2 − dt0x + d2t0, u = e.
Assume now that for an integer l, 〈n/l,m/l〉 =: 〈ν, μ〉 ∈ N2 and a = uν−μa0,

b = uνb0, F(x) = u2(μ,ν)F0
(
x/u(μ,ν)

)
, where u ∈ K∗, 〈a0, b0, F0〉 ∈ F 2

ν,μ(K).c

Then by the definition of F 2
ν,μ(K)

xν + a0x
μ + b0

F0
(
x(μ,ν)

) is a polynomial reducible over K

and by the substitution x  → xl/u we obtain reducibility of T (x; a, b)/F (x(m,n)). ��
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Chapter 21, 337–352

On the greatest common divisor
of two univariate polynomials I

P. Weinberger proposed at the West Coast Number Theory Meeting in 1976 the follow-
ing problem. Does there exist a functionA(r, s) such that if polynomials f, g have exactly r
and s non-zero coefficients, respectively, then the greatest common divisor (f, g) has at
most A(r, s) non-zero coefficients? We are going to study this problem in the case where
f, g ∈ K[x] and K is a field. Accordingly, we denote by A(r, s,K) the supremum of the
number of non-zero coefficients of (f, g), where f, g run over all univariate polynomials
over K with r and s non-zero coefficients, respectively. Clearly, A(r, s,K) = A(s, r,K),
hence we may assume r � s and triviallyA(1, s,K) = 1. We shall denote byK0 the prime
field ofK , by p its characteristic, byK its algebraic closure and by pζq a generator of the
group of qth roots of unity in K . We set Kq = {aq : a ∈ K}. Moreover, for a Laurent
polynomial F over K ,

F (x1, . . . , xk) = F0 (x1, . . . , xk)

k∏
i=1

x
αi
i ,

where F0 ∈ K [x1, . . . , xk] is prime to
∏k
i=1 xi , we set

JF = F0.

We shall prove the following two theorems.

Theorem 1. If m, n, q are positive integers with (m, n, q) = 1 and a, b, c ∈ K∗, then
(xn + axm + b, xq − c) is of degree at most 1, if a−n/(m,n)b(n−m)/(m,n) �∈ K0

(
pζq
)
,

and of degree 0, if, additionally, c �∈ Kq . Moreover, if p = 0 or p > 6ϕ(q), then
(xn + axm + b, xq − c) is of degree at most 2 and of degree 0, if, as well, c2 �∈ Kq .

Theorem 2. If 1 < r � s and 〈r, s, p〉 �= 〈3, 3, 0〉 then

A(r, s,K) =

⎧⎪⎨⎪⎩
2, if r = s = 2,

3, if r = 2, s = 3, p = 0,

∞, otherwise.

The case 〈r, s, p〉 = 〈3, 3, 0〉 has been studied in [9].
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Lemma 1. Let zi (1 � i � 4) be roots of unity in K such that zqi = 1, and

(1)

∣∣∣∣∣∣
1 1 1
z1 z2 1
z3 z4 1

∣∣∣∣∣∣ = 0.

If either p = 0 or p > 6ϕ(q), then either two rows or two columns of the determinant are
equal.

Proof. In the case p = 0 this is Lemma 9 of [3]. The proof outlined there was by a tedious
consideration of cases. J. Browkin has supplied the following proof for p = 0 (it is enough
to takeK = C), which is no longer tedious and works for arbitrary unimodular zi (cf. [10],
Corollary 3.3). The equation (1) gives

(2) (z1 − 1)(z4 − 1) = (z2 − 1)(z3 − 1).

If z1 = 1, then z2 = 1 and the rows 1, 2 are equal, or z3 = 1 and the columns 1, 3 are
equal. Similarly, if zi = 1 for i � 4. If zi �= 1 for all i we take the complex conjugates of
both sides of (2) and obtain

(3) z−1
1 z

−1
4 (z1 − 1)(z4 − 1) = z−1

2 z
−1
3 (z2 − 1)(z3 − 1),

hence, dividing side by side (2) and (3)

(4) z1z4 = z2z3.

The formulae (2) and (4) give

(5) z1 + z4 = z2 + z3,

while (4) and (5) give either z1 = z3, z2 = z4 (the rows 2 and 3 are equal), or z1 = z2,
z3 = z4 (the columns 1 and 2 are equal).

The case p > 6ϕ(q) is reduced to the case p = 0 as follows. Let p be a prime ideal
factor of p in Q(0ζq). The residues mod p form a subfield ofK containing q distinct zeros
of xq − 1, since p /| q, represented by residues of 0ζ rq (0 � r < q). Hence

(6) zi ≡ 0ζ riq mod p (1 � i � 4)

and equation (1) gives

(7) D :=
∣∣∣∣∣∣

1 1 1
0ζ
r1
q

0ζ
r2
q 1

0ζ
r3
q

0ζ
r4
q 1

∣∣∣∣∣∣ ≡ 0 mod p; NQ(0ζq )/Q
D ≡ 0 mod p.

However D is the sum of six complex roots of unity. Hence each conjugate of D over Q

does not exceed 6 in absolute value and∣∣∣NQ(0ζq )/Q
D

∣∣∣ � 6ϕ(q) < p.

SinceD is an algebraic integer,NQ(0ζq )/Q
D is an integer and the above inequality together

with the second congruence of (7) gives

NQ(0ζq )/Q
D = 0; D = 0.
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By the already settled case p = 0 the determinant definingD has two rows or two columns
equal and by (6) the same applies to the determinant∣∣∣∣∣∣

1 1 1
z1 z2 1
z3 z4 1

∣∣∣∣∣∣ . ��

Proof of Theorem 1. Let (n,m) = d , n = dn′, m = dm′, (xn + axm + b, xq − c) be of
degree δ and assume first that

(8) a−n′bn′−m′ �∈ K0
(
pζq
)

and

(9) δ � 2.

If (xn+axm+b, xq−c) has a multiple zero inK , thenp > 0,p |q and since (n,m, q) = 1,
p /| d. Moreover,

(10) Δ := disc
(
xn + axm + b) = 0.

However (see [4])

(11) Δ = (−1)n(n−1)/2bm−1(nn′bn′−m′ + (−1)n
′−1(n−m)n′−m′

mm
′
an

′)d
.

It follows from p /| d
a−n′bn′−m′ = (−1)n

′
(n−m)n′−m′

mm
′
n−n′ ∈ K0,

contrary to (8). Thus, by (9), (xn+axm+b, xq−c) has two distinct zeros inK . Denoting
them by ξi (i = 1, 2) we have for i = 1, 2, ξqi = c and

(12) ξni + aξmi + b = 0.

If ξm1 = ξm2 , then also ξn1 = ξn2 , and since ξq1 = ξq2 , it follows from (m, n, q) = 1 that
ξ1 = ξ2, a contradiction. Thus ξm1 �= ξm2 and solving the system (12) for a, b we find

a = ξn2 − ξn1
ξm2 − ξm1

, b = ξn1 ξ
m
2 − ξm1 ξn2
ξm2 − ξm1

.

Since ξ2 = pζ rqξ1 for a certain r , it follows that pζ rmq �= 1 and

a = ξn−m1

pζ rnq − 1

1 − pζ rmq
, b = ξn1

pζ rmq − pζ rnq

1 − pζ rmq
;(13)

a−n′bn′−m′ = (1 − pζ
rm
q

)m′(
pζ
rm
q − pζ

rn
q

)n′−m′(
pζ
rn
q − 1

)−n′ ∈ K0
(
pζ q
)
,(14)

contrary to (8). Thus (8) implies that δ � 1. If δ �= 0, then(
xn + axm + b, xq − c) = x − ξ, ξ ∈ K,

hence c = ξq ∈ Kq .
It remains to consider the case where p = 0 or p > 6ϕ(q). Then xq − c has no multiple

zeros and δ � 3 implies the existence of three distinct zeros ξi of xq−c such that (12) holds
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for i = 1, 2, 3. Putting z1 = (ξ2/ξ1)n, z2 = (ξ2/ξ1)m, z3 = (ξ3/ξ1)n, z4 = (ξ3/ξ1)m, we
can rewrite the system (12) in the form

(15)

ξn1 + aξm1 + b = 0,

z1ξ
n
1 + z2aξ

m
1 + b = 0,

z3ξ
n
1 + z4aξ

m
1 + b = 0,

hence ∣∣∣∣∣∣
1 1 1
z1 z2 1
z3 z4 1

∣∣∣∣∣∣ = 0

and by Lemma 1, either two rows or two columns of the determinant are equal. If two
rows are equal we infer from (m, n, q) = 1 that ξ2 = ξ1, or ξ3 = ξ1, or ξ3 = ξ2, a
contradiction. If two columns are equal, then equations (15) imply, since ab �= 0 that
z1 = z2 = z3 = z4 = 1, hence ξ3 = ξ2 = ξ1, again a contradiction.

Hence δ � 2. If δ = 1, (xn+axm+b, xq−c) = x−ξ , where ξ ∈ K and c = ξq ∈ Kq .
If δ = 2, (xn+ axm+ b, xq − c) = (x− ξ1)(x− ξ2), hence [K(ξ1) : K] � 2 and ξq1 = c
implies

(
NK(ξ1)/Kξ1

)q = NK(ξ1)/Kc = c or c2; c2 ∈ Kq . ��

Lemma 2. Let 0 = a0 < a1 < . . . < ar and 0 = b0 < b1 < . . . < bs be integers and set

R(t) =
∑

t=ai+bj
1.

If there exist at most two positive integers t such that R(t) = 1, then there exist l � 2
integers uj (1 � j � l) such that

ai =
l∑
j=1

αijuj (0 � i � r), bi =
l∑
j=1

βijuj (0 � i � s),

where αij , βij are integers and

l∏
j=1

max

{
max

0�i�r
∣∣αij ∣∣ , max

0�i�s
∣∣βij ∣∣} � 2r+s−l .

Proof. Clearly, we have

R(ar + bs) = 1,

thus, by the assumption, there exists at most one pair 〈r1, s1〉 �= 〈0, 0〉, 〈r, s〉 such that

R
(
ar1 + bs1

) = 1.

If 0 � i � r , 0 � j � s and 〈i, j〉 �= 〈0, 0〉, 〈r, s〉, 〈r1, s1〉, there exists a pair 〈gij , hij 〉 �=
〈i, j〉 such that

(16) ai + bj = agij + bhij .
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Let us consider the system of equations for r + s + 2 unknowns xi (0 � i � r),
yj (0 � j � s):

(17)

x0 = 0,

y0 = 0,

xr + ys = 0,

xr1 + ys1 = 0,

xi + yj − xgij − yhij = 0
(〈i, j〉 �= 〈0, 0〉, 〈r, s〉, 〈r1, s1〉

)
.

We assert that the system has only the zero solution. Indeed, suppose that
〈c0, . . . , cr , d0, . . . , ds〉 is a solution of this system and let

i1 be the least i such that ci = min ck,

i2 be the least i such that ci = max ck,

j1 be the least j such that dj = min dk,

j2 be the least j such that dj = max dk.

If for ν = 1 or 2 we have 〈iν, jν〉 �= 〈0, 0〉, 〈r, s〉, 〈r1, s1〉, let

gν = giνjν , hν = hiνjν .
The equations (17) give

ciν + djν = cgν + dhν ,
hence cgν = ciν , dhν = djν ; gν � iν , hν � jν and since 〈gν, hν〉 �= 〈iν, jν〉 it follows that
agν + bhν > aiν + bjν , contrary to (16). Therefore, 〈iν, jν〉 ∈

{〈0, 0〉, 〈r, s〉, 〈r1, s1〉} for
ν � 2 and thus

ciν + djν = 0 (ν = 1, 2).

However ci2 � ci1 , dj2 � dj1 , thus ci2 = ci1 , dj2 = dj1 and by the definition of ciν and
djν , all ci are equal (0 � i � r) and all dj are equal (0 � j � s). Since c0 = d0 = 0
we infer that ci = 0 (0 � i � r) and dj = 0 (0 � j � s). It follows from the proved
assertion that the rank of the matrix of the system (17) is r + s + 2 and thus the rank of
the matrix of the reduced system

(18)

x0 = 0,

y0 = 0,

xi + yj − xgij − yhij = 0
(〈i, j〉 �= 〈0, 0〉, 〈r, s〉, 〈r1, s1〉

)
is r + s + 2 − l, where l � 2. By (16) we have l > 0.

LetΔ be a submatrix of the matrix of the system (18) consisting of r+s+2− l linearly
independent rows. By Steinitz’s lemma we may assume that the submatrix contains the
first two rows. By the Bombieri–Vaaler theorem ([1], Theorem 2) there exists a system of l
linearly independent integer solutions vj (j � l) of the equationc

(19) xΔ = 0
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satisfying the inequality

l∏
j=1

h(vj ) �
√

detΔΔT ,

where h(vj ) is the maximum of the absolute values of the coordinates of vj . However,
by an inequality of Fischer generalizing Hadamard’s inequality (see [1], formula (2.6))√

detΔΔT does not exceed the product of the Euclidean lengths of the rows of Δ,
i.e. 2r+s−l .

Now, from the system vj (j � l) of l � 2 linearly independent integer solutions of the
equation (19) one can obtain a basis wj (j � l) of all integer solutions satisfying

h(wj ) � h(vj ) (j � l)
(see [2], Chapter V, Lemma 8). It suffices now to take

wj =
[
α0j , . . . , αrj , β0j , . . . , βsj

]
(j � l). ��

Remark. In the same way one can prove the following generalization of Lemma 2. If, with
the same notation,R(t) = 1 for at most k positive integers t , then there exist l � k integers
uj (1 � j � l) such that

ai =
l∑
j=1

αijuj (0 � i � r), bi =
l∑
j=1

βijuj (0 � i � s),

where αij , βij are integers and

l∏
j=1

max

{
max

0�i�r
|αij |, max

0�i�s
|βij |
}

� 2r+s−l (l +m+ 1)!
4l−m(2m+ 1)! ,

where m = [(1 +√
16l + 7)/4

]
.

Instead of a result quoted from [2] one has to use an argument from [7], pp. 701–702,
due essentially to H. Weyl [11].

It is also possible to generalize Lemma 2 to the case of more than two increasing
sequences of integers.

Lemma 3. Let a, b ∈ K∗, n > m > 0. If (n,m) �≡ 0 mod p and

(∗) xn + axm + b = g(x)h(x),
where g, h ∈ K[x] \ K and g, h have exactly r + 1 and s + 1 non-zero coefficients,
respectively, then

(20) 2r+s+3 + 1 � n

(n,m)
.

Proof. Let us put

(21) g(x) =
r∑
i=0

gix
ai , h(x) =

s∑
j=0

hjx
bj ,
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where 0 < a0 < a1 < . . . < ar , 0 < b0 < b1 < . . . < bs and gi �= 0 (0 � i � r),
hj �= 0 (0 � j � s). In the notation of Lemma 2 for each positive integer t �= m, n we
have R(t) �= 1. Hence, by Lemma 2, there exist l � 2 integers uj (1 � j � l) such that

ai =
l∑
j=1

αijuj (0 � i � r), bi =
l∑
j=1

βijuj (0 � i � s) ,
c

where αij , βij are integers and

(22)
l∏
j=1

max

{
max

0�i�r
|αij |, max

0�i�s
|βij |
}

� 2r+s−l .

Clearly,

(23)

n =
l∑
j=1

uj (αrj + βsj ),

m =
l∑
j=1

uj (αr ′j + βs′j ),

where 0 � r ′ � r , 0 � s′ � s.
If l = 1, then u1 | (m, n) and by (22) and (23)

n � (n,m)2r+s

which is stronger than (20).
If l = 2, let us put for j = 1, 2

(24)
νj = αrj + βsj ,
μj = αr ′j + βs′j ,

F (x1, x2) = J
(
x
ν1
1 x

ν2
2 + axμ1

1 x
μ2
2 + b),

G(x1, x2) = J
( r∑
i=0

gix
αi1
1 x

αi2
2

)
,

H(x1, x2) = J
( s∑
i=0

hix
βi1
1 x

βi2
2

)
,

the notation being explained in the introduction.
By (21) and (23), (24)

xn + axm + b = JF (xu1 , xu2
)
,(25)

g(x) = JG(xu1 , xu2
)
, h(x) = JH (xu1 , xu2

)
,(26)

while, by (22)

(27)
2∏
j=1

max
{∣∣μj ∣∣ , ∣∣νj ∣∣} � 2r+s .
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It follows that

(28)

degxj F � |μj | + |νj | � 2 max
{|μj |, |νj |}

� 4 max
{
max
i

∣∣αij ∣∣ ,max
i

∣∣βij ∣∣},
degxj G = max

i
αij − min

i
αij � 2 max

i

∣∣αij ∣∣ ,
degxj H = max

i
βij − min

i
βij � 2 max

i

∣∣βij ∣∣ .
If ν1μ2 − ν2μ1 = 0, then by (23) and (24)

u1ν1 + u2ν2

(ν1, ν2)

∣∣∣ (n,m),
hence, by (27), n � (n,m)(ν1, ν2) � (n,m)2(r+s)/2, which is stronger than (20).c

If ν1μ2 − ν2μ1 �= 0, F(x1, x2) is irreducible over K , by Theorem 23 of [8]. Indeed,
the only assumption of this theorem that needs to be verified is that F(x1, x2) is not of
the form cFp0 , where c ∈ K , F0 ∈ K[x1, x2]. If it were the case, we should have νj ≡ 0,
μj ≡ 0 mod p (j = 1, 2), hence by (23) and (24) (n,m) ≡ 0 mod p, contrary to the
assumption of the lemma.

If now (F,G) �= 1, it follows by the irreducibility of F that F |G, hence, by (25) and
(26), xn+axm+b |g(x) and, by (19), h(x) ∈ K , contrary to the assumption of the lemma.
Therefore (F,G) = 1 and by Lemma 5 of [6] the number of solutions inK2 of the system
of equations F(x1, x2) = G(x1, x2) = 0 does not exceed the degree of the resultant R
of F and G with respect to x1.

From the form of the resultant as the determinant of the Sylvester matrix we infer by
(28) and (22)

degR � degx1
F · degx2

G+ degx2
F · degx1

G

� 16
2∏
j=1

max
{
max
i

∣∣αij ∣∣ ,max
i

∣∣βij ∣∣} � 2r+s+2.

Thus the number of solutions inK2 of the system of equations F(x1, x2) = G(x1, x2) = 0
does not exceed 2r+s+2 and the same applies to the system F(x1, x2) = H(x1, x2) = 0.
Since ξu1 , ξu2 determine the value of ξ (u1,u2), they give (u1, u2) possibilities for ξ . Hence
the systems of equations F(ξu1 , ξu2) = G(ξu1 , ξu2) and F(ξu1 , ξu2) = H(ξu1 , ξu2) have
each at most (u1, u2)2r+s+2 distinct solutions in K2. In view of (∗), (25) and (26) itc

follows that xn + axm + b has at most 2r+s+3(n,m) distinct zeros in K . Since each zeroc

of xn + axm + b is at most double, and the number of double zeros is at most (m, n), we
get

n− (m, n) � 2r+s+3(m, n),

which gives the lemma. ��

Lemma 4. For every prime fieldK0 �= F2 and every integer k > 1 there exists a polynomial
fk ∈ K0[x] of degree at most k with exactly k non-zero coefficients, such that fk(0) = 1,
fk(1) = 0 and f ′

k(1) �= 0. For K0 = F2 such a polynomial exists, if k is even.
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Proof. We set

fk(x) =
k−1∑
i=0

(−1)ixi if k is even, k �≡ 0 mod 2p;

fk(x) =
k−2∑
i=0

(−1)ixi − xk if k is even, k ≡ 0 mod 2p;

fk(x) =
k−3∑
i=0

(−1)ixi − 2xk−2 + xk−1 if k is odd, k �≡ 3 mod 2p;

fk(x) =
k−3∑
i=0

(−1)ixi − 2xk−2 + xk if k is odd, k ≡ 3 mod 2p. ��

Definition. For convenience we set f1(x) = 0.

Lemma 5. For every K �= F2, every f ∈ K[x] and every positive integer k there ex-
ists a polynomial h = h(x; k, f ) ∈ K[x] with exactly k non-zero coefficients such that
(h(xl), xf (x)) = 1 for every positive integer l. For K = F2 such a polynomial exists if k
is odd and, moreover, with the weaker property (h(x), xf (x)) = 1 also if f (1) �= 0.

Proof. If K contains Q or Fp(t) with t transcendental over Fp, then the multiplicative
group of K contains a free abelian group of infinite rank. Hence, denoting the zeros of f
by ξ1, . . . , ξn we can choose a ∈ K∗ such that for all ν � n and all l the element aξ−lν is
not a root of unity, and then

h(x) = xk − ak
x − a

has the desired property.
IfK contains neither Q nor Fp(t), thenK ⊂ Fp, hence there exists an exponent e > 0

such that ξeν = 1 for every ξν �= 0 (1 � ν � n). Then we write k = pκk1, where
(k1, p) = 1 and set

h(x) = xk1e − 1

xe − 1
, if κ = 0,(29)

h(x) =
(
xk1e − 1

xe − 1

)pκ
(xe + a)pκ−1, if κ > 0, K �= F2, a ∈ K \ {0,−1},(30)

h(x) =
(
xk1e − 1

xe − 1

)2κ

(x + 1)2
κ−1, if κ > 0, K = F2, f (1) �= 0.(31)

It is easy to see that h(x) has exactly k non-zero coefficients and in cases (29), (30)
h(ξ lν) �= 0, in case (31) h(ξν) �= 0 for all ν � n. ��

Lemma 6. If n ≡ 1 mod 6, over F2, then the trinomial

Tn(x) = x2n+1+1 + x2n−1 + 1
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is the product of two non-constant factors, one of which divides x22n−1 + 1 and the other
x23n−1 + 1; both are prime to x2n−1 + 1.

Proof. This is a special case of the result of Mills & Zierler [5], the case admitting a shorter
proof. Let r = 2n. By the identity of Mills & Zierler

Tn(x
r)+ xr2−rTn(x) =

(
xr

2−1 + 1
)(
xr

2+r+1 + 1
)
,

hence every irreducible factor of Tn(x) divides one of the relevant binomials. Since Tn(x)
has no multiple zeros, Tn(1) �= 0 and 1 is the only common zero of the two binomials, we
have

Tn(x) =
(
Tn(x), x

r2−1 + 1
)(
Tn(x), x

r2+r+1 + 1
)
.

In order to show that the factors are non-constant let us observe that for n ≡ 1 mod 6

2r + 1 ≡ 5 mod 21, r − 1 ≡ 1 mod 21,

x5 + x + 1 = (x2 + x + 1)(x3 + x2 + 1)

and

x2 + x + 1 |x3 + 1 |xr2−1 + 1,

x3 + x2 + 1 |x7 + 1 |xr2+r+1 + 1 |xr3−1 + 1,

hence

x2 + x + 1
∣∣ (Tn(x), xr2−1 + 1

)
,

x3 + x2 + 1
∣∣ (Tn(x), xr2+r+1 + 1

)
.

Finally, (
Tn(x), x

r−1 + 1
) ∣∣ Tn(x)+ xr−1 + 1 = x2r+1,

hence (
Tn(x), x

r−1 + 1
) = 1

and we can also write

Tn(x) =
(
Tn(x), x

r2−1 + 1
)(
Tn(x), x

r3−1 + 1
)
. ��

Lemma 7. If n ≡ 1 mod 6 and Tn(x) = x2n+1+1 + x2n−1 + 1 ∈ F2[x], then there exists
c = c(n) ∈ {2, 3} such that

(
Tn(x), x

2cn−1 + 1
)

has at least n/2 non-zero coefficients.

Remark. If 2 and 3 both have the required property, we put c(n) = 2.

Proof. For n ≡ 1 mod 6 we have (2n+1 + 1, 2n − 1) = 1. Hence, denoting by r(i, n)
(i = 2, 3) the number of non-zero coefficients of (Tn(x), x2in−1+1), we have by Lemmas 3
and 6

2r(2,n)+r(3,n)+1 + 1 � 2n+1 + 1,

hence max{r(2, n), r(3, n)} � n/2. ��
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Proof of Theorem 2. Consider first the case r = s = 2. It is nearly obvious that if
a1, a2 ∈ K∗ and n1, n2 are positive integers, then

(xn1 − a1, x
n2 − a2) =

{
1, if an2/(n1,n2)

1 �= an1/(n1,n2)
2

x(n1,n2) − c if an2/(n1,n2)
1 = an1/(n1,n2)

2 and ai = cni/(n1,n2).

This proves that A(2, 2,K) = 2.
Consider next the case r = 2, s = 3, p = 0. By Theorem 1 we have A(2, 3,K) � 3

and since (x3 − 1, x2 + x + 1) = x2 + x + 1, A(2, 3,K) = 3. Therefore, we assume
〈r, s〉 �= 〈2, 2〉, 〈r, s, p〉 �= 〈2, 3, 0〉, 〈3, 3, 0〉 and we have to prove A(r, s,K) = ∞.

Consider first the case p �= 2.

If r = 2, s = 3, p > 0 we take f (x) = xp(n−2)!−1 − 1, g(x) = xn−nx+n− 1, where
n �≡ 0, 1 mod p. The trinomial g(x) has exactly one multiple zero in K , namely x = 1,
and this is a double zero. All other zeros are of degree at most n− 2, hence they are zeros
of f (x). Since 1 is not a multiple zero of this binomial, we obtain

(32) (f, g) = xn − nx + n− 1

x − 1
= xn−1 + . . .+ 1 − n,

where on the right hand side we have n non-zero coefficients. Thus A(2, 3,K) = ∞.
If r = 2, s � 4, we take

f = xab − 1, g = (xa − 1)(xb − 1)+ fs−3(x
ab),

where 1 < a < b, (a, b) = 1, ab �≡ 0 mod p and fs−3 has the meaning of Lemma 4.
Since f |fs−3(x

ab) we have (f, g) = (f, (xa − 1)(xb − 1)). However f has no multiple
zeros and (xa−1)(xb−1) has just one such zero, namely 1, which is a double zero. Hence

(33) (f, g) = (xa − 1)(xb − 1)

x − 1
= xb+a−1 + . . .+ xb − xa−1 − . . .− 1

has 2a non-zero coefficients and we obtain A(2, s,K) = ∞.c

If r = 3, s � 3, p > 0, we take

f = xn − nx + n− 1, g = fs
(
xp

(n−2)!−1).
Since f

∣∣ xp(n−2)!−1 − 1
∣∣ fs(xp(n−2)!−1

)
and f ′

s (1) �= 0 we have again (32), hence
A(3, s,K) = ∞.c

If r = 3, s > 3, p = 0, we take

f = x2ab − 3xab + 2, g(x) = (xa − 1)(xb − 1)+ fs−3(x
ab),

where again 1 < a < b, (a, b) = 1. We have f = (xab − 1)(xab − 2). It follows from the
irreducibility of xab − 2 over Q that(

xab − 2, (xa − 1)(xb − 1)+ fs−3(2)
) = 1,

hence (
xab − 2, (xa − 1)(xb − 1)+ fs−3(x

ab)
) = 1,

and we obtain again (33), thus A(3, s,K) = ∞.
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If r � 4, s � r , we take

f = (xa − 1)(xb − 1)+ fr−3(x
2ab), h = h(x; [(s − r)/2]+ 1, f

)
,c

g = f (0)(xab − 1)h(x2rab)+ dh(0)f (x),c

where

d =
{

2 if s ≡ r + 1 mod 2,

1 if s ≡ r mod 2

and obtain (33), hence A(r, s,K) = ∞.

Consider now p = 2.
If r = 2, s � 3, s ≡ 0 mod 2, we take

f = xab + 1, g = (xa + 1)(xb + 1)+ fs−2(x
ab),

where 1 < a < b, (a, b) = 1, ab �≡ 0 mod 2, and obtain (33), hence A(2, 3,K) = ∞.
If r = 2, s � 3, s ≡ 1 mod 2, we take

f = x2cn−1 + 1, g = Tn(x)+ fs−1
(
x2cn−1),

where n ≡ 1 mod 6 and c = c(n) is the number defined in Lemma 7. By that lemma

(34) (f, g) = (x2cn−1 + 1, Tn(x)
)

has at least n/2 non-zero coefficients, hence A(2, s,K) = ∞.
If r = 3, s � 3, s ≡ 0 mod 2, we write s = 2σ s1, s1 odd, and take n ≡ 1 mod 6,

f = Tn(x), g = gs :=
(
x2cn−1 + 1

)2sn(2σ−1) x
(2(5−c)n−1)s1 + 1

x2(5−c)n−1 + 1
.

Since x2cn−1 + 1 |gs we have(
f, x2cn−1 + 1, gs

) = (f, x2cn−1 + 1
)
.

On the other hand, since s1 is odd(
x2(5−c)n−1 + 1,

x(2
(5−c)n−1)s1 + 1

x2(5−c)n−1 + 1

)
= 1;(

x2(5−c)n−1 + 1, gs
) = x2n−1 + 1

hence, by Lemma 6, (
f, x2(5−c)n−1 + 1, gs

) = 1

and, again by Lemma 6, (
f, gs

) = (f, x2cn−1 + 1
)
.

Thus, by Lemma 7, (f, gs) has at least n/2 non-zero coefficients and A(3, s,K) = ∞.
If r = 3, s � 3, s ≡ 1 mod 2 we take n ≡ 1 mod 6,

f = Tn(x), g = f + gs−1
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and obtain that (f, g) = (f, gs−1) has at least n/2 non-zero coefficients, hence
A(3, s,K) = ∞.

If r � 4, s � r , r ≡ 0 mod 2, s ≡ r mod 4, we take 1 < a < b, (a, b) = 1,
ab ≡ 1 mod 2,

f = (xa + 1)(xb + 1)+ fr−2(x
ab), h = h(x; (s − r)/2 + 1, f

)
,

g = (xab + 1)h(xrab)xa + h(0)f (x)
to obtain

(f, g) = (xa + 1)(xb + 1)xa

x + 1
= xb+2a−1 + . . .+ xb+a + x2a−1 + . . .+ xa,

c

hence A(r, s,K) = ∞.
If r � 4, s � r , r ≡ 0 mod 2, s ≡ r + 2 mod 4, we take 1 < a < b, (a, b) = 1,

ab ≡ 1 mod 2,

f = (xa + 1)(xb + 1)+ fr−2(x
2ab),c

g = (xab + 1)h(x2rab; (s − r)/2, f )+ fc

and obtain (33), hence A(r, s,K) = ∞.
If r � 4, s � r , r ≡ 0 mod 2, s ≡ 1 mod 2, we take n ≡ 1 mod 6,c

g = Tn(x)+ fs−1
(
x2cn−1), f = (x2cn−1 + 1

)
h
(
x2cn; r/2, g)

and obtain (34).
If r � 4, s � r , r ≡ 1 mod 2, s ≡ 0 mod 2, we take n ≡ 1 mod 6,

f = Tn(x)+ fr−1
(
x2cn−1), g = (x2cn−1 + 1

)
h
(
x2cn; s/2, f )

and again obtain (34), hence A(r, s,K) = ∞.c

Finally, if r � 4, s � r , r ≡ s ≡ 1 mod 2, we take n ≡ 1 mod 6,

f = Tn(x)+ fr−1
(
x2cn−1), h = h(x; (s − r)/2 + 1, f

)
,

g = (x2cn−1 + 1
)
h
(
x2cn+r )x2n−1 + h(0)f (x)

and infer that

(f, g) = x2n−1(x2cn−1, Tn(x)
)

has at least n/2 non-zero coefficients, hence A(r, s,K) = ∞. ��
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The first paper of this series [4] has concerned the supremumA(r, s,K) of the number
of non-zero coefficients of (f, g), where f, g run through all univariate polynomials over
a field K with exactly r and s non-zero coefficients, respectively. The only case where
A(r, s,K) has remained to be evaluated is r = s = 3, p = charK = 0. This case is
studied in the present paper. Let us denote by ζq a primitive complex root of unity of
order q, set

Pn,m(z) =
(
1 − zm)m/(n,m) (zm − zn)(n−m)/(n,m) (zn − 1

)−n/(n,m)
and for a trinomial

T (x) = xn + axm + b ∈ C[x], where n > m > 0, ab �= 0,

put

inv T = a−n/(n,m)b(n−m)/(n,m).
We shall prove the following results:

Theorem 1. Let Ti = xni +aixmi +bi ∈ C[x], aibi �= 0, ni > mi > 0 and di = (ni,mi)
(i = 1, 2). If (d1, d2) = 1, then

(1) deg(T1, T2) �

⎧⎪⎨⎪⎩
n2/d2 if inv T1 �= Pn1,m1(ζ

r
d2
) for all r,

n2/d2 + min{2, d1} if n1/d1 �= 4 or d2 �≡ 0 mod 10,

n2/d2 + min{3, n2/d2} always.

Theorem 2. For every quadruple 〈n1,m1, n2,m2〉 ∈ N4, where n1 > m1, n2 > m2,
〈n1,m1〉 �= 〈n2,m2〉 and (n1,m1, n2,m2) = 1 there exists an effectively computable
finite subset S of Q4 with the following property. If Ti = xni + aixmi + bi ∈ C[x],
aibi �= 0 (i = 1, 2), and deg(T1, T2) > 2, then

(2) Ti = uni T ∗
i

(x
u

)
, where u ∈ C∗, T ∗

i = xni + a∗i xmi + b∗i
and 〈a∗1 , b∗1, a∗2 , b∗2〉 ∈ S.
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Corollary 1. If inv Ti �∈ Q for at least one i � 2, or

T1(0)
− deg T2T2(0)

deg T1 �∈ Q

then (T1, T2) has at most three non-zero coefficients.

Corollary 2. We have

sup
K⊂C

A(3, 3,K) = A(3, 3,Q) = sup
[K:Q]<∞

A(3, 3,K).

Theorem 3. For every finite extensionK of Q and every pair 〈n,m〉 ∈ N2, where n > m,
there exists a finite set En,m(K) such that if Ti = xni + aixmi + bi ∈ K[x],
(3) inv Ti �∈ Eni,mi (K) (i = 1, 2)

and (n1,m1, n2,m2) = 1 then either T1 = T2, or deg(T1, T2) � 9.

Corollary 3. If (3) holds, then (T1, T2) has at most 10 non-zero coefficients.

At the end of the paper we give three examples of some interest.
R. Dvornicich has kindly looked through the paper and corrected several mistakes.

The proofs of Theorems 1 and 3 use a recent result of his [2] on the so-called cyclotomic
numbers, which we formulate below as

Lemma 1. Let z1, z2 be two complex roots of unity and letQ be the least common multiple
of their orders. If m, n are integers such that (m, n,Q) = 1 and

(4)
∣∣zn1 − 1

∣∣m ∣∣zn−m1 − 1
∣∣n−m ∣∣zn1 − 1

∣∣−n = ∣∣zm2 − 1
∣∣m ∣∣zn−m2 − 1

∣∣n−m ∣∣zn2 − 1
∣∣−n ,

where none of the six absolute values is 0, then either z1 = z±1
2 , or Q = 10, {m, n −

m,−n} = {x, 3x,−4x} with (x, 10) = 1 and z1, z2 are two primitive tenth roots of unity.

Proof. See [2], Theorem 1. ��

Remark. Lemma 1 can be extended to fields of arbitrary characteristic as follows. Let K
be a field of characteristic p, p = 0 or a prime, let zi (i = 1, 2) be roots of unity in K ,
z
Q
i = 1 and let m, n be positive integers such that m < n, (m, n,Q) = 1 and

1 �= zmi �= zni �= 1, Pn,m(z1) = Pn,m(z2).

If either p = 0 or p > 2(2n/(n,m)+1)ϕ(Q), then either z2 = z1 = z±1
1 , or n/(n,m) = 4

and z1, z2 are primitive tenth roots of unity.

Lemma 2. If (n,m, q) = 1 and

1 �= ζmq �= ζ nq �= 1, q �= 10,

then Pn,m(ζq) is an algebraic number of degree 1
2ϕ(q).
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Proof. We have Pn,m(ζ−1
q ) = Pn,m(ζq). On the other hand, if q > 2, 0 < r < s < q/2,

(r, s, q) = 1 we have by Lemma 1,∣∣Pn,m(ζ rq )∣∣ �= ∣∣Pn,m(ζ sq )∣∣,
hence Pn,m(ζq) has 1

2ϕ(q) distinct conjugates. ��

Lemma 3. Let n,m, q be positive integers with (n,m, q) = 1, n > m and T = xn +
axm + b ∈ C[x], ab �= 0. Set

C(T , q) = {c(m,n) : c ∈ C, deg(T , xq − c) � 2
}
.

We have

(5) cardC(T , q) � 1

unless n/(n,m) = 4 and q ≡ 0 mod 10, in which case

(6) cardC(T , q) � 2.

Moreover, if C(T , q) �= ∅, then T is separable and

(7) inv T = Pn,m(ζ rq ) for an r satisfying 1 �= ζ rmq �= ζ rnq �= 1.

Proof. By Theorem 1 of [4] we have deg(T , xq−c)� 2. Assume that deg(T , xq−c)= 2.
Since the binomial xq − c is separable we have

(T , xq − c) = (x − ξ1)(x − ξ2),
where ξqi = c (i = 1, 2), ξ2 = ξ1ζ rq , ζ rq �= 1.

By the formulae (13) and (14) of [4] we have

(8) aq = cn−m
(
ζ rnq − 1

1 − ζ rmq

)q
, bq = cn

(
ζ rmq − ζ rnq
1 − ζ rmq

)q
,

where 1 �= ζ rmq �= ζ rnq �= 1 and

inv T = Pn,m
(
ζ rq
)
,

which proves (7). Also, if for another value c′ we have

(T , xq − c′) = (x − ξ ′1)(x − ξ ′2)
where ξ ′i q = c′ (i = 1, 2), ξ ′2 = ξ ′1ζ r

′
q , it follows that

inv T = Pn,m
(
ζ r

′
q

)
, hence Pn,m(ζ

r
q ) = Pn,m

(
ζ r

′
q

)
.

Applying Lemma 1 with z1 = ζ rq , z2 = ζ r ′q we infer that either r ′ = ±r or n1/d1 = 4 and
q ≡ 0 mod 10, r ′ ≡ ±3r mod q. In the former case, by (8),

c′n−m = cn−m, c′n = cn,
hence c′(n,m) = c(n,m), which proves (5). In the latter case for any value c′′ with
deg(T , xq − c′′) � 2 we have c′′(n,m) = c(n,m) or c′(n,m), which proves (6).



D16. Greatest common divisor II 649

It remains to prove that if c(T , q) �= ∅, then T is separable. Now, by formula (11)
of [4]

discx T = (−1)n(n−1)/2anbm−1(nn′ inv T + (−1)n
′−1(n−m)n′−m′

mm
′)(n,m)

,

where n′ = n/(n,m), m′ = m/(n,m).
Thus, if T has double zeros we have

inv T = (−1)n
′
m′m′

(n′ −m′)n′−m′
n′−n′ .

Hence, by (7),

(9) (−1)n
′
m′m′

(n′ −m′)n′−m′
n′−n′ = (1 − ζ rmq

)m′(
ζ rmq − ζ rnq

)n′−m′(
ζ rnq − 1

)−n′
.

Now, since
(
n′,m′(n′ −m′)

) = 1 it follows that in the ring of integers of Q(ζq) we have

n′n′
∣∣ (ζ rnq − 1

)n′
, n′

∣∣ ζ rnq − 1.

On taking norms from Q(ζ rnq ) to Q we infer that n′ = 2, ζ rnq = −1, hence m′ = 1,
ζ rmq = ±ζ4 and (9) gives 1/4 = 1/2. The contradiction obtained shows our contention. ��

Proof of Theorem 1. Let

T2
(
x1/d2

) =∏
c∈C

(x − c)e(c),
∑
c∈C

e(c) = n2/d2.

We have

(10) deg(T1, T2) �
∑
c∈C

deg
(
T1, (x

d2 − c)e(c)) �
∑
c∈C

e(c) deg
(
T1, x

d2 − c).
If deg

(
T1, x

d2 − c) � 1 for all c ∈ C with e(c) � 1 the inequalities (1) follow.

If for at least one c, say c1, we have e(c1) � 1 and deg
(
T1, x

d2 − c1
)

� 2 then, by
Lemma 3, T1 is separable and inv T1 = Pn1,m1(ζ

r
d2
) for an r satisfying

1 �= ζ rm1
d2

�= ζ rn1
d2

�= 1.

This shows the first inequality of (1). Moreover, by (10),

(11)

deg(T1, T2) �
∑
c∈C

min{e(c), 1} deg
(
T1, x

d2 − c)
�
∑
c∈C

e(c)+
∑
e(c)�1

(
deg
(
T1, x

d2 − c)− 1
)

� n2

d2
+

∑
e(c)�1

deg(T1,x
d2−c)=2

1.

Ifn1/d1 �= 4 or d2 �≡ 0 mod 10, then by Lemma 3, deg
(
T1, x

d2−c) = 2 implies cd1 = cd1
1 ,
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hence by Theorem 1 of [4],∑
e(c)�1

(T1,x
d2−c1)=2

1 � deg
(
T2(x

1/d2), xd1 − cd1
1

)
� min{2, d1},

which together with (11) proves the second inequality of (1) and a fortiori, the third.
If n1/d1 = 4 and d2 ≡ 0 mod 10, then by Lemma 3 there exists a c2, possibly equal

to c1, such that deg
(
T1, x

d − c) = 2 implies cd1 = cdii for an i � 2. If cd1
2 = cd1

1 we are
in the previous case, otherwise

(12)
∑
e(c)�1

deg(T1,x
d2−c)=2

1 �
2∑
i=1

deg
(
T2(x

1/d2), xd1 − cd1
i

)
.

However, since d2 ≡ 0 mod 10 we have d1 �≡ 0 mod 10, hence, by Lemma 3,
cardC(T2(x

1/d2), d1) � 1 and the right hand side of (12) does not exceed 3. Since itc

also does not exceed deg T2
(
x1/d2

) = n2/d2 the third of the inequalities (1) follows. ��

Lemma 4. Let n > m > 0, d = (n,m), F = (1 − tm)xn + (tn − 1)xm + tm − tn. All
zeros of F in C((t)) are given by the Puiseux expansions

ζ δd , ζ
δ
d t : 0 � δ < d;

ζμmt +
ζ
μn
m − 1

m
ζμmt

n−m+1 + . . . : 0 � μ < m, μ �≡ 0 mod
m

d
;

ζ νn−m + ζ
νn
n−m − 1

n−m ζνn−mtm + . . . : 0 � ν < n−m, ν �≡ 0 mod
n−m
d

.

Proof. One applies the usual procedure (Newton polygons) for finding Puiseux expansions.
��

Lemma 5. Letni > mi > 0, di = (ni,mi), andFi = (1−tmi )xni+(tni−1)xmi+tmi−tni
(i = 1, 2). If (d1, d2) = 1 then either F1 = F2, or

(F1, F2) = (t − 1)(x − 1)(x − t).
Proof. The content C(Fi) of Fi viewed as a polynomial in x is tdi − 1, hence
(C(F1), C(F2)) = t − 1. On the other hand, by Lemma 4, F1 and F2 have two com-
mon zeros in C((t)), namely 1 and t , each with multiplicity 1; if there are any other
common zeros we have either

(13) ζμ1
m1
t + ζ

μ1n1
m1 − 1

m1
ζμ1
m1
tn1−m1+1 = ζμ2

m2
t + ζ

μ2n2
m2 − 1

m2
ζμ2
m2
tn2−m2+1,

where μi �≡ 0 mod mi
di
(i = 1, 2), or

(14) ζ
ν1
n1−m1

+ ζ
ν1n1
n1−m1

− 1

n1 −m1
ζ
ν1
n1−m1

tm1 = ζ ν2
n2−m2

+ ζ
ν2n2
n2−m2

− 1

n2 −m2
ζ
ν2
n2−m2

tm2 ,

where νi �≡ 0 mod ni−mi
di

(i = 1, 2).
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If (13) holds, we have

(15)

ζμ1
m1

= ζμ2
m2
, n1 −m1 + 1 = n2 −m2 + 1,

ζ
μ1n1
m1 − 1

m1
= ζ

μ2n2
m2 − 1

m2
.

Dividing the last equality by its complex conjugate we obtain

−ζμ1n1
m1

= −ζμ2n2
m2

�= −1,

hence m1 = m2, which together with (15) gives F1 = F2.
If (14) holds, we have

(16)

ζ
ν1
n1−m1

= ζ ν2
n2−m2

, m1 = m2,

ζ
ν1n1
n1−m1

− 1

n1 −m1
= ζ

ν2n2
n2−m2

− 1

n2 −m2
.

Dividing the last equality by its complex conjugate we obtain

−ζ ν1n1
n1−m1

= −ζ ν2n2
n2−m2

�= −1,

hence n1 −m1 = n2 −m2, which together with (16) gives F1 = F2. ��

Proof of Theorem 2. Let ni > mi > 0, (ni,mi) = di (i = 1, 2), (d1, d2) = 1 and
〈n1,m1〉 �= 〈n2,m2〉. In the notation of Lemma 5 and by virtue of that lemma the polyno-
mials Fi/(t−1)(x−1)(x− t) (i = 1, 2) are coprime, hence their resultantR with respect
to x is non-zero. We set

S =
{〈−n1

m1
,
n1 −m1

m1
,
−n2

m2
,
n2 −m2

m2

〉}
∪
{〈
ζ
r2n1
d2

− 1

1 − ζ r2m1
d2

,
ζ
r2m1
d2

− ζ r2n1
d2

1 − ζ r2m1
d2

,
ζ
r1n2
d1

− 1

1 − ζ r1m2
d1

,
ζ
r1m2
d1

− ζ r1n2
d1

1 − ζ r1m2
d1

〉
:

r2m1 �≡ 0 mod d2, r1m2 �≡ 0 mod d1

}
∪
{〈
tn1 − 1

1 − tm1
,
tm1 − tn1

1 − tm1
,
tn2 − 1

1 − tm2
,
tm2 − tn2

1 − tm2

〉
: R(t) = 0, tm1 �= 1 �= tm2

}
.

We proceed to show that the set S has the property asserted in the theorem. Since
R ∈ Q[t] we have S ⊂ Q4. Assume that deg(T1, T2) � 3. If (T1, T2) has a double zero ξ0
we set

T ∗
i (x) = ξ−ni0 Ti(ξ0x) (i = 1, 2)

and from the equations T ∗
i (1) = 0 = dT ∗

i

dx
(1) (i = 1, 2) we find that

a∗i = − ni
mi
, b∗i =

ni −mi
mi

(i = 1, 2),

hence
〈
a∗1 , b∗1, a∗2 , b∗2

〉 ∈ S and (2) holds with u = ξ0.
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If (T1, T2) has three distinct zeros ξ0, ξ1, ξ2 we set

T ∗
i (x) = ξ−ni0 Ti(ξ0x) (i = 1, 2).

Changing, if necessary, the role of T1 and T2 we have one of the three cases:
(i) (ξ1/ξ0)

d1 = 1 and (ξ2/ξ0)d2 = 1,
(ii) (ξ1/ξ0)

d1 = 1 and (ξ2/ξ0)d2 �= 1,
(iii) (ξ1/ξ0)d1 �= 1 and (ξ1/ξ0)d2 �= 1.

In case (i) we have ξj /ξ0 = ζ rjdj (j = 1, 2) and the equations T ∗
i (ξj /ξ0) = 0 (i = 1, 2)

give

a∗i =
ζ
r3−ini
d3−i − 1

1 − ζ r3−imid3−i
, b∗i =

ζ
r3−imi
d3−i − ζ r3−inid3−i

1 − ζ r3−imid3−i
, r3−imi �≡ 0 mod d3−i (i = 1, 2).

Hence
〈
a∗1 , b∗1, a∗2 , b∗2

〉 ∈ S and (2) holds with u = ξ0.
In case (ii) we have (ξ2/ξ0)d1 �= 1, since otherwise T2 would have three common zeros

with xd1 − ξd1
0 , contrary to Theorem 1 of [4].

Hence (ξ2/ξ0)di �= 1 (i = 1, 2) and the equations T ∗
i (ξ2/ξ0) = 0 (i = 1, 2) give

(ξ2/ξ0)
m1 �= 1 �= (ξ2/ξ0)m2

and

a∗i =
(ξ2/ξ0)

ni − 1

1 − (ξ2/ξ0)mi , b∗i =
(ξ2/ξ0)

mi − (ξ2/ξ0)ni
1 − (ξ2/ξ0)mi .

The polynomials T ∗
i /(x − 1)(x − ξ2/ξ0) (i = 1, 2) have a common zero ξ1/ξ0, hence

R(ξ2/ξ0) = 0. It follows that
〈
a∗1 , b∗1, a∗2 , b∗2

〉 ∈ S and (2) holds with u = ξ0.
In case (iii) we have (ξ1/ξ0)di �= 1 (i = 1, 2) and we reach the desired conclusion

replacing in the above argument ξ2 by ξ1. ��
Proof of Corollary 1. Sincef andf (xd) have for everyf ∈ C[x] and every d ∈ N the same
number of non-zero coefficients we may assume that (n1,m1, n2,m2) = 1. If T1 = T2
then (T1, T2) = T1 has three non-zero coefficients. If T1 �= T2, but 〈n1,m1〉 = 〈n2,m2〉,
then by Theorem 2 of [4]

(T1, T2) =
(
(a1 − a2)x

m1 + b1 − b2, (a1 − a2)x
n1 + a1b2 − a2b1

)
has at most two non-zero coefficients. If 〈n1,m1〉 �= 〈n2,m2〉 then by Theorem 2 either
deg (T1, T2) � 2, or (2) holds. However in the latter case

inv Ti = inv T ∗
i ∈ Q (i = 1, 2)

and

T1(0)
− deg T2T2(0)

deg T1 = T ∗
1 (0)

− deg T2T ∗
2 (0)

deg T1 ∈ Q. ��
Proof of Corollary 2. The second equality is clear. In order to prove the first, note that
A(3, 3,Q) � 3. On the other hand, if (T1, T2) has more than three non-zero coefficients,
then by Corollary 1,

inv Ti ∈ Q (i = 1, 2),
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hence

Ti = udeg Ti
i T ∗∗

i

( x
ui

)
, where ui ∈ C∗, T ∗∗

i ∈ Q[x].
Moreover, also by Corollary 1,(u2

u1

)deg T1 deg T2
T ∗∗

1 (0)
− deg T2T ∗∗

2 (0)
deg T1 ∈ Q,

hence v = u2/u1 ∈ Q and (T1, T2) has the same number of non-zero coefficients as
(T ∗∗

1 , T
∗∗
2 (x/v)), where both terms belong to Q[x]. ��

Lemma 6. Let n,m be positive integers, n > m and a, b ∈ K∗, where K is a finite
extension of Q. If F is a monic factor of xn/(n,m) + axm/(n,m) + b in K[x] of maximal
possible degree d � 2 and n/(n,m) > max{6, 9 − 3d}, then

xn + axm + b
F(x(n,m))

is reducible over K if and only if there exists a positive integer l | (n,m) such that

a = u(n−m)/la0, b = un/lb0, F = ud(n,m)/lF0

( x

u(n,m)/l

)
,

c

where u ∈ K∗, 〈a0, b0, F0〉 ∈ Fdn/l,m/l(K) and Fdn/l,m/l(K) is a certain finite set, possibly
empty.

Proof. See [3], Theorem 3. ��

Lemma 7. Leta, b ∈ K∗,n > m > 0, d = (n,m). Letf (x)be a factor of xn/d+axm/d+b
of degree at most 2. If n > 2d , then (n,m) is the greatest common divisor of the exponents
of powers of x occuring with non-zero coefficients in (xn+ axm+ b)/f (x(n,m)) =: Q(x).

Proof. We may assume that f is monic and d = 1. If f (x) = 1 the assertion is obvious.
If f (x) = x − c, then Q(x) contains terms xn−1 and cxn−2, unless m = n − 1 and
a = −c. But in the latter case x − c |b, which is impossible. If f (x) = x2 − px − q,
we first observe that p �= 0. Otherwise, we should have qn/2 + aqm/2 + b = 0 and also
(−1)nqn/2 + a(−1)mqm/2 + b = 0, which, since at least one of the numbers n,m is
odd, gives ab = 0. Now (xn + axm + b) /(x2 − px − q) contains the terms xn−2 and
pxn−3, unless m = n − 1 and a = −p. It also contains the terms −b/q and (b/q2)px,
unless m = 1, a = (b/q)p. However m = n − 1 and m = 1 give n = 2, contrary to the
assumption. ��

Lemma 8. If n > m > 0, n > 3, abc �= 0, then (xn + axm + b)(x − c) has six non-zero
coefficients, unless either m = n − 1 or m = 1, when there are at least four non-zero
coefficients. Only in the former case does xn−1 occur with a non-zero coefficient.

Proof. We have

(xn + axm + b)(x − c) = xn+1 − cxn + axm+1 − axm + bx − cb.
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The cancellation can occur only between the second and the third term (if m = n− 1), or
between the fourth and the fifth term (if m = 1). ��

Lemma 9. If n > m > 0, n > 6, abpq �= 0, then (xn + axm + b) (x2 −px+q) has nine
non-zero coefficients, unlessm � n−2 orm � 2, when there are at most eight. Ifm = n−1
there are at least five non-zero coefficients, including that of xn−1; if m = n− 2 there are
at least seven non-zero coefficients, including that of xn−2. If m � 2 the coefficients of
xn−1 and xn−2 are zero.

Proof. We have(
xn + axm + b)(x2 − px + q)

= xn+2 − pxn+1 + qxn + axm+2 − apxm+1 + aqxm + bx2 − bpx + bq.
The cancellation can occur only if m � n − 2 or m � 2 and all the assertions are easily
checked. ��

Lemma 10. Let di = (ni,mi) (i = 1, 2) and let fi(x) be a monic factor of degree � 2 of
xni/di + aixmi/di + bi . If ni/di > 6 and

(17)
xn1 + a1x

m1 + b1

f1
(
xd1
) = xn2 + a2x

m2 + b2

f2
(
xd2
) ,

then

(18) xn1 + a1x
m1 + b1 = xn2 + a2x

m2 + b2.

Proof. By Lemma 7, d1 = d2, hence we may assume without loss of generality that
d1 = d2 = 1. Then the equality (17) gives

(19)
(
xn1 + a1x

m1 + b1
)
f2(x) =

(
xn2 + a2x

m2 + b2
)
f1(x)

and we may assume without loss of generality that deg f1 � deg f2. Moreover, since (19)
is equivalent to

(
xn1 + a1b

−1
1 x

n1−m1 + b−1
1

)xdeg f2f2(x
−1)

f2(0)

= (xn2 + a2b
−1
2 x

n2−m2 + b−1
2

)xdeg f1f1(x
−1)

f1(0)
,

we may assume that

(20) 2m2 � n2.

If deg f2 = 0, then the left hand side of (19) has only three non-zero coefficients, thus
by Lemmas 8 and 9 applied to the right hand side deg f1 = 0 and (18) follows.

If deg f2 = 1 < 2 = deg f1, then the left hand side of (19) has at most six non-zero
coefficients, which by Lemma 9 and condition (20) gives m2 = n2 − 1. Since ni > 6c
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taking the residues mod x4 of both sides of (19) we obtain

(21) (a1x
m1 + b1)f2(x) ≡ b2f1(x)mod x4,

hence m1 = 1, (21) is an equality and subtracting it from (19) givesc

xn1f2(x) =
(
xn2 + a2x

n2−1)f1(x),

a contradiction mod f1.
If deg f2 = 1 = deg f1, then n1 = n2. If m2 �= n2 − 1, then by Lemma 8 and (20)

the right hand side of (19) has six non-zero coefficients, thus also on the left hand side no
terms coalesce and we have b1f2 = b2f1, hence f2 = f1 and (18) follows. Ifm2 = n2−1,
then on the right hand side of (19) we have five or four non-zero coefficients, including
that of xn2−1, hence by Lemma 8, m1 = n1 − 1. Taking the residues of both sides of (19)
mod x3 we find b1f2 = b2f1, hence f2 = f1 and (18) follows. If deg f1 = deg f2 = 2,
then again n1 = n2. If m2 < n2 − 2, then on the right hand side of (19) we have nine
non-zero coefficients, hence also on the left hand side no two terms coalesce and taking
residues mod x3 we obtain b1f2 = b2f1, hence f2 = f1 and (18) follows. Ifm2 � n2−2,
then by Lemma 9 the number of non-zero coefficients on the right hand side of (19) is at
most eight and xm2 occurs with a non-zero coefficient, hence also on the left hand side we
have at most eight non-zero coefficients and either xn1−1 or xn1−2 occurs with a non-zero
coefficient. Again by Lemma 9, m1 � n1 − 2. Taking the residues of both sides of (19)
mod x3 we find b1f2 = b2f1, hence f2 = f1 and (18) follows. ��

Proof of Theorem 3. Put

Fn,m(K) = K ∩ {Pn,m(ζ rq ) : 0 � r < q, 1 �= ζ rmq �= ζ rnq �= 1
}
.

The set Fn,m(K) is finite since by Lemma 2 the condition Pn,m(ζ rq ) ∈ K implies

either
q

(q, r)
= 10 or

1

2
ϕ

(
q

(q, r)

)
� [K : Q]

and this leaves only finitely many possibilities for ζ rq . We set

En,m(K) = Fn,m(K) ∪
⋃
d�2

⋃
l |(n,m)

⋃
〈a0,b0,F0〉∈Fdn/l,m/l (K)

{
a
−n/(n,m)
0 b

(n−m)/(n,m)
0

}
,

where Fdν,μ(K) are as in Lemma 6.
Now, let di = (ni,mi) and let fi be a monic polynomial over K of maximal possible

degree δi � 2 dividing Ti
(
x1/di

)
(i = 1, 2). We may assume without loss of generality

that n2/d2 � n1/d1.
If n2/d2 � 9, then, since inv T2 /∈ Fn2,m2(K), by Theorem 1 we have

(22) deg(T1, T2) � n2/d2 � 9.

If n2/d2 > 9, then by Lemma 6 either Ti/fi
(
xdi
)

is irreducible over K or there exist an

integer l |di , an element u of K∗ and 〈a0, b0, F0〉 ∈ Fδini/ l,mi/ l(K) such that

Ti(x) = xni + u(ni−mi)/la0x
mi + uni/ lb0, fi = uδidi/ lF0

( x

udi/ l

)
.

c
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These conditions give

inv Ti = a−ni/di0 b
(ni−mi)/di
0 ∈ Eni,mi (K),

contrary to the assumption. Therefore Ti/fi
(
xdi
)

is irreducible overK for i = 1, 2 and we
have

either T1/f1(x
d1) = T2/f2(x

d2) or
(
T1/f1(x

d1), T2/f2(x
d2)
) = 1.

In the former case we have T1 = T2 by Lemma 10; in the latter case

(23) (T1, T2) =
(
T1, f2(x

d2)
) (
T2, f1(x

d1)
)(

f1(xd1), f2(xd2)
) .

However, by Lemma 3 if deg f3−i = 1, or if deg f3−i = 2 and f ′
3−i (0) = 0 and by

Theorem 1 otherwise, we have

deg
(
Ti, f3−i (xd3−i )

)
� deg f3−i � 2,

which by (23) gives

(24) deg(T1, T2) � 2 + 2 = 4.

The alternative (22) or (24) gives the theorem. ��

We shall now give the promised examples.

Example 1. Let ni > mi > 0, di = (ni,mi), 0 �≡ mi �≡ ni �≡ 0 mod d3−i for i = 1, 2,
(d1, d2) = 1, and

Ti(x) = xni +
ζ
r3−ini
d3−i − 1

1 − ζ r3−imid3−i
xmi + ζ

r3−imi
d3−i − ζ r3−inid3−i

1 − ζ r3−imid3−i
(i = 1, 2),

where r3−i is chosen so that

1 �= ζ r3−imid3−i �= ζ r3−inid3−i �= 1 (i = 1, 2).

Here (T1, T2) has the following distinct zeros 1, ζ r1d1
, ζ r2d2

, ζ r1d1
ζ
r2
d2

, hence

deg(T1, T2) � 4.

If n2/d2 = 2 this shows that the second and the third inequality of (1) are exact in infinitely
many essentially different cases and the condition for the first inequality is not superfluous.

Example 2. Let T1 = x4 − 5x + 5, T2 = x20 + 54x10 + 55. Here (T1, T2) = T1, hence

deg(T1, T2) = 4 > n2/d2 + min{2, d1}.
This shows that the condition for the second inequality of (1) is not superfluous.

Example 3 (due to S. Chaładus [1]). Let

T1 = x7 + 9x2 + 27 and T2 = x15 − 27x9 + 729.c



D16. Greatest common divisor II 657

Here

(T1, T2) = x5 + 3x4 + 6x3 + 9x2 + 9x + 9.

Since inv T1 = 3, d2 = 3, and Pn1,m1

(
ζ±1

3

) = 1, in this case the first inequality of (1) is
exact. Moreover (T1, T2) has six non-zero coefficients, which is the present record.
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On the reduced length of a polynomial
with real coefficients

To Professor Eduard Wirsing
with best wishes for his 75th birthday

Abstract. The length L(P ) of a polynomial P is the sum of the absolute values of the coefficients.
For P ∈ R[x] the properties of l(P ) are studied, where l(P ) is the infimum ofL(PG) forG running
through monic polynomials over R.

We shall consider only polynomials with real coefficients. For such a polynomial P =
d∑
i=0
aix

d−i the length L(P ) is defined by the formula

L(P ) =
d∑
i=0

|ai |.

A. Dubickas [1] has introduced the reduced length by the formula

l̂ (P ) = inf
G∈Γ̂

L(PG),

where

Γ̂ =
{ n∑
i=0

bix
n−i ∈ R[x], where b0 = 1 or bn = 1

}
.

It follows, see [1], p. 3, that

l̂ (P ) = min{l0(P ), l0(P ∗)},
where

l0(P ) = inf
G∈Γ0

L(PG), Γ0 =
{ n∑
i=0

bix
n−i ∈ R[x], bn = 1

}
, P ∗ = xdegPP (x−1).

Since polynomials with the leading coefficient 1 have a name (monic) and polynomials
with the constant term 1 have no name, I prefer to work with

l(P ) = l0(P ∗) = inf
G∈Γ L(PG), Γ =

{ n∑
i=0

bix
n−i ∈ R[x], b0 = 1

}
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Dubickas’s results about l0 translated in the language of l give the following

PropositionA. Suppose thatω, η,ψ ∈ R, ν ∈ C, ν is the complex conjugate to ν, |ω| � 1,
|η| < 1, |ν| < 1, then for everyQ ∈ R[x]
(i) l(ψQ) = |ψ |l(Q),
(ii) l(x + ω) = 1 + |ω|,
(iii) if T (x) = Q(x)(x − η), then l(T ) = l(Q),
(iv) if T (x) = Q(x)(x − ν)(x − ν), then l(T ) = l(Q).

We shall prove the following

Proposition. For all monic polynomials P,Q in R[x] and all positive integers k

(i) max{l(P ), l(Q)} � l(PQ) � l(P )l(Q),
(ii) M(P) � l(P ), whereM is the Mahler measure,
(iii) l(P (−x)) = l(P (x)),
(iv) l(P (xk)) = l(P (x)).

Theorem 1. If P ∈ R[x] is monic of degree d with P(0) �= 0, then l(P ) = inf
Q∈Sd(P )

L(Q),

where Sd(P ) is the set of all monic polynomials Q over R divisible by P with Q(0) �= 0
and with at most d + 1 non-zero coefficients, all belonging to the field K(P ), generated
by the coefficients of P .

Theorem 2. If P ∈ R[x] has all zeros outside the unit circle, then l(P ) is attained and
effectively computable, moreover l(P ) ∈ K(P ) (l(P ) is attained means that l(P ) = L(Q),
whereQ/P ∈ Γ ).

Corollary 1. If P ∈ R[x] has no zeros on the unit circle, then l(P ) is effectively com-
putable.

Theorem 3. Let P,Q ∈ R[x],Q be monic and have all zeros on the unit circle. Then for
all m ∈ N

l(PQm) = l(PQ).

Theorem 4. If P ∈ R[x] is monic and have all zeros on the unit circle, then l̂ (P ) =
l(P ) = 2, with l(P ) attained, if and only if all zeros are roots of unity and simple.

Theorem 5. Let P(x) = P0(x)(x − ε)e, where P0 ∈ R[x], ε = ±1, e ∈ N and all
zeros of P0 are outside the unit circle. Assume that the set Z of zeros of P0 has a subset
Z0, possibly empty, such that its elements are real of the same sign and the elements of
Z \Z0 are algebraically independent over Q(Z0). Then l(P ) can be effectively computed.
Moreover, if degP0 = d0, then

l(P ) � inf
Q∈Sd0 (P0)

{
L(Q)+ ∣∣Q(ε)∣∣}.
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For quadratic polynomials P Theorems 2, 4 and 5 together with Proposition A(iii) and
(iv) exhaust all possibilities, so that l(P ) can be effectively computed. A more precise
information is given by the following

Theorem 6. If P(x) = (x − α)(x − β), where |α| � |β| � 1, then

l(P ) � 2|α|
with the equality attained, if and only if |β| = 1.

Corollary 2. If P ∈ R[x] is of degree at most two with no zeros inside the unit circle, then

l(P ) ∈ K(P ).

Corollary 3. If P(x) = (x − α)(x − β), where |α| � |β| � 0, then

l̂ (P ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

|αβ| if |β| > 1,

2|α| if |β| = 1,

|α| + min{1, |αβ|} if |α| > 1 > |β|,
2 if |α| = 1,

1 if |α| < 1.

Corollary 4. The function l̂ is not submultiplicative.

The last corollary is of interest, because of Proposition, part (i).
The problem of computing l(P ) for cubic polynomials remains open already for P =

2x3 + 3x2 + 4. Another open question is whether l(P ) ∈ K(P ) for all P ∈ R[x] with no
zeros inside the unit circle.

We begin with

Proof of Proposition. We have by definition for all monic polynomials R, S in R[x]
l(P ) � L(PQR), l(PQ) � L(PQRS) � L(PR)L(QS),

hence

l(P ) � inf
R∈Γ L(PQR) = l(PQ),

l(PQ) � inf
R∈Γ L(PR) inf

S∈Γ L(QS) = l(P )l(Q).
This proves (i). As to (ii) we have for every R in R[x]

M(R) � L(R)
(see [4]), hence

M(P) � M(PQ) � L(PQ),
thus

M(P) � inf
Q∈Γ L(PQ) = l(P )



D17. On the reduced length of a polynomial 661

and (ii) holds. The statement (iii) follows from

L
(
P(−x)) � L

(
P(−x)Q(−x)(−1)degQ) = L(PQ),

whence

l
(
P(−x)) � inf

Q∈Γ L(PQ) = l(P ).
Similarly,

l
(
P(xk)

)
� L
(
P(xk)Q(xk)

) = L(PQ),
whence

(1) l
(
P(xk)

)
� inf
Q∈Γ L(PQ) = l(P ).

Finally, if

(2) P(xk)Q(x) =
k−1∑
i=0

xiAi(x
k), where Ai ∈ R[x],

let Ai = QiP + Ri , whereQi,Ri ∈ R[x] and degRi < degP . It follows that

P(xk)

∣∣∣ k−1∑
i=0

xiRi(x
k)

and since the degree of the sum is less than that of P(xk), Ri = 0 (0 � i < k). Let i be
chosen so that deg xiAi(xk) is the greatest. It follows from (2) that Qi is monic. Hence,
by (2)

L
(
P(xk)Q(x)

)
� L(Ai) = L(PQi) � l(P ),

thus l(P (xk)) � l(P ), which together with (1) implies (iv). ��

Remark. The above proof of (iv), simpler than author’s original proof, has been kindly
suggested by A. Dubickas.

For the proof of Theorem 2 we need two lemmas

Lemma 1. Let k � n, x = (x1, . . . , xn), Li(x) for i � k be linear forms over R;
L1, . . . , Ln linearly independent, ai ∈ R (1 � i � k). Then

S(x) =
k∑
i=1

|Li(x)+ ai |

attains its infimum.

Proof. Let Li(x) =
n∑
j=1
aij xj (1 � i � k), A = max

i,j�n
|aij |,

D = ∣∣det(aij )i,j�n
∣∣, s =

k∑
i=1

|ai |.



662 D. Polynomials in one variable

Let s0 be the infimum of S(x) in the hypercube (degenerated if s = 0)

H : max
1�i�n

|xi | � 2n(n−1)/2sAn−1

D
.

Since H is compact, there exists x0 ∈ H such S(x0) = s0. We shall show that s0 =
inf

x∈Rn
S(x). Indeed, if for some x1 ∈ Rn

(3) S(x1) < s0,

then
n∑
i=1

|Li(x1)| < s0 + s � 2s.

Solving the system Li(x) = Li(x1) (1 � i � n) by means of Cramer’s formulae and
using Hadamard’s inequality to estimate the relevant determinants we obtain

max
1�i�n

|x1i | < 2n(n−1)/2sAn−1

D
,

hence x1 ∈ H , a contradiction with (3) and the definition of s0. ��

Lemma 2. Let k � n, x = (x1, . . . , xn), K be a subfield of R, L1(x), . . . , Lk(x) be
linear forms overK , n of them linearly independent, ai ∈ K . There exists a point x0 ∈ Kn
in which S(x) =

k∑
i=1

|Li(x)+ ai | attains its infimum over Rn and Li(x0)+ ai = 0, for n

indices i = i1, i2, . . . , in such that Li1 , Li2 , . . . , Lin are linearly independent.

Proof by induction on k. If k = 1 we have n = 1 and the assertion is trivial. Assume it
is true for k − 1 forms and consider the case of k forms, k � 2. If one of them, say Lk , is
identically 0, then among L1, . . . , Lk−1 there are n linearly independent, hence k− 1 � n
and applying the inductive assumption toL1, . . . , Lk−1 we obtain the assertion. Therefore,
we assume that all forms L1, . . . , Lk are non-zero. Suppose that inf S(x) = S(x1) and
Li(x1) + ai �= 0 for all i � k. Then there is an ε > 0 such that |x − x1| < ε implies
sgn(Li(x)+ ai) =: εi for all i � k. We have

S(x) =
k∑
i=1

εi(Li(x)+ ai) = M(x − x1)+ S(x1),

where

M(y) =
k∑
i=1

εiLi(y).

If M �= 0, then there exists a point y0 with |y0| < ε and M(y) < 0, hence taking
x2 = x1 + y0 we obtain S(x2) < S(x1), a contradiction. Thus either Li1(x1)+ ai1 = 0
for a certain i1, or M = 0. In the latter case we take the point x2 nearest to x1 (or one
of these) with Li2(x2) + ai2 = 0 for a certain i2. Since the hyperplanes Li(x) + ai = 0
either are disjoint with the ball |x − x1| � |x2 − x1|, or are tangent to it, taking 〈x3, i3〉
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equal either to 〈x1, i1〉 or to 〈x2, i2〉 we obtain S(x3) = S(x1) and Li3(x3) + ai3 = 0.
Without loss of generality we may assume that i3 = k and Lk is of positive degree
in xn. The equation Lk(x) + ak = 0 is equivalent to xn = C(x1, . . . , xn−1) + c, where
C is a linear form over K and c ∈ K . We now apply the inductive assumption to the
forms L′

i = Li(x1, . . . , xn−1, C(x1, . . . , xn−1)) and numbers a′i = ai + Li(0, . . . , 0, c)
(1 � i � k − 1). By virtue of the theorem about the rank of the product of matrices, the
number of linearly independent among forms L′

i is n − 1. By the inductive assumption

there exists a point x′
0 ∈ Kn−1 such that

k−1∑
i=1

|L′
i (x

′)+a′i | = S′(x′) attains at x′
0 its infimum

over Rn−1 andL′
i (x

′
0)+a′i = 0 for n−1 indices i = i′1, . . . , i′n−1 such thatL′

i′1
, . . . , L′

i′n−1

are linearly independent. By the definition of L′
i and a′i we have

S(x3) = S′(x3,1, . . . , x3,n−1) � inf
x′∈Rn−1

S′(x′) � inf
x∈Rn

S(x) = S(x3),

hence

S′(x′
0) = inf

x′∈Rn−1
S′(x′) = inf

x∈Rn
S(x).

Moreover, L′
i′j
(x′

0)+ a′i′j = 0 implies

L′
i′j
(x′0,1, . . . , x′0,n−1, C(x

′
0))+ aij = 0

and the linear independence ofL′
i′1
, . . . , L′

i′n−1
implies the linear independence of the forms

Li′1 , . . . , Li′n−1
. The latter forms are also linearly independent with Lk since the identity

L1(x1, . . . , xn) =
n−1∑
j=1

cjLi′j (x1, . . . , xn), cj ∈ R,

gives on substitution xn = C(x1, . . . , xn−1)

0 =
n−1∑
j=1

cjL
′
ij
(x1, . . . , xn), hence cj = 0 (1 � j < n).

Taking x0 = (x′0,1, . . . , x′0,n−1, C(x
′
0)), ij = i′j (1 � j < n), in = k we obtain the

inductive assertion. ��

Proof of Theorem 1. We have by definition

l(P ) = inf L(PG),

where G runs through all monic polynomials. Let

P = xd +
d∑
i=1

aix
d−i , G = xn +

n∑
i=1

xix
n−i .
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We have

PG = xn+d +
n+d∑
i=1

bix
n+d−i ,

where, with a0 = 1, for i � d

bi = ai +
min{i,n}∑
j=1

ai−j xj ,

for i > d

bi =
min{i,n}∑
j=i−d

ai−j xj .

Therefore,

l(P ) = 1 + inf
n,x∈Rn

{ d∑
i=1

|Li(x)+ ai | +
d+n∑
i=d+1

|Li(x)|
}
,

where

Li(x) =
min{i,n}∑

j=max{1,i−d}
ai−j xj .

The forms Li satisfy the assumptions of Lemma 2. Indeed, the n forms Ld+1, . . . , Ld+n
are linearly independent, since Ld+1(x) = . . . = Ld+n(x) = 0 gives PG ≡ 0 (mod xn),
henceG ≡ 0 (mod xn), i.e. x1 = . . . = xn = 0. Applying Lemma 2 and Proposition A(iii)
with η = 0 we obtain that for a given n, PG with the minimal length occurs in Sd(P ). ��

For the proof of Theorem 2 we need

Definition 1. Let P =
r∏
s=1
(x − αs)ms , where αs are distinct and non-zero, ms ∈ N

(1 � s � r), m1 + . . . + mr = d � δ, n0 > n1 > . . . > nδ−1 > nδ � 0 be integers. If
1 � i � d, 0 � j � δ, then i can be written in the form i = m1 + . . . + ms−1 + g for
some 1 � s � r and 1 � g � ms . We put

cij = αnjs
g−2∏
f=0

(nj − nf ), where the empty product is 1

and for ν = 0, 1

C(P ; n0, . . . , nδ) = (cij )1�i�d
0�j�δ

, Cν(P ; nν, . . . , nδ−1+ν) = (cij ) 1�i�d
ν�j<δ+ν

.
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Definition 2. Td(P ) = {Q ∈ Sd(P ) : Q = xn0 +
δ∑
j=1
bjx

nj , where n0 > n1 >

. . . > nδ = 0,
δ∏
j=1
bj �= 0, rankC0(P ; n0, . . . , nδ−1) = δ = rankC1(P ; n1, . . . , nδ),

L(Q) � L(P )
}
.

Lemma 3. We have for xj ∈ C

(41)

d∑
j=0

xjx
nj ≡ 0 (mod P)

if and only if

(42)

d∑
j=0

cij xj = 0 (1 � i � d).

Proof. Clearly the condition (41) is equivalent to

d∑
j=0

xj

(
nj

g − 1

)
α
nj
s = 0 (1 � g � ms, 1 � s � r),

that is to the vector equation

(5) Mx = 0,

where x = (x0, x1, . . . , xd)
t , M = (mij )1�i�d

0�j�d
and if i = m1 + . . . + ms−1 + g,

1 � g � ms , then

(6) mij =
(
nj

g − 1

)
α
nj
s .

Now define the numbers bgh by the equation

(7)
g−2∏
f=0

(x − nf ) =
g∑
h=1

bgh

(
x

h− 1

)
and put for i = m1 + . . .+ms−1 + g, 1 � g � ms , 1 � j � d,

aij =
{
bgh if j = m1 + . . .+ms−1 + h, 1 � h � g,
0 otherwise,

(8)

A = (aij )1�i,j�d .(9)

The matrixA is lower triangular and non-singular, since bgg = (g−1)!. Hence the equation
(5) is equivalent to

(10) AMx = 0.
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However, by (6)–(9) the element in i-th row (1 � i � d) and j -th column (0 � j � d) of
AM for i = m1 + . . .+ms−1 + g, 1 � g � ms , is

d∑
t=1

aitmtj =
g∑
h=1

bgh

(
nj

h− 1

)
α
nj
s = αnjs

g−2∏
f=0

(nj − nf ) = cij ,

hence (41) is equivalent to (42). ��

Lemma 4. We have inf
Q∈Sd(P )

L(Q) = inf
Q∈Td(P )

L(Q).

Proof. Let P be as in Definition 1. We shall prove that for every n � 0

(11) inf
Q∈Sd(P )

degQ=n+d
L(Q) = inf

Q∈Td(P )
degQ=n+d

L(Q).

It follows from the proof of Theorem 1 that

(12) inf
Q∈Sd(P )

degQ=n+d
L(Q) = L(Q0),

where

Q0 = xn0 +
δ∑
j=1

bjx
nj ∈ K(P )[x], δ � d,

δ∏
j=1

bj �= 0,(13)

n0 > n1 > . . . > nδ = 0.

Let Li(x) be the linear forms defined in the proof of Theorem 1 and ai have the meaning
of that proof if i � d , ai = 0 otherwise. We have

(14) L(Q0) = 1 + inf
x∈Rn

n+d∑
i=1

|Li(x)+ ai |,

hence, by Lemma 2, the above infimum is attained at a point x0 such that for n indices
i1, . . . , in simultaneously Lij (x0) + aij = 0 and Li1 , . . . , Lin are linearly independent.
Since the system of equations Lij (x0)+ aij = 0 (1 � j � n) determines x0 uniquely, the
coefficients of xn+d−i in Q, where i �= i1, i2, . . . , in (hence, in particular, n + d − i =
n1, . . . , nδ) are uniquely determined by the conditionQ ≡ 0 (mod P),Q monic in C[x].
On the other hand, if rankC0(P ; n0, . . . , nδ−1) < δ, then there exists [d0, . . . , dδ−1] ∈
Cδ \ {0} such that

δ−1∑
j=0

cij dj = 0 (1 � i � d),

hence by Lemma 3

(15)
δ−1∑
j=0

djx
nj ≡ 0 (mod P).
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If d0 = 0, then

Q1 := Q0 +
δ−1∑
j=1

djx
nj ≡ 0 (mod P),

where the polynomial Q1 is again monic, contrary to the uniqueness property. If d0 �= 0,
then by the uniqueness property

Q0 = d−1
0

δ−1∑
j=1

djx
nj ,

henceQ0(0) = 0, contrary to (13).
If rankC1(P ; n1, . . . , nδ) < δ, then there exists [e1, . . . , eδ] ∈ Cδ \ {0} such that

δ∑
j=1

cij ej = 0 (1 � i � d),

hence by Lemma 3

(16)
δ∑
j=1

ej x
nj ≡ 0 (mod P).

We have

Q2 := Q0 +
δ∑
j=1

ej x
nj ≡ 0 (mod P)

andQ2 is again monic, contrary to the uniqueness property.
In the remaining case

rankC0(P ; n0, . . . , nδ−1) = δ = rankC1(P ; n1, . . . , nδ)

we haveQ0 ∈ Td(P ), hence (11) holds. ��
Lemma 5. Let in the notation of Definition 1, i = m1 + . . .+ms(i)−1 + g(i), 1 � g(i) �
ms(i). Then for every j � h � g(i)− 1

(17) |cij | � |cih|max

{
1,
g(i)− 1

log |αs(i)|
}g(i)−1

.

Proof. For the sake of brevity, put s(i) = s, g(i) = g. For g = 1 we have |cij | = |αnjs | �
|αnhs | = |cih|. Assume g > 1. For every f � g − 2 the function

ϕ(x) = max

{
1,
g − 1

log |αs |
}
|αs |(nh−x)/(g−1) − nf − x

nf − nh
satisfies ϕ(nh) � 0, ϕ′(x) � 0 for x � nh. Hence ϕ(nj ) � 0,

max

{
1,
g − 1

log |αs |
}
|αs |nh/(g−1)(nf − nh) � |αs |nj /(g−1)(nf − nj )

and (17) follows on taking products over f from 0 to g − 2. ��
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Lemma 6. Let a, b, c, x ∈ R, a > 1, b � 0, c > 0, x > 0. If

(18) ax/xb � c,

then

(19) x �

⎛⎝ 2b

e log a
+
√

b2

e2(log a)2
+ log c

log a

⎞⎠2

=: ψ(a, b, c).

The function ψ is decreasing in a, increasing in b and c.

Proof. Put x = y2, y > 0. It follows from (18) that

y2 log a − 2b log y � log c

and, since log y � y/e,

y2 log a − 2b

e
y � log c.

Solving this inequality for y and squaring we obtain (19). ��

Lemma 7. For every subset I of {1, . . . , d} of cardinality h we have

(20)
∣∣∣det(cij ) i∈I

1�j�h

∣∣∣ � hh/2∏
i∈I

|αs(i)|nmax{1,g(i)−1}
g(i)−2∏
f=0

(nf − nh)

and

(21)
∣∣∣det(cij ) i∈I

0�j<h

∣∣∣ � hh/2∏
i∈I

|αs(i)|ng(i)−1

g(i)−2∏
f=0

(nf − nh−1).

Proof. For all i ∈ I and j � g(i)− 2 we have cij = 0, while for j > g(i)− 2

|cij | = |αs(i)|nj
g(i)−2∏
f=0

(nf − nh) �

⎧⎪⎪⎪⎨⎪⎪⎪⎩
|αs(i)|nmax{1,g(i)−1}

g(i)−2∏
f=0

(nf − nh) if 1 � j � h,

|αs(i)|ng(i)−1
g(i)−2∏
f=0

(nf − nh−1) if 0 � j < h,

hence (20) and (21) follow by Hadamard’s inequality. Note that if g(i) > h+1 or g(i) > h
for i ∈ I , then both sides of (20) or (21), respectively, are zero. ��

Definition 3. In the notation of Definition 1 and of Lemma 5 put for a positive integer
h < d , positive integers e1, . . . , eh and a subset J of {1, . . . , d} of cardinality h+ 1 such
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that max
i∈J g(i) � h+ 1

D(J ; e1, . . . , eh) =
∣∣∣∣det

(
α

h∑
μ=j+1

eμ

s(i)

g(i)−2∏
f=0

j∑
ν=f+1

eν

)
i∈J

0�j�h

∣∣∣∣

×
∏
i∈J

|αs(i)|
−

h∑
μ=max{2,g(i)}

eμ∏
i∈J

g(i)−2∏
f=0

( h∑
ν=f+1

eν

)−1

.

Definition 4. D(e1, . . . , eh) = maxD(J ; e1, . . . , eh), where the maximum is taken over
all subsets of {1, . . . , d} of cardinality h+ 1 such that max

i∈J g(i) � h+ 1.

Remark. The definition is meaningful, since always there exists a subset J of {1, . . . , d}
with the required property. If for all i � d we have g(i) � h + 1 this is clear and if for
some i0 : g(i0) > h+ 1 we take

J = {i : m1 + . . .+ms(i0)−1 < i � m1 + . . .+ms(i0)−1 + h+ 1}.

Proof of Theorem 2. Using the notation of Definition 4 we define the sequence d1, . . . , dd
inductively as follows.

(22) d1 = log
(
L(P )− 1

)
log |α1|

and, if d1, . . . , dh (d > h � 1) are already defined, put

(23) Dh+1 = (h+ 1)−1hh/2 min{D(e1, . . . , eh) : 1 � ei � di, D(e1, . . . , eh) > 0}
(the minimum over an empty set being ∞), m = max

1�s�r
ms ,

(24) dh+1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

max

{
d1 + . . .+ dh,

ψ

(
|αr |,m− 1,

(
max
{

2,
2(m− 1)

log |αr |
})m−1

D−1
h+1

(
L(P )− 1

))}
if Dh+1 �= ∞,

0 otherwise.

We shall show that ifQ ∈ Td(P ),Q = xn0 +
δ∑
j=1
bjx

nj ,
δ∏
j=1
bj �= 0, then

(25) nj−1 − nj � dj (1 � j � δ).
We proceed by induction on j . SinceQ ∈ Td(P ) the equation

α
n0
1 +

δ∑
j=1

bjα
nj
1 = 0
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implies

|α1|n0 � |α1|n1

δ∑
j=1

|bj | � |α1|n1
(
L(Q)− 1

)
� |α1|n1

(
L(P )− 1

)
,

which, in view of (22), gives (25) for j = 1. Assume now that (25) holds for all j � h

(h < δ) and consider the matrix (cij )1�i�d
0�j�h

for cij defined in Definition 1. Since Q ∈
Td(P ) we have

rank
(
cij
)

1�i�d
0�j�h

= h+ 1,

hence also

rank
(
cijα

−nh
s(i) )1�i�d

0�j�h
= h+ 1.

Therefore, there exists a subset J of {1, . . . , d} of cardinality h+ 1 such that

(26) Δ(J ) = det
(
cijα

−nh
s(i)

)
i∈J

0�j�h
�= 0.

For every subset J with the above property consider

M(J) = max
i∈J

∣∣∣∣(ci0 + h∑
j=1

cij bj

)
α
−nh
s(i)

∣∣∣∣.
Solving the system of equations(

ci0x0 +
h∑
j=1

cij xj

)
α
−nh
s(i) =

(
ci0 +

h∑
j=1

cij bj

)
α
−nh
s(i) (i ∈ J )

by means of Cramer’s formulae and developing the numerator according to the first column
we obtain

1 �
(h+ 1)M(J )max

∣∣∣det
(
cijα

−nh
s(i)

)
i∈I

1�j�h

∣∣∣∣∣Δ(J )∣∣ ,

where the maximum is taken over all subsets I of J of cardinality h. Now, by Lemma 7,
since |αs(i)| � 1

max

∣∣∣∣det
(
cijα

−nh
s(i)

)
i∈I

1�j�h

∣∣∣∣ � h−h/2∏
i∈J

∣∣αs(i)∣∣nmax{1,g(i)−1}
g(i)−2∏
f=0

(nf − nh).

This gives, by Definitions 3 and 4, for every J satisfying (26)

M(J) � (h+ 1)−1h−h/2D(J ; n0 − n1, . . . , nh−1 − nh) > 0

and, since such J exist,

max∗M(J) � (h+ 1)−1h−h/2D(J ; n0 − n1, . . . , nh−1 − nh) <∞,
where max∗ is taken over all subsets J of {1, . . . , d} such that card J = h + 1 and
max
i∈J g(i) � h+ 1.



D17. On the reduced length of a polynomial 671

By the inductive assumption and (23)

max∗M(J) � Dh+1 > 0,

thus there exists a set J0 ⊂ {1, . . . , d} such that card J0 = h+ 1, max
i∈J0

g(i) � h+ 1 and

(27) M(J0) � Dh+1.

On the other hand, by Lemma 3

ci0 +
δ∑
j=1

cij bj = 0 (i ∈ J0),

hence

(28)

∣∣∣∣(ci0 + h∑
j=1

cij bj

)
α
−nh
s(i)

∣∣∣∣ · ∣∣αs(i)∣∣nh = ∣∣∣∣ δ∑
j=h+1

cij bj

∣∣∣∣.
By (27) for a certain i0 ∈ J0 the left hand side is at least Dh+1

∣∣αnhs(i)∣∣. As to the right hand
side, replacing in Lemma 5 h by h+ 1, we obtain

(29)

∣∣∣∣ δ∑
j=h+1

ci0j bj

∣∣∣∣ � |ci0,h+1|
(

max

{
1,
g(i0)− 1

log
∣∣αs(i0)∣∣

})g(i0)−1 δ∑
j=h+1

|bj |

� |ci0,h+1|
(

max

{
1,
ms(i0) − 1

log |αs(i0)|
})ms(i0)−1(

L(P )− 1
)
.

If nh−nh+1 � n0 −nh, we obtain nh−nh+1 � d1+ . . .+dh � dh+1, hence the inductive
assertion holds. If nh − nh+1 > n0 − nh, then

(30)

∣∣ci0,h+1
∣∣ = ∣∣αs(i0)∣∣nh+1

g(i0)−2∏
f=0

(nf − nh+1)

�
∣∣αs(i0)∣∣nh+1

(
2(nh − nh+1)

)g(i0)−1

�
∣∣αs(i0)∣∣nh+1 2ms(i0)−1(nh − nh+1)

ms(i0)−1.

Combining this inequality with (28) and (29) we obtain

(31)
Dh+1

∣∣αs(i0)∣∣nh−nh+1

(nh − nh+1)
ms(i0)−1 �

(
max

{
2,

2
(
ms(i0) − 1

)
log
∣∣αs(i0)∣∣

})ms(i0)−1(
L(P )− 1

)
,

hence, by Lemma 6,

nh − nh+1 � max
1�s�r

ψ

(
|αs |,ms − 1,

(
max

{
2,

2(ms − 1)

log |αs |
})ms−1

D−1
h+1

(
L(P )− 1

))

� ψ
(
|αr |,m− 1,

(
max

{
2,

2(m− 1)

log |αr |
})m−1

D−1
h+1

(
L(P )− 1

))
� dh+1.
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The inductive assertion being proved, it follows that

n0 − nδ �
δ∑
h=1

dh.

However, nδ = 0, hence

l(P ) = inf
Q∈Ud(P )

L(Q),

where Ud(P ) =
{
Q ∈ Td(P ) : degQ �

d∑
h=1
dh

}
.

The set Ud(P ) is finite and effectively computable, since for

Q = xn0 +
δ∑
j=1

bjx
nj ∈ Ud(P ),

δ∏
j=1

bj �= 0,

there are only finitely many choices for 〈n0, . . . , nδ〉 and for each choice the coefficients bj ,
if they exist, are determined uniquely and are effectively computable. Moreover, Q ∈
Td(P ) impliesQ ∈ K(P )[x], hence L(Q) ∈ K(P ). The theorem follows. ��

Proof of Corollary 1. If P(x) = a0

c∏
i=1
(x − αi)

d∏
i=c+1

(x − αi), where |αi | > 1 for i � c,

|αi | < 1 for i > c, then by Proposition A

l(P ) = |a0| l
( c∏
i=1

(x − αi)
)

and the right hand side is effectively computable by Theorem 2. ��

For the proof of Theorem 3 we need two lemmas.

Lemma 8. If Pn ∈ R[x], pn, qn ∈ N (n = 0, 1, . . . ) and

(32) lim inf
n→∞ L

(
Pn(x)− P0(x

pn)xqn
) = 0,

then

(33) lim inf
n→∞ l(Pn) � l(P0).

Proof. By definition of l(P0) for every n there exists Gn monic such that

L(P0Gn) � l(P0)+ 1

n
.

By (32) there exists kn ∈ N such that kn > n and

L
(
Pkn(x)− P0(x

pkn )xqkn
)

� 1

nL(Gn)
.
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Hence

L
(
Pkn(x)Gn(x

pkn )
)

� L
(
P0(x

pkn )xqknGn(x
pkn )
)+ L((Pkn(x)− P0(x

pkn )xqkn )Gn(x
pkn )
)

� L
(
P0Gn

)+ L(Pkn(x)− P0(x
pkn )xqkn

)
L(Gn) � l(P0)+ 2

n
,

thus

l(Pkn) � l(P0)+ 2

n
.

This implies (33). ��

Remark. The equality lim
n→∞L(Pn − P0) = 0 does not imply lim inf

n→∞ l(Pn) = l(P0), as is

shown by the example Pn = x − n−1
n

, P0 = x − 1, see Proposition A(ii) and (iii).

Lemma 9. Let Q be a monic polynomial, irreducible over R of degree d � 2 with the
zeros on the unit circle. There exists a sequence of monic polynomials Rn such that

(34) Q2 |Rn
and

(35) lim
n→∞L(Rn − x

dnQ) = 0.

Proof. It suffices to take

Rn = xn+1 − ε
(

1 + 1

n

)
xn + ε

n+1

n
if d = 1, Q = x − ε

and

Rn =
(
xn+1 − ζ

(
1 + 1

n

)
xn + ζ

n+1

n

)(
xn+1 − ζ

(
1 + 1

n

)
xn + ζ

n+1

n

)
,

if d = 2,Q = (x − ζ )(x − ζ ).
Indeed, we have for every ε

(x − ε)2 |xn+1 − ε
(

1 + 1

n

)
xn + ε

n+1

n
,

which implies (34) and

L(Rn − xdnQ) �
{

2/n if d = 1

(8n+ 4)/n2 if d = 2,

which implies (35). ��

Proof of Theorem 3. We proceed by induction with respect to the numberN of irreducible
factors of Qm−1 counted with multiplicities. If N = 1, then m = 2, Q is irreducible and
by Lemma 9 we have

(36) PQ2 |PRn
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and

(37) lim
n→∞L(PRn − x

dnPQ) = 0.

By (37) and Lemma 8 we have

lim inf
n→∞ l(PRn) � l(PQ).

However, by Proposition (i) and (36)

l(PQ) � l(PQ2) � l(PRn),

hence

l(PQ) � l(PQ2) � l(PQ),

which gives the theorem for N + 1.

Assume now that the number of irreducible factors ofQm−1 isN > 1 and the theorem
is true for the number of irreducible factors less than N . If m > 2 then the number
of irreducible factors of Qm−2 and of Q is less than N , hence applying the inductive
assumption with P replaced first by PQ we obtain

l(PQm) = l(PQ2) = l(PQ).
If m = 2 and the number of irreducible factors of Qm−1 is N > 1, then Q is reducible,
Q = Q1Q2, where degQi > 1 (i = 1, 2). The number of irreducible factors ofQi is less
than N , hence applying the inductive assumption with P replaced first by PQ2

1 and then
by PQ2 we obtain

l(PQ2) = l(PQ2
1Q

2
2) = l(PQ2

1Q2) = l(PQ1Q2) = l(PQ).
The inductive proof is complete. ��

Proof of Theorem 4. By Theorem 3 and Proposition A(ii) we have for d ∈ N

(38) l
(
(x − 1)d

) = l(x − 1) = 2.

Now, let

P(x) =
d∏
j=1

(
x − exp 2πirj

)
, where rj ∈ R.

By Dirichlet’s approximation theorem for every positive integer n there exists a positive
integer pn such that

‖pnrj‖ � 1

2πn
(1 � j � d),

hence ∣∣exp 2πipnrj − 1
∣∣ < 1

n
.
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It follows that the polynomial

Qn(x) =
d∏
j=1

(
xpn − exp 2πipnrj

)
satisfies

(39) P |Qn
and

(40) L
(
Qn − (xpn − 1)d

)
�
(

2 + 1

n

)d − 2d .

Now, (39) implies by Proposition (i)

l(P ) � lim inf
n→∞ l(Qn),

while (40), Lemma 8 and (38) imply

lim inf
n→∞ l(Qn) � l

(
(x − 1)d

) = 2.

Hence l(P ) � 2. On the other hand, if P |Q, Q = xn +
n∑
j=1
bjx

n−j , then for a zero α

of P we have

1 = |α|n =
∣∣∣∣ n∑
j=1

bjx
n−j
∣∣∣∣ � n∑

j=1

|bj | = L(Q)− 1,

hence L(Q) � 2; so

l(P ) � 2,

which gives the first part of the theorem. In order to prove the second part assume that
P |Q,Q monic and L(Q) = 2. Let

Q = xn +
n∑
j=1

bjx
n−j , bn �= 0.

For every zero α of P we have

(41) αn +
n∑
j=1

bjα
n−j = 0,

hence ∣∣∣∣ n∑
i=1

biα
n−i
∣∣∣∣ = |αn| = 1 =

n∑
i=1

|bi |.

It follows that for every j with bj �= 0

arg bjα
n−j = arg bn.

Since arg bi = 0 or π , either α is a root of unity, or bj = 0 for all j < n. However the
latter case, by virtue of (41), leads to the former. Suppose now that α is a multiple zero
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of P , hence also ofQ. Then

nαn−1 +
n−1∑
j=1

bj (n− j)αn−j−1 = 0,

hence ∣∣∣∣n−1∑
j=1

bj (n− j)αn−j−1
∣∣∣∣ = |nαn| = n >

n−1∑
j=1

|bj |n,

which is impossible, since for each j < n,
∣∣bj (n − j)αn−j−1

∣∣ � |bj |n. Thus all zeros
of P are roots of unity and simple. If this condition is satisfied, then P |xm − 1, where m
is the least common multiple of orders of the roots of unity in question and

L(xm − 1) = 2. ��
For the proof of Theorem 5 we need seven lemmas.

Lemma 10. Let d > 2, I be a subset of {1, 2, . . . , d−1} and J a subset of {0, . . . , d−2},
both of cardinality d − 2. Then

| det
(
cij
)
i∈I
j∈J

| � (d − 2)(d−2)/2
∏
i∈I

|αs(i)|ng(i)−1

g(i)−2∏
f=0

(nf − nd−2).

Proof is similar to the proof of Lemma 7. ��

Lemma 11. Under the assumptions of Theorem 5 we have, in the notation of Definition 1,
for every h � d − e and ν = 0, 1

(42) Dhν = det
(
cij
)

1�i�h
ν�j<h+ν

�= 0.

Proof. In the notation of Definition 1 we have |αs | > 1 for s < r , αr = ε,mr = e. Assume
that αs ∈ Z0, if and only if s ∈ S0. In the notation of Lemma 5

h = m1 + . . .+ms(h)−1 + g(h), 1 � g(h) � ms(h).
If ν = 0 or 1, Dhν = 0 and αs ∈ Z0 for all s � s(h), the system of equations

h−1+ν∑
j=ν

cij xj = 0 (1 � i � h)

has a solution 〈xν, . . . , xh−1+ν〉 ∈ Rh \ {0}. It follows by Lemma 3 that

h−1+ν∑
j=ν

xj x
nj ≡ 0

(
mod

s(h)−1∏
s=1

(x − αs)ms (x − αs(h))g(h)
)

hence the polynomial
h−1+ν∑
j=ν

xj x
nj ∈ R[x] has h zeros of the same sign, counted with

multiplicities. This, however, contradicts the Descartes rule of signs (see [3], Satz 12),
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hence, if αs ∈ Z0 (s � s(h)) (42) holds. It also shows that Dhν as a polynomial in
αs (s �∈ S0) is not identically zero for any fixed αs ∈ Z0. Since the coefficients of the
polynomial in question belong to Q(Z0), the algebraic independence of αs (s �∈ S0) over
Q(Z0) implies Dhν �= 0. ��

Lemma 12. Under the assumptions of Theorem 5 let P0 be of degree d − e. For all
positive integers e1, . . . , ed−e there exists a unique polynomialQ = Q(P0; e1, . . . , ed−e)
such that

Q = x
d−e∑
μ=1

eμ +
d−e∑
j=1

bjx

d−e∑
μ=j+1

eμ

and

(43) Q ≡ 0 (mod P0).

Moreover,Q ∈ R[x].

Proof. For j = 0, . . . , d − e put nj =
d−e∑
ν=j+1

eν and for i � d − e, let cij be defined by

Definition 1 with P replaced by P0. By Lemma 3 the congruence (43) is equivalent to

d−e∑
j=1

cij bj = −ci0 (1 � i � d − e).

By Lemma 11 with h = d − e and ν = 1 the determinant of this system is non-zero,
hence bj are uniquely determined. If we replace cij by cij we obtain the same system of
equations, hence bj ∈ R. ��

Lemma 13. For every positive integer h < d − e and all positive integers e1, . . . , eh we
have in the notation of Definition 3

D
({1, . . . , h+ 1}, e1, . . . , eh

)
> 0.

Proof. We have

max
i�h+1

g(i) � max
i�h+1

i = h+ 1,

henceD({1, . . . , h+1}, e1, . . . , eh) is defined. Its only factor, which could possibly vanish,
is

det

(
α

h∑
μ=j+1

eμ

s(i)

g(i)−2∏
f=0

j∑
ν=f+1

eν

)
1�i�h+1

0�j�h
= det

(
cijα

−nh
s(i)

)
1�i�h+1

0�j�h
,

where nj =
d∑

μ=j+1
eμ. By (42) with ν = 0 the above determinant is non-zero. ��
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Definition 5. Let the sequence di (1 � i � d − e) be defined inductively as follows.

(44) d1 = log
(
L(P )− 1

)
log |α1|

and if d1, . . . , dh (h < d − e) are already defined

Dh+1 = (h+ 1)−1h−h/2 min
{
D
({1, . . . , h+ 1}, e1, . . . , eh

) : 1 � ei � di
}
,(45)

dh+1 = max

{
d1, . . . , dh,

ψ

(
|αs(i)|,m− 1,

(
max

{
2,

2(m− 1)

log |αs(h+ 1)|
})m−1)

D−1
h+1

(
L(P )− 1

)}
.

(46)

Lemma 14. For everyQ ∈ Td(P ),Q = xn0 +
d∑
j=1
bjx

nj we have

(47) nj−1 − nj � dj (1 � j < d).

Proof is by induction on j . SinceQ ∈ Td(P ) the equation

α
n0
1 +

d∑
j=1

bjα
nj
1 = 0

implies

|α1|n0 � |α1|n1

d∑
j=1

|bj | � |α1|n1
(
L(Q)− 1

)
� |α1|n1

(
L(P )− 1

)
,

which, in view of (44), gives (47) for j = 1. Assume now that (47) holds for all j � h

(h < d − 1). By Lemma 11 we have

Δ = det
(
cijα

−nh
s(i)

)
1�i�h+1

0�j�h
�= 0.

Let

M = max
1�i�h+1

∣∣∣∣(ci0 + h∑
j=1

cij bj

)
α
−nh
s(i)

∣∣∣∣.
Solving the system of equations(

ci0x0 +
h∑
j=1

cij xj

)
α
−nh
s(i) =

(
ci0 +

h∑
j=1

cij bj

)
α
−nh
s(i) (1 � i � h+ 1)

by means of Cramer’s formulae and developing the numerator according to the first column
we obtain

1 �
(h+ 1)M max

∣∣∣det
(
cijα

−nh
s(i)

)
i∈I

1�j�h

∣∣∣
|Δ| ,
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where the maximum is taken over all subsets I of {1, . . . , h+ 1} of cardinality h. Now, by
Lemma 7, since |αs(i)| > 1, we have

max
∣∣∣det
(
cijα

−nh
s(i)

)
i∈I

1�j�h

∣∣∣ � hh/2 h+1∏
i=1

∣∣αs(i)∣∣nmax{1,g(i)−1}
g(i)−2∏
f=0

(nf − nh).

This gives, by Definition 3,

m � (h+ 1)−1h−1/2D
({1, . . . , h+ 1}, n0 − n1, . . . , nh−1 − nh

)
and by the inductive assumption and (45)

(48) M � Dh+1.

On the other hand, by Lemma 3

ci0 +
d∑
j=1

cij bj = 0 (1 � i � h+ 1),

hence

(49)

∣∣∣∣(ci0 + h∑
j=1

cij bj

)
α
−nh
s(i)

∣∣∣∣ · ∣∣αs(i)∣∣nh = ∣∣∣∣ h∑
j=1

cij bj

∣∣∣∣.
By (48) for a certain i0 � h+ 1 the left hand side is at least Dh+1|αs(i)|nh . As to the right
hand side, by (29) we obtain

(50)

∣∣∣∣ d∑
j=1

ci0j bj

∣∣∣∣ � ∣∣ci0,h+1
∣∣(max

{
1,
ms(i0)−1

log
∣∣αs(i0)∣∣

})ms(i0)−1(
L(P )− 1

)
.

If nh−nh+1 � n0 −nh, we obtain nh−nh+1 � d1+ . . .+dh � dh+1, hence the inductive
assumption holds. If nh − nh+1 > n0 − nh, then by (30)∣∣ci0,h+1

∣∣ � ∣∣αs(i0)∣∣nh+1 2ms(i0)−1(nh − nh+1)
ms(i0)−1.

Combining the inequality with (49) and (50) we obtain (31), where, however, Dh+1 has
the new meaning given by (45).

It follows, by Lemma 6

nh − nh+1

� max
1�s�s(h+1)

ψ

(
|αs |,ms − 1,

(
max

{
2,

2(ms − 1)

log |αs |
})ms−1

D−1
h+1

(
L(P )− 1

))
� ψ
(
αs(h+1), m− 1,

(
max

{
2,

2(m− 1)

log |αs(h+1)|
})m−1

D−1
h+1

(
L(P )− 1

))
� dh+1

and the inductive proof is complete. ��

Definition 6. Assume that, under the assumptions of Theorem 5, e = 1. Put for positive
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integers n1 > . . . > nd−2 > nd−1(
c′ij
)

1�i<d
1�j�d

= C(P0; n1, . . . , nd−1, 0), c′dj = 1 (1 � j � d),

E(P0; n1 − nd−1, . . . , nd−2 − nd−1)

=
∣∣∣det
(
c′ij α

−nd−1
s(i)

)
1�i,j<d

∣∣∣−1 d−1∏
i=1

∣∣αs(i)∣∣ng(i)−nd−1

g(i)−1∏
f=1

(nf − nd−1).
(51)

Remark. E(P0; n1 −nd−1, . . . , nd−2 −nd−1) is well defined since det(c′ij α
−nd−1
s(i) ) is non-

zero by Lemma 11 with h = d − 1, ν = 0. Moreover the right hand side of (51) depends
only on P0 and the differences nj − nd−1 (1 � j � d − 2).

Lemma 15. Assume that, under the assumptions of Theorem 5 and in the notation of
Definition 1, e = 1. If for positive integers n1 > . . . > nd−1 and for n > 1, a ∈ R,

(52) nd−1 > max

{
n1 − nd−1, ψ

(
|αr−1|,m− 1, d(d − 1)(d+1)/22m−1n

× E(P0; n1 − nd−1, . . . , nd−2 − nd−1)max

{
1,
nd|a|
nd − 1

})}
,

then there exists a polynomial R ∈ R[x], R(x) =
d−1∑
j=1
rj x

nj + rd , such that

P0 |R(x)− a,(53)

x − 1 |R(x)(54)

L(R) <
1

n
.(55)

Proof. Put

R(x) =
d−1∑
j=1

rj x
nj + rd, rj ∈ C.

By Lemma 3 the conditions (53) and (54) are equivalent to the following system of linear
equations for rj

(56)

d∑
j=1

c′ij rj = c′ida (1 � i < d)

d∑
j=1

c′dj rj = 0.

The determinant of this system equals

Δ0 =
d∏
i=1

α
nd−1
s(i) det

(
c′ij α

−nd−1
s(i)

)
1�i,j�d .
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Developing the last determinant according to the last column we obtain

det
(
c′ij α

−nd−1
s(i)

)
1�i,j�d

= det
(
c′ij α

−nd−1
s(i)

)
1�i,j<d +

d−1∑
k=1

(−1)k+dc′kdα
−nd−1
s(k) det

(
c′ij α

−nd−1
s(i)

)
i �=k
j<d

,

hence, by (21) with h = d − 1, I = {1, . . . , d} \ {k} and by the condition αr = e = 1

(57)

∣∣∣∣Δ0

d∏
i=1

α
−nd−1
s(i) − det

(
c′ij α

−nd−1
s(i)

)
1�i,j<d

∣∣∣∣
< (d − 1)(d+1)/2

∣∣αr−1
∣∣−nd−1

( d−1∏
i=1

∣∣αs(i)∣∣ng(i)−nd−1

g(i)−1∏
f=1

(nf − nd−1)

)
max

1�k<d
|c′kd |.

Since, by (52), nd−1 > n1 − nd−1, we have

(58) max
1�k<d

|c′kd | �
m−1∏
f=1

nf � (2nd−1)
m−1.

In view of Definition 6 the right hand side of (57) does not exceed

(d − 1)(d+1)/2
∣∣αr−1

∣∣−nd−1
∣∣∣det
(
c′ij α

−nd−1
s(i)

)
1�i,j<d

∣∣∣
× E(P0; n1 − nd−1, . . . , nd−2 − nd−1, 0)2

m−1nm−1
d−1 .

Since, by (52),

nd−1 > ψ
(|αr−1|,m− 1,

d(d − 1)(d+1)/22m−1nE(P0; n1 − nd−1, . . . , nd−2 − nd−1, 0)
)

we have by Lemma 6 and (57)

(59) |Δ0| >
(

1 − 1

dn

)∣∣∣det
(
c′ij
)

1�i,j<d
∣∣∣,

hence by the Remark after Definition 6,Δ0 �= 0. Thus the system (56) is uniquely solvable
and since on replacing c′ij by c′ij we obtain the same system, rj are real (1 � j � d).

The determinant Δk obtained by substituting in (c′ij )1�i,j�d for the k-th column the
column

[c′1d , . . . , c′d−1 d, 0]t a
satisfies for k < d

Δk = ±(det c′ij )i<d
j �=k
a,

hence developing the last determinant according to the last column, using Lemma 10,
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Definition 6 and (58) we obtain

|Δk| � |a|
d−1∑
l=1

|c′ld |(d − 2)(d−2)/2
d−1∏
i=1
i �=l

∣∣αs(i)∣∣ng(i) g(i)−1∏
f=1

(nf − nd−1)

� |a|(d − 1)(d − 2)(d−2)/2(2nd−1)
m−1
∣∣αr−1

∣∣−nd−1
∣∣∣det
(
c′ij
)

1�i,j<d
∣∣∣

× E(P0; n1 − nd−1, . . . , nd−2 − nd−1),

where (d − 2)(d−2)/2 = 1 for d = 2.
Since (d − 1)(d − 2)(d−2)/2 < (d − 1)(d+1)/2 we obtain, by virtue of (52),

|Δk| < dn− 1

d2n2

∣∣∣det
(
c′ij
)

1�i,j<d
∣∣∣

hence, by (59), rk = Δk/Δ0 satisfies

(60) |rk| < 1

dn
(1 � k < d).

It remains to consider k = d . In this case developing Δd according to the last column we
obtain

|Δd | � |a|
d−1∑
l=1

|c′ld |
∣∣∣det
(
c′ij
)
i �=l
j<d

∣∣∣.
Using (21) with h = d − 1, I = {1, . . . , d} \ {l}, the condition αr = e = 1 and (58) we
obtain

|Δd | � |a|(d − 1)(d+1)/2(2nd−1)
m−1
∣∣αr−1

∣∣−nd−1
d−1∏
i=1

∣∣αs(i)∣∣ng(i) g(i)−1∏
f=1

(nf − nd−1)

� (d − 1)(d+1)/22m−1nm−1
d−1

∣∣αr−1
∣∣−nd−1

∣∣∣det(c′ij )1�i,j<d
∣∣∣

× E(P0; n1 − nd−1, . . . , nd−2 − nd−1).

Again, by virtue of (52) and of Lemma 6,

|Δd | < dn− 1

d2n2

∣∣∣det
(
c′ij
)

1�i,j<d
∣∣∣,

hence rd = Δd/Δ0 satisfies

|rd | < 1

dn
.

It follows now from (60) that

L(R) =
d∑
k=1

|rk| < 1

n
,

which proves (55). ��



D17. On the reduced length of a polynomial 683

Lemma 16. Assume, under the assumptions of Theorem 5, that ε = e = 1. Then

l(P ) � inf
Q∈Sd−1(P0)

{
L(Q)+ |Q(1)|}.

Proof. Let

Q = xq0 +
d−1∑
j=1

bjx
qj ,

where q0 > q1 > . . . > qd−1 = 0. By Lemma 15 with a = Q(1), nj = nd−1 + qj
(1 � j < d), if

nd−1 > max

{
q1, ψ

(∣∣αr−1
∣∣,m− 1, d(d − 1)(d+1)/22m−1n

× E(P0; q1, . . . , qd−2)max

{
1,

nd

nd − 1
|Q(1)|

})}
there exists a polynomialR ∈ R[x] of degree at most n1 satisfying (53)–(55). We consider
the polynomial

S(x) = Q(x)xnd−1 + R(x)−Q(1).
It follows from (53)–(54) that

P0 |S, x − 1 |S, thus P |S
and since S is monic

l(P ) � L(S).

On the other hand, by (55),

L(S) � L(Q)+ |Q(1)| + 1

n
.

Since n is arbitrary, the lemma follows. ��

Proof of Theorem 5. Since, by Proposition (iii), l(P (−x)) = l(P (x)), we may assume that
ε = 1 and, by virtue of Theorem 3, that e = 1. Thus Lemmas 15 and 16 are applicable.
The second part of the theorem follows from Lemma 16. In order to prove the first part we
shall show that for every n > 1

(61)

0 � l(P )− min
{

min∗ L
(
Q(P ; n0, . . . , nd−2, 0)

)
,

min∗∗ L
(
Q(P ; n0, . . . , nd−1, 0)

)
,

min∗∗
(
L
(
Q(P0; n0 − nd−1, . . . , nd−2 − nd−1, 0)

)
+ ∣∣Q(P0; n0 − nd−1, . . . , nd−2 − nd−1, 0)(1)

∣∣)} > −1

n
,

where the min∗ is taken over all integers n0 > . . . > nd−2 > nd−1 = 0 such that
nj−1−nj � dj (1 � j < d) and the min∗∗ is taken over all integers n0 > . . . > nd−1 > 0
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such that

(62) nj−1 − nj � dj (1 � j < d)
holds and

(63)

nd−1 � max

{
n1 − nd−1, ψ

(
|αr−1|,m− 1, d(d − 1)(d+1)/22m−1n

× E(P0; n1 − nd−1, . . . , nd−2 − nd−1)

× max
{

1,
nd

nd − 1
|Q(P0; n0 − nd−1, . . . , nd−2 − nd−1, 0)(1)|

})}
and, in the notation of Definition 1

(64) |C1(P ; n1, . . . , nd−1, 0)| �= 0.

By Lemma 12 for every sequence n0 > . . . > nd−1 = 0 there is at most one polynomial

Q = xn0 +
d−1∑
j=1
bjx

nj divisible by P ; if the set of polynomials in question is empty we

take min∗ = ∞.
The condition (64) implies that there is a unique polynomial

Q = xn0 +
d−1∑
j=1

bjx
nj + bd

divisible by P , denoted in (61) byQ(P ; n0, . . . , nd−1, 0). AnalogouslyQ(P0; n0 −nd−1,

. . . , nd−2 − nd−1, 0) is the unique polynomial

Q = xn0−nd−1 +
d−1∑
j=1

bjx
nj−nd−1

divisible by P0. The inequality

l(P ) � min
{
min∗ L(Q(P ; n0, . . . , nd−2, 0)),min∗∗ L(Q(P ; n0, . . . , nd−1, 0))

}
is clear and the inequality

l(P ) � min∗∗
(
L
(
Q(P0; n0 − nd−1, . . . , nd−2 − nd−1, 0)

)
+ ∣∣Q(P0; n0 − nd−1, . . . , nd−2 − nd−1, 0)(1)

∣∣)
follows from Lemma 16. This shows the first of inequalities (61). In order to prove the
second one we notice that by Lemmas 4 and 14

(65) l(P ) = min
{
min∗ L(Q(P ; n0, . . . , nd−2, 0)), inf L(Q(P ; n0, . . . , nd−1, 0))

}
,

where the infimum is taken over all strictly decreasing sequences of d positive integers
〈n0, . . . , nd−1〉 satisfying (62) and (64). If (63) is satisfied then, clearly

(66) L(Q(P ; n0, . . . , nd−1, 0)) � min∗∗ L(Q(P ; n0, . . . , nd−1, 0))

and, if not, then by Lemma 15 there exists a polynomialR ∈ R[x],R(x) =
d−1∑
j=1
rj x

nj +rd ,
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such that (53)–(55) hold with

a = Q(P0; n0 − nd−1, . . . , nd−2 − nd−1, 0)(1).

Then the polynomial

S(x) = Q(P0; n0 − nd−1, . . . , nd−2 − nd−1, 0)x
nd−1 + R(x)

−Q(P0; n0 − nd−1, . . . , nd−2 − nd−1, 0)(1)

is monic, satisfies

P |S(x)
and, by (64),

(67) S(x) = Q(P ; n0, . . . , nd−1, 0).

By (55)

(68) L(S) > L
(
Q(P0; n0 − nd−1, . . . , nd−2 − nd−1, 0)

)
+ ∣∣Q(P0; n0 − nd−1, . . . , nd−2 − nd−1, 0)(1)

∣∣− 1

n
.

The formulae (66)–(68) imply

L
(
Q(P ; n0, . . . , nd−1, 0)

)
� min∗∗ min

{
L
(
Q(P ; n0, . . . , nd−1, 0)

)
, L
(
Q(P0; n0 − nd−1, . . . , nd−2 − nd−1, 0)

)
+ ∣∣Q(P0; n0 − nd−1, . . . , nd−2 − nd−1, 0)(1)

∣∣}− 1

n

for all sequences 〈n0, . . . , nd−1〉 satisfying (62) and (64), hence by (65) the second of the
inequalities (61) follows. The conditions (62) and (63) are for a given n satisfied by only
finitely many sequences 〈n0, . . . , nd−1〉, since

nj − nd−1 �
d−1∑
μ=j+1

dμ

and for all such sequences bj can be effectively determined, hence l(P ) can be effectively
computed. ��

For the proof of Theorem 6 we need

Definition 7. For α, β in C and n > m > 0

Qn(α, β) =
⎧⎨⎩
αn − βn
α − β if α �= β,
nαn−1 if α = β,

En,m(α, β) =
∣∣∣∣Qn(α, β)Qm(α, β)

∣∣∣∣+ |αβ|m
∣∣∣∣Qn−m(α, β)Qm(α, β)

∣∣∣∣,
Fn,m(x, β) = xn − βn + |β|mxm(xn−m − βn−m)− (2x − 1)(xm − βm).
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Lemma 17. In the notation of Definitions 2 and 7, if P(x) = (x − α)(x − β), αβ �= 0,
then all elements of T2(P ) are of the form either xn − αn ifQn(α, β) = 0, or

(69) xn − Qn(α, β)

Qm(α, β)
xm + (αβ)mQn−m(α, β)

Qm(α, β)
, otherwise,

where n > m > 0,Qm(α, β)Qn−m(α, β) �= 0.

Proof. Let an element Q of T2(P ) be xn + Axm + B, where n > m > 0, AB �= 0. By
Lemma 3 the conditionQ ≡ 0 (mod P) is equivalent to

(70) ci0 + ci1A+ ci2B = 0 (i = 1, 2),

where cij are given in Definition 1 for α1 = α, α2 = β, hence

c10 = αn, c11 = αm, c12 = 1;
c20 = βn, c21 = βm, c22 = 1, if β �= α;
c20 = 0, c21 = (m− n)βm, c22 = −n, if β = α.

SinceQ ∈ T2(P ) we have

|C0(P ; n,m)| �= 0 �= |C1(P ; n,m)|,
henceQm(α, β)Qn−m(α, β) �= 0. Solving the system (70) we obtain forQ the form (69).��

Lemma 18. If β ∈ R, |β| � 1, then for all positive integers n > m and all integers k � 0
we have

Gn,m,k(β) := 1

k!
dk

dxk
Fn,m(x, β)|x=|β| � 0

and if |β| > 1 for k = 0 or 1

inf
n>m

Gn,m,k(β) > 0.

Proof. Consider first the case β > 0. For k = 0 we have Gn,m,k(β) = 0. For k � 1 we
have

Gn,m,k(β) =
(
n

k

)
βn−k +

(
n

k

)
βn+m−k −

(
m

k

)
βn+m−k

− 2

(
m+ 1

k

)
βm−k+1 +

(
m

k

)
βm−k + 2

(
1

k

)
βm−k+1

= βm−k
((
n

k

)
βn−m +

(
n

k

)
βn −

(
m

k

)
βn

− 2

(
m+ 1

k

)
β +
(
m

k

)
+ 2

(
1

k

)
β

)
.

The expression in the parenthesis is non-negative, since for β = 1 it is equal to

2

(
n

k

)
− 2

(
m+ 1

k

)
+ 2

(
1

k

)
� 0
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and its derivative with respect to β is(
n

k

)
(n−m)βn−m−1 +

((
n

k

)
−
(
m

k

))
nβn−1 − 2

(
m+ 1

k

)
+
(

1

k

)
�
(
m+ 1

k

)
+
((
m+ 1

k

)
−
(
m

k

))
(m+ 1)− 2

(
m+ 1

k

)
+ 2

(
1

k

)
= (k − 1)

(
m+ 1

k

)
+ 2

(
1

k

)
� 2

(
1

k

)
.

It follows that

Gn,m,k(β) � 2(β − 1)

and the obtained lower bound, independent of n,m, is positive for β > 1. Consider now
the case β < 0. We distinguish four cases according to the parity of n,m.

If n ≡ m ≡ 0 (mod 2), then

Gn,m,k(β) = Gn,m,k
(|β|)

and the case reduces to the former.
If n ≡ 0, m ≡ 1 (mod 2), then

Gn,m,0(β) = 2
(|β|)m(|β|n − 2|β| + 1) � 2

(|β| − 1
)2

and the obtained lower bound, independent of n,m, is positive for |β| > 1. Further, for
k � 1

Gn,m,k(β) =
(
n

k

)
|β|n−k +

(
n

k

)
|β|n+m−k +

(
m

k

)
|β|n+m−k

− 2

(
m+ 1

k

)
|β|m−k+1 +

(
m

k

)
|β|m−k − 2

(
1

k

)
|β|m−k+1

= |β|m−k
((
n

k

)
|β|n−m +

(
n

k

)
|β|n +

(
m

k

)
|β|n

− 2

(
m+ 1

k

)
|β| +

(
m

k

)
− 2

(
1

k

)
|β|
)
.

The expression in the parenthesis is non-negative, since(
n

k

)
|β|n−m +

(
n

k

)
|β|n � 2

(
m+ 1

k

)
|β|

and (
m

k

)
|β|n +

(
m

k

)
�
(
m

k

)
(|β|2 + 1) � 2

(
1

k

)
|β|.

If n ≡ 1, m ≡ 0 (mod 2), then

Gn,m,k(β) � Gn,m,k
(|β|)

and the case reduces to the already considered one.
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Finally, if n ≡ m ≡ 1 (mod 2), then

Gn,m,0(β) = 2|β|m(|β|n−m − 2|β| + 1
)

� 2
(|β| − 1

)2
and the obtained lower bound, independent of n,m, is positive for |β| > 1.

Further, for k � 1

Gn,m,k(β) =
(
n

k

)
|β|n−k +

(
n

k

)
|β|n+m−k −

(
m

k

)
|β|n+m−k

− 2

(
m+ 1

k

)
|β|m−k+1 +

(
m

k

)
|β|m−k − 2

(
1

k

)
|β|m−k+1

= |β|m−k
((
n

k

)
|β|n−m +

(
n

k

)
|β|n −

(
m

k

)
|β|n − 2

(
m+ 1

k

)
|β|

+
(
m

k

)
− 2

(
1

k

)
|β|
)
.

The expression in the parenthesis is non-negative, since for |β| = 1 it is equal to

2

(
n

k

)
− 2

(
m+ 1

k

)
− 2

(
1

k

)
� 2

(
m+ 2

k

)
− 2

(
m+ 1

k

)
− 2

(
1

k

)
� 0

and its derivative with respect to |β| is(
n

k

)
(n−m)|β|n−m−1 +

(
n

k

)
n− |β|n−1 −

(
m

k

)
n|β|n−1 − 2

(
m+ 1

k

)
− 2

(
1

k

)
�
(
n

k

)
(n−m)+

(
n

k

)
n−
(
m

k

)
n− 2

(
m+ 1

k

)
− 2

(
1

k

)
� 2

(
m+ 2

k

)
+
((
m+ 2

k

)
−
(
m

k

))
(m+ 2)− 2

(
m+ 1

k

)
− 2

(
1

k

)
� 0. ��

Proof of Theorem 6. For n � 2 we clearly have 1+ |α|n � 2|α| with the equality attained
if and only if |α| = 1, hence we may restrict attention to En,m(α, β). Consider first the
case of α, β real. Since, by Proposition (iii), l(P (−x)) = l(P (x)), we may assume that
α > 0, hence α � |β|.

By the Taylor formula we have in the notation of Lemma 18

(αm − βm)(En,m(α, β)− 2α + 1
) = n∑

k=0

Gn,m,k(β)
(
α − |β|)k,

hence, by the said lemma,

(71) (αm − βm)(En,m(α, β)− 2α + 1
)

� 0

and, if α > |β| > 1

(72) inf
n>m
(αm − βm)(En,m(α, β)− 2α + 1

)
> 0.

If α �= ±β then (71) gives

En,m(α, β) � 2α − 1,
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hence by Lemma 17

inf
Q∈T2(P )

L(Q) � 2α

and by Lemma 4,

(73) l(P ) � 2α.

Now, if β = −1, then L(P ) = 2α, hence l(P ) � 2α and, by (73), l(P ) = 2α. If β = 1,
then by Theorem 5 with P0 = x − α

l(P ) � L(P0)+ |P0(1)| = 1 + α + α − 1 = 2α

and, by (73), l(P ) = 2α again.
If α > |β| > 1, then by (72)

(74) inf
n>m
m<m0

En,m(α, β) > 2α − 1

for every m0. Choose now

m0 = log 4α − log
(
α − |β|)

log |β| .

Then for m � m0: En,m(α, β) � |αβ|m α−|β|
2αm � 2α and, by (74),

inf
n>m

En,m(α, β) > 2α − 1.

Using, as above, Lemmas 17 and 4 we obtain

l(P ) > 2α.

If α = −β, then P(x) = x2 − α2 and by Proposition (iv) and Proposition A(ii)

l(P ) = l(x − α2) = 1 + α2

{
= 2α, if α = 1,

> 2α, otherwise.

If α = β, then

En,m(α, β)− 2α + 1 = nαn−m + (n−m)αn
m

− 2α + 1.

The right hand side is equal to 2(n−m)/m > 0 for α = 1 and its derivative with respect
to α is

n(n−m)
m

(αn−m−1 + αn−m)− 2 > α − 1.

For α = β = 1, l(P ) = 2 = 2α, by Theorem 4; otherwise

inf
n>m

En,m(α, α) > 2α − 1

and, by Lemmas 17 and 4, l(P ) > 2α.
Consider now the case, where α, β are complex conjugate:

α = |α|e2iϕ, β = |α|e−2iϕ, ϕ ∈ (0, π2 ), |α| > 1
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(the case |α| = 1 is settled by Theorem 4). Then

En,m(α, β) = |α|n−m
∣∣∣∣ sin nϕ

sinmϕ

∣∣∣∣+ |α|n
∣∣∣∣ sin(n−m)ϕ

sinmϕ

∣∣∣∣,
where, by virtue of the conditionQm(α, β) �= 0, we have sinmϕ �= 0. Since

(75) |sinmϕ| � |sin nϕ| + |sin(n−m)ϕ|
we have

En,m(α, β) � |α|n−m � |α|2
unless n−m = 1. In this final case we have, by (75)∣∣∣∣ sin nϕ

sinmϕ

∣∣∣∣ � 1 −
∣∣∣∣ sin ϕ

sinmϕ

∣∣∣∣
and by the well known inequality ∣∣∣∣ sin ϕ

sinmϕ

∣∣∣∣ � 1

m
.

Hence

En,m(α, β) � |α|
(

1 −
∣∣∣∣ sin ϕ

sinmϕ

∣∣∣∣)+ |α|m+1
∣∣∣∣ sin ϕ

sinmϕ

∣∣∣∣
� |α| + |α|m+1 − |α|

m
� |α| + |α|(|α| − 1

) = |α|2,
where in the middle we have used Bernoulli’s inequality. It follows, by Lemma 17, that
L(Q) � 1 + |α|2 for everyQ ∈ T2(P ), hence, by Lemma 4,

l(P ) � 1 + |α|2 > 2|α|. ��

Proof of Corollary 2. If degP = 1, then l(P ) ∈ K(P ) follows from Proposition A. If
P = a(x − α)(x − β), where |α| � |β| > 1, then, by Theorem 2, l(P ) is attained and by
Theorem 1, l(P ) ∈ K(P ). If P = a(x − α)(x − β), where |β| = 1, then, by Theorem 6,
l(P ) = 2|aα|. Since either |α| = 1 or α ∈ R, l(P ) ∈ K(P ) follows. ��

Proof of Corollary 3. If, in the notation of the Corollary, |β| > 1, then, by Proposition A,
l(P ∗) = |αβ| and, by Proposition (ii) l(P ) � |αβ|, thus l̂(P ) = |αβ|. If |α| > 1 = |β|,
then, by Proposition (iii) and Theorem 6, l(P ∗) = 2|α| = l(P ), thus l̂(P ) = 2|α|. If
|α| > 1 > |β|, then, by Proposition A, l(P ∗) = 1 + |α|, l(P ) = |αβ|(1 + |β|−1), hence
l̂(P ) = |α| + min{1, |αβ|}. If |α| = 1 = |β|, then by Theorem 6, l(P ) = l(P ∗) = 2. If
|α| = 1 > |β|, then, by Proposition A, l(P ) = 2, by Theorem 6, l(P ∗) = |αβ|2|β|−1 = 2,
thus l̂(P ) = 2. Finally, if |α| < 1, then by Proposition A, l(P ) = 1, by Proposition (ii)
l(P ∗) � 1, thus l̂(P ) = 1. ��

Proof of Corollary 4. If |α| > 1 > |β| > 0 we have l̂(x − α) = |α|, l̂(x − β) = 1,

l̂((x − α)(x − β)) = |α| + min{1, |αβ|} > |α|. ��
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Note added in proof. An apparently similar problem has been considered in [2] and [3].
However, the restriction of G in the definition of l(P ) to polynomials with integer coef-
ficients makes a great difference, shown by the fact, clear from Lemma 17 above, that no
analogue of Lemma 2 of [2] or Lemma 3 of [3] holds in our case.
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Polynomials in several variables





Andrzej Schinzel
Selecta

Commentary on E: Polynomials in several variables

by Umberto Zannier

Professor Schinzel’s taste for polynomials is well known and the topic is quite central
in the whole of his mathematical achievements. He has been interested in the algebraic,
the arithmetical and the functional points of view. In this section I will describe in some
detail nine of his contributions to the theory of polynomials in several variables.

E1. This paper raises nine interesting problems on polynomials, discussing their mo-
tivations and mutual relationships. Since that time, some of them have been solved, more
or less completely, often with substantial contribution by Schinzel; in any case they have
been rather influential.

Problems 1, 2, 3 enquire respectively about the reducibility of f (X) − g(Y ),
(f (X) − f (Y ))/(X − Y ) and f (X) + g(Y, Z), for polynomials f, g with complex coef-
ficients. Some families of examples of reducibility are given and it is asked whether they
represent the most general possibility.

The problems proved to be substantial, involving several mathematical fields. In 1968
J. W. S. Cassels and M. Guy related the first problem to monodromy, combinatorial group
theory and the classification of finite simple groups; soon new examples of reducibility
were produced by B. Birch and subsequent work arose until recently in papers by Schinzel
(see e.g. E3, E7 below), M. Fried, W. Feit, P. Cassou-Nogues & J.-M. Couveignes and
others. A complete classification of the reducible cases is now available when either f or
g is indecomposable (i.e. not of the form a ◦ b non-trivially). In the most general form the
problem still awaits a complete solution.

The second problem was solved in 1970 by Fried, who established at the same time
a related conjecture of Schur on the “permutation polynomials modulo p”. The methods
were again linked with monodromy representations and group theory, opening a vast field
of research, still alive.

As remarked in an “Added in proof”, the third problem also was solved, by Schinzel
himself jointly with H. Davenport, in a paper which answers the next Problem 4 as well.
The solution shows that f (X)+ g(Y, Z) is reducible if and only if g(Y, Z) = a(b(Y, Z)),
where f (X) + a(T ) is reducible; this also relates the question with Problem 1. (See E2
below for an extension.)

The fourth problem reminds of Bertini (and Hilbert) Irreducibility Theorem: it asks for
complex irreducible polynomials f (X, Y,Z) which become reducible for every special-
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ization of Z to a polynomial Z(X, Y ). Again, a family of examples is given and it is asked
whether it represents all possible cases.

The relation of this problem with Hilbert’s theorem is discussed, motivating the fifth
and sixth problems; they are concerned with parametric Diophantine equations and ask
resp. whether a polynomial f ∈ Q[X1, . . . , Xn, Y, Z] exists such that the equation
f (x1, . . . , xn, Y, Z) = 0 is solvable in integers (resp. rational) y, z, for all (x1, . . . , xn) ∈
Zn (resp. ∈ Qn) but the equation f (X1, . . . , Xn, ϕ, ψ) = 0 is not solvable identically in
rational functions ϕ,ψ ∈ Q(X1, . . . , Xn). The paper itself announces a (negative) solu-
tion of certain special cases in joint work by Schinzel with Davenport and D. J. Lewis. The
general question may be seen as a kind of local–global principle for function fields and,
as predicted by Schinzel, has proved to be very difficult. Further cases have been however
solved (again in the negative) by Davenport, Lewis, Schinzel (they treated parametrized
quadratic forms); for counterexamples based on Selmer’s conjecture in the theory of el-
liptic curves see [9] and [3]. Some of such results have implications in the theory of the
specializations of Brauer groups, developed by J-P. Serre and others.

Schinzel gives the striking example f (X1, Y, Z, T ) = 28X2
1 + 1 − Y 2 − Z2 − T 2

answering in the affirmative the analogue of Problem 5 for three free variables Y,Z, T
and then states the seventh problem, in a related context; in practice it asks to describe the
irreducible polynomials f ∈ Q(X, Y ) such that for an infinite set S = Sf ⊂ Q and for
every x ∈ S the equation f (x, Y ) = 0 has a solution y ∈ S. I do not know the actual state
of knowledge for this problem. An example where f is neither linear in Y nor symmetric
is f (X, Y ) = Y 2 − 2(X2 +X)Y + (X2 −X)2; then the set S of squares (in Q or even Z)
satisfies the condition.

The last two problems concern trinomials in one variable, and are motivated by certain
classical results, like Capelli’s theorem, known for binomials Xn − a. Problem 8 asks
whether there exists a numberK such that any trinomial in Q[X] has an irreducible factor
(over Q)whose number of terms is � K . Though much work on the irreducibility theory of
lacunary polynomials has been done since then, mainly by Schinzel, this problem is to my
knowledge still unsolved. However the results of Schinzel to be mentioned in connection
with the next problem show that the answer is affirmative if we fix the coefficients of the
trinomial and let the degrees of the terms vary. For partial results for k-nomials see [4]
and for related results see [2]. The present record is K � 9 (see the paper [14], Table 5,
entry 43b, p. 546).

Finally, here is the last, ninth, problem, solved by Schinzel himself. Let f (X) =
Xm + aXn + b ∈ Z[X] and let f̄ (X) be the monic polynomial whose complex roots are
precisely the roots of f which are not roots of unity. It may happen that even f̄ is reducible
over Q; the problem asks whether there exist a, b �= 0 such that this phenomenon occurs
correspondingly to infinitely many ratiosm/n. Schinzel’s negative answer to this question
was published in 1965 [10]. Since then, Schinzel has developed a much more general,
difficult, theory, which appears for instance in his last book; so now the solution appears
as merely a corollary of such research (see e.g. Thm. 76 of the book for trinomials with
coefficients a, b in an arbitrary totally real field or a totally complex quadratic extension
of such a field).

E2. This paper deals with a vast generalization of Problem 3 in E1 above, namely with
the question of the reducibility of Φ(F1(X1), . . . , Fn(Xn)) (over an arbitrary field K)
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where Xi are non-empty disjoint sets of variables and Φ,Fi are polynomials over K
such that Φ has positive degree in each variable and at least two of the Fi are non-
constant. The main result reduces the problem to the case when eachFi depends on a single
variable; in fact, it is proved that Φ(F1(X1), . . . , Fn(Xn)) is reducible overK if and only
if Fi(Xi ) = Gi(Hi(Xi )) where Gi ∈ K[U ], Hi ∈ K[Xi] and Φ(G1(U1), . . . ,Gn(Un))

is reducible in K .
To recover the solution of Problem 3 at E1, it suffices to take Φ(T1, T2) = T1 + T2,

F1(X1) = F(X),F2(X2) = G(Y,Z). This had already been obtained with Davenport, but
the present result goes beyond that paper, also because it allows arbitrary characteristic.

The proof proceeds roughly as follows. A first step is by induction, to reduce to the
case of a polynomial Ψ (F(X), Y ) (i.e. to the case n = 2, X1 = X, X2 = Y ). Next,
viewing a possible factor as a polynomial in Y , one observes that its roots are algebraic
overK(F(X)) and so the same is true of their symmetric functions r1(X), . . . , rs(X), say.
Hence the fieldK(F(X), r1(X), . . . , rs(X)) is the function field of a curve, parametrized
by X. Now a version of Lüroth Theorem implies that the parametrization for the curve
may be suitably changed, so to depend on one variable U = U(X) only, rather than the
set of variables X. Then, expressing F(X) and the ri(X) as rational functions of U and
reversing the arguments yields the sought result.

The results of this paper have been generalized by [12] and further by Geyer [8], with
a different method.

E3. This paper deals with the reducibility of a polynomial of the shape f (X)− g(Y ),
i.e. Problem 1 of E1 above. Beyond the families of reducibility a(b(X)) − a(c(Y )) and
T4(b(X))+ T4(c(Y )) (T4(z) = 8z4 − 8z2 + 1) Birch, Cassels and Guy had found further
examples (in degrees 7 and 11) involving however irrational coefficients. In this paper
Schinzel shows that, although we seek reducibility over C, rationality of the coefficients
may be relevant! The main result in fact asserts that if f, g ∈ Q[T ] are non-constant and
deg f = p is prime, then f (X)−g(Y ) is reducible over C if and only if g(Y ) = f (c(Y )).
(Clearly now we fall into the first of the mentioned families.)

A further conclusion on the rationality of c(T ) is drawn (we omit this here) and also
a Corollary stating that in the above assumptions reducibility over C and over Q are
equivalent if one excludes the cases f (X)−g(Y ) = A(X+α)p−Bd(Y )p,A,B, α ∈ Q,
d ∈ Q[X].

As to Schinzel’s proof, first he uses a simple result of Ehrenfeucht to assume that

p divides deg g = kp. Now, a hypothetical factorization f (X) − g(Y ) =
r∏
i=1
hi(X, Y )

(r > 1) yields a factorization for the highest homogeneous parts (giving X the weight

k): Xp − aY kp =
r∏
i=1
Hi(X, Y ), say. Now the rationality enters into the picture, through

comparison of the factorization over Q( p
√
a) of the left side (Lemma 1 says there are just

two factors of degrees 1, p− 1 in X) and of the right side. (Here p
√
a is the rational root if

a is a p-th power in Q and any root otherwise.) All the coefficients may be assumed to be
algebraic so Galois action (over Q( p

√
a)) essentially permutes the factors hi . Inspection

of this action then shows that the Hi which is divisible by X − p
√
aY k , say H1, must be

linear in X, whence the same holds for h1, yielding the sought conclusion.
Fried [6] has generalized the result to the case when deg f is an odd prime-power.



698 E. Polynomials in several variables

E4. It will be convenient to start by recalling a few points concerning the reducibility
(over Q) of lacunary polynomials, say of the form f (X) = a0 + a1X

m1 + . . . + akXmk .
One of the main goals in Schinzel’s theory is to establish reducibility criteria when the
ai are given rationals (or algebraic), and where the mi are variable integers. Now, the
possible cyclotomic factors occur periodically and are easy to detect. For these reasons it
is sensible to look at the reducibility of “Kf ”, Schinzel’s notation for f deprived of all its
cyclotomic factors. Still other factors that play a special role are the reciprocal ones, i.e.
those invariant by f (X)  → Xdeg f f (1/X); dividing out f by all the reciprocal irreducible
factors leaves with “Lf ”, in Schinzel’s notation.

Coming to the paper in question, the main theme is to understand the irreducibility of
Kf and Lf when f (X) = aXm + bXn + cXp + d is a quadrinomial over Q. The second
question is given a solution which is in a way complete: for given integer coefficients a,
b, c, d, Theorem 2 reduces the problem to test a certain explicit finite set of cases.

In particular it turns out that either f can be divided into two binomials with a common
factor, or Lf can be reducible only if the mutual ratios (m : n : p) belong to a certain
finite set (depending only on the coefficients). This answers a (more difficult) analogue of
Problem 9 in E1.

As toKf , the authors have a Theorem 3, similar to Theorem 2 but for the cases a = 1,
b = ±1, c, d ∈ Z, 0 < |c| � |d|, m > n > p > 0.

A fundamental tool in the rather intricate proofs is a 1969 result by Schinzel [11];
this is used to reduce to the case of two variables, which brings us to Theorem 1 of
the present paper. This remarkable result gives a complete classification of the reducible
quadrinomials in two variables, over any field of characteristic zero. It is found that a
reducible quadrinomial in Y1, Y2 either is really a function of a single variable Yp1 Y

q
2 or

may be divided into two parts with a binomial common factor or is of one of certain three
explicit types (that is, c(U3 +V 3 +W 3 −3UVW), c(U2 −4T UVW −T 2V 4 −4T 2W 4)

or c(U2 + 2UV + V 2 −W 2), for a constant c and monomials T ,U, V,W in Y1, Y2).
The main points of the proof are as follows. First, via a suitable substitution Yi  →

XaiY bi , one writes the quadrinomial, up to a monomial factor, in the form f (X) − g(Y )
where f , g are binomials; so we essentially arrive at a special case of Problem 1 of E1.
One views the curve f (X) = g(Y ) as the fibred product over the λ-sphere of the curves
f (X) = λ, g(Y ) = λ, so the splitting fields of these last equations overK(λ) are relevant.
One now uses a 1973 result by Fried [7] (i.e. [4] from E4, completely referred only in the
Addendum(1)) to go to the case when such splitting fields are equal. The final point is
a separate study of the permutation representations of the monodromy of both covers of
the λ-sphere; this yields the Galois structure of the splitting fields and enables one to get
informations from their equality; this comparison leads to the sought conclusion.

For the case of positive characteristic see Ch. II of Schinzel’s second book [15]. For
reducibility ofKf , f any non-reciprocal quadrinomial, see Schinzel [13]; the reducibility
of reciprocal quadrinomials remains an open problem.

E5. This paper gives in the first place a sufficient irreducibility criterion depending
only on the structure of the monomials which appear.

(1) and in the present volume
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Let F(X1, . . . , Xl) =
k∑
j=0
aj

l∏
i=1
X
νij
i be a (k+ 1)-nomial over a fieldK , supposed not

divisible by any variable Xi and such that a0 · · · ak �= 0. Theorem 1 of the paper asserts
that if the vectors vj := (ν0j , . . . , νlj ) are distinct and the rank of the matrix of the vj
(over the prime field), completed with (1, . . . , 1) in the last column, is equal to its rank
over Q and is > (k + 3)/2, then F is irreducible over K . (In Ch. II of Schinzel’s second
book it is shown that, with a genuine exception, it is sufficient to consider the rank over
the rationals.) A Corollary also shows that if K = C and F contains a constant term it
suffices that the rank of the vj is > (k + 1)/2. Note that the rank expresses how many of
the monomials which appear are multiplicatively independent.

Finally, an application is given to Theorem 2 on the reducibility of a0 +
k∑
j=1
ajX

nj

over Q (ai ∈ Z, nj distinct positive integers). In practice it states that if there is more than
one irreducible non-reciprocal factor (see E4) then the degrees nj satisfy at least [k/2]
linearly independent linear equation

∑
γijnj = 0 with integers γij which are bounded by

the k2-th iterate exponential of
∑
a2
j .

It is also remarked that the results are in sense best possible, an example in this direction

being 4 + 2
l∑
j=1
Xj +

2l−1∑
j=l+1

Xj−lXl = (2 +Xl)(2 +
l−1∑
i=1
Xi).

The proof of Theorem 1 is by induction on l, carried out by means of combinatorial

considerations and suitable “monomial” transformations, i.e. of the shapeXi  →
l∏
j=1
X
aij
j .

As to Theorem 2, on the present assumptions a 1969 result by Schinzel (see also E4)
implies that certain derived polynomials in several variables are reducible. Via Theorem 1
this yields an upper bound for the rank of the relevant matrices, leading to the sought linear
relations.

E6. This paper concerns the behavior of polynomials in several variables under sub-
stitutions (z1, . . . , zn)  → (zr1 , . . . , zrn) for integers ri > 0. A special role is played here
by what the authors call generalized cyclotomic polynomials (=GCP below), i.e. those of
the form ±Φm(zr11 · · · zrnn ), where Φm is the standard m-th cyclotomic polynomial.

Theorem 1 in the paper shows that: If F ∈ Z[z1, . . . , zn] is irreducible and not GCP
but F(zr1 , . . . , zrn) is a product of cyclotomic polynomials, then (r1, . . . , rn) lies in the
union of a finite set of hyperplanes of Qn depending (explicitly) only on F .

Several consequences are drawn. A very interesting one is a generalization of a cel-
ebrated result by Kronecker, that an algebraic integer all of whose conjugates lie in the
unit-disk must be a root of unity; in fact, Theorem 2 states that: If F ∈ Z[z1, . . . , zn] has
value 1 at the origin and has no zero in the poly-unit-disk then F is a product of GCP.

The paper also offers further results, on the zeros of Dirichlet polynomials (which were
a main motivation) and also on polynomials over the complex field; we do not pause on
this here.

A main tool in the proof of Theorem 1 is played by a result of H. B. Mann on linear
relations over Z among roots of unity; roughly speaking, it bounds the order of the involved
roots in terms of the number of summands. Mann’s conclusion is applied to the possible
relations F(ζ r1 , . . . , ζ rn) = 0 for ζ a root of unity.
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The concept of GCP introduced in this paper has proved to be substantial and has later
evolved into important investigations by Boyd, Lawton, Schinzel, Smith, Dobrowolski,
Amoroso, David, Zhang, …. It has turned out that the GCP (where ri are integers and
the denominator is cancelled) and their products are just the polynomials of unit Mahler
measure (see the second book by Schinzel for definitions) and essentially they correspond
to torsion subvarieties of Gnm. In turn, this puts the topic in the general context of heights
of algebraic subvarieties of group varieties, a subject which recently has been extremely
lively and fruitful, leading to the proof of fundamental results in Diophantine Geometry
(we do not attempt here to give more detail or pause on references).

E7. The present paper, though short, raises and solves several interesting questions.
One motivation was an almost simultaneous paper [1] by S. Abhyankar and L. A. Rubel on
the irreducibility of difference polynomialsp(X)−q(Y ) (see also E1, E3 above).Actually,
in both papers generalized difference polynomials (g.d.p.) are considered; these are of the

shape P(X, Y ) = AYn +
n∑
i=1
Pi(X)Y

n−i , for a constant A �= 0, n > 0, degPn = m > 0

and degPi < mi/n for 1 � i < n. Beyond generalizing the “difference polynomials”, the
conditions for instance imply that all the Puiseux series inX for the equation P(X, Y ) = 0
have order m/n at infinity.

In both papers it is proved (Thm. 1 here) that: If P is a g.d.p. then any two non-constant
factorsQ,R of P have a common zero.

This immediately yields some irreducibility criteria, as the Corollary, stating that
p(X)−q(Y )may be reducible only ifp(α) = q(β) for some α, β withp′(α) = q ′(β) = 0.
(This was however a rather special consequence of a previous 1961 result by Davenport,
Lewis and Schinzel.)

Finally, the paper answers several problems raised in [1] about hereditarily irreducible
polynomials (HIP)P(x1, . . . , xn), i.e. those such thatP(h1(x1), . . . , hn(xn)) is irreducible
for all non-constant h1, . . . , hn. For instance, the authors produce a HIP in two variables,
namely (x2+1)y+1. (Eisenstein criterion over k[x] is used to show that (a(x)2+1)b(y)+1
is anyway irreducible.)

E8. The paper considers representations of a given polynomial F ∈ K[X] as
M∑
μ=1

fμ(Lμ(X)), where the Lμ are linear forms in X = (x1, . . . , xn) and the fμ depend

on a single variable.
Generalizing previous results, several theorems are proved concerning (i) the smallest

possible M (e.g. if d := degF one may take M �
(
n+d−1
n−1

)
) and (ii) the possible choice

of the forms Lμ in a given finite set. As corollaries, one improves results on the classical
problem of the representation of a form of degree d as a linear combination of a bounded
number of d-th powers of linear forms (Waring’s problem for forms); for instance it is
deduced from Thms. 1, 2 that

(
n+d−1
n−1

)
(resp. d) summands suffice if charK = 0 (resp.

and if n = 2). (For the result concerning forms see [5].) Recently A. Białynicki-Birula and
A. Schinzel replaced

(
n+d−1
n−1

)
by
(
n+d−2
n−1

)
.

Some of the main arguments are explicit: to find the sought representations one equates
coefficients of both sides, viewing the coefficients of the fμ as unknowns (and letting the
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Lμ vary in a “sufficiently large” finite set). This leads to (complicated) linear systems,
which are shown to be non-singular (Lemma 2), yielding the required solutions.

Looking at a “generic” polynomial F the bounds sometimes may be lowered; in the
case of binary forms, the best possible value is given in Thm. 6 (for algebraically closedK).

E9. This paper discusses the group of automorphs of a binary form f (x, y) ∈ k[x, y]
over a field k, i.e. the group Aut(f, k) of linear maps T , defined over k, such that
f (T (x, y)) = rf (x, y) for a constant r = rT (when r = 1 one speaks of strict auto-
morphs).

This topic, plainly related to the well-known important theory of finite subgroups
of PGL2, has a very rich history dating back to long ago, and has been considered by
mathematicians such as A. Clebsch, L. Dickson, P. Gordan, F. Klein, B. Segre, J-P. Serre
and several others, until very recently.

When the ground field k is C all the possible finite subgroups of PGL2 may actually
appear as groups of automorphs, as was shown by Klein. The question becomes more
delicate for general fields. The present paper discusses this in full generality (even in the
case of fields of positive characteristic which are moreover non-perfect, which escaped
from all previous investigations by Klein, Dickson, Segre). Section 2 determines all forms
f with a given subgroup of Aut(f, k).

Section 3 bounds the order of Aut(f, k).
Another question, dealt with in Section 4, is to decide whether a given form has a

nontrivial automorph defined over k; for k = Q this was considered by Segre, for quadratics
and cubics; here an answer is given generally, in terms of the Galois group of f (x, 1) over k.

The paper contains several other related results, stated in eight theorems and various
corollaries and lemmas. There is also a preliminary Section 1, of considerable independent
interest, on finite subgroups of PGL2(k) for arbitrary fields k.

E10. Let K be a field and let f ∈ K[x1, . . . , xn] be a symmetric polynomial. Then f
can be written as f = F(τ1, . . . , τn), where F is also a polynomial overK and τ1, . . . , τn
are the elementary symmetric functions of x1, . . . , xn.

In the present paper the reducibility (over K) of f is related to the reducibility of F .
To my knowledge this question is new, despite its naturality.

Theorem 1 gives a remarkable very neat criterion, valid if the number of variables n
is larger than max(4, degF + 1). Under this assumption it is proved that f is reducible if
and only if either F is reducible or F is of the shape

cNormK(α)K (αn + x1α
n−1 + . . .+ xn)

for c ∈ K∗ and α algebraic over K .
Observe that the stated shape produces in fact reducibility of f since

αn + τ1αn−1 + . . .+ τn =
n∏
i=1

(α + xi).

The proof of the necessity splits into two parts, according as one of the hypothetical
irreducible factors of f depends on a single variable or not. In the first case one recovers
the above stated norm-form shape. In the second case one acts on the factorization with
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the symmetric group. If the factor is not symmetric one gets a contradictions through a
lemma which considers degrees. If the factor is symmetric one recovers reducibility of F .

The paper also contains Theorem 2, working under the milder condition n > degF +1
but assuming that f is isobaric with respect to the weight i for xi .

This Theorem 2 implicitly also shows that the “n > 4” of Theorem 1 cannot be replaced
by “n > 3”. A counterexample occurs when char(K) �= 3, K contains a primitive cubic
root of 1 and F = a(x2

2 − 3x1x3 + 12x4) for a ∈ K∗.
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Some unsolved problems on polynomials

The aim of this paper is to discuss 9 problems connected with the irreducibility of
polynomials.

Let k[x, y, . . .] be the ring of polynomials over a field k, k(x, y, . . .) the corresponding
field of rational functions. Further, let Q be the field of rationals, C the field of complex
numbers, and let

Tn(x) = 1

2

(
x +
√
x2 − 1

)n + 1

2

(
x −
√
x2 − 1

)n
be the n-th Chebyshev polynomial.

We begin with problems concerning absolute irreducibility.
A polynomial

(1) a
(
b(x)
)− a(c(y)), where a, b, c ∈ C[x], degree a > 1,

is of course reducible in C[x, y].
H. Davenport and D. J. Lewis found a polynomial of the form f (x)− g(y) reducible

in C[x, y] and not being of the form (1), namely T4(x)+ T4(y). Of course, polynomials

(2) AT4
(
b(x)
)+ AT4

(
c(y)
)
, A—constant, b, c ∈ C[x],

are also reducible. A condition is given in [2] sufficient for the irreducibility of f (x)−g(y)
in C[x, y] but not necessary. This suggests

Problem 1. Do there exist non-constant polynomials f, g ∈ C[x, y] such that f (x)−g(y)
is reducible in C[x, y] and is neither of the form (1) nor (2)?

A similar question arises when instead of f (x)−g(y), we consider
f (x)− f (y)
x − y . This

polynomial is clearly reducible if

(3) f (x) = a(b(x)), degree a > 1, degree b > 1.

There exist, however, other cases of reducibility, e.g.

f (x) = A(Bx + C)p +D or f (x) = ATp(Bx + C)+D,(4)

(A,B,C,D—constants).

This suggests
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Problem 2. Does there exist a polynomial f ∈ C[x] such that
f (x)− f (y)
x − y is reducible

in C[x, y] and is neither of the form (3) nor (4)?

A negative answer to this question would furnish a complete solution of the so-called
Dickson–Schur problem. The problem consists on determining all polynomials f ∈ Q[x]
such that for infinitely many primes p, the numbers f (0), f (1), …, f (p − 1) are all
different mod p. If the answer to Problem 2 is negative then every such polynomial is
obtainable by repeated superposition of a linear function, xm and Tn(x).

Passing to polynomials in 3 variables we note first the following theorem.

For arbitrary non-constant polynomials f, g, h ∈ C[x]
f (x)+ g(y)+ h(z) is irreducible in C[x, y, z].

This result was proved some years ago by A. Ehrenfeucht and A. Pełczyński, but their
proof has not been published: it is short enough to be outlined here.

It is known (cf. [4]) that a polynomial f (x) + k(t) is irreducible in C[x, t] if
(degree f, degree k) = 1. Let

f (x) = aμxμ + . . .+ a0, g(y) = bνyν + . . .+ b0,

h(z) = c�z� + . . .+ c0c

and suppose that

f (x)+ g(y)+ h(z) = p(x, y, z)q(x, y, z),
where neither of the polynomials p, q is constant.

It is possible to find complex numbers A,B,C,D such that

bνA
ν + c�C� = 0,

νbνA
ν−1B + �c�C�−1D �= 0,

(5)

p(x, t) = p(x, t2μ�−1(At + B), t2μν−1(Ct +D)) �≡ const,

q(x, t) = q(x, t2μ�−1(At + B), t2μν−1(Ct +D)) �≡ const.
(6)

Assuming that A,B,C,D satisfy the above conditions and putting

k(t) = g(t2μ�−1(At + B))+ h(t2μν−1(Ct +D))
we find easily from (5) that degree k = 2μν� − 1, hence (degree f, degree k) = 1.

The polynomial f (x)+ k(t) is, therefore, irreducible in C[x, t] and on the other hand

f (x)+ k(t) = p(x, t)q(x, t),
which contradicts formulae (6).

The theorem is thus proved. It suggests

Problem 3. Do there exist non-constant polynomials f ∈ C[x], g ∈ C[y, z] such that
f (x)+ g(y, z) is reducible in C[x, y] and g is not of the form a(b(y, z)), where a ∈ C[t],
b ∈ C[y, z] and f (x)+ a(t) is reducible in C[x, t]?
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Let us consider now a general polynomial in three variables f (x, y, z) irreducible in
C[x, y, z]. It can happen that for every value of z, f becomes reducible in C[x, y], e.g. if
f (x, y, z) = (xy)2 − z. There is the same situation, if

(7) f (x, y, z) = q(x, y, z)nh
(
p(x, y, z)

q(x, y, z)
, z

)
,

where p, q ∈ C[x, y, z] and h(t, z) is of degree n > 1 in t .
This suggests the next problem.

Problem 4. Does there exist a polynomial f (x, y, z) irreducible in C[x, y, z], reducible
for every z ∈ C[x, y] and not of the form (7)?

It follows from a certain theorem of E. Noether [7] that a polynomial f (x, y, z) is
reducible in C[x, y] either only for finitely many z or for all but finitely many z.

Problem 4 has brought us near the circle of ideas connected with Hilbert’s Irreducibility
Theorem. It is a particular case of this theorem that if

f (x1, x2, . . . , xn, y) =
k∏
j=1

fj (x1, x2, . . . , xn, y)

is the factorization of a polynomial f ∈ Q[x1, x2, . . . , xn, y] into polynomials irreducible
in Q[x1, x2, . . . , xn, y], then for infinitely many integer systems (x1, x2, . . . , xn) the poly-
nomials fj are irreducible in Q[y]. It follows hence that if an equation

(8) f (x1, x2, . . . , xn, y) = 0

is soluble in an integer y for all integer systems (x1, x2, . . . , xn), then there exists a poly-
nomial ϕ ∈ Q[x1, x2, . . . , xn] such that

(9) f (x1, x2, . . . , xn, ϕ) ≡ 0

identically.
Similarly, if the equation (8) is for all rational systems (x1, x2, . . . , xn) soluble in

rational y, then there exists a rational function

ϕ ∈ Q(x1, x2, . . . , xn)

such that (9) holds identically.
This suggests

Problem 5. Does there exist a polynomial

f ∈ Q[x1, x2, . . . , xn, y, z]
such that for all integer systems (x1, x2, . . . , xn) the equation

(10) f (x1, x2, . . . , xn, y, z) = 0

is soluble in integers y, z and for no rational functions

ϕ,ψ ∈ Q(x1, x2, . . . , xn),
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the identity

(11) f (x1, x2, . . . , xn, ϕ, ψ) ≡ 0

holds?

Problem 6. Does there exist a polynomial

f ∈ Q[x1, x2, . . . , xn, y, z]
such that for all rational systems (x1, x2, . . . , xn) the equation (10) is soluble in ratio-
nal y, z and for no rational functions

ϕ,ψ ∈ Q(x1, x2, . . . , xn),

the identity (11) holds?

To answer these problems seems to me very difficult even for n = 1. A negative answer
to Problem 5 in some interesting particular cases can be deduced from a certain theorem
of Bauer (cf. [3]).

It is noteworthy that an equation f (x, y, z, t) = 0 can be soluble in integers y, z, t for
all integer values of x, in spite of the fact that for no rational functions ϕ,ψ, χ ∈ Q(x),
the identity f (x, ϕ, ψ, χ) ≡ 0 holds. As an example we can take

f (x, y, z, t) = 28x2 + 1 − y2 − z2 − t2.
It follows from the theorem of Gauss on sums of three squares that for every integer x,

there are integers y, z, t such that y2 +z2 + t2 = 28x2 +1. Suppose that rational functions
ϕ,ψ, χ ∈ Q(x) satisfy the identity

ϕ2(x)+ ψ2(x)+ χ2(x) = 28x2 + 1.

Clearly

ϕ(x) = ax +O(1)
m

, ψ(x) = cx +O(1)
m

, χ(x) = ex +O(1)
m

,
c

where a, c, e,m are integers, and we get

a2 + c2 + e2 = 28m2 = 4h(8k + 7).

This is however impossible by Gauss’s theorem.
As a last question connected with Hilbert’s theorem we shall formulate

Problem 7. Does there exist an infinite set S ⊂ Q and a polynomial f irreducible in
Q[x, y] satisfying the following conditions:
(i) for every x ∈ S there exists a y ∈ S such that f (x, y) = 0,
(ii) f (x, y) is neither linear in y nor symmetric in x and y?

In order to see that (i) can hold if f (x, y) is symmetric in x and y, it suffices to define
S as the set of all rational x for which f (x, y) is soluble in rational y (this set clearly can
be infinite).
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It follows from Hilbert’s theorem that the answer to Problem 7 is negative if S = Q;
W. Narkiewicz [6] has shown that the answer is negative if f is linear in x.

Now we pass to problems concerning the irreducibility of trinomials in Q[x].
K. Th. Vahlen [11] and A. Capelli [1] gave a simple criterion for the reducibility of a

binomial in Q[x]: xn − a, where a is an integer, is reducible in Q[x] if and only if, for
some p > 1, p |n and a = bp or 4 |n and a = −4b4, b an integer.c

It follows from this criterion that every binomial ∈ Q[x] has an irreducible factor,
which is either binomial or trinomial.

We shall prove it for xm− a, a integer, by induction with respect tom. Form = 1, the
theorem is trivially true. Suppose that it is true for all m < n and all integers a �= 0. Now,
if xn − a is irreducible, it is itself its required factor. If p > 1, p |n, n = pk and a = bpc

then xk − b | xn − a, and the inductive assumption applies to xk − b. By the theorem of
Vahlen–Capelli it remains to consider the case 4 |n; n = 4k, a = −4b4. We have thenc

xn − a = (x2k − 2bxk + 2b2)(x2k + 2bxk + 2b2).

If x2k − 2bxk + 2b2 is irreducible, it is the required factor of xn − a. If it is reducible,
g(x) |x2k − 2bxk + 2b2, g(x) ∈ Q[x] monic, degree g < 2k, we havec

g(x) = (x − λ1)(x − λ2) · · · (x − λj ), where j < 2k

and

(12) λ4k
i = −4b4 (i = 1, 2, . . . , j).

It follows from (12) that |λi |2k = 2b2, thus

|λ1λ2 · · · λj |2k = (2b2)j .

Since g ∈ Q[x], |λ1λ2 · · · λj | is an integer, thus putting 2k/(j, 2k) = l we must have
2b2 = cl , c integer. l is clearly odd, thus

xn/l + c2 |xn + c2l = xn − a
and since j < 2k, l is> 1 and the inductive assumption applies to xn/l + c2. The theorem
is thus proved. It suggests

Problem 8. Does there exist an absolute constantK such that every trinomial ∈ Q[x] has
a factor irreducible in Q[x] which has at most K terms?

The identity found by Mrs. H. Smyczek:c

x10 − 12x2 − 196 = (x5 + 2x4 + 2x3 − 4x2 − 10x − 14)

× (x5 − 2x4 + 2x3 + 4x2 − 10x + 14)

where both factors are irreducible by Eisenstein’s criterion, shows that, if it exists,K > 6.
A summary of the few known results concerning the reducibility of trinomials was given

by E. S. Selmer [9]. Since the publication of that paper, new results have been obtained by
W. Ljunggren [5] and H. Tverberg [10].
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For a given f ∈ Q[x], let f (x) =∏(x−λ), where λ runs through all those roots of f
which are not roots of unity. Then the theorem of Ljunggren and Tverberg can be stated
as follows:

If m > n > 1, f (x) = xm ± xn ± 1, then f (x) is irreducible in Q[x].
Using Ljunggren’s method I proved [8]:

If m > n > 1,
n

m
�= 2

7
,

5

7
, f (x) = xm − 2xn + 1, then f (x) is irreducible in Q[x].

c

This suggests the following

Problem 9. Do there exist integers a, b �= 0 such that for infinitely many rational r ,
integers m, n can be found satisfying
(i) n/m = r ,
(ii) if f (x) = xm + axn + b, then f (x) is reducible in Q[x]?

Note added in proof. Problems 3 and 4 have been solved by H. Davenport and the writer
in [3a].
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Reducibility of polynomials in several variables

H. Davenport and the writer proved recently [1] the following theorem: the polynomial
f (x1, . . . , xr )+g(y1, . . . , ys) over any fieldK of characteristic 0, is reducible if and only
if

f (x1, . . . , xr ) = F
(
R(x1, . . . , xr )

)
,

g(y1, . . . , ys) = G
(
S(y1, . . . , ys)

)
,

where F,G,R, S are polynomials over K and F(u)+G(v) is reducible in K .
The aim of this paper is to prove the following more general

Theorem. Let X1, X2, . . . , Xn be non-empty finite disjoint sets of variables and let
Φ(v1, v2, . . . , vn) and F1(X1), F2(X2), . . . , Fn(Xn) be polynomials over an arbitrary
field K . Suppose that Φ is of positive degree in each vi (1 � i � n) and at least two
polynomials among Fi (1 � i � n) are non-constant. The polynomial

Φ
(
F1(X1), . . . , Fn(Xn)

)
is reducible in K if and only if

Fi(Xi) = Gi
(
Hi(Xi)

)
(1 � i � n),

where Gi,Hi are polynomials over K and

Φ
(
G1(u1), . . . ,Gn(un)

)
is reducible in K .

Lemma 1. For every pair of positive integers i and j , where i � j , there exists a polyno-
mialΩi,j (t; v1, . . . , vj ) with integral coefficients and the coefficient at the highest power
of t equal to 1 and with the following property. If L is an arbitrary field,

A(y) =
j∑
ν=0

aνy
j−ν, B(y) =

h∑
ν=0

bνy
h−ν (a0b0 �= 0)

are polynomials over L and B(y) divides A(y), then

(1) Ωi,j

(
bi

b0
; a1

a0
. . . ,

aj

a0

)
= 0.

Presented by W. Sierpiński on July 23, 1963.



710 E. Polynomials in several variables

Proof. Denote for a given finite set S of indeterminates by τν(S) the ν-th fundamental
symmetric function of these indeterminates. Let U1, U2, . . . , Ul (l = 2j − 1) be all the
non-empty subsets of the set U = {u1, . . . , uj }.

Put

(2) Ti,k(u1, . . . , uj ) = τk
(
τi(U1), . . . , τi(Ul)

)
(0 � k � l).

Ti,k(u1, . . . , uj ) is a symmetric polynomial with integral coefficients, thus there exists a
polynomial Vi,k(v1, . . . , vj ) with integral coefficients such that

(3) Ti,k(u1, . . . , uj ) = Vi,k
(
τ1(U), . . . , τj (U)

)
.

Put

(4) Ωi,j (t; v1, . . . , vj ) = t l +
l∑
k=1

(−1)kVi,k(v1, . . . , vj )t
l−k.

The polynomialΩi,j has integral coefficients and the coefficient at the highest power of t
equals 1. Suppose now that polynomials A(y), B(y) over a field L satisfy the conditions
of the lemma, and let

A(y) = a0(y + η1)(y + η2) · · · (y + ηj )c

be the factorization of A(y) in a suitable extension of L.
Since B(y) divides A(y), there exists a set {ν1, . . . , νh} of positive integers � j such

that

B(y) = b0(y + ην1) · · · (y + ηνh).c

Hence bi/b0 = τi(ην1 , . . . , ηνh) and

(5) Π =
∏( bi

b0
− τi(ην1 , . . . , ηνg )

)
= 0,

where the product is taken over all non-empty sets {ν1, . . . , νg} of positive integers � j .
Now by (2), (3) and (4)

(6) Π = Ωi,j
(
bi

b0
; τ1(η1, . . . , ηj ), . . . , τj (η1, . . . , ηj )

)
and since

τi(η1, . . . , ηj ) = ai

a0
(i � j),

the equality (1) follows from (5) and (6). ��

Lemma 2. Let F(x1, . . . , xk) and χi(t, v) be polynomials, ri(x1, . . . , xk) be rational
functions over a field K (1 � i � j).

If F is not constant and

(7)
χi(t, v) �= 0

χi(ri, F ) = 0
(1 � i � j)
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identically, then there exist polynomials G(u) and H(x1, . . . , xk) and rational functions
pi(u) over K such that

F(x1, . . . , xk) = G
(
H(x1, . . . , xk)

)
ri(x1, . . . , xk) = pi

(
H(x1, . . . , xk)

)
(1 � i � j)

identically.

Proof. In the course of the proof, we shall denote by capital letters polynomials over K .
It follows from (7) that the functions F and ri (1 � i � j ) generate a subextension

of K(x1, . . . , xk) of degree of transcendence over K equal to 1. According to a theorem
of J. Igusa [2] (cf. Samuel [3]) this is a simple extension of K . Therefore, there exists a
rational function l(x1, . . . , xk) such that F and ri (1 � i � j ) are expressible rationally
in terms of l. (For fields K of characteristic 0 this was proved much earlier by P. Gordan
and E. Noether, cf. [1].) Let

l(x1, . . . , xk) = P(x1, . . . , xk)

Q(x1, . . . , xk)
, F = R(l)

S(l)
, where (P,Q) = (R, S) = 1.

Denote by r and s the degrees ofR and S, respectively.Q,QrR(P/Q) andQsS(P/Q)
are polynomials, relatively prime in pairs, since (P,Q) = (R, S) = 1. Now, it follows
from the identity

(8) F = QrR(P/Q)

QsS(P/Q)
·Qs−r

thatQsS(P/Q) is a constant, say β.
Let S(x) = α(x − ξ1) · · · (x − ξs) be the factorization of S(x) in a suitable extension

K ′ of K . We have

α(P − ξ1Q) · · · (P − ξsQ) = QsS(P/Q) = β,
whence P − ξiQ = γi and γi ∈ K ′ (1 � i � s). If any two ξ ’s were distinct, e.g. ξ1 �= ξ2,
we would get (ξ2 − ξ1)Q = γ1 − γ2, whence Q and P would be constants which is
impossible. Thus S(x) = α(x − ξ)s and either s = 0 or P − ξQ = γ , where ξ, γ ∈ K ′.

If s = 0, it follows from (8) thatQ is a constant, say δ ∈ K , and the lemma is satisfied
with H = l = P/δ, G = R/a.

If P − ξQ = γ ,Q cannot be a constant; thus ξ, γ ∈ K . On the other hand, it follows
from (8) that

(9) s � r.

Since l = P/Q = ξ + γ /Q, every function expressible rationally in terms of l can be
expressed rationally in terms ofQ/γ . Putting H = Q/γ , we find F = G(H), where

G(u) = usR
(
ξ + 1

u

)
/α

is a polynomial in view of (9). This completes the proof. ��
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Lemma 3. Let F(x1, . . . , xk) and Ψ (t; y1, . . . , yl) be polynomials over K , the former
non-constant, the latter of positive degree in each variable. The polynomial

Ψ
(
F(x1, . . . , xk); y1, . . . , yl

)
is reducible in K only if

F(x1, . . . , xk) = G
(
H(x1, . . . , xk)

)
where G,H are polynomials over K and

Ψ
(
G(u); y1, . . . , yl

)
is reducible in K .

Proof. For the sake of brevity put (x1, . . . , xk) = X, (y1, . . . , yl) = Y and letc

(10) Ψ
(
F(X), Y

) = P(X, Y )Q(X, Y )
be the factorization of Ψ

(
F(X), Y

)
. Let

Ψ
(
F(X), Y

) = m∑
i=0

Ai
(
F(X)

)
Mi(Y ), A0

(
F(X)

) �= 0,

P (X, Y ) =
p∑
i=0

Bi(X)Pi(Y ), B0(X) �= 0,

(11)

Q(X, Y ) =
q∑
i=0

Ci(X)Qi(Y ), C0(X) �= 0,(12)

whereMi, Pi,Qi are distinct products of powers of y1, . . . , yl ordered so thatM0, P0,Q0

are first in inverse lexicographic order.c

Consider the greatest common factor d(u) of the polynomials Ai(u) (0 � i �m). If
d(u) is not constant,

Ψ (u, Y ) = d(u)
m∑
i=0

Ai(u)

d(u)
Mi(Y )

is a factorization of Ψ (u, Y ), and the lemma holds with G(u) = u, H = F .
If d(u) = 1, there exist polynomials Di(u) over K such that

m∑
i=0

Ai(u)Di(u) = 1.

Hence,
m∑
i=0

Ai
(
F(X)

)
Di
(
F(X)

) = 1

and the polynomials Ai
(
F(X)

)
(0 � i � m) are relatively prime. In this case P and Q

must be of positive degree with respect to Y . Choose an integer d so large that Ψ , P andQ
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have degree < d in each of the variable y1, . . . , yl . Make Kronecker’s substitution

SdN(y1, . . . , yl) = N(y, yd, . . . , ydl−1
)

(N arbitrary polynomial).

Clearly, SdMi (0 � i � m) are distinct and the same is true for SdPi (0 � i � p) and
SdQi (0 � i � q).

We get

SdΨ =
μ∑
ν=0

aνy
μ−ν, SdP =

π∑
ν=0

bνy
π−ν,

where yμ = SdM0, yπ = SdP0,

aν =
{
Ai
(
F(X)

)
, if there is an i � m such that SdMi = yμ−ν

0 otherwise,
(13)

bν =
{
Bi(X), if there is an i � p such that SdPi = yπ−ν
0 otherwise.

It follows that B0 = b0, Bi = bν(i) where SdPi = yμ−ν(i). Since SdP divides SdΨ , we
have by Lemma 1 with L = K(X),

(14) Ων(i),μ

(
Bi

B0
; a1

a0
, . . . ,

aμ

a0

)
= 0 (1 � i � p).

Since by (13), aν (0 � ν � μ) are expressible integrally in terms ofF(X)with coefficients
from K , equation (14) takes the form

χi

(
Bi(X)

B0(X)
, F (X)

)
= 0 (1 � i � p),

where χi(t, v) is a polynomial over K with the coefficient at the highest power of t equal
to a power of A0(v), whence

χi(t, v) �= 0.

Similarly we get

χp+i
(
Ci(X)

C0(X)
, F (X)

)
= 0 (1 � i � q),

where again χp+i (t, v) �= 0.

It follows now from Lemma 2 that there exist polynomialsG(u) andH(X) and rational
functions pi(u) (1 � i � p) and qi(u) (1 � i � q) over K such that

F(X) = G(H(X)),
Bi(X)

B0(X)
= pi

(
H(X)

)
(1 � i � p),
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and
Ci(X)

C0(X)
= qi
(
H(X)

)
(1 � i � q)

identically. Since B0(X)C0(X) = A0
(
F(X)

) = A0
(
G
(
H(X)

))
, we get from (10)–(12)

Ψ
(
G(u), Y

) = A0
(
G(u)

)( p∑
i=0

pi(u)Pi(Y )

)( q∑
i=0

qi(u)Qi(Y )

)
and since both factors in brackets are of positive degree with respect to Y , the polynomial
Ψ
(
G(u), Y

)
treated as polynomial in Y is reducible in the field K(u). By Gauss’s lemma

this implies that Ψ
(
G(u), Y

)
is reducible in the ring K[u], i.e. it is simply reducible and

the proof is complete. ��

Proof of the Theorem. The condition for reducibility given in the theorem is clearly
sufficient. To prove that it is necessary we proceed by induction with respect to the total

number of variables N = X1 + . . .+Xn. If N = n so that Xi = 1 (1 � i � n), the result
is trivially true.

We suppose the result holds if N < N0, where N0 > n, and have to establish its

truth when N = N0. We can suppose without loss of generality that X1 = k > 1 and
F1(X1) is not constant. Arrange all the variables belonging to X2 + . . . + Xn on which
Φ
(
F1(X1), . . . , Fn(Xn)

)
really depends in a sequence y1, . . . , yl . Put

Ψ (t; y1, . . . , yl) = Φ
(
t, F2(X2), . . . , Fn(Xn)

)
.

IfΦ
(
F1(X1), . . . , Fn(Xn)

)
is reducible, we apply Lemma 3 toΨ

(
F1(X1); y1, . . . , yl

)
and

conclude that

F1(X1) = G
(
H(X1)

)
,

where G,H are polynomials over K and

Ψ
(
G(u); y1, . . . , yl

) = Φ(G(u), F2(X2), . . . , Fn(Xn)
)

is reducible. Now the total number of variables is N0 − k + 1 and an application of the
inductive hypothesis leads to the desired conclusion. ��
Note added in proof. Dr. A. Białynicki-Birula has remarked that the polynomials Gi
occurring in the Theorem depend only upon Fi and not upon Φ.
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Reducibility of polynomials of the form f (x) − g(y)

I have proposed in [3] the following problem: do there exist non-constant polynomials
f (x) and g(y) such that f (x)− g(y) is reducible over the complex field and is neither of
the form

(1) a
(
b(x)
)− a(c(y)),

nor of the form

AT4
(
b(x)
)+ AT4

(
c(y)
)
,

where a, b, c are polynomials, the degree of a is greater than 1, A is a constant and

T4(z) = cos(4 arccos z) = 8z4 − 8z2 + 1

(for earlier results on this topic see [1])?
Recently B. J. Birch, J. W. S. Cassels and M. Guy have solved this problem in the

affirmative by finding the following example:

f (x)− g(y) = x7 − 7λtx5 + (4 − λ)tx4 + (14λ− 35)t2x3

− (8λ+ 10)t2x2 + ((3 − λ)t2 + 7(3λ+ 2)t3
)
x

− y7 + 7μty5 + (4 − μ)ty4 − (14μ− 35)t2y3

− (8μ+ 10)t2y2 − ((3 − μ)t2 + 7(3μ+ 2)t3
)
y − 7t3

= [x3 + λx3y − μxy2 − y3 − (3λ+ 2)tx + (3μ+ 2)ty + t]
× [x4 − λx3y − x2y2 − μxy3 + y4 + 2(μ− λ)tx2 − 7txy

+ 2(λ− μ)ty2 + (3 − λ)tx − (3 − μ)ty − 7t2
]
.

In this example, t is a parameter, λ = (1 + √−7)/2, μ = (1 − √−7)/2. Since
λ/μ is irrational, the coefficients of f and g are not all rational except for t = 0, when
f (x)− g(y) = x7 − y7 is of the form (1). The aim of the present note is to show that this
is necessarily the case if at least one of the degrees of f and g is a prime. More exactly,
we prove the

Theorem. Let f and g be non-constant polynomials with rational coefficients and let the
degree of f be a prime, say p. Then f (x)−g(y) is reducible over the complex field if and
only if g(y) = f (c(y)) and either c has rational coefficients or

(2) f (x)− g(y) = A(x + α)p − Bd(y)p,
where d has rational coefficients and A, B and α are rationals.
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Corollary. Under the assumptions of the theorem, the case (2) being excepted,f (x)−g(y)
is reducible over the complex field only if it is reducible over the rational field.

In the sequel, we shall denote by C the complex field, by Q the rational field, and, for
any given field K , by |K| its degree and by K[x] the ring of polynomials in x over K .
By ζp is meant the primitive p-th root of unity. We have

Lemma 1. Let a ∈ Q, a �= 0 and p
√
a be a rational root of the equation xp − a = 0 if

there are such roots or any root otherwise. Then (xp − a)/(x − p
√
a) is irreducible over

Q( p
√
a).

Proof. Setting K = Q( p
√
a) we have

(|K|, |Q(ζp)|
) = {(1, p − 1) if p

√
a is rational,

(p, p − 1) if p
√
a is irrational.

Thus in any case
(|K|, |Q(ζp)|

) = 1. Hence∣∣KQ(ζp)
∣∣ = |K| |Q(ζp)| = (p − 1)|K|

and ∣∣K(ζp p
√
a)
∣∣ = |K(ζp)| = |KQ(ζp)| = (p − 1)|K|.

Since ζp p
√
a is a zero of the polynomial (xp − a)/(x − p

√
a) and (p − 1) is its degree

over K , the polynomial is irreducible over K . ��

Lemma 2. If polynomials f and g satisfy the conditions of the Theorem and g(y) =
f
(
c(y)
)
, where c(y) ∈ C[y], then either c(y) ∈ Q[y] or (2) holds.

Proof. Let

f (x) =
p∑
i=0

aix
p−i , g(x) =

q∑
i=0

bix
q−i , c(x) =

r∑
j=0

cj x
r−j .

It follows from the identity

(3) g(x) =
q∑
i=0

bix
q−i =

p∑
i=0

ai

( r∑
j=0

cj x
r−j)p−i

that

(4) b0 = a0c
p
0

and that for each positive j < r the polynomial

Dj(x) = g(x)

pb0
− 1

p

( j−1∑
i=0

ci

c0
xr−i
)p



E3. Reducibility of polynomials 717

has the leading coefficient cj /c0. The induction with respect to j shows that

(5)
cj

c0
∈ Q (0 � j < r).

Thus the leading coefficient of the polynomial Dr(x) equal to �, say, is rational. On
the other hand, it follows from (3) that

(6) � = cr

c0
+ a1

pa0c0
, cr = �c0 − a1

pa0
.

Suppose now that (2) does not hold; thus the polynomial

f
(
x − a1

a0p

)
− a0x

p

is non-constant. Let d0x
s be its leading term (0 < s < p, d0 rational). The polynomial

f
(
c(x)
)− a0

(
c(x)+ a1

a0p

)p = g(x)− b0

( r−1∑
j=0

cj

c0
xr−j + �

)p
has rational coefficients and the leading coefficient d0c

s
0. Thus cs0 ∈ Q and since, by (4),

c
p
0 ∈ Q, we get c(s,p)0 = c0 ∈ Q. It follows by (5) and (6) that c(x) ∈ Q[x]. The proof is

complete. ��

Remark. The method used in the above proof gives the following more general statement.
LetK be a field of characteristic χ and L an arbitrary extension ofK . If f (x), g(x) ∈

K[x], c(x) ∈ L[x], g(x) = f
(
c(x)
)

and χ does not divide the degree of f , then there
exist a positive integer q and κ, λ ∈ L, d(x), h(x) ∈ K[x] such that

λq ∈ K, c(x) = λd(x)− κ, f (x) = h((x + κ)q).
The condition

degree of f �≡ 0 (mod χ)

is necessary as is shown by the example:

χ = 2, K = GF [2], L = GF [4] = K(ω),
f (x) = x2 + x, g(x) = x2 + 1, c(x) = x + ω.

Proof of the theorem. The sufficiency of the conditions given in the theorem follows
immediately from the factorization

f (x)− f (c(y)) = (x − c(y)) p∑
n=1

f (n)(x)

n!
(
c(y)− x)n−1

.

In order to prove the necessity of the conditions we assume without loss of generality
that the leading coefficient of f is 1 and that of g is, say, a. Let

(7) f (x)− g(y) = h1(x, y)h2(x, y) · · ·hr(x, y) (r > 1)
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be the decomposition of f (x) − g(y) into factors irreducible over C with the coefficient
of the highest power of x in each hi(x, y) equal to 1. Since f (x) − g(y) is reducible,
it follows from a theorem of Ehrenfeucht [2] that the degree of g is divisible by p and
equals, say, kp, where k is an integer. Give x the weight k and y the weight 1 and denote
the highest isobaric part of hi(x, y) by Hi(x, y) (1 � i � r). It follows from (7) that

(8) xp − aykp = H1(x, y)H2(x, y) · · ·Hr(x, y).
Let p

√
a be defined as in Lemma 1. Since x − p

√
a yk |xp − aykp and x − p

√
a yk is

irreducible over C we may assume without loss of generality that

(9) x − p
√
a yk |H1(x, y).

Suppose that H1(x, y) �= x − p
√
a yk . In view of the normalization of hi(x, y),

H1(x, 1)/(x − p
√
a) is not a constant. On the other hand, by (8) we get

(10)
xp − a
x − p

√
a
= H1(x, 1)

x − p
√
a
H2(x, 1) · · ·Hr(x, 1).

It follows from Lemma 1 that H1(x, 1) /∈ K[x], where K = Q( p
√
a), and, a fortiori,

h1(x, y) /∈ K[x, y]. The field of coefficients of h1 is algebraic over K , thus there is a
polynomial h′1(x, y) with coefficients algebraically conjugate over K to those of h1 such
that

h′1(x, y) �= h1(x, y).

In view of the normalization of h1, the coefficient of the highest power of x in h′1(x, y)
equals 1, and since h′1(x, y) is irreducible over C it must occur in the factorization (7) as,
say, h2. We get

H ′
1(x, y) = H2(x, y),

where the coefficients ofH ′
1(x, y) are algebraically conjugate overK to those ofH1(x, y).

By (9) we have

x − p
√
a yk |H2(x, y),

and by (10)

x − p
√
a

∣∣∣ xp − a
x − p

√
a
,

which is impossible, since xp − a has no multiple zeros. Therefore

H1(x, y) = x − p
√
a yk,

and, by the definition of H1,

h1(x, y) = x − c(y).
We obtain now from (7) that g(y) = f (c(y)) and the theorem follows from Lemma 2.��
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Note added in proof. The following new non-trivial example of reducibility off (x)−g(y)
has been found by Birch, Cassels and Guy:

x11 + 11
(
λ,−2,−3μτ,−16λ, 3μ2(λ− 4), 30μτ,−63μ,−20μ4, 3μ4τ 2,−9θ

)
(x, 1)9

− y11 − 11
(
μ,−2,−3λσ,−16μ, 3λ2(μ− 4), 30λσ,−63λ,−20λ4, 3λ4σ 2, 9θ

)
(y, 1)9

= [(1,−λ,−1, 1, μ,−1
)
(x, y)5 + θ(2,−λ,−μ, 2)(x, y)3

− 2θ
(
μ,−3, λ

)
(x, y)2 + θ(μ3, λ3)(x, y)− 6θ

]
× [(1, λ, σ, 2, τ, μ, 1)(x, y)6 + θ(μτ,−λ3,−2θ, μ3,−λσ )(x, y)4
+ 2θ

(
λ, λ2,−μ2,−μ)(x, y)3 − θ(μ(2θ + 3), 3θ, λ(2θ − 3)

)
(x, y)2

+ 4θ
(−μ3, λ3)(x, y)+ 33

]
,

where

θ2 = −11, λ = −1 + θ
2

, μ = −1 − θ
2

,

σ = μ− 1, τ = λ− 1.
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Reducibility of quadrinomials
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In memory of Professor Wacław Sierpiński

This paper is based on [8] and the notation of that paper is retained. In particular if

Φ(y1, . . . , yk) = yα1
1 · · · yαkk f (y1, . . . , yk),

where αi are integers and f is a polynomial not divisible by yi (1 � i � k) then

JΦ(y1, . . . , yk) = f (y1, . . . , yk).

A polynomial g(y1, . . . , yk) is called reciprocal if

Jg(y−1
1 , . . . , y−1

k ) = ±g(y1, . . . , yk).

Reducibility means reducibility over the rational field Q unless stated to the contrary.
LΦ(y1, . . . , yk) is JΦ(y1, . . . , yk) deprived of all its irreducible reciprocal factors and

KΦ(x) is JΦ(x) deprived of all its cyclotomic factors.
Ljunggren [5] has proved the irreducibility of K(xm + ε1x

n + ε2x
p + ε3) where

m > n > p, ε1, ε2, ε3 are ±1 and the case m = n + p, ε3 = ε1ε2 is excluded. He has
also proved [6] the irreducibility(1) of K(xm + ε1x

n + ε2x
p + ε3r), where r is a prime.

The aim of this paper is to treat a general quadrinomial q(x) = axm + bxn + cxp + d
by means of Theorem 2 of [8]. In order to apply this theorem it is necessary to investigate
first the reducibility of a quadrinomial in two variables. The result of the investigation is
given below as Theorem 1. Combining this theorem with Theorem 2 of [8] we obtain a
necessary and sufficient condition for the reducibility of Lq(x) (Theorem 2). In general
we have no such condition for the reducibility of Kq(x) but in the case a = 1, b = ε1,
0 < |c| � |d| (c, d integers)Kq(x) = Lq(x)which leads to a generalization of the results
of Ljunggren (Theorem 3). We prove

Theorem 1. A quadrinomialQ(y1, y2)=J
(
a0+

3∑
i=1
aiy

ν1i
1 y

ν2i
2

)
, where ai �=0 (0 � i � 3),

[ν1i , ν2i] distinct and different from [0, 0], [νij ] of rank 2, is reducible over a field K ofc

Corrigendum and addendum, Acta Arith. 99 (2001), 409–410.
(1) Ljunggren’s theorem has been corrected by W. H. Mills [7a].
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characteristic zero if and only if either it can be divided into two parts with the highest
common factor D(y1, y2) being a binomial or it can be represented in one of the forms

(1)

k(U3 + V 3 +W 3 − 3UVW)

= k(U + V +W)(U2 + V 2 +W 2 − UV − UW − VW),
k(U2 − 4T UVW − T 2V 4 − 4T 2W 4)

= k(U − T V 2 − 2T VW − 2TW 2)(U + T V 2 − 2T VW + 2TW 2),

k(U2 + 2UV + V 2 −W 2) = k(U + V +W)(U + V −W),
where k ∈ K and T ,U, V,W are monomials in K[y1, y2]. In the former case QD−1 is
either irreducible over K and non-reciprocal or binomial. In the latter case the factors onc

the right hand side of (1) are irreducible over K and non-reciprocal unless ζ3 ∈ K whenc

U2 + V 2 +W 2 − UV − UW − VW = (U + ζ3V + ζ 2
3W)(U + ζ 2

3 V + ζ3W).

Theorem 2. Let a, b, c, d be any non-zero integers, m > n > p any positive integers
and assume that q(x) = axm + bxn + cxp + d is not a product of two binomials. Lq(x)
is reducible if and only if either q(x) can be divided into two parts which have a non-
reciprocal common factor or it can be represented in one of the forms (1) where k ∈ Q;
T ,U, V,W are monomials in Q[x] and the factors on the right hand side of (1) are not
reciprocal or finally m = vm1, n = vn1, p = vp1,

m1 < C(a, b, c, d) = exp2
(
3 · 2a

2+b2+c2+d2+2 log(a2 + b2 + c2 + d2)
)

and L(axm1 + bxn1 + cxp1 + d) is reducible.

Theorem 3. Let ε = ±1, c, d be integers, 0 < |c| � |d|, m > n > p be positive integers
and assume that q(x) = xm + εxn + cxp + d is not a product of two binomials. Kq(x)
is reducible if and only if either there occurs one of the cases

(2)

(−εd)(m−p)/δ1 = (−c)n/δ1 �= ±1, δ1 = (m− p, n);
(−εc)m/δ2 = (−d)(n−p)/δ2 �= ±1, δ2 = (m, n− p);

m = 2m1, n = 2p, ε = −1, c2 = −4d,

m = 2p, n = 2n1, ε = −1, c2 = 4d,

m = 3m1, n = 3n1, p = m1 + n1, c
3 = −27εd,

m = 2m1, n = 4n1, p = m1 + n1, ε = −1, c4 = −64d,

m = 4m1, n = 2n1, p = m1 + n1, ε = −1, c4 = 64d

or m = vm1, n = vn1, p = vp1,

m1 < C(1, ε, c, d)

and K(xm1 + εxn1 + cxp1 + d) is reducible.

Corollary. Under the assumptions of Theorem 3 the quadrinomial xm + εxn + cxp + d
is reducible if and only if either there occurs one of the cases (2) or we have one of the
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equalities

(−εd)(m−p)/δ1 = (−c)n/δ1 = ±1, δ1 = (m− p, n);
(−εc)m/δ2 = (−d)(n−p)/δ2 = ±1, δ2 = (m, n− p);
(−ε)p/δ3 = (−d/c)(m−n)/δ3 , δ3 = (m− n, p);

ζm/δ + εζ n/δ + cζp/δ + d = 0, ζ 6 = 1, δ = (m, n, p)c

or m = vm1, n = vn1, p = vp1,

m1 < C(1, ε, c, d),

and xm1 + εxn1 + cxp1 + d is reducible.

Lemma 1. If m > n non-zero integers, ab �= 0 and

axm + bxn = f1
(
f2(x)

)
,

where f1, f2 rational functions, then for a suitable homography h we have either

f1h(x) = ax, h−1f2(x) = xm + b
a
xn

or

f1h(x) = axm/δ + bxn/δ, h−1f2(x) = xδ
or

m = −n, f1h(x) = 2acm/δTm/δ
( 1

2c
−1x
)
, h−1f2(x) = xδ + c2x−δ,

where c2m/δ = b/a and Tm is the m-th Chebyshev polynomial.

Proof. Assume first that n > 0. Then by a known lemma (see [2]) for suitable homo-
graphy h, f1h and h−1f2 are polynomials. We may assume the same about f1, f2 and
suppose moreover that f2 is monic with f2(0) = 0. Let

f1(x) = a
k∏
i=1

(x − xi)αi , xi distinct, α1 + . . .+ αk = α.

Since f2(x)−xi are relatively prime in pairs exactly one factor, say f2(x)−x1, is divis-
ible by x and we have f2(x)−x1 = xlg(x), where lα1 = n. However, g(x)α1 |axm−n+b,
hence either g(x) = 1 or α1 = 1.

In the first case the lemma follows, one obtains also x1 = 0. In the second case l = n;
if now g(x) = xγ + a1x

γ1 + . . . , where γ > γ1 > . . . and a1 �= 0, then f1
(
f2(x)

)
begins

with two non-zero terms

ax(γ+n)α + αaa1x
α(γ+n)+γ1−γ .

It follows that α(γ + n) + γ1 − γ = n; α = 1, γ = m − n, γ1 = 0, f1(x) = ax,

f2(x) = xm + b
a
xn.

The case n < 0, m < 0 can be reduced to the former by substitution x → 1/x.
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Assume now that m > 0, n < 0. Set

f1(x) = R(x)

S(x)
, f2(x) = P(x)

Q(x)
,

whereP ,Q,R,S are polynomials of degreesp,q, r , s respectively and (P,Q)= (R, S)=1.
Applying to P/Q a suitable homography we can achieve that p > q, r > s and that P ,Q
are monic. Consider the identity

axm−n + b
x−n

= R(P,Q)

S(P,Q)Qr−s
,

where R(P,Q) = QrR(P/Q), etc. Since R(P,Q), S(P,Q), Q are relatively prime in
pairs we have either

S(P,Q) = cx−n, Qr−s = 1 or S(P,Q) = c, Qr−s = x−n.
In the first case Q = 1, by a suitable linear transformation we can achieve P(0) = 0 and
thus P(x) = xδ , S(x) = cx−n/δ ,

f1(x) = axm/δ + bxn/δ, f2(x) = xδ.
In the second case it follows in view of p > q thatQ = x−n/r , s = 0, f1 is a polynomial

and we have p = m− n
r

,

f1(x
n/rP ) = axm + bxn.

IfP contains terms c1xp1 with c1 �= 0,p > p1 > −n/r then taking the largest possiblep1

we get on the left hand side a term arc1x
m+p1−p lacking on the right hand side. Similarly

we get a contradiction if P contains a term c2x
p2 with −n/r > p2 > 0. Therefore,

P = x(m−n)/r + c3x
−n/r + c4 and applying to f2 a suitable linear transformation we

obtain P = x(m−n)/r + c4.
Letβ be any (m−n)th root of−b/a. Then c4 = β(m−n)rζ 2h+1

2r for suitable h. Moreover

f1
(
β(m−n)/r (ζ im/rm−n + ζ 2h+1

2r ζ
in/r
m−n)

) = 0

for all i = 1, 2, . . . , m− n.
Suppose that for two values of i we get the same zero of f1, i.e.

ζ
im/r
m−n + ζ 2h+1

2r ζ
in/r
m−n = ζ jm/rm−n + ζ 2h+1

2r ζ
jn/r
m−n .

It follows hence (see [7]) that either both sums are zero, or the terms are equal in pairs,
i.e. either

ζ
i(m−n)/r
m−n = ζ j (m−n)/rm−n = ζ 2h+r+1

2r

or

ζ
(i−j)m/r
m−n = ζ (i−j)n/rm−n = 1

or

ζ
(im−jn)/r
m−n = ζ (jm−in)/rm−n = ζ 2h+1

2r .
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The first equality implies 2i ≡ 2j ≡ 2h′ + r + 1 mod 2r (h′ fixed, determined by h
and the choice of ζm−n, ζ2r ), the second i ≡ j mod r(m − n)/(m, n), the third i ≡
j mod r(m − n)/(m − n,m + n). Thus all but at most

m− n
(m− n,m+ n) − 1 zeros of f1

obtained for i � r m− n
(m− n,m+ n) are distinct. Hence

r
m− n

(m− n,m+ n) � r + m− n
(m− n,m+ n) − 1

and either r = 1 or m− n |m+ n thus m+ n = 0. In the former case we get f1(x) = ax,
f2(x) = xm + (b/a)xn, in the latter case

f1(x) = 2a
(√
c4
)r
Tr

(
x

2
√
c4

)
, f2(x) = xm/r + c4x−m/r . ��

Lemma 2. Let mi be integers different from zero, m0 �= m1, m0 + m1 � 0; m2 �= m3,
m2 + m3 � 0, ai (i = 0, 1, 2, 3) complex numbers different from zero and the case
m0 +m1 = m2 +m3 = 0, a0a1 = a2a3 be excluded. If the quadrinomial

q(x, y) = J (a0x
m0 + a1x

m1 + a2y
m2 + a3y

m3)

is reducible over the complex field C then either it can be divided into two parts with the
highest common factor d(x, y) being a binomial or it can be represented in one of the
forms

(3)

u3 + v3 + w3 − 3uvw = (u+ v + w)(u+ ζ3v + ζ 2
3w)(u+ ζ 2

3 v + ζ3w),
u2 − 4tuvw − t2v4 − 4t2w4

= (u− tv2 − 2tvw − 2tw2)(u+ tv2 − 2tvw + 2tw2),

where t, u, v,w are monomials in C[x, y].
In the former case qd−1 is irreducible over C and non-reciprocal, in the latter case

the factors on the right hand side of (3) are irreducible over C and non-reciprocal.
Moreover, if the first equality of (3) holds, u2 + v2 + w2 − uv − uw − vw is also not
reciprocal.

Proof. In view of symmetry we may assume that m0 � |m1|, m2 � |m3|. Set
f (x) = a0x

m0 +a1x
m1 , g(y) = −a2y

m2 −a3y
m3 and denote by Ωf−z the splitting field of

f (x)−z over C(z). By Proposition 2 of [4] there exist rational functions f1, f2, g1, g2 such
that f = f1(f2), g = g1(g2), Ωf1−z = Ωg1−z and f − g, f1 − g1 have the same number
of irreducible factors over C. (The number of irreducible factors ofF1/F2−G1/G2, where
Fi ∈ C[x], Gi ∈ C[y], (F1, F2) = 1 = (G1,G2), is defined as the number of irreducible
factors of F1G2 − F2G1.) Since both conditions are invariant with respect to transforma-
tions f1 → f1h, g1 → g1j where h, j are homographies we can apply Lemma 1 and
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infer that there occurs one of the cases

1. f1 = a0x
n0 + a1x

n1 , − g1 = a2y
n2 + a3y

n3 ,

2. f1 = a0x
n0 + a1x

n1 , − g1 = 2
√
a2a3 Tn2(y), n3 = −n2,

3. f1 = 2
√
a0a1 Tn0(x), − g1 = a2y

n2 + a3y
n3 , n1 = −n0,

4. f1 = 2
√
a0a1 Tn0(x), − g1 = 2

√
a2a3 Tn2(y), n1 = n0, n3 = −n2,

where ni = mi/δ (i = 0, 1), ni = mi/ε (i = 2, 3). Set

n′i = ni/(n0, n1) (i = 0, 1); n′i = ni/(n2, n3) (i = 2, 3).c

Let σα(f1) be the branch permutation for the Riemann surface for f1(x)− z over the
place z = α on the z sphere and let ω be a generator of the extension Ωf1−z/C(z). ω is
expressible rationally in terms of z and of x(i)(z)’s (i = 1, . . . , k), where

f1(x)− z = F(x)−1
k∏
i=1

(
x − x(i)(z)), F (x) ∈ C[x].

|σα(f1)|, the order of σα(f1), is the least positive integer M such that each x(i)(z) is
expressible as Laurent series in (z− α)1/M in the neighbourhood of z = α. It follows that
ω is expressible as such series in (z−α)1/|σα(f1)|. On the other hand, if ω is expressible as
a Laurent series in (z− α)1/N then all x(i)(z) are so expressible and hence |σα(f1)| � N .
Thus |σα(f1)| is the least integer N such that ω is expressible as a Laurent series in
(z− α)1/N and therefore it is determined by Ωf1−z. From Ωf1−z = Ωg1−z we have

|σα(f1)| = |σα(g1)|.
We use this observation separately in each of the cases 1–4.

1. If n1 > 0 a simple computation shows that the branch permutations for Ωf1−z are
σ0 (an n1 cycle), σ∞ (an n0 cycle), and (n0−n1)/(n0, n1) other finite branch permutationsc

(of order 2 and type σ = (2)(2) . . . (2)︸ ︷︷ ︸
(n0,n1) times

corresponding to the branch points

zi = ζ in1
n0−n1

(
a1(n0 − n1)

n0

)(
−a1n1

a0n0

)n1/(n0−n1)

, i = 0, 1, . . . ,
n0 − n1

(n0, n1)
− 1.

If n1 < 0, σ∞(f1) is a product γ1γ2, where γ1, γ2 are disjoint cycles of length n0 and
|n1| respectively. The finite branch points are again zi and the corresponding permutations
are of type σ = (2)(2) . . . (2)︸ ︷︷ ︸

(n0,n1) times

. We have to consider several cases.

A. n1 > 0, n3 > 0. From |σ0(f1)| = |σ0(g1)| we get n1 = n3, from |σ∞(f1)| =
|σ∞(g1)| we get n0 = n2. Also the branch points must be the same, which implies(−a0

a2

)n′1 =
(−a1

a3

)n′0
.

Since (n′0, n′1) = 1 there exists a unique number r such that

rn
′
0 = −a2/a0, rn

′
1 = −a3/a1.
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On substitution x = zy the quadrinomial f1(x)− g1(y) takes the form

f1(x)− g1(y) = a0y
n0
(
zn0 − rn′0)+ a1y

n1
(
zn1 − rn′1).

Since
zn0 − rn′0
zn1 − rn′1 is not a power in C(z) and

(
zn0 − rn′0 , zn1 − rn′1) = z(n0,n1) − r

we infer in virtue of Capelli’s theorem that

f1(x)− g1(y) = yn1
(
z(n0,n1) − r)F(z, y)

where F is irreducible over C. It follows thatc

f1(x)− g1(y) =
(
x(n0,n1) − ry(n0,n1)

)
G(x, y)

where G is irreducible over C. Thus the number of irreducible factors of f1 − g1 isc

(n0, n1)+ 1. On the other hand

d(x, y) = (a0x
m0 + a2y

m2 , a1x
m1 + a3y

m3
) = x(n0,n1)δ − ry(n0,n1)ε,c

thus the number of irreducible factors of f (x)− g(y) is at least (n0, n1)(δ, ε)+ ν, where
ν is the number of irreducible factors of qd−1 (q has no multiple factors). It follows that

(n0, n1)(δ, ε)+ ν � (n0, n1)+ 1, ν = 1,

hence qd−1 is irreducible over C. Moreover it is not reciprocal since the degree ofc

Jq(x−1, y−1) is greater than the degree of q and the degrees of Jd(x−1, y−1) and of d
are equal.

B. n1n3 < 0. In view of symmetry we may assume n1 > 0. From |σ0(f1)| = |σ0(g1)|
we get n1 = 1, from |σ∞(f1)| = |σ∞(g1)|, n0 = [n2, n3].

Counting the number of remaining finite branch points we get

n0 − 1 = n2 + |n3|
(n2, n3)

or [n2, n3] − 1 = n2 + |n3|
(n2, n3)

or

n2|n3| − n2 − |n3| − (n2, n3) = 0; (n2 − 1)(|n3| − 1) = (n2, n3)+ 1.c

This equation has three solutions with n2 � −n3 > 0:

〈n2, n3〉 = 〈3,−2〉, 〈3,−3〉, 〈4,−2〉.c

The first solution gives n0 = 6,

f1(x)− g1(y) = a0x
6 + a1x + a2y

3 + a3y
−2 = (a2y

5 + (a0x
6 + a1x)y

2 + a3
)
y−2

and the numerator of the fraction obtained is irreducible over C. Indeed, it clearly has noc

factor linear in y, thus a possible factorization would have the form

a2y
5 + (a0x

6 + a1x)y
2 + a3 = a2

(
y2 + f1(x)y + c1)(y

3 + f2(x)y
2 + f3(x)y + c2).
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It follows hence

f2(x)+ f1(x) = 0,

f3(x)+ f1(x)f2(x)+ c1 = 0,

c2f1(x)+ c1f3(x) = 0,

−c1f 2
1 (x)− c2f1(x)+ c2

1 = 0;
f1(x) = −f2(x) = const, f3(x) = const, which is impossible.

The second solution 〈n2, n3〉 = 〈3,−3〉 gives n0 = 3. Since the branch points must be
the same

±2

3
a1

√−a1

3a0
= ∓2a3

√
a2

a3
; a3

1 = −27a0a2a3.

It follows that

q(x, y) = J (f (x)− g(y)) = (a0x
3δ + a1x

δ)y3ε + a2y
6ε + a3

= u3 + v3 + w3 − 3uvw = (u+ v + w)(u+ ζ3v + ζ−1
3 w)(u+ ζ−1

3 v + ζ3w),
where

u = a1/3
0 xδyε, v = a1/3

2 y2ε, w = a1/3
3

and suitable values of the cubic roots are taken. The trinomials u + ζ i3v + ζ−i3 w are

irreducible over C in virtue of Capelli’s theorem since ζ i3a
1/3
2 yε + ζ−i3 a

1/3
3 y−ε is notc

power in C(y). Moreover one verifies directly that u + ζ i3v + ζ−i3 w (i = 0,±1) and
u2 + v2 + w2 − uv − uw − vw are not reciprocal.

The third solution 〈n2, n3〉 = 〈4,−2〉 gives n0 = 4. Since the branch points must be
the same we have for suitable values of the cubic roots

3

4
a1

(−a1

4a0

)1/3

= −6

4
a3

(
2a3

4a2

)−1/3

; a4
1 = 64a0a2a

2
3 .

c

It follows that

q(x, y) = J (f (x)− g(y)) = (a0x
4δ + a1x

δ)y2ε + a2y
6ε + a3c

= u2 − 4tuvw − t2v4 − 4t2w4

= (u− tv2 − 2tvw − 2tw2)(u+ tv2 − 2tvw + 2tw2),

where

t = yε, u = a1/2
3 , v = (−a2)

1/4yε, w = (−a0/4)
1/4xδc

and suitable values of the quadratic and the quartic roots are taken. The quadrinomials
u± tv2 − 2tvw ± 2tw2 are irreducible over C since after the substitutionc

x = x1y
ε
1, y = yδ1
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we obtain

u± tv2 − 2tvw ± 2tw2

= a1/2
3 + y3δε

1

[±(−a2)
1/2 − 2(a0a2/4)

1/4x−δ1 ± 2(−a0/4)
1/2x2δ

1

]
c

and the expression in the brackets is not a power in C[x1]. Moreover, one verifies directly
that the quadrinomials u± tv2 − 2tvw ± 2tw2 are not reciprocal.

C. n1 < 0, n3 < 0. From |σ∞(f1)| = |σ∞(g1)| we get

(4) [n0, n1] = [n2, n3].
Counting the number of finite branch points we get

(5)
n0 + |n1|
(n0, n1)

= n2 + |n3|
(n2, n3)

.

If (n0, n1) = (n2, n3) = 1 we infer from (4), (5) and the inequalities n0 �−n1>0,
n2 � −n3 > 0 that n0 = n2, n1 = n3. The same conclusion holds if

n0 + |n1|
(n0, n1)

= n2 + |n3|
(n2, n3)

= 2, 3 or 4

since 2, 3 and 4 have only one partition into sum of two coprime positive integers. Since
the branch points must be the same we get(−a2

a0

)n′1 =
(−a3

a1

)n′0
and there exists a unique r such that

rn
′
0 = −a2/a0, rn

′
1 = −a3/a1.

On substitution x = zy the quadrinomial J
(
f1(x)− g1(y)

)
takes the form

J
(
f1(x)− g1(y)

) = a0y
n0+2|n1|z|n1|(zn0 − rn′0)+ a1y

|n1|(1 − rn′1z|n1|).

Since the case m0 +m1 = m2 +m3 = 0, a0a1 = a2a3 has been excluded

1 − rn′1z|n1|

zn0 − rn′0
is not a power in C(z). Also(

zn0 − rn′0 , 1 − rn1z|n1|) = z(n0,n1) − r.
Thus in virtue of Capelli’s theorem

J
(
f1(x)− g1(y)

) = y|n1|(z(n0,n1) − r)F(z, y)
where F is irreducible over C.c

It follows hence like in the case A that

d(x, y) = (a0x
m0 + a2y

m2 , a1x
m1 + a3y

m3
) = x(n0,n1)δ − ry(n0,n1)ε

and qd−1 is irreducible over C.
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Since the casem0 +m1 = m2 +m3 = 0, a0a1 = a2a3 has been excluded the degree of
Jq(x−1, y−1) is greater than that of q. The degrees of Jd(x−1, y−1) and of d are equal,
thus qd−1 is not reciprocal.

Assume therefore that

(6)
n0 + |n1|
(n0, n1)

= n′0 + n′1 > 4

and set

f3(x) = a0x
n′0 + a1x

n′1 , g3(y) = −a2y
n′2 − a3y

n′3 .

If Ωf3−z = Ωg3−zwe get the assertion of the lemma by the previous argument. Without
loss of generality we may assume that

Ωf3−z �= Ωf3−zΩg3−z.

By Lemma 1, f3 is indecomposable. It follows by Lüroth theorem that there is no field
between C(z) and C(x1), where f3(x1) = z, thus the monodromy groupG

(
Ωf3−z/C(z)

)
is primitive (cf. [3], Lemma 2).

On the other hand, this group contains a 2-cycle, thus it must be the symmetric group
Sn′0+n′1 (see [9], p. 35). Ωf3−z ∩ Ωg3−z is a normal proper subfield of Ωf3−z which

corresponds to a normal subgroup of G
(
Ωf3−z/C(z)

)
. It follows from the well known

property of symmetric groups that this subgroup is Sn′0+|n′1| or An′0+|n′1| (see [9], p. 67).
By the theorem of natural irrationalities

G
(
Ωf3−z/(Ωf3−z ∩ Ωg3−z)

) ∼= G(Ωf3−zΩg3−z/Ωg3−z
)
.

However, G
(
Ωf3−zΩg3−z/Ωg3−z

)
is a quotient group of G(Ωg−z/Ωg3−z).

Since g = g3(x
ε(n2,n3))we easily see thatG(Ωg−z/Ωg3−z) is a cyclic group and sincec

by (6) none of the groups Sn′0+|n′1|, An′0+|n′1| is cyclic we get a contradiction.

2. Riemann surface 2
√
a2a3 Tn2(x) = z has ann2-cycle at∞ and forn2 > 2 two branchc

points 2η
√
a2a3 with the permutations of type (2)(2) . . . (2)︸ ︷︷ ︸

(n2−1)/2 times

if n2 is odd and (2)(2) . . . (2)︸ ︷︷ ︸
(n2−1−ε)/2 timesc

if n2 is even (η = ±1); for n2 = 2 there is only one branch point (η = −1).c

A. n0 > n1 > 0. Thenc

n0 = n2, n1 = 1,

and either

n0 − 1 = 2; ±2

3
a1

√−a1

3a0
= ±2

√
a2a3, a3

1 = −27a0a2a3,

the case considered under 1B, or

n0 − 1 = 1; − a
2
1

4a0
= −2

√
a2a3; a4

1 = 64a2
0a2a3

and

q(x, y) = a0x
2δy2ε + a1x

δy2ε + a2y
4ε + a3 = u2 − 4tuvw − t2v4 − 4t2w4,
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where t = 1, u = a
1/2
0 xδyε, v = (−a2)

1/4yε, w = (−a3/4)1/4 and suitable values of
the quadratic roots and quartic roots are taken. In the latter case the factors
u± tv2 − 2tvw ± 2tw2 are irreducible over C, since they equal

a
1/2
0 xδyε ± [(−a2)

1/2y2ε − 2(−a2)
1/4(−a3/4)

1/4yε + 2(−a3/4)
1/4]

and the expression in brackets is not a power in C[y1]. Moreover, one verifies directly that
the factors are non-reciprocal.

B. n0 > 0 > n1. Then

[n0, n1] = n2,
n0 + |n1|
(n0, n1)

= 2, n0 = −n1 = n2 = −n3;

±2a1

√
a0

a1
= ±2

√
a2a3, a0a1 = a2a3,

m0 +m1 = m2 +m3 = 0, the case excluded.

3. The case is symmetric to the former.

4. Then n0 = −n1 = n2 = −n3, ±2
√
a0a1 = ±2

√
a2a3, a0a1 = a2a3, m0 + m1 =

m2 +m3 = 0, the case excluded. ��

Lemma 3. Let K be any field of characteristic 0, ai ∈ K , ai �= 0 (i = 0, 1, 2, 3),
mi integers, m0 + m1 � 0, m0 �= m1, m2 + m3 � 0, m2 �= m3 and exactly one among
mi be zero. If q(x, y) = J (a0x

m0 + a1x
m1 + a2y

m2 + a3y
m3) is reducible over K then it

can be represented in the form

(7) t (u2 + 2uv + v2 − w2) = t (u+ v + w)(u+ v − w)
where t ∈ K and u, v,w are monomials in K[x, y]. The factors on the right hand side
of (7) are irreducible over K and non-reciprocal.

Proof. We may assume without loss of generality that m3 = 0. Then q(x, y) is a binomial
over K(x). By Capelli’s theorem, it is reducible only if either for some prime l |m2,
a−1

2 (a0x
m0 + a1x

m1 + a3) = −g(x)l or 4 |m2 and a−1
2 (a0x

m0 + a1x
m1 + a3) = 4g(x)4,

g(x) ∈ K(x). However a0x
m0 + a1x

m1 + a3 may have at most double zero, therefore
l = 2, a0x

m0 + a1x
m1 + a3 = −a2g(x)

2 and g(x) has only simple zeros. Moreover, g(x)
must have only two terms and taking

k = −a2, u+ v = Jg(x), w = Jg(x)

g(x)
ym2/2

we get the representation of q(x, y) in the form (7). Again by Capelli’s theorem the
trinomials

u+ v ± w = J (g(x)± ym2/2
)

are irreducible over K . One verifies directly that they are not reciprocal. ��
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Lemma 4. If any of the equations

Q(y1, y2) = Z0(U
2
0 + 2U0V0 + V 2

0 − 1),(8)

Q(y1, y2) = Z0(U
3
0 + V 3

0 + 1 − 3U0V0),(9)

Q(y1, y2) = Z0(U
2
0 − 4U0V0 − V 4

0 − 4)(10)

is satisfied by rational functions U0, V0, Z0 of the type cyα1
1 y

α2
2 , c ∈ K , then Q(y1, y2)

is representable in the corresponding form (1), where k ∈ K , T ,U, V,W are monomials
over K and moreover

UU−1
0 = VV −1

0 = W if (8) or (9),

UU−1
0 = W 2T , V V −1

0 = W if (10).

Proof. Let yi divide U0, V0, Z0 with the exponent ui , vi , zi . Since
(
Q(y1, y2), y1y2

) = 1
we have

zi =

⎧⎪⎨⎪⎩
−min(2ui, ui + vi, 2vi, 0) if (8),

−min(3ui, 3vi, ui + vi, 0) if (9),

−min(2ui, ui + vi, 4vi, 0) if (10).

Since

ui + vi � min(2ui, 2vi),

ui + vi � min(3ui, 3vi, 0),

ui + vi � min(2ui, 4vi, 0),

it follows that

zi =

⎧⎪⎨⎪⎩
−min(2ui, 2vi) = 2z′i if (8),

−min(3ui, 3vi, 0) = 3z′i if (9),

−min(2ui, 4vi, 0) = 2z′i if (10),

where z′i � 0 is an integer. We set in case (8) and (9)

k = Z0y
−z1
1 y

−z2
2 , W = yz′11 y

z′2
2 , U = U0W, V = V0W ;c

in case (10)

k = Z0y
−z1
1 y

−z2
2 , W = y[z′1/2]1 y

[z′2/2]
2 , T = yz′11 y

z′2
2 W

−2, U = U0W
2T , V = V0Wc

and the conditions of the lemma are satisfied. ��

Proof of Theorem 1. The sufficiency of the condition is obvious. In order to prove the
necessity and the other assertions of the theorem set

Δ1 =
∣∣∣∣ν11 ν12
ν21 ν22

∣∣∣∣ , Δ2 =
∣∣∣∣ν12 ν13
ν22 ν23

∣∣∣∣ , Δ3 =
∣∣∣∣ν13 ν11
ν23 ν21

∣∣∣∣ ;
δ =
{

1 if Δ1 + 2Δ2 +Δ3 � 0,

−1 if Δ1 + 2Δ2 +Δ3 < 0; ε =
{

1 if Δ1 −Δ3 � 0,

−1 if Δ1 −Δ3 < 0.
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Since the matrix [νij ] is of rank 2 we may assume without loss of generality that
Δ1 +Δ3 �= 0. On substitution

y1 = xδ(ν22−ν23)y−εν21 , y2 = xδ(ν13−ν12)yεν11

we get

Φ(y1, y2) := a0 +
3∑
i=1

aiy
ν1i
1 y

ν2i
2

= x−δΔ2(a0x
m0 + a1x

m1 + a2y
m2 + a3y

m3) =: x−δΔ2ϕ(x, y),

where

m0 = δΔ2, m1 = δ(Δ1 +Δ2 +Δ3), m2 = εΔ1, m3 = −εΔ3.

We have m0 �= m1, m2 �= m3 and by the choice of δ and ε, m0 +m1 � 0, m2 +m3 � 0.
Moreover setting q(x, y) = Jϕ(x, y) we get

(11) Q(y1, y2) = xAyBq(x, y).
Assume that

Q(y1, y2) = F1(y1, y2)F2(y1, y2),

where F1, F2 are non-constant polynomials over K . It follows that

(12) q(x, y) = JF1
(
xδ(ν22−ν23)y−εν21 , xδ(ν13−ν12)yεν11)

× JF2
(
xδ(ν22−ν23)y−εν12 , xδ(ν13−ν12)yεν11

)
,

where the factors on the right hand side are non-constant. We distinguish three cases

(i) m0 = −m1, m2 = −m3, a0a1 = a2a3;
(ii) m0m1m2m3 �= 0 and (i) does not hold;
(iii) m0m1m2m3 = 0.

(i) We have here Δ1 = −Δ2 = Δ3. Hence

νi1 = νi2 + νi3 (i = 1, 2)

and

Φ(y1, y2) = (a0 + a2y
ν12
1 y

ν22
2 )
(

1 + a3

a0
y
ν13
1 y

ν23
2

)
,

thusQ(y1, y2) can be divided into two parts with the highest common factor

D = J (a0 + a2y
ν12
1 y

ν22
2 )

being a binomial. The complementary factor

QD−1 = J
(

1 + a3

a0
y
ν13
1 y

ν23
2

)
is also a binomial.
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(ii) Assuming, as we may, that K ⊂ C, we can apply Lemma 2 and we infer thatc

either q(x, y) can be divided into two parts with the highest common factor d(x, y) being
a binomial or q(x, y) can be represented in one of the forms (2), where t, u, v,w are
monomials in C[x, y]. In the former case qd−1 is irreducible over C and non-reciprocal,
in the latter case the factors on the right hand side of (2) are irreducible over C and
non-reciprocal. Now, if

di(x, y) =
(
J (a0x

m0 + aiymi ), J (a1x
m1 + a5−iym5−i )

)
(i = 2 or 3),

Di(x, y) =
(
J (a0 + aiyν1i

1 y
ν2i
2 ), J (a1y

ν11
1 y

ν21
2 + a5−iy

ν1,5−i
1 y

ν2,5−i
2 )

)
then

di(y1, y2) = JDi
(
xδ(ν22−ν23)y−εν21 , xδ(ν13−ν12)yεν11

)
,c

thus the properties of di imply the corresponding properties of Di .
If

(13) q(x, y) = u3 + v3 + w3 − 3uvw

= (u+ v + w)(u+ ζ3v + ζ−1
3 w)(u+ ζ−1

3 v + ζ3w)
then by the absolute irreducibility of the factors on the right hand side and by (12) we have
for suitable i = 1 or 2, suitable j = 0 or ±1 and suitable α, β, γ

Fi(y1, y2) = γ xαyβ(u+ ζ j3 v + ζ−j3 w).

We may assume without loss of generality that j = 0. It follows that

(14) U0 = uw−1 ∈ K(y1, y2), V0 = vw−1 ∈ K(y1, y2)

and by (11) and (13)

Q(y1, y2) = xAyBw3(U3
0 + V 3

0 + 1 − 3U0V0).

Since u, v,w are monomials in C[x, y], U0, V0 and Z = xAyBw3 are of the form
cy
α1
1 y

α2
2 , c ∈ K . By Lemma 4 there exist monomials U,V,W in K[y1, y2] and k ∈ K

such that

Q(y1, y2) = k(U3 + V 3 +W 3 − 3UVW), UU−1
0 = VV −1

0 = W.
It follows by (14) that

Uu−1 = V v−1 = Ww−1,

J (U + ζ j3 V + ζ−j3 W)
(
xδ(ν22−ν23)y−εν21 , xδ(ν13−ν12)yεν11

) = η(u+ ζ j3 v + ζ−j3 w)

(η ∈ C, j = 0, ±1)

and since u+ ζ j3 v + ζ−j3 w is irreducible over C and non-reciprocal, U + ζ j3 V + ζ−j3 W

has the same property. If ζ3 /∈ K

U2 + V 2 +W 2 − UV − UW − VW = (U + ζ3V + ζ−1
3 W)(U + ζ−1

3 V + ζ3W)
is irreducible over K . It is also non-reciprocal by the corresponding property of u2 + v2 +
w2 − uv − uw − vw.
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Assume now that

q(x, y) = u2 − 4tuvw − t2v4 − 4t2w4

= (u− tv2 − 2tvw − 2tw2)(u+ tv2 − 2tvw + 2tw2).

Then by the absolute irreducibility of the factors on the right hand side and by (12) we
have for a suitable sign and suitable α, β, γ

F1(y1, y2) = γ xαyβ(u± tv2 − 2tvw ± 2tw2).

It follows that

(15) U0 = ut−1w−2 ∈ K(y1, y2), V0 = vw−1 ∈ K(y1, y2)

and by (11)

Q(y1, y2) = xAyBt2w4(U2
0 − 4U0V0 − V 4

0 − 4).

By Lemma 4 there exist monomials T ,U, V,W in K[x, y] and k ∈ K such that

Q(y1, y2) = k(U2 − 4T UVW − V 4 − 4T 2W 4), UU−1
0 = TW 2, V V −1

0 = W.
It follows by (15) that

Uu−1 = T V 2t−1v−2 = T VWt−1v−1w−1 = TW 2t−1w−2,

J
(
U ± T V 2 − 2T VW ± 2TW 2)(xδ(ν22−ν23)y−εν21 , xδ(ν13−ν12)yεν11

)
= η(u± tv2 − 2tvw ± 2tw2) (η ∈ C)

and since u± tv2 − 2tvw ± 2tw2 is irreducible over C and non-reciprocal, U ± T V 2 −
2T VW ± 2TW 2 has the same property.

(iii) If two of the numbersm0,m1,m2,m3 were equal to zero, two of the vectors [0, 0],
[ν1i , ν2i] (i � 3) would be equal. Thus exactly onemi is zero, we can apply Lemma 3 and
infer that q(x, y) is representable in the form (7), where k ∈ K , u, v, w are monomials in
K[x, y], the trinomials u+ v ± w are irreducible over K and non-reciprocal.

It follows from (12) that for a suitable sign and suitable α, β, γ

F1(y1, y2) = γ xαyβ(u+ v ± w).
Thus

(16) U0 = uw−1 ∈ K(y1, y2), V0 = vw−1 ∈ K(y1, y2)

and by (11)

Q(y1, y2) = xAyBw2(U2
0 + 2U0V0 + V 2

0 − 1).

By Lemma 4 there exist monomials U,V,W in K[x, y] and k ∈ K such that

Q(y1, y2) = k(U2 + 2UV + V 2 −W 2), UU−1
0 = VV −1

0 = W.
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It follows by (16) that

Uu−1 = V v−1 = Ww−1,

J (U + V ±W)(xδ(ν22−ν23)y−εν21 , xδ(ν13−ν12)yεν11) = η(u+ v ± w) (η ∈ K)c

and since u+ v ±w is irreducible over K and non-reciprocal, U + V ±W has the same
property. The proof of Theorem 1 is complete. ��

Proof of Theorem 2. In order to prove the necessity of the condition we apply Theorem 2
of [8] setting there

F(x1, x2, x3) = ax1 + bx2 + cx3 + d
so that

g(x) = F(xm, xn, xp).
By the said theorem there exists a matrix N = [νij ] i�r

j�3
of rank r � 3 such that

0 < max |νij | < cr(F ),(17)

[m, n, p] = [v1, . . . , vr ]N ,(18)

L
(
a

r∏
i=1

y
νi1
i + b

r∏
i=1

y
νi2
i + c

r∏
i=1

y
νi3
i + d

)
can= const

s∏
σ=1

Fσ (y1, . . . , yr )
eσ(19)

implies

(20) Lq(x)
can= const

s∏
σ=1

LFσ (x
v1 , . . . , xvr )eσ .

Therefore, if Lq(x) is reducible then the left hand side of (19) is reducible. It follows
by Lemma 14 of [8] that r < 3.

If r = 2, set in Theorem 1: a0 = d , a1 = a, a2 = b, a3 = c so that the left hand side
of (19) becomes LQ(y1, y2) in the notation of that theorem. The vectors [0, 0], [ν1i , ν2i]
(i � 3) are all different in view of (18) and of the assumption m > n > p > 0. If
Q(y1, y2) is a product of two binomials, q(x) = JQ(xv1 , xv2) is also such a product. This
case has been excluded, but the condition is satisfied also here, since one of the binomials
must be non-reciprocal and it is the desired non-reciprocal common factor of two parts of
q(x). Apart from this case, in virtue of Theorem 1, LQ(y1, y2) is reducible if and only if
either Q can be divided into two parts which have a non-reciprocal common factor or it
can be represented in one of the forms (1), where k ∈ Q and T ,U, V,W are monomials in
Q[y1, y2]. IfFσ (y1, y2) is an irreducible non-reciprocal factor of Q(y1, y2),LFσ (xv1 , xv2)c

is by (20) an irreducible non-reciprocal factor of q(x). Therefore, we get either a partition
of q(x) into two parts which have a common non-reciprocal factor or a representation of
q(x) in one of the forms (1), where T ,U, V,W are monomials in Q[x] and the factors on
the right hand side are non-reciprocal.

Finally, if r = 1 then m = vm1, n = vn1, p = vp1,

m1 < c1(F ) = exp2
(
24 · 2a

2+b2+c2+d2−1 log(a2 + b2 + c2 + d2)
) = C(a, b, c, d)
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by (17), (18) and the formula for c1(F ) given in [8](2). Moreover

L(axm1 + bxn1 + cxp1 + d) can= const
s∏
σ=1

Fσ (x)
eσ

implies

L(axm + bxn + cxp + d) can= const
s∏
σ=1

LFσ (x
v)eσ .

Thus the necessity of the condition is proved. In order to prove the sufficiency it is
enough to consider the case where q(x) can be divided into two parts which have a common
non-reciprocal factor δ(x). Since the highest common factor of two binomials is either 1 or
a binomial and since binomial with a non-reciprocal factor is itself non-reciprocal we may
assume that δ(x) is the highest common factor of two parts of q(x) and hence a binomial.
We prove that qδ−1 is non-reciprocal. Indeed, otherwise, we should have

δ(x) = xr + e, e �= ±1,(21)

±(axm + bxn + cxp + d)(exr + 1) = (dxm + cxm−p + bxm−n + a)(xr + e)(22)

and either

(23) δ(x) = (axm + bxn, cxp + d)
or

(24) δ(x) = (axm + cxp, bxn + d)
or

(25) δ(x) = (axm + d, bxn + cxp).
It follows from (22) that

(26) ±ae = d
thus by (21) δ(x) cannot divide axm + d and (25) is excluded. If (23) or (24) holds we
have m �= n+ p, since otherwise

δ(x) = xm−n + b
a
= xp + d

c
or δ(x) = xm−p + c

a
= xn + d

b

and q(x) is a product of two binomials. We may assume without loss of generality that
m > n + p. If r < p then comparing the coefficients of xm on both sides of (22) we get
±a = ed , which together with (26) gives e = ±1, contrary to (21). If r > p the on the
right hand side of (22) occurs the term cxm−p+r lacking on the left hand side. If r = p
then comparing the coefficients of xm on both sides of (22) we get

(27) ±a = de + c.

(2) Page 346 in this volume.
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If (23) holds then e = d/c and since ±ae = d we get ±a = c, de = 0, a contradiction. If
(24) holds, then δ(x) |axm + cxp gives

p |m, c/a = −(−e)m/p−1

and by (26) and (27) e2 ∓ (−e)m/p−1 = 1, which has no rational solution. ��

Proof of Theorem 3. In virtue of Theorem 2 L(xm + εxn + cxp + d) is reducible if and
only if at least one of the conditions specified in the assertion is satisfied.

Suppose that
xm + εxn + cxp + d
L(xm + εxn + cxp + d) is non-constant and let

λm + ελn + cλp + d = 0 = λ−m + ελ−n + cλ−p + d.
Thus dλn+m + cλn+m−p + ελm + λn = 0, ελm + λn + cελp + d = 0, hence

F(λ) = dλn+m + cλn+m−p − cελp − dε = 0.

By a theorem ofA. Cohn ([1], p. 113), the equationsF(x) = 0 and xm+n−1F ′(x−1) = 0
have the same number of zeros inside the unit circle. We have

λm+n−1F ′(λ−1) = λm+n−1
(
d(m+ n)λ1−m−n + c(m+ n− p)λ1+p−m−n − cεpλ1−p)

= d(m+ n)+ c(m+ n− p)λp − cεpλn+m−p.c

Assuming |λ| < 1 we obtain

|d(m+ n)| < |c|(n+m− p)+ |c|p = |c|(m+ n),
which is impossible.

Consequently F has no zero inside the unit circle and since F is reciprocal
all zeros are on the boundary of the unit circle. It follows that the same is true for
xm + εxn + cxp + d
L(xm + εxn + cxp + d) . However the last polynomial is monic with integer coefficients,

thus by Kronecker’s theorem all its zeros are roots of unity.
Therefore K(xm + εxn + cxp + d) = L(xm + εxn + cxp + d) and the proof of the

theorem is complete. ��

Proof of Corollary. In virtue of Theorem 3, xm + εxn + cxp + d is reducible if and only
if either one of the conditions specified in the theorem is satisfied or xm + εxn + cxp + d
has a proper cyclotomic factor. Now, by a theorem of Mann [7] if a root of unity λ satisfies

λm + ελn + cλp + d = 0

then either the left hand side can be divided into two vanishing summands or λ6(m,n,p) = 1.
The first possibility corresponds to the first three equalities specified in the corollary, the
second gives

ζm/δ + εζ n/δ + cζp/δ + d = 0,

where ζ 6 = 1, δ = (m, n, p). ��
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Addendum. The proof of Theorem 1 amounts to investigating factors of rational functions
of the form f (x) − g(y) (variables separated). When both f and g are polynomials the
investigation is easier and [4] has far-reaching results. We know of little work beyond the
quadrinomial case of this paper on the investigation of factors of rational functions with
variables separated.
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In memory of Wilhelm Ljunggren

The aim of this paper is to prove the following theorem, which in a slightly different
form (see Corollary) was conjectured in [1].

Theorem 1. Let K be any field over a prime field Π and let aj �= 0 (0 � j � k) be
elements of K . If the rank of an integral matrix

M =

⎛⎜⎜⎝
1 . . . 1
ν10 . . . ν1k
. . . . . . . . .

νl0 . . . νlk

⎞⎟⎟⎠
overΠ is equal to its rank over Q and is greater than (k+ 3)/2 and vectors [ν1j , . . . , νlj ]c

are all different (0 � j � k), then

(1) F(x1, . . . , xl) =
( k∑
j=0

aj

l∏
i=1

x
νij
i

) l∏
i=1

x
−minj νij
i

is irreducible over K .c

For a given rational function φ of the form
k∑
j=0
aj

l∏
i=1
x
νij
i where aj �= 0 and the vectors

[ν1j , . . . , νlj ] are all different (such a representation is unique) φ
l∏
i=1
x
−minj νij
i was denoted

in [1] by Jφ. Theorem 1 implies

Corollary. If aj �= 0 (0 � j � k) are complex numbers and the rank of an integral matrix
[νij ] is greater than (k + 1)/2 then

J
(
a0 +

k∑
j=1

aj

l∏
i=1

x
νij
i

)
is absolutely irreducible.

In virtue of the results of [1] Corollary implies easily:



740 E. Polynomials in several variables

Theorem 2. If aj �= 0 (0 � j � k) are integers,nj are positive integers and a0+
k∑
j=1
ajx

nj

has more than one or multiple, irreducible over Q, non-reciprocal factor, then there exist
[k/2] linearly independent integral vectors [γi1, . . . , γik] such that

k∑
j=1

niγij = 0 (1 � i � [k/2]),

max
i,j

|γij | � expk2

( k∑
j=0

a2
j

)
.(2)

Theorems 1 and 2 are best possible in the following sense: they cease to be true if
the number (k + 3)/2 in Theorem 1 is diminished or the number [k/2] in Theorem 2 is
increased, no matter by what function of aj ’s one replaces the right hand side of (2). We
prove it at the end of the paper.

Proof of Theorem 1. We proceed by induction with respect to l. If l = 1 the theorem holds
since its assumption is never satisfied. Assume therefore that the theorem holds for all
polynomials in l − 1 variables (l � 2) over any field and suppose that the polynomial (1)
is reducible over K:

(3) F(x1, . . . , xl) = F1(x1, . . . , xl)F2(x1, . . . , xl), Fn �= const. (n = 1, 2).

Let the matrixM be of rank r + 1. We can assume, without loss of generality, that

D = det[νij − νi0]1�i,j�r �= 0 in Π, D > 0.

Let

[αij ] = [νij − νi0]−1
1�i,j�r

(4) xi =

⎧⎪⎪⎨⎪⎪⎩
r∏
s=1

(
ys

l∏
t=r+1

y
−νts+νt0
t

)Dαsi
if i � r,

yDi if i > r.c

We get
l∏
i=1
x
νij−νi0
i =

l∏
i=1
y
λij
i , where for j � r ,

(5) λij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D

r∑
q=1

αiq(νqj − νq0) = D if i = j,

D

r∑
q=1

αiq(νqj − νq0) = 0 if i �= j, i � r,

D

r∑
q,s=1

αsq(νqj − νq0)(−νis + νi0)+D(νij − νi0) if i > r.
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It follows from (3) that G(y1, . . . , yl) = G1(y1, . . . , yl)G2(y1, . . . , yl), where

G(y1, . . . , yl) = JF
(
P1, . . . , Pr , y

D
r+1, . . . , y

D
l

)
,

Gn(y1, . . . , yl) = JFn
(
P1, . . . , Pr , y

D
r+1, . . . , y

D
l

)
(n = 1, 2),

Pi =
r∏
s=1

(
ys

l∏
t=1

y
−νts+νt0
t

)Dαsi
(i = 1, . . . , r).

Since on setting

yj =
l∏
i=1

z
νij−νi0
i (j � r), yj = zj (j > r),

we get xi = zDi (1 � i � l) the transformation (4) transforms distinct monic monomials
in xi’s into distinct monic monomials in yi’s. It follows that the vectors [λ1j , . . . , λlj ] are
all different and setting

λi = min
0�j�k

λij (1 � i � l)

we have

G(y1, . . . , yl) =
( k∑
j=0

aj

l∏
i=1

y
λij
i

) l∏
i=1

y
−λi
i ,

Gn(y1, . . . , yl) �= const. (n = 1, 2).(6)

G(y1, . . . , yl) contains the terms ajyDj
l∏
i=1
y
−λi
i (1 � j � r); therefore treated as a

polynomial in y2, . . . , yl , it has at least r terms. If it had a non-constant factor depending
only on y1 then treated as a polynomial in y1, . . . , yl it would have at least 2r terms. This
contradicts the assumption r+1 > (k+3)/2, thusG has no non-constant factor depending
only on y1 and in particular neitherGn depends only on y1. It follows that for at least one

j > 1 we have
l∑
i=2
λij �= D. Otherwise by the substitution yj = y2zj (j > 2) we would

get

JG(y1, y2, y2z3, . . . , y2zl)

=
(
(a0 + a1y

D
1 )+ yD2

k∑
j=2

ajy
λ1j
1

l∏
i=3

z
λij
i

)
· y−λ1

1

l∏
i=3

z
−λi
i

= JG1(y1, y2, y2z3, . . . , y2zl) · JG2(y1, y2, y2z3, . . . , y2zl).

JG(y1, y2, y2z3, . . . , y2zl) again has no factor depending only on y1, hence the polyno-
mials

(a0 + a1y
D
1 )y

−λ1
1

l∏
i=3

z
−λi
i
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and ( k∑
j=2

ajy
λ1j
1

l∏
i=3

z
λij
i

)
y
−λ1
1

l∏
i=3

z
−λi
i

are relatively prime.
Since a0 + a1y

D
1 is not a constant multiple of a power, by Capelli’s theorem

JG(y1, y2, y2z3, . . . , y2zl) is irreducible and, for some n, JGn(y1, y2, y2z3, . . . , y2zl)

is constant, contrary to (6).
Thus for some σ > 1

(7)
l∑
i=2

λiσ �= D

and by (5) it follows k � σ > r .
Since r + 1 > (k + 3)/2 we get r � 3.
We consider two cases:

(i) there exist distinct indices p > 0 and q > 0 such that

λip = λiq for all i > 1,

(ii) for any two distinct indices p > 0 and q > 0 and a suitable i > 1,

λip �= λiq .
Case (i). Divide the indices j � k into classes assigning two indices j1, j2 to the same

class Cs if λij1 = λij2 = μis for all i > 1. Let C0 be the class characterized by μi0 = 0
for all i > 1, Cs (1 � s < r) be the class characterized by μis = D for i = s+ 1, μis = 0
for all i > 1, i �= s + 1, Cr, . . . , Ct be all the other classes and let

As(y1) =
∑
j∈Cs

aj y
λ1j
1 (0 � s � t).

By the assumption (i) we have either |C0| � 3 or |Cs | � 2 for some s > 0, thus
t + 2 � k, t + 3 � k + 1 < 2r . The vectors [1, μ2s , . . . , μls] (0 � s < r) are linearlyc

independent, thus the rank of the matrix⎛⎜⎜⎝
1 . . . 1
μ20 . . . μ2t
. . . . . . . . .

μl0 . . . μlt

⎞⎟⎟⎠
c

is at least r . Since the vectors [λ1j , . . . , λlj ] (0 � j � k) are all different, As(y1) are all
non-zero. We now apply the inductive assumption to the polynomial( t∑

s=0

As(y1)

l∏
i=2

y
μis
i

) l∏
i=2

y
−mins μis
i = G(y1, . . . , yl)y

λ1
1

in l−1 variables over the fieldK(y1). It follows that in any factorization ofG(y1, . . . , yl)

one of the factors depends only on y1 which contradicts (6).
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Case (ii). Make the substitution

y1 =
(−a0

a1

)1/D

= η.

Then

(8) G(η, y2, . . . , yl) =
( k∑
j=2

ajη
λ1j

l∏
i=2

y
λ1j
1

)
η−λ1

l∏
i=2

y
−λi
i

= G1(η, y2, . . . , yl)G2(η, y2, . . . , yl).

Since r � 3 and for i > 1

λi0 = λi1 = 0 =
{
λir if i �= r,
λi,r−1 if i = r

we have

λi = min
2�j�k

λij (i > 1).

On the other hand, for σ satisfying (7) the vectors [1, λ2j , . . . , λlj ] (2 � j � r) and
[1, λ2σ , . . . , λlσ ] are linearly independent; thus the rank of the matrix⎛⎜⎜⎝

1 . . . 1
λ22 . . . λ2k
. . . . . . . . .

λl2 . . . λlk

⎞⎟⎟⎠
is at least r . Moreover by (ii) the vectors [λ2j , . . . , λlj ] (2 � j � k) are all distinct, hence
there is no cancellation on the right hand side of (8) and the degree of G(η, y2, . . . , yl) is
equal to that of G(y1, . . . , yl).

It follows that the degree of Gn(η, y2, . . . , yl) in y2, . . . , yl is equal to that of
Gn(y1, . . . , yl) and therefore is positive. On the other hand, it follows by the inductive
assumption applied to G(η, y2, . . . , yl) over the field K(η) that G(η, y2, . . . , yl) is irre-
ducible. The obtained contradiction completes the proof. ��

Proof of the Corollary. Divide all the nonnegative indices j � k into classes assigning
two indices j1, j2 to the same class Cs if νij1 = νij2 = μis for all i � l (we set μi0 = 0).c

Let n+ 1 be the number of classes and let us put

bs =
∑
j∈Cs

aj (0 � s � n).

We can number the classes in such a way that bs �= 0 for all s � m, bs = 0 for all
s > m. For all s > m we have then |Cs | � 2, thus k � m+ 2(n−m). Now

J

(
a0 +

k∑
j=1

aj

l∏
i=1

x
νij
i

)
=
( m∑
s=0

bs

l∏
i=1

x
μis
i

) l∏
i=1

x
−mins μis
i .
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The corollary follows from Theorem 1 in virtue of the inequality

rank

⎛⎜⎜⎝
1 . . . 1
μ10 . . . μ1m
. . . . . . . . .

μl0 . . . μlm

⎞⎟⎟⎠ � rank
[
νij
]+ 1 − (n−m) � k + 3

2
− (n−m) � m+ 3

2
. ��

Proof of Theorem 2. Set in Theorem 2 of [1] F(x1, . . . , xk) = a0 +
k∑
j=1
ajxj . If

a0 +
k∑
j=1
ajx

nj has more than one or multiple irreducible (over Q) non-reciprocal factor
c

then we infer from the said theorem the existence of an integral matrix (νij )i�r, j�k = N
of rank r and of an integral vector v such that max

i,j
|νij | � cr ,

[n1, . . . , nk] = vN,(9)

J
(
a0 +

k∑
j=1

aj

r∏
i=1

x
νij
i

)
is reducible.(10)

Moreover

cr =

⎧⎪⎨⎪⎩
exp 9k2A−5 if r = k,
exp(5 · 2A

2−4 + 2A log 2) if r + k = 3,

exp(k−r)(k+r−3)(8k2
A−1 logA) otherwise,

where A =
k∑
j=0
a2
j .

By Corollary to Theorem 1 it follows from (10) that r � (k + 1)/2. Using Cramer’s
formulae and Hadamard’s inequality we can find linearly independent integral vectors
γ i = [γi1, . . . , γik] (1 � i � k − r) such that max

i,j
|γij | � rr/2crr and

(11) γ iN = 0 (1 � i � k − r).
If k + r = 3, we have k = 2, r = 1;

max
i,j

|γij | � c1 � exp2 A
2 < exp4A.

If k + r > 3 we use the inequalities valid for x � 4c

rr/2xr � 2(x/2)2
r

< expr x, kx � 2(x/2)2
k−1
< expk−1 xc

and obtain

max
i,j

|γij | � expr cr = exp(k−r)(k+r−3)+r (8k2A−1 logA)

� expk2−3k+4(k · 2A+2 logA) � expk2−2k+3(2
A+2 logA) < expk2 A.
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By (9) and (11) we have

k∑
j=1

njγij = 0 (1 � i � k − r)

and since k − r � [k/2] the proof is complete. ��

In order to show that Theorems 1 and 2 are best possible in the sense made precise in
the introduction, consider the polynomial

F0(x1, . . . , xl) = 4 + 2
l∑
j=1

xj +
2l−1∑
j=l+1

xj−lxl = (2 + xl)
(

2 +
l−1∑
i=1

xi

)
.

c

It has k + 1 = 2l terms, the rank of the relevant matrix⎛⎜⎝1 1 . . . 1 1 . . . 1

0

0
Il Il−1

1 . . . 1

⎞⎟⎠ (Ij the identity matrix of order j)

c

is l + 1 = (k + 3)/2 and F0(x1, . . . , xl) is reducible. Moreover F0(x, x
2h+1, . . . ,

. . . , x(2h+1)l−1
) has at least two (counting the multiplicity) irreducible non-reciprocal fac-

tors. If
l∑
j=1

(2h+ 1)j−1γj +
2l−1∑
j=l+1

{
(2h+ 1)j−l−1 + (2h+ 1)l−1}γj = 0,(12)

max
1�j�2l−1

|γj | � h(13)

then
l−1∑
j=1

(2h+ 1)j−1(γj + γl+j )+ (2h+ 1)l−1
2l−1∑
j=l
γj = 0.

c

Let (2h+ 1)m−1 be the highest power of 2h+ 1 occurring in the above equation with the
non-vanishing coefficient. We get

(2h+ 1)m−1 �
m−1∑
j=1

(2h+ 1)j−1|γj + γl+j | �
m−1∑
j=1

(2h+ 1)j−1 · 2h = (2h+ 1)m−1 − 1
c

which is impossible. Thus all the coefficients of (2h+ 1)j−1 (1 � j � l) vanish and

γl+j = −γj (1 � j < l),
l∑
j=1

γj = γl,

[γ1, . . . , γ2l−1] =
l−1∑
j=1

γj
[
0, . . . , 0, 1︸ ︷︷ ︸

j

,

l−j︷ ︸︸ ︷
0, . . . , 0, 1, 0, . . . , 0,−1︸ ︷︷ ︸

l

, 0, . . . , 0
]

c
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which shows that there are at most l − 1 linearly independent vectors [γ1, . . . , γ2l−1]
satisfying (12) and (13).
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1. Statement of results

In this paper we formulate certain properties of a polynomial F(z) ∈ Z[z1, . . . , zN ] in
terms of similar properties of the polynomials

(1) Pr(z) = F(zr1 , . . . , zrN ),
Pr ∈ Z[z], r > 0. (We say v > 0 if all coordinates of the vector v are positive.) In this
manner we obtain information concerning the zero set of F , and also concerning zeros of
certain generalized Dirichlet polynomials. In particular we generalize to N variables the
following classical theorem of Kronecker [4]:

Theorem A. Let P(z) be a monic irreducible polynomial with integral coefficients. If all
zeros of P lie in the disc |z| � 1, then P is a cyclotomic polynomial, or P(z) ≡ z.

We write

F(z) = F(z1, . . . , zN) =
∑

j∈J

a(j)z
j1
1 · · · zjNN ,

where j = (j1, . . . , jN), the jn are non-negative integers, and J is a finite set such
that a(j) �= 0 for j ∈ J . We let J − J = {j1 − j2 : j i ∈ J }, J = |J |,
D = max

j∈J
max

1�n�N
jn. We letΦm denote the cyclotomic polynomial of degree φ(m)whose

roots are the primitive mth roots of unity, and we say that F is a generalized cyclotomic
polynomial if F(z) = ±Φm(zv1

1 · · · zvNN ) for some set of non-negative integers vn, not all
zero.

As a special case of a conjecture of Schinzel [6], we have

* Work supported in part by the Alfred P. Sloan Foundation, and by National Science Foundation
Grant MPS 7507948.
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Theorem 1. Let F(z) ∈ Z[z1, . . . , zN ] be irreducible and not generalized cyclotomic. If
the polynomial Pr given by (1) with r > 0 is a product of cyclotomic polynomials then
v ·r = 0 for some vector v ∈ ZN , v �= 0, such that |vn| � C0(F ) � e3JD for 1 � n � N .

For large J we find that C0(F ) � eJ+o(J )D.

Corollary 1. Let F be as in Theorem 1, and suppose that F(0) = 1. Then F has a zero z

for which

|zn| � 1 − 1/C1(N, J,D).

It would be interesting to know whether one can replace C1 above by a constant
depending only on the total degree of F .

Corollary 2. Let F(z) ∈ Z[z1, . . . , zN ]. Then F is a product of generalized cyclotomic
polynomials if and only if ±Pr is a product of cyclotomic polynomials for all r > 0.

Let UN = {z ∈ CN : |zn| < 1}. Concerning zeros in the polydisc UN we prove

Theorem 2. LetF(z) ∈ Z[z1, . . . , zN ],F(0) = 1, and suppose thatF(z) �= 0 for z ∈ UN .
Then F is a product of generalized cyclotomic polynomials.

Of course the converse of the above is trivial: A generalized cyclotomic polynomial is
non-vanishing in UN . Theorem A is the case N = 1 of the above, with F(z1) replaced by
zD1 F(1/z1). We derive Theorem 2 easily from Corollary 2 and Theorem A. However, by
using the following theorem, which pertains to the more general F ∈ C[z1, . . . , zN ], we
find that Corollary 2 can be derived from Theorem 2.

Theorem 3. IfF ∈ C[z1, . . . , zN ], andF has a zero in UN , then there are positive integers
r1, . . . , rN such that Pr(z) = F(zr1 , . . . , zrN ) has a zero in U.

It is not possible to strengthen the above in the same way that Theorem 1 strengthens
Corollary 2, as we see from the example F(z) = z1 − 2z2.

We apply Theorem 2 to a question of Deutsch [3] concerning generalized Dirichlet
polynomials. In this connection we require some new information concerning zeros of a
generalized Dirichlet polynomial D(s). Following Bohr [2] we may write a generalized
Dirichlet polynomial D(s) in the form

D(s) = F(e−μ1s , . . . , e−μNs),

where F ∈ C[z1, . . . , zN ], and the μn are positive real numbers which are linearly inde-
pendent over Q. We define the sets

U = {D(it) : t ∈ R},
V = {F(z) : |zn| = 1},
W =

⋂
δ>0

{D(s) : |Re s| < δ},

X = {D(s) : 0 < Re s � ∞},
Y = {F(z) : z ∈ UN }.
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Bohr demonstrated that U is dense inW , and that

(2) U ⊂ W = V.
To this we add

Theorem 4. In the above notation, X = Y .

From Theorem 2 and Theorem 4 we obtain an answer to the question which stimulated
this work, namely

Theorem 5. Let

(3) D(s) = 1 +
J∑
j=1

aj e
−λj s,

where aj ∈ Z, aJ �= 0, and λj > 0. Then D(s) has zeros in the half-plane Re s � 0. Ifc

D(s) �= 0 for Re s > 0 then

(4) D(s) = ±
K∏
k=1

Φmk(e
−νks)

for suitable positive mk ∈ Z, and positive νk ∈ R.

We note that conversely if D(s) is of the form (4), then D(s) �= 0 for Re s > 0. We
obtain Theorem A again by taking λj = j , 1 � j � J . From the hypotheses of Theorem 5,
Deutsch [3] deduced the weaker result thatD(s)must vanish in the half-plane Re s > −ε,
for any ε > 0.

The authors express their appreciation to Professors B. J. Birch,A. Selberg, B.A. Taylor,
and H. Tornehave, whose comments and suggestions contributed to the form and content
of this paper.

2. Proof of Theorem 1

We shall require:

Lemma 1. Let F(z) = ∑
j∈J

aj z
j ∈ C[z], and suppose that F has a zero c �= 0 of

multiplicity � J = |J |. Then F ≡ 0.

Proof. Let c �= 0, and suppose thatF (i)(c) = 0, 0 � i � J−1. The aj thus satisfy J linear
equations with coefficient matrixC = ((j

i

)
i!cj−i), 0 � i � J −1, j ∈ J . After factoring

out powers of c we have a matrix which is row equivalent to (j i); thus C is non-singular
and hence the aj vanish. ��

We quote from Mann [5, Theorem 1] the following
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Lemma 2. Let a1, . . . , aR be distinct non-zero integers, let q be an integer, and suppose
that (a1, . . . , aR, q) = 1. Put a0 = 0. Let br , 0 � r � R, be non-zero integers. Suppose
that

R∑
r=0

bre(ar/q) = 0,

and that no sub-sum of this sum vanishes. Then q is square-free, and is composed entirely
of primes p � R + 1.

Here e(θ) = e2πiθ . We now come to the main step in the proof of Theorem 1.

Lemma 3. Suppose Φm(z) |Pr(z), where Pr(z) is given by (1) with F belonging to
Z[z1, . . . , zN ], F(0) �= 0, F is irreducible and not a constant multiple of a generalized
cyclotomic polynomial. Then there are linearly independent vectors v(i) ∈ J − J ,
i = 1, 2, for which m | (v(1) · r, v(2) · r)P , where P = ∏

p�J
p.

If N = 1 then the conclusion above is clearly impossible; the lemma remains valid by
virtue of the fact that in this case the hypotheses are never fulfilled. To see this, note that if
F is irreducible and F is not of the form cΦk(zv) then none of the roots of F are roots of
unity. Hence none of the roots of Pr(z) = F(zr) are roots of unity, and so Φm(z) /| Pr(z).
In the proof below, we may assume that N > 1, although strictly speaking the proof is
vacuously correct when N = 1.

Proof. By hypothesis e(1/m) is the root of Pr ; that is,∑
j∈J

a(j)e(j · r/m) = 0.

We may partition J into subsets Ji , 1 � i � I , such that

(5)
∑

j∈Ji

a(j)e(j · r/m) = 0,

and so that no sub-sum of these vanish. Let h(i) ∈ Ji be chosen so that
N∑
n=1
h
(i)
n is minimal.

From (5) we have

(6)
∑

j∈Ji

a(j)e
(
(j − h(i)) · r/m) = 0.

Let gi be the greatest common divisor of the numbers (j − h(i)) · r for j ∈ Ji . Then by
Lemma 2 with q = m/(gi,m), R < J , we find that m | (gi,m)P . As this is true for all i,
we deduce that

(7) m |gP,
where g = (g1, . . . , gI ), P = ∏

p�J
p.
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We show that the set W =
I⋃
i=1

{v = j − h(i) : j ∈ Ji} contains a pair of linearly

independent vectors. This suffices, for if v(1), v(2) are linearly independent members of
W = J −J then g | (v(1) ·r, v(2) ·r), and we obtain the desired result from (7). Suppose,
to the contrary, that all members of W lie on a line through the origin. Then there is a
v ∈ ZN and integers b(j) such that j − h(i) = b(j)v for all j ∈ J . Then

(8) F(z) =
I∑
i=1

z
h
(i)
1

1 · · · zh
(i)
N

N

∑
j∈Ji

a(j)
(
z
v1
1 · · · zvNN

)b(j)
.

But from (6) we see that ∑
j∈Ji

a(j)e
(
b(j)v · r/m) = 0,

so that if l = m/(m, r · v) then

(9) Φl(z)

∣∣∣ ∑
j∈Ji

a(j)zb(j).

From (8) we thus find that F(z) = 0 if zv1
1 · · · zvNN = e(1/l). If the vn take on both signs

then there are z with the above property for which |zn| < ε, 1 � n � N . Then by continuity
F(0) = 0, contrary to the hypothesis. Hence the non-zero vn all have the same sign; by mul-
tiplying v and all the b(j) by −1 if necessary we may suppose that the vn are non-negative.
From the way that h(i) was chosen we see that j −h(i) has at least one positive coordinate.
Hence b(j) � 0 for all j ∈ J . From (8) and (9) we see that Φl(z

v1
1 · · · zvNN ) |F(z). This

contradicts the hypothesis that F is irreducible and not a constant multiple of a generalized
cyclotomic polynomial; hence W contains a pair of linearly independent vectors. ��

We now prove Theorem 1. When F(0) �= ±1 we have nothing to prove, for then
Pr(0) �= ±1 and hence Pr is never a product of cyclotomic polynomials. Thus we assume
that F(0) = ±1. Suppose that

(10) Pr(z) =
∏
m∈M

Φm(z)
γ (m),

where the γ (m) are positive integers. If Pr has fewer than J terms then j (1) · r = j (2) · r
for some j (i) ∈ J , and it suffices to take v = j (1) − j (2). If Pr has J distinct terms then
the degree of Pr is given by Δ = max

j∈J
j · r . On the other hand, from (10) and Lemma 1

we see that

Δ =
∑
m∈M

γ (m)φ(m) < J
∑
m∈M

φ(m).

Let V = {(u,w) : u,w ∈ J − J , rank(u,w) = 2
}
. Then by Lemma 3,

Δ < J
∑

(u,w)∈V

∑
m|(u·r,w·r)P

φ(m) = PJ
∑

(u,w)∈V

(u · r,w · r).
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But V contains less than J 2 elements, so there is a pair (u,w) ∈ V for which d =
(u · r,w · r) > ΔP−1J−3. Put u = u · r/d , w = w · r/d. Then

|u| � PJ 3|u · r|/Δ � PJ 3,

and similarly |w| � PJ 3. Put v = wu−uw. Then v ·r = 0, v �= 0, and |vn| � 2PJ 3D <

e3JD. ��

Proof of Corollary 1. Take rn = (C0(F ) + 1
)n−1, so that by Theorem 1, Pr is not the

product of cyclotomic polynomials. Then by Theorem 1 of Blanksby–Montgomery [1],
Pr has a zero z for which |z| < 1−1/C(degPr). Then |zn| = |zrn | � 1−1/C(N, J,D).��

3. Proof of Theorem 2

From the hypotheses of Theorem 2 we see that Pr(z) ∈ Z[z], and Pr(z) �= 0 for z ∈ U.
Then by Theorem A applied to P(z) = zdPr(1/z) we find that P , and hence also ±Pr , is
a product of cyclotomic polynomials. Thus, by Corollary 2, F is a product of generalized
cyclotomic polynomials. ��

4. Proof of Theorem 3

We shall require:

Lemma 4. Let F ∈ C[z1, . . . , zN ], and let μn, 1 � n � N , be positive real numbers.
Then {

F(z) : z ∈ UN
} = ⋃

0<a�∞

{
F(z) : ∀n |zn| = e−μna

}
.

Proof. The set on the right is clearly contained in the one on the left, so we establish the
reverse inclusion. Since the constant term of F is arbitrary, it suffices to consider zeros
of F . Suppose F has a zero in UN . For a > 0 let m(a) = min |F(z)| over z satisfying
|zn| � e−μna for 1 � n � N . Put a0 = inf

m(a)>0
a. Then 0 < a0 � ∞. If a0 = ∞ then

F(0) = 0, and we are done. Suppose that 0 < a0 < ∞. For a0 < a < ∞ let z(a) be
chosen so that

∣∣F (z(a))∣∣ = m(a), |zn(a)| � e−μna . By the minimum modulus theorem,
|zn(a)| = e−μna . Let c be a limit point of the sequence z(a0 + 1/k). Then |cn| = e−μna0 ,
and |F(c)| = limk m(a0 + 1/k) = 0. Hence F(c) = 0, and the proof is complete. ��

We now prove Theorem 3. By Lemma 4 with μ1 = . . . = μN = 1, we see that F(z)
has a zero c with |c1| = . . . = |cN | < 1. Thus for suitable unimodular γn = e(θn) the
function G(z) = F(γ1z, . . . , γNz) has a zero c, 0 � c < 1. Choose φ, ρ, ρ < 1, and
m > 0 so that the semidisc S = {z : Re ze( 1

4 − φ) � 0, |z| � ρ} contains c, and so thatc

|G(z)| � m for z on the boundary of S . This may be done, unless G(0) = 0, in which
case there is nothing to do (since then Pr(0) = 0 for any r). Let δ > 0 be so small that if
z ∈ S , |zn − γnz| < δ, 1 � n � N , then |F(z)−G(z)| � m/2.c
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Since
√

2 is irrational, we may determine a positive integer bn such that
‖bn

√
2 − θn‖ < δ/20. We now put rn = q + bn, and show that for all large q the

polynomial Pr has a zero in U. Let ε = (1/q){φ − q√2}, and consider the sector
Σq = {z = re(θ) : |θ − √

2 − ε| < 1/(4q), 0 � r � ρ1/q}. If q is large and z ∈ Σq ,c

then |zrn − γnzq | < δ, and zq ∈ S . Thus |Pr(z)−G(zq)| � m/2 for z ∈ Σq . But G(zq)
has a zero in Σq , and |G(zq)| � m for z on the boundary of Σq , since zq is then on thec

boundary of S . Hence by Rouché’s theorem Pr(z) has a zero in Σq ⊂ U. ��

5. Proof of Theorem 4

From (2) we see that for each a > 0,{
F(z) : |zn| = e−μna

} =⋂
δ>0

{
D(s) : |a − Re s| < δ}.

Taking the union of this over a > 0, we find that

Y ′ =:
⋃

0<a�∞

{
F(z) : |zn| = e−μna

} = X.
But by Lemma 4, Y = Y ′, so we are done. ��

6. Proof of Theorem 5

It suffices to prove the last assertion of Theorem 5. ForD(s) determined by (3), we may
find positive μn, linearly independent over Q, and a polynomial F(z) ∈ Z[z1, . . . , zN ]
such that

D(s) = F (e−μ1s , . . . , e−μNs
)
,

F (0) = 1. If D(s) �= 0 for Re s > 0 then by Theorem 4, F(z) �= 0 for z ∈ UN . Then by
Theorem 2,

F(z) =
K∏
k=1

Φmk
(
z
r1k
1 · · · zrNkN

)
.

This gives (4), with νk =
N∑
n=1
rnkμn. ��
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On difference polynomials
and hereditarily irreducible polynomials

with L. A. Rubel* (Urbana) and H. Tverberg (Bergen)

Abstract. A difference polynomial is one of the formP(x, y) = p(x)−q(y). Another proof is given
of the fact that every difference polynomial has a connected zero set, and this theorem is applied to
give an irreducibility criterion for difference polynomials. Some earlier problems about hereditarily
irreducible polynomials (HIPs) are solved. For example, P(x, y) is called a HIP (two-variable case)
if P
(
a(x), b(y)

)
is always irreducible, and it is shown that such two-variable HIPs actually exist.

Let k be a field. A difference polynomial over k is a polynomial P in two variables
x, y, of the form

P(x, y) = p(x)− q(y),
wherep(x) and q(y) are nonconstant polynomials in one variable. In what follows, k = C,
the complex field. In this note, we revisit the paper [1]—we give a different proof of the
main theorem, use the theorem to prove an irreducibility criterion, and answer some of the
problems raised at the end about hereditarily irreducible polynomials.

Theorem (1). IfP(x, y) is a generalized difference polynomial and ifQ(x, y) andR(x, y)
are two nonconstant factors of P(x, y), thenQ and R have a common zero.

Note. By “generalized difference polynomial” (g.d.p.), we mean a polynomial of the form

P(x, y) = Ayn +
n∑
i=1

Pi(x)y
n−i ,

where A is a non-zero constant, n > 0, and polynomials Pi(x) satisfy

degPn(x) = m > 0 and degPi(x) < mi/n for 1 � i < n.

Communicated by H. L. Montgomery
* The research of this author was partially supported by a grant from the National Science

Foundation.
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Note. It was pointed out in [1] that if P(x, y) is a g.d.p., then P(y, x) is a g.d.p. and so
is P
(
a(x), b(y)

)
if a(x) and b(y) are nonconstant polynomials in one variable. It is clear

that any difference polynomial is a g.d.p.

Corollary (Irreducibility criterion for difference polynomials). LetP(x, y) = p(x)−q(y)
be a difference polynomial and letα1, . . . , αm andβ1, . . . , βn be the zeros of the derivatives
p′(x) and q ′(y), respectively. Consider them×n points (αi, βj ). If for every i, j we have
p(αi) �= q(βj ), then P(x, y) must be irreducible.

Remark. A much stronger result is given as Theorem 1 of [2], p. 306.

Proof of the corollary. Suppose, to the contrary, that P(x, y) = Q(x, y)R(x, y) were a
nontrivial factorization. On taking derivatives, we would have

p′(x) = QxR +QRx; −q ′(y) = QyR +QRy,
and if we take (x, y) = (x0, y0) as a common zero of Q and R (whose existence is
guaranteed by the theorem above), then

p′(x0) = 0 and q ′(y0) = 0,

so that x0 = αi , y0 = βj for some i and j , and then P(x0, y0) = P(αi, βj ) = 0, which
contradicts p(αi) �= q(βj ). ��

We turn now to the new proof of the theorem, which uses the (weak) Hilbert Nullstel-
lensatz [4] instead of relying directly on resultants. (There is, of course, a close connection
between resultants and the Nullstellensatz as shown, for instance, by the proof of the latter
given in [4].)

Proof of the theorem. We want to show that the two factorsQ and R have a common zero,
so let us proceed by contradiction and suppose that they do not. Writing P = QRS we get

P(xn, ym) = Q(xn, ym)R(xn, ym)S(xn, ym).
By our remark after the definition of g.d.p., we see that P(xn, ym) is also a g.d.p. Further-
moreQ(xn, ym) and R(xn, ym) have no common zero. The gist of this is that we may as
well assume that m = n, i.e., that

P(x, y) = Ayn + Bxn + L(x, y),
where the degree of L is less than n and A and B are both non-zero constants.

SinceQ and R have no common zero, we may, by the Nullstellensatz write

1 = GQ+HR with G,H ∈ C[x, y].
Now consider G and R as polynomials in x alone, with coefficients in C(y) (rational
functions) and put G = MR + N with degx N < degx R. The leading coefficient of R
is in C, as R divides Bxn + . . . . The division algorithm then shows thatM and N are in
C[y][x] and not merely in C(y)[x]. We now have

(MR +N)Q+HR = NQ+ (H +MQ)R = 1.
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In other words, changing notation,

GQ+HR = 1 with degx G < degx R.

Now let G∗ be the part of G of maximal degree, with similar notation for the other
polynomials. We get

G∗Q∗ +H ∗R∗ = 0.

Now R∗ and Q∗ have no common factor, as Ayn + Bxn has no multiple factor. Thus
R∗ |G∗. We now have

degx R
∗ � degx R � degR = degR∗ = degx R

∗

(as R∗ divides Ayn+Bxn, so that R∗ is a product of linear homogeneous factors). Hence

degx R
∗ = degx R.

Furthermore,

degx R = degx R
∗ � degx G

∗ � degx G < degx R.

The first inequality is because R∗ |G∗ and the last inequality is by construction. The
resulting inequality degx R < degx R is the contradiction that proves the theorem. ��

We now give solutions to Problems 1(a), 5(a), 6(a), 7(n), 10(n), and 15(a) of [1]. (The
designation (a) signifies an affirmative answer, while (n) signifies a negative one.) Some
of the solutions now seem embarrassingly simple, but this is hindsight. We recall the next
pertinent definition from [1].

Definition. The polynomial P(x1, . . . , xn) is a hereditarily irreducible polynomial (HIP)
if P
(
h1(x1), . . . , hn(xn)

)
is irreducible for every n-tuple h1(x1), . . . , hn(xn) of noncon-

stant one-variable polynomials. Moreover, P is a basic HIP if whenever P(x1, . . . , xn) =
Q
(
h1(x1), . . . , hn(xn)

)
where Q is a HIP, we must have all the hi affine (i.e., hi(x) =

αix + βi).

Answer to Problem 1. We claim that (x2 + 1)y + 1 is a HIP that involves only two
variables.

Proof. We suppose that (
a(x)2 + 1

)
b(y)+ 1

is reducible, and reach a contradiction. First, we claim that h(x) = a(x)2 + 1 has at
least one simple zero ξ . For if ξi is a zero of h(x), of multiplicity ni , then it is a zero of
h′(x) = 2a(x)a′(x) of multiplicity ni − 1, hence of a′(x), as 0 = a(ξi)

2 + 1. Thus if
every ni � 2, we get degh(x)− 2 = 2 deg a′(x) � 2

∑
(ni − 1) � 2

∑
ni/2 = degh(x),

which is a contradiction.
So we may choose ξ as a simple root of h(x). We let p(x) = x − ξ , and we regard

Q(x, y) = (a(x)2 + 1
)
b(y) + 1 as a polynomial Λ(y) in y whose coefficients are poly-

nomials in x, say, Λ(y) = any
n + . . . + a0, and we can apply the (reverse) Eisenstein
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criterion since a0 �≡ 0 mod p, ai ≡ 0 mod p for i = 1, . . . , n, and an �≡ 0 mod p2, to
conclude thatQ is irreducible.

Remark. The same proof shows that if f (x) is any square-free polynomial of degree
exceeding 1, then f (x)y + 1 is a HIP.

Remark. The question (Problem 2) whether a difference polynomial can be a HIP remains
open, and seems hard. Michael Fried has reduced this problem to a question, although a
complicated one, in combinatorial group theory.

Answer to Problem 10. From the penultimate remark, k(x, y) = (1− x2)y− 1 is a HIP,
but if we make the substitutions of sin x for x and y2 for y, we get

k(sin x, y2) = (1 − sin2 x)y2 − 1 = y2 cos2 x − 1 = (y cos x + 1)(y cos x − 1),

so that even though k(x, y) is a HIP, k(sin x, y2) is not an irreducible entire function.

Remark. It would be interesting to find all HIPs P(x1, . . . , xn) so that P
(
h1(x1), . . . ,

. . . , hn(xn)
)

is always an irreducible entire function whenever the one-variable functions
hi(x) are entire and nonconstant. It is shown in [3] that x + y + z and xy + xz + yz do
have this property.

Answer to Problem 5. If P is a HIP, then there does exist a basic HIPQ so that

(γ ) P (x1, . . . , xn) = Q
(
h1(x1), . . . , hn(xn)

)
.

Proof. Among all systems (Q;h1, . . . , hn) that satisfy (γ ) withQ a HIP (and they surely
exist since P is itself a HIP), choose one for which the sum degh1 + . . . + deghn is the
greatest. The relevantQ must be a basic HIP. ��

Answer to Problem 6. There can be two really different basis HIPs Q that give rise (as
in (γ ) above) to the same HIP P .

Example 1. P = T6(x)y + 1, Q1 = T2(x)y + 1, Q2 = T3(x)y + 1, where Tn(x) =
cos(n arccos x). By the remark after the answer to Problem 1, P ,Q1, andQ2 are all HIPs.
Since T6(x) = T3(T2(x)) = T2(T3(x)) we see that bothQ1 andQ2 give rise to P .

Example 2. P = (x2 + 1)(y2 + 1)+ 1,Q1 = (x2 + 1)y + 1, andQ2 = x(y2 + 1)+ 1.

Answer to Problem 7. P
(
h1(x1), . . . , hn(xn)

)
can be a HIP even though P(x1, . . . , xn)

is not a HIP. For consider P = xy+1, h1(x) = x2+1 and h2(y) = y, and use the answer
to Problem 1.

Answer to Problem 15. Yes, x3+xy+y3 is indeed the sum of three squares of polynomials
that vanish at (0, 0):

x3 + xy + y3 =
(
x2 + y2

2
+ x + y

2

)2

−
(
x2 − y2

2
− x − y

2

)2

− (xy)2.

Finally, we remark that in view of the answers to Problems 5, 6, 7, the hopes seem dim
for a reasonable classification of HIPs asked for in Problem 9.
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On a decomposition of polynomials
in several variables

Dedicated to Michel Mendès France

Résumé. On considère la représentation d’un polynôme à plusieurs variables comme une somme de
polynômes à une variable en combinaisons linéaires des variables.

Abstract. One considers representation of a polynomial in several variables as the sum of values of
univariate polynomials taken at linear combinations of the variables.

K. Oskolkov has called my attention to the following theorem used in the theory of
polynomial approximation (see [6], Lemma 1 and below, Lemma 4): for every sequence of
d + 1 pairwise linearly independent vectors [αμ1, αμ2] ∈ R2 (1 � μ � d + 1) and every
polynomialF ∈ C [x1, x2] of degree d there exist polynomialsfμ ∈ C [z] (1 � μ � d+1)
such that

F =
d+1∑
μ=1

fμ
(
αμ1x1 + αμ2x2

)
.

He has asked for a generalization and a refinement of this result. The following theorem
is a step in this direction.

Theorem 1. Let n, d be positive integers and K a field with charK = 0 or charK > d.
For every sequence Sν (2 � ν � n) of subsets of K each of cardinality at least d + 1

there exist M =
(
n+ d − 1

n− 1

)
vectors [αμ1, αμ2, . . . , αμn] ∈ {1} × S2 × . . . × Sn with

the following property. For every polynomial F ∈ K[x1, . . . , xn] of degree at most d there
exist polynomials fμ ∈ K[z] (1 � μ � M) such that

(1) F =
M∑
μ=1

fμ

( n∑
ν=1

αμνxν

)
.

It is not true that polynomials fμ satisfying (1) exist for every sequence of vectors
[αμ1, . . . , αμn] (1 � μ � M) such that each n of them are linearly independent. See the
example at the end of the paper.

Let P(n, d,K) be the set of all polynomials F ∈ K[x1, . . . , xn] of degree d. Let
M(n, d,K) be the least numberM such that for every F ∈ P(n, d,K) (1) holds for some
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sequence of vectors [αμ1, . . . , αμn] ∈ Kn and some sequence of polynomials fμ ∈ K[z]
(1 � μ � M) if such sequences exist and ∞ otherwise. For an infinite field K , let
m(n, d,K) be the least numberM such that for a Zariski open subset S of P(n, d,K) and
for every F ∈ S, (1) holds for some sequences of vectors and polynomials as before, if
such sequences exist and ∞, otherwise. Theorem 1 implies

Corollary. M(n, d,K) < ∞ if and only if either n = 1 or charK = 0 or charK > d .
If K is infinite the same equivalence holds for m(n, d,K).

The problem of determination ofm(n, d,K) is related to the problem, much studied in
the XIX-th century (see [5], for a modern account), of representation of a generaln-ary form
of degree d as the sum of powers of linear forms. The two problems are not equivalent even
forK algebraically closed, since in our case neither F nor fμ are supposed homogeneous.

Theorem 2. For every infinite field K such that charK = 0 or charK > d we have(
n+ d − 1

n− 1

)
� M(n, d,K) � m(n, d,K)

� max
0�e<d

1

n+ d − 1 − e
[(
n+ d
n

)
−
(
n+ e
n

)]
.

For K = Fq , charK > d , we have(
n+ d − 1

n− 1

)
� M(n, d,K) � max

0�e<d

[(
n+d
n

)− (n+e
n

)]
log q

log
[
(qd−e − 1) q

n−1
q−1 + 1

] .
In particular, every n-ary form of degree d over a field K of characteristic 0 is repre-

sentable as a linear combination of

(
n+ d − 1

n− 1

)
d-th powers of linear forms overK . This

has been first proved, but not explicitly stated by Ellison [3].

ClearlyM(1, d,K) = M(n, 1,K) = 1 and one easily proves

Theorem 3. If charK �= 2, then M(n, 2,K) = n and if, in addition, K is infinite, then
m(n, 2,K) = n.

Diaconis and Shahshahani asserted without a formal proof that M(2, d,R) = d ([2],
Application 2).

We shall show

Theorem 4. For every field K such that either charK = 0, or charK > d and cardK �
2d − 2 we have

M(2, d,K) = d.
In particular, every binary form F of degree d over a field K of characteristic 0 is

representable as a linear combination of d d-th powers of linear forms over K , which
slightly improves Theorem A of [4]. For K = C this was proved by Reznick [8].
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The following theorem shows that the condition cardK � 2d − 2 in Theorem 4 may
be superfluous.

Theorem 5. For every field K such that

charK > d and cardK � d + 2

we have

M(2, d,K) = d.

Theorem 6. For every algebraically closed field K , if charK = 0 or charK > d , then

m(2, d,K) =
⌈

2d + 5 −√
8d + 17

2

⌉
.

The proof of Theorem 1 is based on two lemmas.

Lemma 1. Let n � 2, Ti (1 � i � n − 1) be a subset of K of cardinality d + 1. Then
F = 0 is the only polynomial in K[x1, . . . , xn−1] of degree at most d in each variable
such that F(a1, a2, . . . , an−1) = 0 for all [a1, a2, . . . , an−1] ∈ T1 × . . .× Tn−1.

Proof. See [1], Lemma 2.2. ��

Lemma 2. Let for each k = 0, 1, . . . , n − 2 elements βk,l of K (0 � l � d) be distinct
and let for a positive integer q � (d + 1)n−1

q − 1 =
n−2∑
k=0

ck(q)(d + 1)k, where ck(q) ∈ Z, 0 � ck(q) � d

be the expansion of q − 1 in base d + 1.
Define A

(
(βkl)

)
as the matrix (ars), where

(2) ars =
n−2∏
k=0

β
ck(r)
k,ck(s)

(1 � r, s � (d + 1)n−1).

Then detA
(
(βkl)

) �= 0.

Proof. Let us put in Lemma 1: Ti = {βi−1,l : 0 � l � d} (1 � i � n− 1). By the lemma
the only polynomial F ∈ K[x1, . . . , xn−1] of degree at most d in each variable such that

(3) F
(
β0,l0 , . . . , βn−2,ln−2

) = 0 for all [l0, . . . , ln−2] ∈ {0, 1, . . . , d}n−1

is F = 0.
Now, all the vectors [l0, . . . , ln−2] ∈ {0, 1, . . . , d}n−1 can be ordered lexicographically,

so that the vector [l0, . . . , ln−2] occupies the position 1+
n−2∑
i=0
li (d+1)i and then the system
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of equations (3) reads

F
(
β0,c0(r), β1,c1(r), . . . , βn−2,cn−2(r)

) = 0 (1 � r � (d + 1)n−1).

Also the polynomial F can be written as

(d+1)n−1∑
s=1

As

n−1∏
j=1

x
cj−1(s)

j , where As ∈ K,

and (3) can be rewritten as

(d+1)n−1∑
s=1

As

n−2∏
j=0

β
cj (s)

j,cj (r)
= 0 (1 � r � (d + 1)n−1).

The fact that the only solution of this system is

As = 0 (1 � r � (d + 1)n−1),

corresponding to F = 0, implies in view of (2) that

det
(
asr
) �= 0.

But then also detA
(
(βkl)

) = det(ars) �= 0. ��

Proof of Theorem 1. Let us choose in Sν distinct integers βν−2,0, . . . , βν−2,d (2 � ν � n).
By Lemma 2

(4) detA
(
(βkl)

) �= 0,

hence the matrix B consisting of the rows r of A
(
(βkl)

)
for which

n−2∑
k=0
ck(r) � d is of

rank equal to the number of such rows M =
(
n+ d − 1

n− 1

)
. Therefore B has M linearly

independent columns s1, s2, . . . , sM . We put

(5) αμ1 = 1, αμν = βν−2,cν−2(sμ) (1 � μ � M, 2 � ν � n).

Let

(6) F (x1, . . . , xn) =
∑

i1+i2+...+in�d

(
i1 + . . .+ in
i1, . . . , in

)
ai1...in

n∏
j=1

x
ij
j

(note that the multinomial coefficient is non-zero).
For each l � d we determine bμl (1 � μ � M) from the system of equations

(7)
M∑
μ=1

bμl

n∏
ν=2

αiνμν = ai1...in (i1 + . . .+ in = l),
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which can be rewritten as

M∑
μ=1

bμl

n−2∏
ν=0

β
cν(r)
ν,cν(sμ)

= a
l−
n−2∑
ν=0
cν(r),c0(r),...,cn−2(r)

(
1 � r � (d + 1)n−1,

n−2∑
ν=0

cν(r) � l
)
.

By the choice of s1, . . . , sM the matrix of this system has rank equal to the number of
equations, hence the system is solvable for bμl ∈ K . We set

fμ =
d∑
l=0

bμlz
l

and (1) follows from (6) and (7). ��

Proof of Corollary. In view of Theorem 1 it suffices to show that M(n, d,K) = ∞ if
n > 1 and

0 < p = charK � d.

Let us consider an arbitrary polynomial F of the form (6) in which ad,0,...,0 �= 0 and
ap−1,1,0,...,0 �= 0. IfK is infinite such polynomials exist in every open subset ofP(n, d,K).
If (1) holds, then the part Fd−p of degree p of F satisfies

Fd−p =
M∑
μ=1

bμ

( n∑
ν=1

αμνxν

)p
, bμ ∈ K,

which is impossible, since xp−1
1 x2 occurs with a non-zero coefficient on the left hand side,

but not on the right. ��

Proof of Theorem 2. The dimension of the set of all n-ary polynomials of degree not

exceeding d and greater than e is

(
n+ d
d

)
−
(
n+ e
e

)
. On the other hand, the dimension

of the set of all polynomials of the formf (αx), wheref =
d∑

l=e+1
blz
l is at most d−e+n−1

since the vectors α can be normalized by taking the first non-vanishing coordinate equal
to 1. This gives the upper bound m(n + d − 1 − e) for the dimension of the set of all

polynomials of the form
m∑
μ=1

fμ(αμx) and, by the definition of m(n, d,K),

m(n, d,K)(n+ d − 1 − e) �
(
n+ d
d

)
−
(
n+ e
e

)
,

which implies the first part of the theorem.
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In order to prove the second part let us observe that the number of normalized vectors

α ∈ Fnq is
qn − 1

q − 1
, while the number of non-zero polynomials

d∑
l=e+1

blz
l ∈ Fq [z] is

qd−e−1. Hence we obtain at most (qd−e−1)
qn − 1

q − 1
+1 polynomials of the form f (αx)

and at most
(
(qd−e − 1)

qn − 1

q − 1
+ 1
)m

polynomials of the form
m∑
μ=1

fμ(αμx). On the
c

other hand, the number of n-ary polynomials over Fq of degree not exceeding d and
greater than e is

q(
n+d
d )−(n+ee ).

By the definition ofM(n, d,Fq) this gives

M(n, d,Fq) log
(
(qd−e − 1)

qn − 1

q − 1
+ 1
)

�
((
n+ d
d

)
−
(
n+ e
e

))
log q,

which implies the second part of the theorem. ��

Proof of Theorem 3. Let F0, the leading quadratic form of F , be of rank r . By Lagrange’s
theorem there exist linearly independent vectors [αμ1, . . . , αμn] in Kn (1 � μ � r) such
that

F0 =
r∑
μ=1

aμ

( n∑
ν=1

αμνxν

)2

, aμ ∈ K.

We set aμ = 0 for r < μ � n and choose n − r vectors [αμ1, . . . , αμn] in Kn (r + 1 �
μ � n) such that det(αμν)μ,ν�n �= 0. Then there exist bμ ∈ K (1 � μ � n) such thatc

F − F0 − F(0, . . . , 0) =
n∑
μ=1

bμ

n∑
ν=1

αμνxν

and (1) follows withM = n
f1(z) = a1z

2 + b1z+ F(0, . . . , 0),
fμ(z) = aμz2 + bμz (1 < μ � n).

On the other hand, the polynomial F =
n∑
ν=1
cνx

2
ν where cν �= 0 is clearly not representable

in the form (1) withM < n.
For the proof of Theorem 4 we need

Lemma 3. We have the identity∣∣∣∣∣∣∣∣∣
1 . . . 1 A0
x1 . . . xd A1
...

. . .
...

...

xd1 . . . xdd Ad

∣∣∣∣∣∣∣∣∣ =
∏

1�i<j�d
(xj − xi)

d∑
i=0

(−1)iAd−iτi(x1, . . . , xd),

where τi is the i-th fundamental symmetric function of x1, . . . , xd , τ0 = 1.
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Proof. See [7], p. 333. ��

Lemma 4. Let αμ (1 � μ � d) be arbitrary pairwise linearly independent vectors in
K2. If charK = 0 or charK � d , for every polynomial F ∈ K[x1, x2] of degree at most
d − 1 there exist polynomials fμ ∈ K[z] such that

F =
d∑
μ=1

fμ
(
αμ1x1 + αμ2x2

)
.

Proof. Since αμ are pairwise linearly independent we may assume that either

(i) αμ1 = 1, αμ2 are all distinct (1 � μ � d), or
(ii) αμ1 = 1, αμ2 are all distinct (1 � μ < d), αd1 = 0, αd2 = 1.
Let now

F =
∑

i1+i2<d

(
i1 + i2
i1

)
ai1i2x

i1
1 x
i2
2

(note that the binomial coefficient is non-zero). In the case (i) for each l < d we can solve
for bμl in K the system of equations

al−i,i =
d∑
μ=1

bμlα
i
μ2 (0 � i � l),

since the rank of the matrix of the coefficients equals the number of equations. Then we
set

fμ(z) =
d−1∑
l=0

bμlz
l .

In the case (ii) for each l < d we can solve for bμl in K the system of equations

al−i,i =
d−1∑
μ=1

bμlα
i
μ2 (0 � i < l),

and then we set

fμ(z) =
d−1∑
l=0

bμlz
l (μ < d), fd(z) =

d−1∑
l=0

(
a0l −

d−1∑
μ=1

bμlα
l
μ2

)
zl. ��

Proof of Theorem 4. In view of Theorem 3 we may assume d � 3. We shall prove first
thatM(2, d,K) � d .

Let F ∈ P(2, d,K) and let F0 be the highest homogeneous part of F . Supposing that
we have represented F0 in the form (1) withM = d we may assume that αμ (1 � μ � d)
are pairwise linearly independent and then apply Lemma 4 to represent F − F0 in the
form (1) with the same αμ. Therefore, it is enough to find a representation (1) for F
homogeneous of degree d . By Lemma 1 there exist c11, c21 inK such thatF(c11, c21) �= 0.
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Replacing F by F(c11x1 + c12x2, c21x1 + c22x2), where c12, c22 are chosen in K so that

c11c22 − c12c21 �= 0 we may assume that the coefficient of xd1 in F(x1, x2) is non-zero.

Let then

(8) F (x1, x2) =
d∑
i=0

(
d

i

)
aix

d−i
1 xi2, a0 �= 0

and let us consider the polynomial

G(y1, . . . , yd−2) =
∏

1�i<j�d−2

(yj − yi) ·
d∑
i=2

(−1)i−1ad−iτi−2(y1, . . . , yd−2)

×
d−2∏
j=1

(
ad−1 +

d−1∑
i=2

(−1)i−1ad−i
(
τi−1(y1, . . . , yd−2

)+ yj τi−2(y1, . . . , yd−2)
)

+ (−1)d−1a0yj τd−2(y1, . . . , yd−2)

)
.

Since a0 �= 0 the polynomial G is not identically 0 and we have for each i � d − 2

degyi G = 2d − 3.

Since cardK � 2d − 2, by Lemma 1 there exist elements β1, . . . , βd−2 of K such that

(9) G(β1, . . . , βd−2) �= 0.

We now put

(10) βd−1 = −

d−1∑
i=1
(−1)i−1ad−iτi−1(β1, . . . , βd−2)

d∑
i=2
(−1)i−1ad−iτi−2(β1, . . . , βd−2)

,

which makes sense, since by (9) the denominator is non-zero.Again by (9) we haveβi �= βj
for 1 � i < j < d. Hence

D0 =

∣∣∣∣∣∣∣∣∣
1 . . . 1 1
β1 . . . βd−2 βd−1
...

. . .
...

...

βd−2
1 . . . βd−2

d−2 βd−2
d−1

∣∣∣∣∣∣∣∣∣ =
∏

1�i<j<d
(βj − βi) �= 0.
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However, by (10) and Lemma 3,

D =

∣∣∣∣∣∣∣∣∣
1 . . . 1 a0
β1 . . . βd−1 a1
...
. . .

...
...

βd−1
1 . . . βd−1

d−1 ad−1

∣∣∣∣∣∣∣∣∣
=

∏
1�i<j<d

(βj − βi) ·
d∑
i=1

(−1)i−1ad−iτi−1(β1, . . . , βd−1)

= D0

(
ad−1 +

d−1∑
i=2

(−1)i−1ad−i
(
βd−1τi−2(β1, . . . , βd−2)

+ τi−1(β1, . . . , βd−2)
)+ (−1)d−1a0βd−1τd−2(β1, . . . , βd−2)

)
= 0.

Hence the system of equations

(11)
d−1∑
μ=1

bμβ
j
μ = aj (0 � j < d)

is solvable for elements bμ of K .
We set

αμ1 = 1, αμ2 = βμ, fμ(z) = bμzd (1 � μ < d);

αd1 = 0, αd2 = 1, fd(z) =
(
ad −

d−1∑
μ=1

bμβ
d
μ

)
zd

and obtain (1) from (8) and (11).
It remains to show thatM(2, d,K) � d . Let us consider the equation

(12) x1x
d−1
2 + axd2 =

d−1∑
μ=1

fμ
(
αμ1x1 + αμ2x2

)
.

In order to prove that it is impossible for every a ∈ K it is clearly sufficient to consider
fμ = bμzd , αμ1 = 1, αμ2 distinct. Comparing the coefficients of xd−j1 x

j
2 on both sides

of (12) we obtain

0 =
d−1∑
μ=1

bμα
j
μ2 (0 � j < d − 1).

The determinant of this system is
∏

1�μ<ν<d
(αν2 −αμ2) �= 0, hence bμ = 0 for 1 � μ < d

and by (12)

x1x
d−1
2 + axd2 = 0,

a contradiction. This argument is valid without the assumption on cardK . ��
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For the proof of Theorem 5 we need

Lemma 5. Let a1, . . . , ak be distinct elements of F∗
p, k � p − 3. Then

τj (a1, . . . , ak) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 if k = p − 1, 0 < j < k

(−r)j if 0 � j � k = p − 2,

and {r} = F∗
p \ {a1, . . . , ak}

(−1)j
rj+1 − sj+1

r − s if 0 � j � k = p − 3,

and {r, s} = F∗
p \ {a1, . . . , ak}

Proof. If k = p − 1 we use the identity

xp−1 − 1 =
∏
a∈F∗

p

(x − a).

If k = p− 2 we argue by induction. For j = 0 the statement is true, for k � j � 1 we
have the identity

0 = τj (a1, . . . , ak, r) = τj (a1, . . . , ak)+ rτj−1(a1, . . . , ak),

hence, by induction

τj (a1, . . . , ak) = −rτj−1(a1, . . . , ak) = −r(−r)j−1 = (−r)j .
If k = p− 3 we argue again by induction. If j = 0 the statement is true. If k � j � 1 we
have the identity

(−r)j = τj (a1, . . . , ak, s) = τj (a1, . . . , ak)+ sτj−1(a1, . . . , ak),

hence, by induction

τj (a1, . . . , ak) = (−r)j − sτj−1(a1, . . . , ak) = (−1)j rj + (−1)j s
rj − sj
r − s

= (−1)j
rj+1 − sj+1

r − s . ��

Proof of Theorem 5. By the last statement in the proof of Theorem 4 we have
M(2, d,K) � d , thus it remains to prove the reverse inequality. Let F ∈ P(2, d,K).
By Lemma 4 we may assume that F is homogeneous. Let

(13) F (x1, x2) =
d∑
i=0

(
d

i

)
aix

d−i
1 xi2

and consider first cardK = p = d + 1.

Let us assume first that the mapping F∗
p → Fp given by t  → f (t) =

p−1∑
i=0
ap−1−i t i is
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not injective. Then there exist r, s ∈ F∗
p such that r �= s and f (r) = f (s), hence

(14)
p−2∑
i=1

ap−1−i
ri − si
r − s = 0.

Setting α12 = 0, {α22, . . . , αp−2,2} = F∗
p \ {r, s} we have by Lemma 5

τi
(
α12, . . . , αp−2,2

) = τi(α22, . . . , αp−2,2
) = (−1)i

ri+1 − si+1

r − s (i � p − 3),

τp−2
(
α12, . . . , αp−2,2

) = 0,

hence, by (14),

p−1∑
i=1

(−1)i−1ap−1−iτi−1
(
α12, . . . , αp−2,2

) = 0

and, by Lemma 3, ∣∣∣∣∣∣∣∣∣
1 . . . 1 a0
α12 . . . αp−2,2 a1
...

. . .
...

...

α
p−2
12 . . . α

p−2
p−2,2 ap−2

∣∣∣∣∣∣∣∣∣ = 0.

Since det(αjμ2)0�j<p−2
1�μ�p−2

�= 0, this suffices for solvability over Fp of the system of equations

(15)
p−2∑
μ=1

bμα
j
μ2 = aj (0 � j < p − 1).

Then we obtain from (13)–(15) that

F(x1, x2) =
p−2∑
μ=1

bμ
(
x1 + αμ2x2

)p−1 +
(
ap−1 −

p−2∑
μ=1

bμα
p−1
μ2

)
x
p−1
2 .

Assume now that the mapping F∗
p → Fp given by t  → f (t) is injective. We shall

consider three cases

(i) a0 ∈ f (F∗
p),

(ii) ap−1 ∈ f (F∗
p),

(iii) ap−1 �∈ f (F∗
p), a0 �∈ f (F∗

p).

In the case (i), let a0 = f (r), r ∈ F∗
p, so that

(16)
p−2∑
i=0

ap−1−i ri = 0.
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Setting α12 = 0, {α22, . . . , αp−1,2} = F∗
p \ {r} we have by Lemma 5

τi
(
α12, . . . , αp−1,2

) = τi(α22, . . . , αp−1,2
) = (−r)i (i � p − 2),

τp−1
(
α12, . . . , αp−1,2

) = 0,

hence, by (16),

p−1∑
i=0

(−1)iap−1−iτi
(
α12, . . . , αp−1,2

) = 0

and, by Lemma 3, ∣∣∣∣∣∣∣∣∣
1 . . . 1 a0
α12 . . . αp−1,2 a1
...

. . .
...

...

α
p−1
12 . . . α

p−1
p−1,2 ap−1

∣∣∣∣∣∣∣∣∣ = 0.

Since det(αjμ2)0�j<p−1
1�μ�p−1

�= 0, this suffices for solvability over Fp of the system of equations

(17)
p−1∑
μ=1

bμα
j
μ2 = aj (0 � j � p − 1).

Then we obtain from (13) and (17) that

F(x1, x2) =
p−1∑
μ=1

bμ
(
x1 + αμ2x2

)p−1
.

In the case (ii), let ap−1 = f (r−1), r ∈ F∗
p, so that

(18)
p−2∑
i=0

air
i =

p−1∑
i=1

ap−1−i rp−1−i = 0.

Setting α11 = 0, {α21, . . . , αp−1,1} = F∗
p \ {r} we have by Lemma 5

τi
(
α11, . . . , αp−1,1

) = τi(α21, . . . , αp−1,1
) = (−r)i (i � p − 2),

τp−1
(
α11, . . . , αp−1,1

) = 0,

hence, by (18),

p−1∑
i=0

(−1)iaiτi
(
α11, . . . , αp−1,1

) = 0
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and, by Lemma 3, ∣∣∣∣∣∣∣∣∣
1 . . . 1 ap−1
α11 . . . αp−1,1 ap−2
...

. . .
...

...

α
p−1
11 . . . α

p−1
p−1,1 a0

∣∣∣∣∣∣∣∣∣ = 0.

Since det(αjμ1)0�j<p−1
1�μ�p−1

�= 0, this suffices for solvability over Fp of the system of equations

(19)
p−1∑
μ=1

bμα
j
μ1 = ap−1−j (0 � j � p − 1).

Then we obtain from (13) and (19)

F(x1, x2) =
p−1∑
l=0

bμ
(
αμ1x1 + x2

)p−1
.

In the case (iii), since

card f (F∗
p) = card F∗

p = p − 1,

we have a0 = ap−1. Hence the first and the last row of the determinant∣∣∣∣∣∣∣∣∣
1 . . . 1 a0
1 . . . p − 1 a1
...

. . .
...

...

1p−1 . . . (p − 1)p−1 ap−1

∣∣∣∣∣∣∣∣∣ .
are equal and the determinant vanishes.

Since det(μj )0�j<p−1
1�μ�p−1

�= 0, this suffices for solvability over Fp of the system of

equations

(20)
p−1∑
μ=1

bμμ
j = aj (0 � j � p − 1).

Then we obtain from (13) and (20)

F(x1, x2) =
p−1∑
μ=1

bμ(x1 + μx2)
p−1.

Consider now the case where cardK = p = d + 2. Again, let us assume first that the

mapping F∗
p → Fp given by t  → f (t) =

p−2∑
i=0
ap−2−i t i is not injective. Then there exist



E8. On a decomposition of polynomials in several variables 773

r, s ∈ F∗
p such that r �= s and f (r) = f (s), hence

(21)
p−2∑
i=1

ap−2−i
ri − si
r − s = 0.

Setting {α12, . . . , αp−3,2} = F∗
p \ {r, s} we have by Lemma 5

τi
(
α12, . . . , αp−3,2

) = (−1)i
ri+1 − si+1

r − s (i � p − 3)

hence, by (21),

p−2∑
i=1

(−1)i−1ap−2−iτi−1
(
α12, . . . , αp−3,2

) = 0

and, by Lemma 3, ∣∣∣∣∣∣∣∣∣
1 . . . 1 a0
α12 . . . αp−3,2 a1
...

. . .
...

...

α
p−3
12 . . . α

p−3
p−3,2 ap−3

∣∣∣∣∣∣∣∣∣ = 0.

Since det(αjμ2)0�j<p−3
1�μ�p−3

�= 0, this suffices for solvability over Fp of the system of equations

(22)
p−3∑
μ=1

bμα
j
μ2 = aj (0 � j < p − 2).

Then we obtain from (13) and (22) that

F(x1, x2) =
p−3∑
μ=1

bμ
(
x1 + αμ2x2

)p−2 +
(
ap−2 −

p−3∑
μ=1

bμα
p−2
μ2

)
x
p−2
2 .

Assume now that the mapping F∗
p → Fp given by t  → f (t) is injective. We shall

consider two cases

(iv) 0 ∈ f (F∗
p),

(v) 0 �∈ f (F∗
p).

In the case (iv) let 0 = f (r), r ∈ F∗
p, so that

(23)
p−2∑
i=0

ap−2−i ri = 0.

Setting {α12, . . . , αp−2,2} = F∗
p \ {r} we have by Lemma 5

τi
(
α12, . . . , αp−2,2

) = (−r)i (1 � i � p − 2),



774 E. Polynomials in several variables

hence, by (23),

(24)
p−2∑
i=0

(−1)iap−2−iτi
(
α12, . . . , αp−2,2

) = 0

and, by Lemma 3, ∣∣∣∣∣∣∣∣∣
1 . . . 1 a0
α12 . . . αp−2,2 a1
...

. . .
...

...

α
p−2
12 . . . α

p−2
p−2,2 ap−2

∣∣∣∣∣∣∣∣∣ = 0.

Since det(αjμ2)0�j<p−2
1�μ�p−2

�= 0, this suffices for solvability over Fp of the system of equations

(25)
p−2∑
μ=1

bμα
j
μ2 = aj (0 � j � p − 2).

Then we obtain from (13) and (25) that

F(x1, x2) =
p−2∑
μ=1

bμ
(
x1 + αμ2x2

)p−2
.

In the case (v) t  → f (t) is a bijective mapping of F∗
p onto F∗

p. If the mapping t  → tf (t)

had the same property we should obtain

−1 =
∏
t∈F∗

p

tf (t) =
∏
t∈F∗

p

t ·
∏
t∈F∗

p

f (t) = (−1)2 = 1,

which is impossible. Hence there exist r, s ∈ F∗
p such that r �= s and rf (r) = sf (s):

(26)
p−2∑
i=0

ap−2−i
ri+1 − si+1

r − s = 0.

Setting α12 = 0, {α22, . . . , αp−2,2} = F∗
p \ {r, s} we have by Lemma 5

τi
(
α12, . . . , αp−2,2

) = τi(α22, . . . , αp−2,2
) = (−1)i

ri+1 − si+1

r − s (i � p − 3),

τp−2
(
α12, . . . , αp−2,2

) = 0,c

hence, by (26), (24) holds and we conclude the argument as in the case (iv). The proof of
Theorem 5 is complete. ��

Proof of Theorem 6. We shall prove first that

(27) m(2, d,K) �
⌈

2d + 5 −√
8d + 17

2

⌉
=: m.
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Let 2d + 4 = u2 + v, where u, v are integers, |v| � u. We have(
u+ 2d + 4

u

)2 =
(

2u+ v
u

)2
� 4u2 + 4v + 1 = 8d + 17,

hence on taking e = d + 1 − u we obtain from Theorem 2

m(2, d,K) � 1

d + 1 − e
[(
d + 2

2

)
−
(
e + 2

2

)]
= (u− 1)(2d + 5 − u)

2u
� 2d + 5 −√

8d + 17

2
,

which gives (27).
In order to show that

m(2, d,K) � m
we notice that

ρ := m−
(
d −m+ 2

2

)
� 0.

Let us consider independent variables ai,j , where i, j � 0, m � i + j � d and the
matrix B = (bμν)1�μ�m−ρ

0�ν�m−ρ
, where

bμ0 = a
(
kμ+1

2 )−μ,m−(
kμ
2 )−1+μ

bμν = aρ+(kμ+1
2 )+ν−μ,m−ρ−(

kμ
2 )−1+μ−ν (1 � ν � m− ρ),

kμ being determined by the inequality(
kμ

2

)
< μ �

(
kμ + 1

2

)
.

Let Bν be the minor of the matrix B obtained by omitting the ν-th column and D be
the discriminant of the polynomial

B0x
m +

m−ρ∑
ν=1

(−1)νBνx
m−ρ−ν .

Polynomials B0 and D in the variables aij are not identically zero.
In order to see that B0 �= 0 let us order all variables aij linearly assuming aij ≺ akl

if either i + j < k + l or i + j = k + l and j < l. Then all products of aij are ordered
lexicographically. The product

±
∏

μ+ν=m−ρ+1

bμν = ±
m−ρ∏
μ=1

a
m+(kμ+1

2 )+1−2μ,2μ−(kμ2 )−2

occurring in the expansion of B0 precedes in the lexicographic order any other term in this
expansion, hence it does not cancel and B0 �= 0. On the other hand

D = B2m−2
0 D0,
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where D0 is the discriminant of the polynomial

xm +
m−ρ∑
ν=1

(−1)ν
Bν

B0
xm−ρ−ν .

Now, the discriminant of the polynomial

xm −
m−ρ∑
ν=1

tνx
m−ρ−ν

is not identically 0 as a function of tν (it is different from 0 for tν = 0 for ν < m − ρ,
tm−ρ = 1), hence D0 = 0 implies an algebraic dependence over the prime field Π of K
between (−1)ν−1Bν/B0 (1 � ν � m− ρ). Let

Ω = Π(am+k−1−i,i : 1 � k � d −m+ 1, 0 � i � m+ k − 1
)
.

We assert that for 1 � k � d −m+ 1, 0 � i � m+ k − 1

(28) am+k−1−i,i ∈ Ω
(B1

B0
, . . . ,

Bm−ρ
B0

)
.

This is obviously true for i � m− 1. Assume that it is true for all i < j , where m � j �
m+ k − 1. Since, by the Cramer formulae, for μ = (k2)+ j −m+ 1 �

(
k+1

2

)
(29)

m−ρ∑
ν=1

(−1)ν−1 Bν

B0
a
ρ+(k+1

2 )+ν−μ,m−ρ−(k2)−1+μ−ν = a(k+1
2 )−μ,m−(k2)−1+μ

= ak−j+m−1,j

and all a’s occurring on the left hand side have the second index at most

m− ρ −
(
k

2

)
− 1 +

(
k

2

)
+ j −m+ 1 − 1 = j − ρ − 1 < j,

it follows that am+k−1−j,j ∈ Ω
(B1

B0
, . . . ,

Bm−ρ
B0

)
and the inductive proof of (28) is com-

plete. But then

tr . deg . Ω
(B1

B0
, . . . ,

Bm−ρ
B0

) /
Ω < m− ρ

implies

tr . deg . Ω
(
am+k−1−j,j : 1 � k � d −m+ 1, m � j � m+ k − 1

)
/Ω < m− ρ,

while the number of independent variables am+k−1−j,j (1 � k � d − m + 1, m � j �
m+ k − 1) equals

d−m+1∑
k=1

k =
(
d −m+ 2

2

)
= m− ρ.

The obtained contradiction shows that D0 �= 0, and hence D �= 0.
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We now assert that if for a polynomial

(30) F =
∑

i1+i2�d

(
i1 + i2
i1

)
ai1i2x

i1
1 x
i2
2

we have B0D �= 0, then there exist fμ ∈ K[z] and αμ ∈ K (1 � μ � m) such that

(31) F (x1, x2) =
m∑
μ=1

fμ
(
x1 + αμx2

)
.

Indeed, using the notation introduced earlier we take for αμ (1 � μ � m) the m distinct
zeros of the polynomial

B0x
m +

m−ρ∑
ν=1

(−1)νBνx
m−ρ−ν .

Now for each l � d we solve the system of equations

m∑
μ=1

bμlα
i
μ = al−i,i (0 � i � min(l, m− 1))

for bμl in K and assert that the solution satisfies the larger system

(32)
m∑
μ=1

bμlα
j
μ = al−j,j (0 � j � l).

The proof is by induction on j . We assume that (32) is true for all j < i, where l � i � m
and obtain

(33)
m∑
μ=1

bμlα
i
μ =

m∑
μ=1

bμlα
i−m
μ

m−ρ∑
ν=1

(−1)ν−1 Bν

B0
αm−ρ−νμ

=
m−ρ∑
ν=1

(−1)ν−1 Bν

B0

m∑
μ=1

bμlα
i−ρ−ν
μ =

m−ρ∑
ν=1

(−1)ν−1 Bν

B0
al−i+ρ+ν, i−ρ−ν .

However the sum on the right hand side of (33) coincides with the sum on the left hand
side of (29) on putting there k = l −m+ 1, μ = i −m+ (k2)+ 1 �

(
k+1

2

)
. Hence by (29)

m∑
μ=1

bμlα
i
μ = a(k+1

2 )−μ,m−(k2)−1+μ = al−i,i

which proves (32).
Now, on taking

fμ(z) =
d∑
l=0

bμlz
l,

we obtain (31) from (30) and (32). ��
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Example. Each three of the vectors [1, 0, 0], [0, 1, 0], [0, 0, 1], [3, 1, 1], [1, 3, 1], [3, 3, 2]
are linearly independent over Q, nevertheless for all polynomials fi ∈ Q[z] (1 � i � 6)
we have

3x1x2 + 2x1x3 �=
3∑
i=1

fi(xi)+ f4(3x1 + x2 + x3)+ f5(x1 + 3x2 + x3)

+ f6(3x1 + 3x2 + 2x3).

Indeed, it is enough to consider the case fi = biz2 (1 � i � 6). Assuming the equality
in (33) we obtain comparing the coefficients of x1x2, x1x3 and x2x3

6b4 + 6b5 + 18b6 = 3,

6b4 + 2b5 + 12b6 = 2,

2b4 + 6b5 + 12b6 = 0,

which is impossible, since ∣∣∣∣∣∣
6 6 18
6 2 12
2 6 12

∣∣∣∣∣∣ = 0,

∣∣∣∣∣∣
6 6 3
6 2 2
2 6 0

∣∣∣∣∣∣ �= 0.

I conclude by expressing my thanks to U. Zannier for a remark helpful in the proof of
Theorem 5.

Note added in proof. M. Kula has checked thatM(2, d,K) = d in the simplest cases not
covered by Theorems 4 and 5: d = 7 or 8, K = F11.
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Introduction

The present paper deals with the circle of problems considered by several mathemati-
cians, beginning with F. Klein in 1876 and ending with L. Summerer in 2004. Even before
Klein’s fundamental paper [15],A. Clebsch and P. Gordan [6] in 1867 andA. Clebsch [5] in
1872 made important contributions to one of the problems in question without formulating
it explicitly.

Let K be a field of characteristic π � 0, T ∈ GL2(K) and f ∈ K[x, y] be a form
such that

f (T (x, y)) = rf (x, y), where r ∈ K∗.

Segre [22] calls T a weak automorph of f (“automorfismo in senso lato”), as opposed
to a strict automorph (“automorfismo in senso stritto”), for which r = 1, and considers
for K = Q the quotient group Aut(f,K) (notation mine, some authors denote similarly
the group of strict automorphs) of the group of all weak automorphs of f defined over K
divided by the group of trivial weak automorphs, given by T (x, y) = (�x, �y) for � ∈ K∗
(this definition extends immediately to forms defined over any field L containing K; then
r ∈ L∗).

Segre determines the forms f ∈ Q[x, y] such that Aut(f,Q) contains a given non-
trivial group G of one of the possible eight types: cyclic of order 2, 3, 4, 6 and dihedral
of order 4, 6, 8, 12. For every group G Segre takes a convenient conjugate in the group
PGL2(Q), which simplifies calculation. Earlier for C instead of Q a similar result was
obtained by Klein [16, Chapter 2]: here all cyclic and dihedral groups are possible and,
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in addition, three polyhedral groups. Dickson [9], [10] obtained analogous results for K
being a finite field. For a modern treatment of the case K = C, see Huffman [14].

The characterization of forms in question given by Klein and Segre is the following
(K = C or Q, K is an algebraic closure of K).

For a given finite subgroup G of PGL2(K) of order |G| = ν all forms f ∈ K[x, y] for
which G ⊂ Aut(f,K) and only those are expressible as

f (x, y) =
h∏
i=1

χi(x, y)
ciψ(p(x, y), q(x, y)),

where p, q ∈ K[x, y], χi ∈ K[x, y] are forms determined by G; p, q are of degree ν,
χi are of degree ν/mi , ci are integers satisfying 0 � ci < mi and if χi, χj are conjugate
over K , then ci = cj ; ψ is a binary form over K . Klein’s proof is not rigorous and in
Segre’s proof given in Subsection 19 of [22] several details are missing. In particular,
no connection is indicated between p, q and χi . On the other hand, in Subsections 20
and 24, 29 of [22] Segre explicitly determines p, q and χi for every G up to conjuga-
tion.

Having proved in §1 of the present paper several lemmas about PGL2(K)we determine
in §2 the forms p, q and χi for every cyclic subgroup of PGL2(K) with a given generator
(Theorem 1). Then we prove an analogue of the above result of Klein, Dickson and Segre
for an arbitrary fieldK (Theorems 2 and 3). Consideration of fieldsK that are not perfect
is the only novel feature of this proof. As an application we prove in §3 an upper bound
for the order of Aut(f,K) (Theorems 4 and 5). The bound is sharp for every π and for
π = 0 it is better for deg f > 12 than Olver’s bound [19], [1].

In Subsections 22–23 of [22] Segre gives a method to decide whether a given cubic or
quadratic binary form f over Q has a strict non-trivial automorph defined over Q, the only
trivial automorph being here the identity. The method involves invariants and covariants
of f . In §4 we consider an analogous question for weak automorphs defined over K
and give an answer in terms of the Galois group Gal(f,K) of the polynomial f (x, 1)
over K (Theorem 6). For cubic forms and K = Q a necessary and sufficient condition
(if f is irreducible, the discriminant of f has to be a square in Q) has been given in a
recent unpublished manuscript of A. Choudhry [4]. For forms of odd degree with non-
zero discriminant (in what follows called non-singular), existence of a weak non-trivial
automorph is equivalent to existence of a strict non-trivial automorph (see [22, p. 40] and
[20, Theorem 3.5]), but it is not obvious that Choudhry’s condition and Segre’s condition
([22, p. 48]) are equivalent. For non-singular cubic forms with f (1, 0) �= 0 the structure
of Gal(f,K) determines the isomorphism class of Aut(f,K), for quartic forms it does
not in general. On the other hand, forK algebraically closed and f a non-singular quartic,
the isomorphism class of Aut(f,K) is determined by invariants of f (§5, Theorem 7). For
K = C this is well known ([1, Example 3.6], cf. also [24, Proposition 3.2]), but at least
for charK = 2, 3 it seems new.

For forms f of degree 5 a characterization of the isomorphism class of Aut(f,C) by
invariants and covariants of f can be deduced from the work of Clebsch and Gordan [6]
and of Clebsch [5] on the so called typical representations of binary forms. For f non-
singular of degree 6 a characterization of the isomorphism class of Aut(f,C) by covariants
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of f was obtained by Maiasano [17] and one by invariants of f by Bolza [2]. Recently
a practical way of finding Aut(f,C) by means of covariants of f has been proposed by
Berchenko and Olver [1]. However, it is not clear from it whether for non-singular forms f
of degree greater than 6 the condition |Aut(f,K)| > 1 can be characterized by invariants
of f . We shall show (Theorem 8) that the set of forms f ∈ C[x, y] with |Aut(f,C)| > 1
is Zariski closed only for n � 5.

I conclude this introduction by expressing my thanks to A. Choudhry for sending me
his unpublished manuscript [4] as well as a copy of [2], to A. Pokrzywa for factoring
several multivariate polynomials that appeared in an earlier version of the paper and to
A. Sładek who suggested many corrections and a simplification.

1. Lemmas on PGL2(K)

Definition 1. Let K be a field of characteristic π . If

T0(x, y) = (αx + βy, γ x + δy) ∈ GL2(K),

the image of T0 in PGL2(K) will be denoted by T = ( α β
γ δ

)
K∗, or if PGL2(K) is repre-

sented as the group of fractional linear transformations, by T ∗. The order of T in PGL2(K)

will be denoted by o(T ), the unit element by E. Moreover, ζν is a primitive root of unity
of order ν in K , if it exists.

Lemma 1. PGL2(K) contains an element of order ν > 1 if and only if either ν = π , or
ν �≡ 0 mod π and ζν + ζ−1

ν ∈ K . If this condition is satisfied, then PGL2(K) contains a
dihedral group of order 2ν except for K = F2, ν = 2.

Proof. Let
( α β
γ δ

)
K∗ be an element of order ν > 1 in PGL2(K). By the Jordan normal

form theorem (see [26, §88]) there exist a, b, c, d in K such that ad − bc �= 0 and(
α β

γ δ

)
=
(
a b

c d

)−1 (
λ1 μ

0 λ2

)(
a b

c d

)
,

where λ1λ2 �= 0 and either μ = 0, or λ1 = λ2 = λ and μ = 1. In the former case λ1/λ2

is a primitive root of unity ζ of order ν, hence ν �≡ 0 mod π and

λ2(1 + ζ ) = λ1 + λ2 = Tr

(
λ1 μ

0 λ2

)
= Tr

(
α β

γ δ

)
= α + δ ∈ K,

λ2
2ζ = λ1λ2 =

∣∣∣∣ λ1 μ

0 λ2

∣∣∣∣ = ∣∣∣∣ α β

γ δ

∣∣∣∣ = αδ − βγ ∈ K.

Hence ζ + ζ−1 = (λ2(1 + ζ ))2/λ2
2ζ − 2 ∈ K . In the latter case(

λ1 μ

0 λ2

)ν
=
(
λν νλν−1

0 λν

)
,

hence ν = π .
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If the asserted condition is satisfied, then PGL2(K) contains a dihedral group of order
2ν generated by(

1 + ζ + ζ−1 −1
1 1

)
K∗ and

(
0 1
1 0

)
K∗ if ν �≡ 0 mod π,(

1 1
0 1

)
K∗ and

( −1 0
0 1

)
K∗ if ν = π �= 2,(

1 1
0 1

)
K∗ and

(
1 a

0 1

)
K∗ if ν = π = 2, a ∈ K \ F2. ��

Remark 1. For K = Q Lemma 1 has been proved by Segre in Subsection 9 of [22].

Lemma 2. PGL2(K) contains a subgroup isomorphic to A4 if and only if either π �= 2
and levelK � 2, or π = 2 and F4 ⊂ K . If and only if the former condition is satisfied,
PGL2(K) contains a subgroup isomorphic to S4.

PGL2(K) contains a subgroup isomorphic toA5 if and only if eitherπ �= 2, levelK � 2
and

√
5 ∈ K , or π = 2 and F4 ⊂ K .

Remark 2. The level of a field K is the minimal number k such that for some xi ∈ K we
have x2

1 + . . .+ x2
k = −1.

Proof. If π = 3 the condition on the level is trivially satisfied, so assume π �= 3 and let
M be a matrix over K such that MK∗ is of order 3 in PGL2(K). Then M is equivalent
over K to a matrix

( λ1 0
0 λ2

)
, where λ1/λ2 is a primitive root of unity ζ of order 3 and

M(1 + ζ−1)/λ2 is equivalent over K to(
1 + ζ 0

0 1 + ζ−1

)
=
(

1 −ζ 2

1 −ζ
)(

0 −1
1 1

)(
1 −ζ 2

1 −ζ
)−1

.

But (see the proof of Lemma 1) λ2(1 + ζ ) ∈ K and (1 + ζ 2)/ζ ∈ K , hence, on division,
λ2/(1 + ζ−1) ∈ K andM(1 + ζ−1)/λ2 is defined over K . It follows that

M
1 + ζ−1

λ2
is equivalent to

(
0 −1
1 1

)
over K.

Hence a subgroup of PGL2(K) isomorphic to A4 is conjugate to a subgroup G con-
taining

( 0 −1
1 1

)
K∗ = T . Thus there exists S ∈ G such that

S2 = E and T ST = ST −1S.

Taking S = ( α β
γ δ

)
K∗ we obtain by calculation δ = −α, (2α + γ − β)2 + β2 + γ 2 = 0

and if π = 2, then β2 − βγ + γ 2 = 0. Thus levelK � 2 and if π = 2, then β/γ is a
primitive root of unity of order 3, hence F4 ⊂ K .

In the opposite direction, if π = 2 and ζ is a primitive root of unity of order 3, then
the group 〈(

0 ζ

1 0

)
K∗,
(

0 −1
1 1

)
K∗
〉
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is isomorphic to A4. If π �= 2, then the assumption that levelK � 2 implies existence of
x1, x2 in K such that x2

1 + x2
2 + 1 = 0. Then the group generated by

S =
(

1 −1
1 1

)
K∗, T =

(
x1 x2 + 1

x2 − 1 −x1

)
K∗

is isomorphic to S4. Indeed, S4 = E, T 2 = E and (ST )3 = E, which gives the required
property (see [7, Table 1]). Ifπ = 2, then PGL2(K)does not contain a subgroup isomorphic
to S4 since, by Lemma 1, it contains no element of order 4.

Assume now that PGL2(K) contains a subgroup isomorphic to A5. Since A5 contains
A4 and C5, it follows from the already proved part of the lemma and from Lemma 1 that
either π �= 2 and levelK � 2, or π = 2 and F4 ⊂ K; moreover, either ζ + ζ−1 ∈ K ,
where ζ is a primitive root of unity of order 5, or π = 5. If π = 2 and F4 ⊂ K , then
PGL2(K) contains an isomorphic image of PGL2(F4) ∼= A5; if π �= 2, then the condition
ζ + ζ−1 ∈ K implies � = (√5 − 1)/2 ∈ K , which also holds for π = 5. Conversely, if√

5 ∈ K and levelK � 2, we have x2
1 +x2

2 +1 = 0 for some x1, x2 inK , hence the group
〈R, S〉, where

R =
( −1 + x2� x1 + x2� − � − 1

2 1 − x2�

)
K∗, S =

(
0 −1
1 1

)
K∗,

is isomorphic to A5, provided∣∣∣∣ −1 + x2� x1 + x2� − � − 1
2 1 − x2�

∣∣∣∣ = −x2
2�

2 − 2x1 + 2� + 2 �= 0,

and this follows from π �= 2 if x1 = 0, while it can be achieved by changing the sign of x1

if x1 �= 0. Indeed, we have R2 = E, S3 = E and (RS)5 = E, which implies 〈R, S〉 ∼= A5

(see [7, Table 5]). ��

Remark 3. Lemma 2 in an equivalent formulation is given without proof by Serre [23].
Segre only proves ([22, Subsection 12]) that if K is real, then PGL2(K) does not contain
a copy of A4.

Lemma 3. Let G be a non-trivial subgroup of PGL2(K). If for all elements S of G \ {E}
the equation S∗ξ = ξ has exactly one solution inK∪{∞}, then π > 0 and G is a π -group.
Every such finite group is generated by elements(

a b

c d

)−1 (
λi 1
0 λi

)(
a b

c d

)
K∗ (1 � i � g)

where ad − bc �= 0, the λ−1
i are linearly independent over Fπ and either a, b, c, d, λi

belong to K , or π = 2, a = 0, b = 1, c ∈ K , K(d) is a quadratic inseparable extension
of K and λi + d ∈ K . Every infinite π -group contained in PGL2(K) contains the above
finite groups for all g.
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Proof. Let S1 = ( α β
γ δ

)
K∗ ∈ G \ {E}, hence αδ − βγ �= 0. By the Jordan normal form

theorem there exists a non-singular matrix
(
a b

c d

)
over K such that(

α β

γ δ

)
=
(
a b

c d

)−1 (
λ μ

0 ν

)(
a b

c d

)
,

where λν �= 0 and either μ = 0, or λ = ν and μ = 1. In the former case the equation
S∗1ξ = ξ has two solutions in K ∪ {∞}, namely −b/a and −d/c. Since the case λ = ν,
μ = 0 is excluded by the assumption S1 �= E, we obtain μ = 1 and

(1) 4λ2 = (α + δ)2 = 4(αδ − βγ ).
The second equality of (1) holds for all elements S of G. Let

S =
(
a b

c d

)−1 (
ε ζ

η ϑ

)(
a b

c d

)
K∗ ∈ G \ {E}.

Since Si1S ∈ G and (
λ i

0 λ

)(
ε ζ

η ϑ

)
=
(
λε + iη λζ + iϑ
λη λϑ

)
we obtain from (1)

(λε + λϑ + iη)2 = 4λ2(εϑ − ηζ ) (i = 0, 1, 2),

hence

η = 0, ε = ϑ, ζ �= 0,

hence S is of infinite order in PGL2(K) unless π > 0, in which case Sπ = E and G is a
π -group. This proves the first part of the lemma.

In order to prove the second part let us again consider S1. The condition Sπ1 = E �= S1

implies in the above notation

λπ = νπ , μ �= 0,

hence λ = ν =: λ1 and μ = 1. It follows that we have again equation (1) and for every S
in G,

S =
(
a b

c d

)−1 (
ε ζ

0 ε

)(
a b

c d

)
K∗.

If λ1 ∈ K , then a, b, c, d can be chosen in K and hence ε, ζ ∈ K and

S =
(
a b

c d

)−1 ( 1 ζ/ε

0 1

)(
a b

c d

)
K∗.

ForS running throughG, ζ/ε runs through a linear spaceLover Fπ and lettingλ−1
1 , . . . , λ

−1
g

be a basis of this space we obtain the assertion of the lemma.
If λ1 �∈ K , then the polynomial z2 − (α + δ)z+ (αδ − βγ ) is irreducible inseparable

over K , hence π = 2, γ �= 0 and we can choose a = 0, b = 1, c = γ , d = λ1 − α. Then
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the condition S ∈ PGL2(K) gives ε + dζ ∈ K , d2ζ ∈ K , hence ζ ∈ K and

S =
(
a b

c d

)−1 (
ε/ζ 1

0 ε/ζ

)(
a b

c d

)
K∗.

Taking again a basis λ−1
1 , . . . , λ

−1
g of L we obtain λi + d ∈ K , which completes the proof

for finite groups G. If G is infinite, so isL and for every g it contains λ−1
1 , . . . , λ

−1
g linearly

independent. ��

Lemma 4. Let G be a non-trivial finite subgroup of PGL2(K) and let

O(G) =
⋃

S∈G\{E}

{
ξ ∈ K ∪ {∞} : S∗ξ = ξ} .

If G is not a π -group, then the number h of orbits of O(G) under the action of G is either
two or three.

Proof. Let the orbits in question be O1, . . . , Oh. For each ξ ∈ Oi the number |{S ∈ G :
S∗ξ = ξ}| is the same, say νi . Clearly |G| = νiμi , where μi = |Oi | and

h∑
i=1

(νi − 1)μi =
∑

ξ∈K∪{∞}

∑
S∈G\{E}
S∗ξ=ξ

1 =
∑

S∈G\{E}

∑
ξ∈K∪{∞}
S∗ξ=ξ

1.

But for each S ∈ G\ {E} the equation S∗ξ = ξ has inK ∪{∞} either one or two solutions
and, by Lemma 3, the latter possibility occurs at least once. It follows that

2|G| − 2 �
h∑
i=1

(νi − 1) μi > |G| − 1.

Since

h∑
i=1

(νi − 1)μi = h|G| −
h∑
i=1

μi ∈
[
h

2
|G|, h|G| − h

]
,

we obtain 2 � h � 3. ��

Remark 4. For K = C and K = Fπ , |G| �≡ 0 mod π , Lemma 4 and the above proof are
well known (see [27, Vol. II, §68 and §87].

Lemma 5. In the notation of the proof of Lemma 4, if T ∈ G, ξ ∈Oj and T ∗ξ = ξ , then
o(T ) | |G|/|Oj |.

Proof. The group 〈T 〉 of order o(T ) is a subgroup of the stabilizer of ξ in G of order
|G|/|Oj |. ��
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Lemma 6. Under the assumptions of Lemma 4, letKj = K(Oj \{∞}). Then [Kj : K] � 2
for all j � h. We have the following possibilities:

(2) for all j � h either [Kj : K]s = 1 or [Kj : K]s = 2, ∞ �∈ Oj ,
Gal(Kj/K) = 〈σj 〉, and σj (Oj ) = Oj ;

(3) for a suitable numbering of Oj ,
[K1 : K]s = 2,Gal(K1/K) = 〈σ1〉, ∞ �∈ O1, σ1(O1) = O2

and either h = 2, or h = 3, [K3 : K]s = 1,
or h = 3, [K3 : K]s = 2, Gal(K3/K) = 〈σ3〉,∞ �∈ O3, σ3(O3) = O3.

Proof. If ξ ∈ O(G) \ {∞}, then S∗ξ = ξ for an S ∈ G, hence [K(ξ) : K] � 2 and if
ξ ∈ Oj , then [Kj : K] � 2. If [Kj : K] = 2, then ∞ �∈ Oj since S∗(∞) ∈ K ∪ {∞} for
all S ∈ G. If (2) does not hold, then for some j we have [Kj : K]s = 2, Gal(Kj/K) = 〈σj 〉
and σj (Oj ) �= Oj . Therefore, there exists ξ0 ∈ Oj such that σj (ξ0) �∈ Oj . But S∗0ξ0 = ξ0
for some S0 ∈ G \ {E}; then also S∗0σj (ξ0) = σj (ξ0), hence σj (ξ0) ∈ Ok for some k �= j
and renumbering the Oi we may assume that j = 1, k = 2, σ1(O1) = O2. If h = 3
the situation cannot repeat itself with j = 3 since there exists no suitable k, thus either
[K3 : K]s = 1, or [K3 : K]s = 2, Gal(K3/K) = 〈σ3〉 and σ3(O3) = O3. This gives (3).

��

Lemma 7. For every finite subgroup G of PGL2(K) of order not divisible by π the
sequence 〈|O1|, . . . , |Oh|〉 in the notation of the proof of Lemma 4 is a permutation of
one of the sequences: 〈1, 1〉 (G ∼= Cν), 〈|G|/2, |G|/2, 2〉 (G ∼= Dν), 〈4, 4, 6〉 (G ∼= A4),
〈6, 8, 12〉 (G ∼= S4), 〈12, 20, 30〉 (G ( A5).

Proof. If |G| �≡ 0 mod π , then by Lemma 3 for every S ∈ G \ {E} the number of solutions
of S∗ξ = ξ is 2, hence following the proof of Lemma 4 we obtain

2|G| − 2 =
h∑
i=1

(νi − 1)μi = h|G| −
h∑
i=1

|G|/νi

for h = 2 or 3. This equation is well known (see [27, Vol. II, §68]) and gives for decreasing
νi either h = 2, ν1 = ν2 = |G|, or h = 3, 〈ν1, ν2, ν3〉 = 〈|G|/2, 2, 2〉, or h = 3,
〈|G|; ν1, ν2, ν3〉 = 〈12; 3, 3, 2〉, 〈24; 4, 3, 2〉, 〈60; 5, 3, 2〉. Since μi = |G|/νi we obtain
the lemma. ��

Lemma 8. Let G = PSL2(Fq). In the notation of Lemma 4 we have

(4) O(G) = Fq2 ∪ {∞}
and, up to a permutation, O1 = Fq ∪ {∞}, O2 = Fq2 \ Fq .

Proof. The formulae

(5) S ∈ G \ {E}, ξ ∈ Fq ∪ {∞}, S∗ξ = ξ
imply ξ ∈ Fq2 ∪{∞}. On the other hand, if ξ ∈ Fq or ξ ∈ Fq2 , ξ2+aξ+b = 0, a, b ∈ Fq ,
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or ξ = {∞}, then (5) holds for

S =
(

1 + ξ −ξ2

1 1 − ξ
)

F∗
q or

(
αε−1 −bε−1

ε−1 αε−1 + aε−1

)
F∗
q or

(
1 1
0 1

)
F∗
q,

respectively, where α and ε are chosen in Fq so that α2 + aα + b = ε2; ε �= 0 since
x2 + ax + b is irreducible over Fq . This proves (4).

Moreover, if ξ = 0, S = ( 0 1
−1 0

)
F∗
q or ξ ∈ F∗

q , S = ( ξ 0
1 ξ−1

)
F∗
q , we have

S ∈ G, S∗∞ = ξ.
Finally, if ξ, η ∈ Fq2 \ Fq and ξ ′, η′ are conjugates of ξ, η with respect to Fq we have
(η − η′)/(ξ − ξ ′) ∈ Fq . There exist δ, ε in Fq such that

η − η′
ξ − ξ ′ (δ + ξ)(δ + ξ

′) = ε2 �= 0.

Then taking

S =
⎛⎜⎝ δ(η − η

′)+ (ηξ − η′ξ ′)
ε(ξ − ξ ′)

δ(η′ξ − ηξ ′)+ ξξ ′(η′ − η)
ε(ξ − ξ ′)

ε−1 δε−1

⎞⎟⎠F∗
q

we find S ∈ G such that S∗ξ = η, which completes the proof. ��

Lemma 9. The statement of Lemma 8 is also true for G = PGL2(Fq).

Proof. If H1 = PGL2(Fq), H2 = PSL2(Fq) we have, in the notation of Lemma 4,

O(H2) ⊂ O(H1);
but, clearly, O(H1) ⊂ Fq2 ∪ {∞}, hence by Lemma 8,

O(H1) = Fq2 ∪ {∞}.
Since H2 ⊂ H1 the orbits of Fq2 ∪ {∞} under the action of H1 are unions of orbits under
the action of H2; Lemma 8 shows that they are either Fq ∪{∞} and Fq2 \Fq , or Fq2 ∪{∞}.
As the image of Fq ∪{∞} under the action of H1 is again Fq ∪{∞}, the former case holds.

��

Definition 2. If K,L are fields, K ⊂ L and G is a subgroup of PGL2(K), then GL∗/L∗
is the subgroup of PGL2(L) defined as

{ML∗ : M ∈ GL2(K), MK
∗ ∈ G}.

Lemma 10. For π > 0 every finite subgroup of PGL2(K) is isomorphic to a subgroup of
PSL2(Fs), where s is a power of π .

Proof. Let G = {( αi βi
γi δi

)
K∗ : 1 � i � k

}
. The isomorphism class of G is determined

by finitely many equalities Fi(α1, . . . , δk) = 0 and inequalities Gj(α1, . . . , δk) �= 0,
where Fi and Gj are polynomials over Fπ . By the theorem on elimination of existential



788 E. Polynomials in several variables

quantifiers in algebraically closed fields, if this system of equalities and inequalities is
solvable in K , it is also solvable in the algebraic closure of Fπ , hence also in a field Fq ,
where q is a power of π . Thus G is isomorphic to a subgroup of PGL2(Fq). Since for
s = q2, PGL2(Fq)F

∗
s /F

∗
s is contained in PSL2(Fs), it follows that s satisfies the assertion

of the lemma. ��

Lemma 11. For π > 0 and a finite subgroup G of PGL2(K) of order divisible exactly
by πg (g > 0) let σ be the number of π -Sylow subgroups in G. We have the following
possibilities:

σ = 1;
σ = πg + 1, G ∼= PGL2(Fπg ) or PSL2 (Fπg ) ;
πg = 2, σ = 2� + 1 (� � 1), G ∼= D2�+1;
πg = 3, σ = 10, G ∼= A5.

Proof. In view of Lemma 10 this follows from an analogous property of subgroups of
PSL2(Fs) (see [12, Chapter XII, Sections 249–253], with m replaced by g and f by �). ��

Lemma 12. Let H1 = PGL2(Fq) and H2 = PSL2(Fq), where q = πg . Every subgroup
of PGL2(K) isomorphic to Hi is conjugate to HiK

∗/K∗.

Proof. The existence of a subgroup of PGL2(K) isomorphic to Hi , but not conjugate to
HiK

∗/K∗, is a statement involving finitely many existential and universal quantifiers and
equalities and inequalities concerning polynomials with coefficients in Fq . By the theorem
on elimination of existential quantifiers in algebraically closed fields, if this statement is
true, it is also true in Fq . Therefore, there exists a subgroup G of PGL2(Fq) isomorphic to
Hi , but not conjugate to HiF

∗
q/F

∗
q . For A running through GL2(Fq) such that AF∗

q ∈ G,

A/
√

detA runs through finitely many matrices, which all lie in SL2(Fs) for some s which
is a power of q. If

(6) G0 =
{

M√
detM

F∗
s : MF∗

q ∈ G

}
,

then G0 is isomorphic to G, hence to Hi . By the known property of PSL2(Fs) (see [12,
Chapter XII, italicized statements on pp. 274 and 278 and the normalization of G1 on
p. 273]), G0 is conjugate in PGL2(Fs) to HiF

∗
s /F

∗
s . Hence there existsA0 ∈ GL2(Fs) such

that

G0 = A0HiA
−1
0 .

By (6) this gives

G0 = A0HiA
−1
0 F∗

q/F
∗
q,

thus G is conjugate in PGL2(Fq) to HiF
∗
q/F

∗
q , a contradiction. ��

Lemma 13. If Fq ⊂ K , then every subgroup G of PGL2(K) isomorphic to Hi (notation
of Lemma 12) is conjugate to HiK

∗/K∗.
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Proof. By Lemma 12 there exists A ∈ GL2(K) such that for i = 1 or 2,

(7) GK∗/K∗ = AHiA
−1K∗/K∗.

It follows that for allM ∈ SL2(Fq)F
∗2
q there exists t ∈ K∗ such that

(8) tAMA−1 ∈ GL2(K).

Now, if

A =
(
a b

c d

)
, M =

(
α β

γ δ

)
,

then

AMA−1 = 1

ad − bc

(
adα − acβ + bdγ − bcδ −abα + a2β − b2γ + abδ
cdα − c2β + d2γ − cdδ −bcα + acβ − bdγ + adδ

)
.

Applying (8) with

M =
(

1 0
0 1

)
,

(
1 1
0 1

)
,

(
0 1
−1 0

)
,

(
1 1
−1 0

)
,

we obtain

(91) t
ad

ad − bc ∈ K, (92) t
ac

ad − bc ∈ K, (93) t
bc

ad − bc ∈ K;

(101) t
ab

ad − bc ∈ K, (102) t
a2

ad − bc ∈ K;

(111) t
c2

ad − bc ∈ K, (112) t
cd

ad − bc ∈ K.
Since ad − bc �= 0 we have a �= 0 or c �= 0. If a �= 0, then (91) and (102) imply
d/a ∈ K , (92) and (102) imply c/a ∈ K , and (101) and (102) imply b/a ∈ K , hence
a−1A ∈ GL2(K). If c �= 0 the same conclusion follows from (92), (93), (112) and (111).
By (7),

GK∗/K∗ = a−1AHiA
−1aK∗/K∗,

hence G = a−1AHiA
−1aK∗/K∗, which gives the assertion. ��

2. Determination of all binary forms
with a given group of weak automorphs

Definition 3. If

(12) 〈α, β, γ, δ〉 ∈ K4, αδ − βγ �= 0, 〈α, β, γ, δ〉 �= 〈α, 0, 0, α〉
and

(13) z2 − (α + δ)z+ (αδ − βγ ) = (z− λ1)(z− λ2), λ1, λ2 ∈ K, λ1 �= λ2,

we put

χi = γ x + (λi − α)y (i = 1, 2) if γ �= 0,

χ1 = (α − δ)x + βy, χ2 = y otherwise.
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Definition 4. If (12) holds and

(14) z2 − (α + δ)z+ (αδ − βγ ) = (z− λ)2, λ ∈ K,
we put

χ1 = γ x + (λ− α)y, χ2 = y if γ �= 0,

χ1 = βy, χ2 = x otherwise.

Theorem 1. Let 〈α, β, γ, δ〉 satisfy (12) and T = ( α β
γ δ

)
K∗ be of order ν in PGL2(K).

A form f ∈ K[x, y] \ {0} satisfies the conditions

(15) f ∈ K[x, y]
and

(16) T ∈ Aut(f,K)

if and only if either (13) holds and

(17) f = χc11 χ
c2
2 ψ(χ

ν
1 + χν2 , λ1χ

ν
1 + λ2χ

ν
2 ),

where χ1, χ2 are given in Definition 3, ψ is a binary form over K , while ci are integers
satisfying 0 � ci < ν and c1 = c2 if χ1, χ2 are conjugate over K , or (14) holds and

(18) f = χc11 ψ(χ
π
1 , λ

π−1χπ2 − χ2χ
π−1
1 ),

where χ1, χ2 are given in Definition 4, ψ is a binary form over K , while c1 is a non-
negative integer satisfying c1 < π = ν unless either π = 0, in which case ψ ∈ K∗, c1
arbitrary, or π = 2 = ν, λ �∈ K , in which case c1 = 0.

Corollary 1. If a form f ∈ K[x, y] of degree n �≡ 0 mod π has a weak automorph of
order ν in PGL2(K), then either ν |n and ζν + ζ−1

ν ∈ K , or f is the product of two forms
with such automorphs, one of which, say g, is linear or quadratic.

Corollary 2. If a form f ∈ K[x, y] of degree n �≡ 1 mod π , n > 2, has a weak automorph
of order ν in PGL2(K) and f is the product of a linear factor and another factor defined
and irreducible over K , then ν |n− 1 and ζν ∈ K .

Corollary 3. If a quartic form f ∈ K[x, y] has in PGL2(K) a weak automorph of order 3,
then either

√−3 ∈ K or f is a square in K[x, y].

Corollary 4. If T0 ∈ GL2(K) and T = T0K
∗ is of finite order in PGL2(K), then there

exists c(T0) ∈ K such that if T ∈ Aut(f,K), then

f (T0)
o(T ) = c(T0)

deg f f

and if, moreover, f (ξ, 1) = 0 implies T ∗ξ �= ξ , then o(T ) | deg f and

f (T0) = c(T0)
deg f /o(T )f.

Here f (∞, 1) = 0 means f (1, 0) = 0.
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Corollary 5. Under the assumption of Theorem 1 about T , a form f ∈ K[x, y] \ {0}
satisfies (16) if and only if either (13) and (17) hold, where χ1, χ2 are given in Definition 3,
ψ is a binary form over K , while ci are integers satisfying 0 � ci < ν, or (14) and (18)
hold, where χ1, χ2 are given in Definition 4, while c1 is a non-negative integer satisfying
c1 < π = ν unless π = 0, in which case ψ ∈ K∗, c1 arbitrary.

The proof of Theorem 1 is based on three lemmas.

Lemma 14. The linear forms χ1, χ2 given in Definition 3 are linearly independent and
satisfy χi(αx + βy, γ x + δy) = λiχi (i = 1, 2), provided for γ = 0 we have λ1 = α,
λ2 = δ. Moreover, either χi ∈ K[x, y] (i = 1, 2), or χ1, χ2 are conjugate over K .

If
( α β
γ δ

)
K∗ is of order ν > 2 in PGL2(K), then χi ∈ K[x, y] if and only ifK contains

a primitive root of unity of order ν.

Proof. The first two assertions are proved by calculation and inspection. To prove the third
assertion notice that χi ∈ K[x, y] if and only if λi ∈ K . If

( α β
γ δ

)
K∗ is of order ν > 2 in

PGL2(K) we know from the proof of Lemma 1 that λ1/λ2 is a primitive root of unity of
order ν and that

λ2(1 + λ1/λ2) = α + δ ∈ K,
hence λi ∈ K (i = 1, 2) is equivalent to existence in K of a primitive root of unity of
order ν. ��

Lemma 15. The linear forms χ1, χ2 given in Definition 4 are linearly independent and
satisfy

χ1(αx + βy, γ x + δy) = λχ1, χ2(αx + βy, γ x + δy) = λχ2 + χ1.

Moreover χ1 ∈ K[x, y] unless π = 2 and λ �∈ K .

Proof. By calculation and inspection. ��

Lemma 16. If G ∈ K[x] \K , λ ∈ K∗ and

(19) G(x + λ−1) = rG(x), r ∈ K(λ)∗,
then π �= 0 and

(20) G(x) = H(λπ−1xπ − x), where H ∈ K(λ)[x].

Remark 5. For K being a finite field and λ ∈ K the lemma is due to Dickson.

Proof. By comparing the leading coefficients on both sides of (19) we obtain r = 1. Now
(19) implies that

G
(
lλ−1) = G(0) for all l ∈ Z,
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hence π �= 0. We shall prove (20) by induction on the degree of G, say n. If n = 0, then
(20) holds with H = G. Assume that (20) is true for all G satisfying (19) of degree less
than n and that degG = n. From (19) we obtain

π−1∏
l=0

(x − lλ−1)

∣∣∣G(x)−G(0).
But

π−1∏
l=0

(x − lλ−1) = λ1−π (λπ−1xπ − x)

and

λπ−1(x + λ−1)π − (x + λ−1) = λπ−1xπ − x.
Taking

G1(x) = G(x)−G(0)
λπ−1xπ − x

we deduce from (19) that G1(x + λ−1) = G1(x), hence by the inductive assumption

G1(x) = H1(λ
π−1xπ − x), H1 ∈ K(λ)[x],

and (20) holds with H = xH1(x)+G(0). ��

Proof of Theorem 1. Necessity. First assume (13). Since by Lemma 14, χ1, χ2 are linearly
independent over K we can write

(21) f (x, y) =
n∑
i=0

aiχ
n−i
1 χi2, where ai ∈ K(λ1, λ2),

and we set

I = {i : ai �= 0}.
It follows from (16) and Lemma 14 that

r
∑
i∈I
aiχ

n−i
1 χi2 = f (αx + βy, γ x + δy) =

∑
i∈I
aiλ

n−i
1 λi2χ

n−i
1 χi2(22)

= λn1
∑
i∈I
ai(λ2/λ1)

iχn−i1 χi2.

Since T is in PGL2(K) of order ν, λ2/λ1 is a primitive root of unity of order ν in K .

If I = {j}, then we have (17) with ψ = aj . If |I | > 1, then the condition (22) implies
that there exist integers c1, c2 such that 0 � cj < ν and i ≡ c2, n− i ≡ c1 mod ν for all
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i ∈ I . Since

(23) p = χν1 + χν2 , q = λ1χ
ν
1 + λ2χ

ν
2

is equivalent to χν1 = q − λ2p

λ1 − λ2
, χν2 = λ1p − q

λ1 − λ2
,

if λ1, λ2 are in K we obtain (17) with

(24) ψ(p, q) =
∑
i∈I
ai(λ1 − λ2)

(c1+c2−n)/ν(q − λ2p)
(n−i−c1)/ν(λ1p − q)(i−c2)/ν .

If λ1 �∈ K , then χ1, χ2 are conjugate over K by Lemma 14, and denoting conjugation by
prime, from (14) and (21) we obtain

0 = f ′(x, y)− f (x, y) =
n∑
i=0

a′iχ
n−i
2 χi1 −

n∑
i=0

aiχ
n−i
1 χi2 =

n∑
i=0

(a′i − an−i )χn−i2 χi1,

hence a′i = an−i for all i � n. It follows that i and n− i belong simultaneously to I , thus
c1 = c2. Now, the form ψ(p, q) given by (24) satisfies

ψ ′(p, q) − ψ(p, q) =
∑
i∈I
a′i (λ2 − λ1)

(2c1−n)/ν(q − λ1p)
(n−i−c1)/ν(λ2p − q)(i−c1)/ν

−
∑
i∈I
ai(λ1 − λ2)

(2c1−n)/ν(q − λ2p)
(n−i−c1)/ν(λ1p − q)(i−c1)/ν

=
∑
i∈I
an−i (λ2 − λ1)

(2c1−n)/ν(q − λ1p)
(n−i−c1)/ν(λ2p − q)(i−c1)/ν

−
∑
i∈I
an−i (λ1 − λ2)

(2c1−n)/ν(q − λ2p)
(i−c1)/ν(λ1p − q)(n−i−c1)/ν = 0

and since the extensionK(λ1, λ2)/K is separable, we get ψ ∈ K[x, y] and from (21) and
(23) we again obtain (17).

Assume now that (14) holds. Since, by Lemma 15, χ1, χ2 are linearly independent
over K , we have

f (x, y) = g(χ1, χ2), g ∈ K(λ)[x, y].
By (16) and Lemma 15,

g(λχ1, λχ2 + χ1) = g
(
χ1(αx + βy, γ x + δy), χ2(αx + βy, γ x + δy)

)
= f (αx + βy, γ x + δy) = rf (x, y) = rg(χ1, χ2),

hence G(x) = g(1, x) satisfies

G(x + λ−1) = rG(x)
and, by Lemma 16, we have either G ∈ K , or π �= 0 and

G(x) = H(λπ−1xπ − x), H ∈ K(λ)[x].
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In the former case we have (18) with

ψ(p, q) = 1, c1 = n if π = 0,

ψ(p, q) = p)n/π*, c1 = n− π
⌊
n

π

⌋
if π > 0, λ ∈ K,

ψ(p, q) = pn/2, c1 = 0 if π = 2, λ �∈ K.
In the latter case we have for n ≡ c1 mod π , 0 � c1 < π ,

g(χ1, χ2) = χn1G
(
χ2

χ1

)
= χn1H

(
λπ−1

(
χ2

χ1

)π
− χ2

χ1

)
,

thus (18) holds with

ψ(p, q) = p(n−c1)/πH(q/p).
If λ ∈ K , then clearly ψ ∈ K[p, q].
It remains to consider the case π = 2, λ �∈ K . Let

(25) ψ(p, q) = pmψ1(p, q), where ψ1(0, 1) �= 0

(m = (n− c1 − deg g)/2), so that

(26) (ψ1(χ
2
1 , λχ

2
2 − χ2χ1), χ1) = 1.

By (18) we have χ2m+c1
1 |f , (χ2

1 )
2m+c1 |f 2 , and since χ2

1 is irreducible over K , also
(χ2

1 )
m+�c1/2� |f . By (18), (25) and (26) this gives

2m+ 2�c1/2� = 2m+ c1,
hence c1 = 0, ψ(χ2

1 , λχ
2
2 − χ2χ1) = f ∈ K[x, y] and since

(27) χ2
1 = γ 2x2 + βγy2 ∈ K[x, y], λχ2

2 − χ1χ2 = γ xy + αy2 ∈ K[x, y]
and χ2

1 , λχ2
2 − χ1χ2 are algebraically independent over K , it follows that ψ ∈ K[p, q].

Sufficiency. If (13) holds and T is of order ν in PGL2(K), then we have λν1 = λν2, hence
χi(αx + βy, γ x + δy)ν = λν1χνi and, by (17),

f (αx + βy, γ x + δy) = λc11 λ
c2
2 λ

ν degψ
1 f,

thus (16) holds. Also, if λ1, λ2 ∈ K , then (15) holds. If λ1, λ2 are conjugate over K , then
(15) holds again by the condition c1 = c2, since χ1χ2, χν1 + χν2 and λ1χ

ν
1 + λ2χ

ν
2 are

invariant under conjugation.
If (14) holds and π = 0, then, by (18), f (αx+ βy, γ x+ δy) = λc1f , thus (16) holds.

Also (15) holds, since in this case λ ∈ K . If π > 0, then by (18) and Lemma 15,

f (αx + βy, γ x + δy)
= λc1χc11 ψ

(
λπχπ1 , λ

π−1(λπχπ2 + χπ1 )− (λχ2 + χ1)λ
π−1χπ−1

1

) = λc1+degψf,

thus (16) holds. Also if λ ∈ K , then (15) holds. If λ �∈ K , then π = 2, c1 = 0 and (15)
follows from (27). ��
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Proof of Corollary 1. If T = ( α β
γ δ

)
K∗ ∈ Aut(f,K) of order ν > 1 in PGL2(K) satisfies

(13), then, by Lemma 1, ζ + ζ−1 ∈ K , where ζ = λ2/λ1 is a primitive root of unity of
order ν inK . If n ≡ 0 mod ν the first term of the alternative holds. By Theorem 1 we have
n ≡ c1 + c2 mod ν, thus n �≡ 0 mod ν implies ci := max{c1, c2} > 0. If χi ∈ K[x, y] we
take g = χi , and if χ1, χ2 are conjugate over K , we take g = χ1χ2.

If T satisfies (14), then either π = 0 and f = χc11 , in which case we take g = χ1, or
π > 0, in which case we have n ≡ c1 mod π . By assumption, n �≡ 0 mod π , thus c1 > 0,
π �= 2 and we take g = χ1. ��

Proof of Corollary 2. Let T0(x, y) = (αx + βy, γ x + δy), T = ( α β
γ δ

)
K∗ ∈ Aut(f,K)

be of order ν > 1 in PGL2(K), and L be a linear factor of f in K[x] such that f/L
is irreducible over K . Since L(T0) |f (T0) |f and f/L is of degree n − 1 > 1 we have
L(T0)/L ∈ K∗, hence (cf. Lemmas 14 and 15)

(28) L = aχi, a ∈ K∗, where i = 1 or 2 in case (13), i = 1 in case (14).

In case (13) it follows that λ1, λ2 ∈ K , thus a primitive root of unity ζν = λ2/λ1

is in K . Now (17) implies that either ci = 1 and c3−i = 0, in which case ν |n − 1, or
ci = c3−i = 0 and

χi |ψ(χν1 + χν2 , λ1χ
ν
1 + λ2χ

ν
2 ).

This gives

χi |ψ(χν3−i , λ3−iχν3−i ) = χν degψ
3−i ψ(1, λ3−i ),

hence ψ(1, λ3−i ) = 0,

ψ = (λ3−ip − q)ψ1, ψ1 ∈ K[p, q],
and

f/χi = (λ3−i − λi)χν−1
i ψ1(χ

ν
1 + χν2 , λ1χ

ν
1 + λ2χ

ν
2 )

is reducible for n > 2, contrary to assumption.
In case (14) it follows from (28) that λ ∈ K and, by (18), we have π > 0. If c1 = 1

we have n ≡ 1 mod π , contrary to assumption, while if c1 = 0,

χ1 |ψ(χπ1 , λπ−1χπ2 − χ2χ
π−1
1 ).

This gives

χ1 |ψ(0, λπ−1χπ2 ) = (λπ−1χπ2 )
degψψ(0, 1),

hence ψ(0, 1) = 0, ψ = pψ1, ψ1 ∈ K[p, q] and

f/χ1 = χπ−1
1 ψ1(χ

π
1 , λ

π−1χπ2 − χ2χ
π−1
1 )

is reducible for n > 2, contrary to assumption. ��
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Proof of Corollary 3. If π = 3 the conclusion holds trivially. If π �= 3 then by Theorem 1,

f = χc11 χ
c2
2 ψ(χ

3
1 + χ3

2 , λ1χ
3
1 + λ2χ

3
2 ),

where χ1, χ2 are given in Definition 3, c1, c2 are non-negative integers and ψ is a binary
form over K . If

√−3 �∈ K , then χi �∈ K[x, y], by Lemma 14; hence, by Theorem 1,
c1 = c2 and the above equation for f gives 4 ≡ 2c1 mod 3. It follows that c1 = c2 = 2,
ψ ∈ K∗ and f is a square in K[x, y]. ��

Proof of Corollary 4. For T0 = (αx + βy, γ x + δy) we take

c(T0) =
{
λ
o(T )
1 = λo(T )2 if (13) holds,

λo(T ) if (14) holds.

If T0K
∗ ∈ Aut(f,K) we have, by Theorem 1, for the case (13),

f (T0)
o(T ) = λc1o(T )1 λ

c2o(T )
2 c(T0)

degψ ·o(T )f = c(T0)
c1+c2+degψ ·o(T )f = c(T0)

deg f f ;
and for the case (14),

f (T0)
o(T ) = λc1o(T )c(T0)

degψ ·o(T )f = c(T0)
c1+degψ ·o(T )f = c(T0)

deg f f.

If, moreover, f (ξ, 1) = 0 implies T ∗ξ �= ξ , then c1 = c2 = 0 if (13) holds, and c1 = 0 if
(14) holds, hence

deg f = degψ · o(T ) and f (T0) = c(T0)
degψf = c(T0)

deg f /o(T )f. ��

Proof of Corollary 5. It suffices to apply Theorem 1 withK replaced byK and T replaced
by
( α β
γ δ

)
K∗. ��

Definition 5. Let G be a finite subgroup of PGL2(K) which is not a π -group, and let, in
the notation of Lemma 6,

χj0 =
∏

η∈Oj \{∞}
(x − ηy)

∏
η∈Oj∩{∞}

y, χj = χ [Kj :K]i
j0 (1 � j � h).

Further, if (2) holds, set

p = χ |G|/degχ1
1 , q = χ |G|/degχ2

2 ;
and if (3) holds and K1 = K(ϑ), set

p = χ |G|/degχ1
1 + χ |G|/degχ2

2 , q = ϑχ |G|/degχ1
1 + σ1(ϑ)χ

|G|/degχ2
2 .

Corollary 6. Either χj ∈ K[x, y] for all j � h, or χ1, χ2 are conjugate over K and for
h = 3, χ3 ∈ K[x, y]. Moreover G ⊂ Aut(χj ,K) for all j � h.

Proof. This is an immediate consequence of Lemma 6. ��

Corollary 7. We have p, q ∈ K[x, y] and (p, q) = 1.
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Proof. First, p and q are forms over K . If (3) holds, or (2) holds and [K1 : K]i =
[K2 : K]i = 1, this is clear, since degχj = |Oj | divides |G| for all j � h. If (2) holds
and [Kj : K]i = 2, then for each S ∈ G \ {E} and ξ ∈ Oj with S∗ξ = ξ we have
o(S) ≡ 0 mod 2, hence 2|Oj | | |G| by Lemma 5.

Now, if (2) holds we have χj ∈ K[x, y] (1 � j � h), hence p, q ∈ K[x, y].
If (3) holds, then χ2 = σ1(χ1), hence σ1(p) = p, σ1(q) = q, thus p, q ∈ K[x, y]. Since
(χ1, χ2) = 1 we have (p, q) = 1. ��

Theorem 2. Let G be a finite subgroup of PGL2(K) which is not a π -group. A form
f ∈ K[x, y] \ {0} satisfies

(29) f ∈ K[x, y]
and

(30) G ⊂ Aut(f,K)

if and only if

(31) f =
h∏
j=1

χ
cj
j ψ(p, q),

where χj and p, q are given in Definition 5,ψ is a binary form overK and cj are integers
satisfying 0 � cj < |G|/degχj and c1 = c2 if χ1, χ2 are conjugate over K .

Corollary 8. Under the assumption of Theorem 2 about G, a form f ∈ K[x, y] satis-
fies (30) if and only if (31) holds, where χj are given in Definition 5,

p = χ |G|/degχ1
1 , q = χ |G|/degχ2

2 ,

ψ is a binary form over K and cj are integers satisfying 0 � cj < |G|/degχj .

The proof of Theorem 2 is based on five lemmas.

Lemma 17. Let f ∈ K[x, y] \ {0} be a form and, for ξ ∈ K , ef (ξ) be the multiplicity
of ξ as a zero of f (x, 1), and ef (∞) be the multiplicity of 0 as a zero of f (1, y). We have

(32) S ∈ Aut(f,K)

if and only if for all ξ ∈ K ∪ {∞},
(33) ef (S

∗ξ) = ef (ξ).

Proof. By making a preliminary linear transformation we may assume that

f =
n∏
i=1

(x − ξiy) and S =
(
α β

γ δ

)
K∗,

where

(34) αδ − βγ �= 0.
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Necessity. If (32) holds and for some ξi we have γ ξi + δ = 0, then with an r ∈ K∗,

(αξi + β)n = f (αξi + β, γ ξi + δ) = rf (ξi, 1) = 0,

hence αξi + β = 0 and αδ − βγ = 0, contrary to (34). Thus γ ξi + δ �= 0 (i = 1, . . . , n)
and

n∏
i=1

(
αx + βy − αξi + β

γ ξi + δ (γ x + δy)
)
= (αδ − βγ )n
(−1)nf (−δ, γ )

n∏
i=1

(x − ξiy)

= (βγ − αδ)n
f (−δ, γ ) f (x, y) =

(βγ − αδ)n
rf (−δ, γ ) f (αx + βy, γ x + δy)

= (βγ − αδ)n
rf (−δ, γ )

n∏
i=1

(αx + βy − ξi(γ x + δy)),

hence (33) holds.

Sufficiency. If (33) holds, there is a permutation σ of {1, . . . , n} such that

αξi + β
γ ξi + δ = ξσ(i).

Then by (34) we have γ ξi + δ �= 0 for all i � n and it follows that

f (αx + βy, γ x + δy) =
n∏
i=1

(αx + βy − ξσ(i)(γ x + δy))

=
n∏
i=1

(
αx + βy − αξi + β

γ ξi − δ (γ x + δy)
)

= (αδ − βγ )n
(−1)nf (−δ, γ )

n∏
i=1

(x − ξiy) = (βγ − αδ)n
f (−δ, γ ) f (x, y),

c

hence (32) holds. ��

Lemma 18. If ef (η) = 0 for all η ∈ O(G) and G ⊂ Aut(f,K), then

deg f ≡ 0 mod |G|.

Proof. Let us divide all ξ ∈ K ∪ {∞} with ef (ξ) > 0 into classes by assigning ξ1 and ξ2
to the same class C if ξ1 = S∗ξ2 for some S ∈ G. Since ef (η) = 0 for all η ∈ O(G), we
have ξ �= S∗ξ for all ξ with ef (ξ) > 0, hence by Lemma 17, the number of elements in
each class is |G|. On the other hand, by Lemma 17, for each C in the set Γ of all classes,
there is e(C) ∈ N such that ef (ξ) = e(C) for all ξ ∈ C. We obtain

deg f =
∑

ξ∈K∪{∞}
ef (ξ) =

∑
C∈Γ

e(C)|G| ≡ 0 mod |G|. ��

Lemma 19. If f ∈ K[x, y] \ {0}, G ⊂ Aut(f,K) and (χj , f ) �= 1 then χj |f .
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Proof. Assume that ef (η) > 0 for some η ∈ Oj . By Lemma 17 we have ef (S∗η) > 0 for
all S ∈ G, hence χj0 |f . Therefore,

(35) χj |f [Kj :K]i .

If [Kj : K]i = 1 the assertion is proved. If [Kj : K]i = 2, thenOj ⊂ Kj \K . Therefore,
for all η ∈ Oj , (x − ηy)2 is irreducible over K and (35) implies

(x − ηy)2 |f,
which gives χj |f , as asserted. ��

Remark 6. ForK = C the lemma is well known (see [27, Vol. II, §70]) and for π �= 2 the
proof given there needs no modification.

Lemma 20. The field L = {ϕ ∈ K(t) : ϕ(S∗) = ϕ for all S ∈ G} is generated by
p(t, 1)/q(t, 1), where p, q are given in Definition 5.

Proof. By Definition 5, G ⊂ Aut(χj0,K), hence, by Corollary 3, for every S0 in GL2(K)

with S = S0K
∗ ∈ G we have

χj0(S0)
o(S) = c(S0)

degχj0χj0.

If S∗ξ = ξ for some ξ ∈ Oj , we have, by Lemma 5,

o(S) | |G|/|Oj | = |G|/degχj0,

and so

(36) χj (S0)
|G|/degχj = χj0(S0)

|G|/degχj0 = c(S0)
|G|/o(S)χ |G|/degχj

j .

If S∗0ξ �= ξ for all ξ = Oj the same conclusion holds by the second part of Corollary 4.
Therefore,

(37) p(S0) = c(S0)
|G|/o(S)p, q(S0) = c(S0)

|G|/o(S)q

and

p(S∗0 t, 1)
q(S∗0 t, 1)

= p(t, 1)

q(t, 1)
, thus

p(t, 1)

q(t, 1)
∈ L.

Since (χ1, χ2) = 1 we have p(t, 1)/q(t, 1) �∈ K and, by Lüroth’s theorem, L = K(r),
where r ∈ K(t) \K . Without loss of generality we may assume that r = p1/q1, where p1

and q1 are coprime polynomials of the same degree d. Let

p2 = p1(x/y)y
d, q2 = q1(x/y)y

d .

Since r(S∗t) = r(t) for all S ∈ G we have, for all S0 ∈ GL2(K) with S0K
∗ ∈ G,

p2(S0) = c1(S0)p2, q2(S0) = c1(S0)q2,

where c1(S0) ∈ K∗. It follows that

(38) λp2(S0)+ μq2(S0) = c1(S0)(λp2 + μq2)
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for all λ,μ in K . Now, choose λ0 and μ0 in K such that

(39)
λ0p2(η, 1)+ μ0q2(η, 1) �= 0 for all η ∈ O(G) \ {∞},
λ0p2(1, 0)+ μ0q2(1, 0) �= 0 if ∞ ∈ O(G).

This is possible, since 〈p2(η, 1), q2(η, 1)〉 �= 〈0, 0〉 and p(1, 0) �= 0. By Lemma 18 we
have

d ≡ 0 mod |G|.
On the other hand, since p(t, 1)/q(t, 1) ∈ K(r) we have

|G| = degp(t, 1)/q(t, 1) ≡ 0 mod d.

It follows that d = degp(t, 1)/q(t, 1) and K(p(t, 1)/q(t, 1)) = K(r) = L. ��

Lemma 21. If f1 is a binary form over K of degree divisible by |G| and for every
S0 ∈ GL2(K) with S = S0K

∗ ∈ G we have

f1(S0) = c(S0)
deg f1/o(S)f1,

then f1 = ψ1(p, q), where p, q are given in Definition 5 and ψ1 is a binary form overK .

Proof. By (37) for every S0 in question

q(S0)
deg f1/|G| = c(S0)

deg f1/|G|qdeg f1/|G|,

hence

f1(S
∗t, 1)

q(S∗t, 1)deg f1/|G| =
f1(t, 1)

q(t, 1)deg f1/|G| ,

and since this holds for every S ∈ G,

f1(t, 1)

q(t, 1)deg f1/|G| ∈ L.
By Lemma 20 we have

f1(t, 1)

q(t, 1)deg f1/|G| = u
(
p(t, 1)

q(t, 1)

)
.

Letu = v/w, where v,w are coprime polynomials overK . Putting v(x, y) = v(x/y)ydeg v

and w(x, y) = w(x/y)ydegw, we obtain

f1(t, 1)

q(t, 1)deg f1/|G| =
v(p(t, 1), q(t, 1))q(t, 1)degw

w(p(t, 1), q(t, 1))q(t, 1)deg v .

Since (p(t, 1), q(t, 1)) = 1 by Corollary 7, we have

(w(p(t, 1), q(t, 1)), v(p(t, 1), q(t, 1))) = 1

and

(v(p(t, 1), q(t, 1))w(p(t, 1), q(t, 1)), q(t, 1)) = 1,
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hence w ∈ K∗ and deg f1/|G| � deg v, and

f1(t, 1) = w−1v(p(t, 1), q(t, 1))qdeg f1/|G|−deg v.

Substituting t = x/y and cancelling the denominators we obtain

f1 = w−1v(p, q)qdeg f1/|G|−deg v. ��

Proof of Theorem 2. Necessity. By Lemma 19 we may write

(40) f =
h∏
j=1

χ
cj
j f0, where f0 ∈ K[x, y],

(
f0,

h∏
j=1

χj

)
= 1.

If χ1 �∈ K[x, y], then by Corollary 6, χ1, χ2 are conjugate and χc11 |f implies χc12 |f ,
hence c1 � c2. Similarly c2 � c1, hence c1 = c2 as asserted and f0 ∈ K[x, y]. Now,

ef0(η) = 0 for all η ∈ O(G)
and by Lemma 18,

deg f0 ≡ 0 mod |G|.
Moreover, by Corollary 4, for every S0 ∈ GL2(K) with S = S0K

∗ ∈ G we have

f0(S0) = c(S0)
deg f0/o(S)f0.

By Lemma 21 with f1 = f0,

f0 = ψ(p, q),
where ψ is a binary form over K , thus (31) follows from (40).

Now, by (34) for each j � k and every S0 ∈ GL2(K) with S0K
∗ ∈ G,

χ
|G|/degχj
j (S0) = c(S0)

|G|/o(S)χ |G|/degχj
j ,

hence, applying Lemma 21 with f1 = χ
|G|/degχj
j if χj ∈ K[x, y], or with f1 =

(χ1χ2)
n|G|/degχj if χ1, χ2 are conjugate, we obtain

χ
|G|/degχj
j = ψj (p, q) or (χ1χ2)

|G|/degχj = ψ1(p, q),

respectively, whereψj are binary forms overK . This gives the required upper bound for cj .

Sufficiency. Assuming (31) we obtain (29) by Corollary 6 and the condition c1 = c2
if χ1, χ2 are conjugate over K . On the other hand, for every S0 ∈ GL2(K) such that
S = S0K

∗ ∈ G we have, by (31),

ψ(p(S0), q(S0)) = c(S0)
|G|/o(S)ψ(p, q),

thus G ⊂ Aut(ψ(p, q),K) and (30) follows from (31) by Corollary 6. ��

Proof of Corollary 8. It suffices to apply Theorem 2 withK replaced byK and G replaced
by GK∗/K∗. ��
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Example. We give without proof formulae for χ1, χ2, χ3 for dihedral subgroups of
PGL2(K). For the dihedral subgroup of order 4 generated by(
a b

c −a
)
K∗,
(
d e

f −d
)
K∗, where a, . . . , f ∈ K, (a2 + bc)(d2 + ef ) �= 0,

2ad + bf + ce = 0

(the last condition ensures commutativity) we have

χ1 = cx2 − 2axy − by2, χ2 = f x2 − 2dxy − ey2,

χ3 = (cd − af )x2 − 2(ad + bf )xy − (bd − ae)y2.

For the dihedral group of order 2ν > 4 generated by(
a b

a(ζ + ζ−1)+ b −a
)
K∗ and

(
1 + ζ + ζ−1 −1

1 1

)
K∗,

where a, b ∈ K , (aζ + b)(aζ−1 + b) �= 0, ζ is a primitive root of unity of order
ν �≡ 0 mod π , the polynomials χi (1 � i � 3) are given by the formulae

χ3 = x2 − (ζ + ζ−1)xy + y2,

χ(3−ε)/2 = B − A
ζ−1 − ζ

(
ζ−1(x − ζy)ν + ζ(x − ζ−1y)ν

)
+
(
ε
√
AB − ζB − ζ−1A

ζ−1 − ζ
)(
(x − ζy)ν + (x − ζ−1)ν

)
(ε = ±1)

if

A = (−aζ 2 − bζ )ν �= B = (−aζ−2 − bζ−1)ν,

and

χ1 = (ζ − ζ−1)(x − ζy)ν + (ζ−1 − ζ )(x − ζ−1y)ν,

χ2 = (x − ζy)ν + (x − ζ−1y)ν,

otherwise. We shall use the fact, easy to check directly, that for a = 1, b = 0 the two
generators of the group are weak automorphs of χi , hence Aut(χi,K) contains the group
for i = 2 or 3.

For the dihedral group generated by( −1 b

0 1

)
K∗ and

(
λ 1
0 λ

)
K∗,

where π > 0, λ ∈ K∗, b ∈ K , the polynomials χi (1 � i � 2) are given by the formulae

χ1 = y, χ2 = −2λπ−1xπ + 2xyπ−1 + (λπ−1bπ − b)yπ .

Definition 6. Let G be a π -subgroup of PGL2(K) generated by elements SiK∗, where

(41) Si =
(
a b

c d

)−1 (
λi 1
0 λi

)(
a b

c d

)
(1 � i � g),
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ad − bc �= 0, λ−1
1 , . . . , λ

−1
g are linearly independent over Fπ and either a, b, c, d, λj are

in K , or a = 0, b = 1, c ∈ K , K(d) is a quadratic inseparable extension of K and
d + λj ∈ K . Then we put

χ1 = cx + dy, χ2 = ax + by,
p = χπg1 , q = χ2

∏
〈a1,...,ag〉∈F

g
π\{0}

(
χ1 + χ2

( g∑
j=1

ajλ
−1
j

)−1)
.

Corollary 9. We have p ∈ K[x, y], q ∈ K[x, y], (p, q) = 1 and p, q are algebraically
independent.

Proof. The assertion is clear unless π = 2, λ1 �∈ K . In the exceptional case c ∈ K , λ2
1 ∈ K ,

hence p ∈ K[x, y]. Also for each j � g,

dλ−2
j + λ−1

j ∈ K,
hence for all 〈a1, . . . , ag〉 ∈ F

g
2 \ {0},

d
( g∑
j=1

ajλ
−1
j

)2 +
g∑
j=1

ajλ
−1
j ∈ K,

which gives χ1 + χ2
( g∑
j=1
ajλ

−1
j )

−1 ∈ K[x, y] and q ∈ K[x, y]. Moreover, (p, q) = 1,

since (χ1, χ2) = 1, and since p, q are forms, it follows that they are algebraically inde-
pendent. ��

Theorem 3. Let G, χ1, p, q be as in Definition 6. A form f ∈ K[x, y] \ {0} satisfies (29)
and (30) if and only if

(42) f = χc11 ψ(p, q),

where ψ is a binary form over K , c1 is an integer, 0 � c1 < |G| and if χ1 �∈ K[x, y] then
c1 is even.

Corollary 10. Under the assumption of Theorem 3 about G, χ1, p, q a form f ∈ K[x, y]
satisfies (30) if and only if (42) holds, where ψ is a binary form over K and c1, c2 are
integers with 0 � c1 < |G|.

Corollary 11. If a binary form f has at least two coprime linear factors overK and G is
a π -group contained in Aut(f,K), then |G| � deg f.

The proof of Theorem 3 is based on the following lemma.

Lemma 22. If π > 0, G ∈ K[x], λi ∈ K(λ1)
∗ (1 � i � g), λ−1

1 , . . . , λ
−1
g are linearly

independent over Fπ and

(43) G(x + λ−1
i ) = riG(x), ri ∈ K∗ (1 � i � g),
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then

(44) G(x) = H(P (x)), H ∈ K(λ1)[x],
where

P(x) =
∏

〈a1,...,ag〉∈F
g
π

(
x +

g∑
j=1

ajλ
−1
j

)
.

Remark 7. For K being a finite field of characteristic π and λi ∈ K the lemma is due to
Dickson.

Proof. On comparing the leading coefficients on both sides of (43) we obtain ri = 1
(1 � i � g). We shall prove (44) by induction on the degree of G, say n. If n = 0 then
(44) holds with H = G. Assume that (44) is true for all G satisfying (43) of degree less
than n, and that degG = n. From (43) we obtain, for all 〈a1, . . . , ag〉 ∈ F

g
π ,

G
(
−

g∑
j=1

ajλ
−1
j

)
= G(0),

hence by the linear independence of λ−1
1 , . . . , λ

−1
g over Fπ ,

P(x) |G(x)−G(0).
Taking

G1(x) = G(x)−G(0)
P (x)

we deduce from (43) that G1(x + λ−1
i ) = G1(x) (1 � i � g), hence by the inductive

assumption

G1(x) = H1
(
P(x)

)
, H1 ∈ K(λ1)[x],

and (44) holds with H(x) = xH1(x)+G(0). ��

Proof of Theorem 3. Necessity. Since ad − bc �= 0 and χ1, χ2 are linearly independent
over K , we have

f (x, y) = g(χ1, χ2), g ∈ K(λ1)[x, y].
By (41),

(45) χ1(Si) = λiχ1, χ2(Si) = λiχ2 + χ1,

hence, by (30), for some ri ∈ K ,

g(λiχ1, λiχ2 + χ1) = g
(
χ1(Si), χ2(Si)

) = f (Si) = rif = rig(χ1, χ2),

thus G(x) = g(1, x) satisfies

G(x + λ−1
i ) = riG(x).
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By Lemma 22 we have

G(x) = H (P(x)), H ∈ K(λ1)[x].
Hence

g(χ1, χ2) = χn1G
(
χ2

χ1

)
= χn1H

(
P

(
χ2

χ1

))
and for n ≡ c1 mod πg with 0 � c1 < πg , (42) holds with

ψ(p, q) = p(n−c1)/πgH
(
q

p

∏
〈a1,...,ag〉∈F

g
π\{0}

g∑
j=1

ajλ
−1
j

)
.

If λ1 ∈ K we have ψ ∈ K[p, q].
It remains to consider the case π = 2, K(λ1) a quadratic inseparable extension of K .

In this case χ1 �∈ K[x, y] and χ2
1 is irreducible overK . Letψ(p, q) = pmψ1, whereψ1 ∈

K[p, q] and ψ1(0, 1) �= 0. Since, by Corollary 9, (p, q) = 1 we have (ψ1(p, q), χ1) = 1
and it follows from (42) that

χ
2gm+c1
1 |f, χ

2gm+c1+1
1 /| f.

Further

χ
2g+1m+2c1
1 |f 2

and since χ2
1 is irreducible,

χ
2gm+2�c1/2�
1 |f, 2gm+ 2�c1/2� = 2gm+ c1,

c1 ≡ 0 mod 2, and χc11 ∈ K[x, y]. It now follows from (42) that

ψ(p, q) ∈ K[x, y].
By Corollary 9,p, q∈K[x, y] andp, q are algebraically independent. Henceψ ∈K[p, q].
Sufficiency. Since χ1 or χ2

1 in the exceptional case and p, q are defined over K , (29) is
clear. On the other hand, by (45),

p(Si) = λπgi p,

q(Si) = (λiχ2 + χ1)
∏

〈a1,...,ag〉∈F
g
π\{0}

(
λiχ1 + (λiχ2 + χ1)

( g∑
j=1

ajλ
−1
j

)−1)

= (λiχ2 + χ1)λ
πg−1
i

∏
〈a1,...,ag〉∈F

g
π\{0}

( g∑
j=1

ajλ
−1
j

)−1

×
∏

〈a1,...,ag〉∈F
g
π\{0}

(
χ1

g∑
j=1

ajλ
−1
j + χ2 + χ1λ

−1
i

)
=
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= λπgi
∏

〈a1,...,ag〉∈F
g
π\{0}

( g∑
j=1

ajλ
−1
j

)−1 ∏
〈a1,...,ag〉∈F

g
π

(
χ1

g∑
j=1

ajλ
−1
j + χ2

)
= λπgi q,

hence

f (Si) = χ1(Si)
c1ψ(p(Si), q(Si)) = λc1+π

g degψ
i χ

c1
1 ψ(p, q) = λc1+π

g degψ
i f

and (30) holds. ��

Proof of Corollary 10. It suffices to apply Theorem 3 withK replaced byK and G replaced
by GK∗/K∗. ��

Proof of Corollary 11. Since Aut(f,K) ⊂ Aut(f,K) we may assume that K = K . By
Lemma 3 every π -group contained in PGL2(K) must contain a π -group considered in
Theorem 3. Since f has at least two coprime linear factors, the case ψ ∈ K in (42) is
excluded. Hence

|G| � degψ(p, q) � n. ��

3. Upper bounds for |Aut(f, K)|

We shall prove

Theorem 4. If a form f ∈ K[x, y] \ {0} of degree n has at least three coprime linear
factors over K , then Aut(f,K) is finite. Moreover, if

(46) f = cf0(αx + βy, γ x + δy)k, where c ∈ K∗, α, β, γ, δ∈K, αδ − βγ �= 0,

f0 = xqy − xyq , Fq ⊂ K , k ∈ N, then Aut(f,K) ∼= PGL2(Fq); otherwise either

(47) π = 2, n = 2� + 1, Aut(f,K) ∼= D2�+1,

or

(48) π = 3, n = 10, Aut(f,K) ∼= A5,

or

(49) |Aut(f,K)| = lm,
where l �≡ 0 mod π , ζl + ζ−1

l ∈ K , l < n, m � n.

Remark 8. It is not clear whether there exist f and K satisfying (48).

Corollary 12. Assume that f ∈ K[x, y] and all factors of f (x, 1) irreducible overK are
separable. Then Aut(f,K) is finite if and only if either K is finite, or f has at least three
coprime linear factors over K .
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Definition 7. For π = 0 or π > n we put

Un(K) =
{
ν ∈ N : ν � n and ζν + ζ−1

ν ∈ K
}
,

Vn(K) = {ν ∈ N : ν � n and ζν ∈ K} ,
a1(n,K) = supUn(K), a2(n,K) = sup{ν ∈ Un(K) : ν ≡ nmod 2},
b(n,K) = supVn(K),

M = {6, 10, 15, 21, 22} ∪ {25, . . .} \ {29, 32, 44},
where the dots represent consecutive integers greater than 25.

Corollary 13. We have a2(n,K) � a1(n,K) � n for every n and a2(n,K) =
a1(n,K) = n for n � 4, a1(n,K) � 6 for n � 6, a2(n,K) � 6 for even n � 6,
2 � b(n,K) � a1(n,K) for n � 2.

Definition 8. Let A(n,K) and B(n,K) for n�3 be the maximum of |Aut(f,K)|over all
forms f of degree n in K[x, y] or K[x, y] respectively with at least three coprime linear
factors over K and which are not perfect powers in K[x, y].

Theorem 5. We have

A(n,K) = B(n,K) = π3g − πg if n = πg + 1, Fπg ⊂ K,
and

A(n,K) � n(n− 1) otherwise.

Moreover, if π = 0 or π > n then

A(n,K) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

12 if levelK � 2, n = 4,
max{a1(n,K), 2a2(n,K), 24} if levelK � 2 and either

n = 6, 8, 14 or n = 12,
√

5 �∈ K or
n = 2m, m � 9 and

√
5 �∈ K if m ∈ M,

max{a1(n,K), 2a2(n,K), 60} if levelK � 2,
√

5 ∈ K
and n/2 ∈ M,

max{a1(n,K), 2a2(n,K)} otherwise;

B(n,K) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

12 if n = 4,
√−3 ∈ K,

max{b(n− 1,K), 2a2(n,K), 24} if level K � 2 and either
n = 6, 8, 14 or n = 12,

√
5 �∈ K or

n = 2m, m � 9 and
√

5 �∈ K if m ∈ M,

max{b(n− 1,K), 2a2(n,K), 60} if level K � 2,
√

5 ∈ K
and n/2 ∈ M,

max{b(n− 1,K), 2a2(n,K)} otherwise.

Corollary 14. We have A(n,C) = 2n unless n = 4, 6, 8, 12, 20, when A(n,C) =
12, 24, 24, 60, 60, respectively.
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Remark 9. P. Olver [19] and then I. Berchenko and P. Olver [1] gave a bound for |Aut(f,C)|
assumed finite, which asserts that

A(n,C) � 6n− 12

and apart from an exceptional case
A(n,C) � 4n− 8.

The bound given in Corollary 14 is better for all n > 4, n �= 6, 8, 12. This bound for
n > 30 has been anticipated by Summerer in an unpublished paper [25], dealing only with
non-singular forms.

Remark 10. Let A0(n, π) = maxA(n,K), where K runs through all fields of character-
istic π . By an analysis of subgroups of PSL2(Fq) listed in [12, Chapter 12] one can guess
explicit values for A0(n, π) also for 0 < π � n. Namely, if n > 20 and πg � n < πg+1,
then conjecturally A0(π

g + 1, π) = π3g − πg , otherwise A0(n, π) = π2g − πg unless
g = 1, (π2 − π)/2 < n, n �≡ mod π or n = π2 − π or g = 3, n = π4 − π2, when
A0(n, π) = 2n or π3 − π or π6 − π2, respectively. For n � 20 there are apparently three
exceptions to this rule: A0(8, 5) = 24, A0(12, 7) = A0(20, 7) = 60.

For the proof of Theorem 4 we need the following

Definition 9. For ξ ∈ K ∪ {∞}, we set

Aut(f,K, ξ) = {S ∈ Aut(f,K) : S∗ξ = ξ},

Autπ (f,K, ξ) =
{{S ∈ Aut(f,K, ξ) : S∗π = E} if π > 0,

{E} otherwise.

Lemma 23. Let f ∈ K[x, y] \ {0} be a form of degree n, let Z = {ξ ∈ K ∪ {∞} :
ef (ξ) > 0} and suppose |Z| � 3. For every ξ ∈ Z the set Autπ (f,K, ξ) is a finite normal
subgroup of Aut(f,K, ξ) and the quotient group is cyclic of order l < nwith l �≡ 0 mod π
such that ζl ∈ K(ξ), where K(∞) = K .

Proof. Assume first ξ = ∞. Then S∗ξ = ξ is equivalent to S = ( α β
0 1

)
K∗, where α ∈ K∗,

β ∈ K . Let

H =
{
α ∈ K∗ : there exists β ∈ K such that

(
α β

0 1

)
K∗ ∈ Aut(f,K)

}
.

Then H is a subgroup of the multiplicative group K∗ and if α ∈H and S = ( α β
0 1

)
K∗ ∈

Aut(f,K), then the order of α inK∗ is finite. Indeed, otherwise, taking ξ1, ξ2 in Z \ {∞},
ξ1 �= ξ2, we should obtain, by Lemma 17,

S∗iξj ∈ Z for all i ∈ N and j = 1, 2,

hence for some i′j < i′′j = i′j + ij ,
S
∗i′j ξj = S∗i

′′
j ξj (j = 1, 2);

αij ξj + β(αij − 1)/(α − 1) = S∗ij ξj = ξj ;
(α − 1)ξj + β = 0 (j = 1, 2), ξ1 = ξ2, a contradiction.
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The above calculation also shows that if α ∈ H \ {1} and S = ( α β
0 1

)
K∗ ∈ Aut(f,K),

then the order of α inK∗ is equal to the order ν of S in PGL2(K) and is not divisible by π .
Since |Z| � 3, in Theorem 1 applied to f , K and S the case ψ ∈ K is excluded and we
have ν � n with equality possible only if

f = a((α − 1)x + βy)n + byn, a, b in K.

It now follows from ef (∞) > 0 that f (1, 0) = 0, hence a = 0, f = byn, |Z| = 1,
a contradiction. Hence ν < n. Since there are only finitely many α ∈ K∗ with αν = 1
for some ν < n, H is finite and cyclic by the well known lemma (see [3, Algebraic
Supplement, §3]). Its order l equal to the order of a generator satisfies

(50) |H | = l < n, l �≡ 0 mod π, ζl ∈ K.
Let

G =
{(

1 β

0 1

)
K∗ ∈ Aut(f,K)

}
.

Then G is a normal subgroup of Aut(f,K,∞), which in turn is a subgroup of Aut(f,K).
If π = 0, then G = {E}, for otherwise taking ξ1 ∈ Z \ {∞} and β ∈ K∗ such that
S = ( 1 β

0 1

)
K∗ ∈ G we should obtain, by Lemma 17, ξ1 + iβ = S∗iξ1 ∈ Z, a contradiction,

since ξ1 + iβ (i = 0, . . . , n) are distinct. If π > 0 then

G = Autπ (f,K,∞)
is a π -group and, by Corollary 11,

|G| = πg � n.

The quotient group Aut(f,K,∞)/G is isomorphic to H , hence the assertion follows
from (50).

Assume now ξ �= ∞ and put f1 = f (ξx + y, x). We have f1(1, 0) = f (ξ, 1) = 0,
hence ef1(∞) > 0 and, by the already proved case of the lemma, Autπ (f1,K(ξ),∞) is
a finite normal subgroup of Aut(f1,K(ξ),∞) and the quotient group is cyclic of order
l < n with l �≡ 0 mod π such that ζl ∈ K(ξ).

Now

Aut(f,K, ξ) ⊂
(
ξ 1
1 0

)
Aut(f1,K(ξ),∞)

(
ξ 1
1 0

)−1

,

Autπ (f,K, ξ) ⊂
(
ξ 1
1 0

)
Autπ (f1,K(ξ),∞)

(
ξ 1
1 0

)−1

,

and the assertion of the lemma follows from simple facts from group theory. ��

Lemma 24. For ξ ∈ Z (notation of Lemma 23), letm be the length of the orbit of ξ under
the action of Aut(f,K). If |Aut(f,K, ξ)| ≡ 0 mod π , then m ≡ 1 mod π , also either
ξ ∈ K or

(51) π = 2, Aut(f,K, ξ) = Autπ (f,K, ξ).
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Proof. By Lemma 17, Aut(f,K), hence also Autπ (f,K, ξ), acts on Z. Let O(ξ) be the
orbit of ξ under the action of Aut(f,K). Since for η ∈ Z and S ∈ Autπ (f,K, ξ) \ {E},
S∗η = η implies η = ξ , Autπ (f,K, ξ) acts on O(ξ) \ {ξ} and all orbits are of length
|Autπ (f,K, ξ)|. Hence m = |O(ξ)| ≡ 1 mod π . By Lemma 3, Autπ (f,K, ξ) has an
element

S0 =
(
a b

c d

)−1 (
λ 1
0 λ

)(
a b

c d

)
K∗,

where ad − bc �= 0, λ �= 0 and either a, b, c, d, λ ∈ K , or π = 2, c ∈ K∗, and K(d)
is a quadratic inseparable extension of K . The condition S∗0ξ = ξ gives ξ = −d/c. In
the former case it follows that ξ ∈ K , in the latter case K(ξ) is a quadratic inseparable
extension of K and for S = ( α β

γ δ

)
K∗ ∈ Aut(f,K, ξ) the equation S∗ξ = ξ gives α = δ,

Sπ = e, hence (51) holds. ��

Proof of Theorem 4. Suppose |Aut(f,K)| is divisible exactly byπg = q, and for ξ ∈ Z, let
m(ξ) be the length of the orbit of ξ under the action of Aut(f,K). For all ξ ∈ Z we have

(52) |Aut(f,K)| = |Aut(f,K, ξ)|m(ξ)
and, by Lemma 17,

(53) m(ξ) � |Z| � n.
If |Aut(f,K, ξ)| �≡ 0 mod π for at least one ξ ∈ Z then, by Lemma 23, Aut(f,K, ξ) is
cyclic of order l < n with l �≡ 0 mod π . By Lemma 1 we have ζl + ζ−1

l ∈ K . Moreover,
by (52),

|Aut(f,K)| = lm(ξ),
which together with (53) gives (49).

If |Aut(f,K, ξ)| ≡ 0 mod π for all ξ ∈ Z, then, by Lemma 24, m(ξ) �≡ 0 mod π ,
hence by (52),

|Aut(f,K, ξ)| ≡ 0 mod q

and Autπ (f,K, ξ) is a π -Sylow subgroup of Aut(f,K). Since all π -Sylow subgroups are
conjugate and the only conjugates of Autπ (f,K, ξ) in Aut(f,K) are, by Lemma 17, the
groups Autπ (f,K, η), where ef (η) = ef (ξ), it follows that for all ξ ∈ Z, m(ξ) = |Z|,
ef (ξ) has the same value, say k, and the number σ of π -Sylow subgroups is |Z| � 3. It
follows, by Lemma 11, that either

(54) π = 2, |Z| = 2� + 1, Aut(f,K) ∼= D2�+1,

or

(55) π = 3, |Z| = 10, Aut(f,K) ∼= A5,

or

(56) |Z| = q + 1, Aut(f,K) ∼= Hi ,

where H1 = PGL2(Fq) and H2 = PSL2(Fq).
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For k = 1 the case (54) gives (47), while (55) gives (48). For k > 1, (54) and (55)
give (49) with l = 2�+ 1, m = 2 or l = 10, m = 6, respectively. The case (56) for q = 2
gives (47) with � = 1. For q > 2, (56) gives

|Aut(f,K, ξ)| = q2 − q or (q2 − q)/(π + 1, 2).

In the notation of Lemma 23, l = q − 1 or (q − 1)/(π + 1, 2), hence q > 1 and, by
Lemma 24, ξ ∈ K . The condition ζl ∈ K(ξ) of Lemma 23 now gives Fq ⊂ K .

By Lemma 13, Aut(f,K) is conjugate in PGL2(K) to HiK
∗/K∗, hence there exist

α, β, γ, δ in K such that αδ − βγ �= 0 and

(57) Aut(f,K) =
(
α β

γ δ

)−1

Hi

(
α β

γ δ

)
K∗/K∗.

Since ef (ξ) = k for all ξ ∈ Z, we have

(58) f = f k1 , where f1 ∈ K[x, y], deg f1 = |Z|.
Put

f2 = f1(δx − βy,−γ x + αy), a0 = (αδ − βγ )−n.
It follows from (58) that

(59) f = a0f2(αx + βy, γ x + δy)k, deg f2 = q + 1,

and

(60) Aut(f,K) =
(
α β

γ δ

)−1

Aut(f2,K)

(
α β

γ δ

)
.

Hence, by (57),

(61) Aut(f2,K) = HiK
∗/K∗.

By Corollary 8, applied with G = Aut(f2,K)K
∗/K∗, by Definition 5 and Lemmas 8

and 9 we obtain

f2 = χc11 χ
c2
2 ψ(p, q),

where

χ1 = y
∏
ξ∈Fq

(x − ξy), χ2 =
∏

ξ∈F
q2\Fq

(x − ξy), p = χ |Hi |/(q+1)
1 , q = χ |Hi |/(q2−q)

2

and ψ is a form over K . The condition deg f2 = q + 1 implies c1 = 1, c2 = 0, ψ ∈
K , f2 = (xqy − xyq)ψ , hence (46) follows from (59). Since Aut(xqy − xyq,K) ⊃
PGL2(Fq)K

∗/K∗ we have i = 1 in (61) and Aut(f,K) ∼= PGL2(Fq) by (60). This has
been deduced from the assumption that |Aut(f,K, ξ)| ≡ 0 mod π for all ξ , while in the
opposite case one of the formulae (47)–(49) holds. Since f2 does not satisfy (47)–(49), we
have, indeed, Aut(f,K) ∼= Aut(f2,K) ∼= PGL2(Fq). ��

Proof of Corollary 12. By Theorem 4 the condition given in the corollary is sufficient. In
order to prove that it is necessary assume thatK is infinite and f has at most two coprime
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linear factors overK . We distinguish three cases: the zeros of f (x, 1) are inK; the zeros of
f (x, 1) are conjugate quadratic irrationalities overK and π �= 2; and the zeros of f (x, 1)
are conjugate quadratic irrationalities over K and π = 2.

In the first case f is equivalent over K to a form f1 = axmyn, where a ∈ K,m, n are
non-negative integers and f has infinitely many pairwise inequivalent weak automorphs(
α 0
0 1

)
K∗, α ∈ K∗.

In the second case f is equivalent over K to a form f2 = a(x2 − cy2)m, where
a, c ∈ K∗, m ∈ N and f1 has infinitely many pairwise inequivalent weak automorphs( α cγ
γ α

)
K∗, where 〈α, γ 〉 runs through infinitely many solutions in K of the equation

α2 − cγ 2 = 1, and from each pair 〈α, γ 〉, 〈−α,−γ 〉 we use only one solution.
In the third case f is equivalent over K to a form f3 = a(x2 + bxy + cy2)m, where

a, b, c ∈ K∗ and m ∈ N. Now we distinguish two subcases.
If c/b2 is algebraic over F2 then (c/b2)2k−1 = 1 for a certain k ∈ N, hence c = d2,

where d = b(c/b2)k ∈ K∗. It follows that f3 has infinitely many pairwise inequivalent
weak automorphs

(
dα bdα+d2

1 dα

)
K∗, where α runs over K∗. On the other hand, f3 has a

weak automorph
( c bc

b b2+c
)
K∗.

If c/b2 is transcendental over F2, then this automorph is of infinite order in PGL2(K).
Indeed, otherwise we should have (see proof of Lemma 1) for a certain λ ∈ K and a root
of unity ζ , λ(1 + ζ ) = b2, λ2ζ = c2, hence ζ + ζ−1 = b4/c2, a contradiction. ��

Proof of Corollary 13. We have ζν ∈ K for ν � 2, and ζν+ζ−1
ν ∈ K for ν � 4 or ν = 6.��

For the proof of Theorem 5 we need six lemmas.

Lemma 25. Assume n � 3 and either π = 0 or π > n. If f of degree n has at least three
coprime linear factors over K and Aut(f,K) is cyclic, then

|Aut(f,K)| �
{
a1(n,K) if f ∈ K[x, y],
max{a2(n,K), b(n− 1,K)} if f ∈ K[x, y].

There exist forms f1 ∈ K[x, y], f2, f3 ∈ K[x, y] of degree n, each with at least three
coprime linear factors over K and not a perfect power in K[x, y], such that∣∣Aut(f1,K)

∣∣ � a1(n,K),∣∣Aut(f2,K)
∣∣ � a2(n,K),∣∣Aut(f3,K)
∣∣ � b(n− 1,K).

Proof. If G = Aut(f,K) is cyclic, then by Theorem 1 and Corollary 5,

(62) f = χc11 χ
c2
2 ψ(p, q),

where

degχi = 1, degp = deg q = |G|,
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and ψ is a form over K or over K if f ∈ K[x, y] or f ∈ K[x, y], respectively. By the
assumption on linear factors of f , we have degψ � 1, hence

(63) n = deg f = c1 + c2 + |G| degψ � |G|.
On the other hand, by Lemma 1,

(64) η|G| := ζ|G| + ζ−1
|G| ∈ K,

hence by Definition 7,

(65) |G| � a1(n,K).

To estimate |G| for f ∈ K[x, y] a division into cases is necessary.
If c1 + c2 ≡ 0 mod 2, then

n ≡ |G| degψ mod 2.

For n odd this implies n ≡ |G| mod 2, hence

(66) |G| � a2(n,K).

For n even either degψ ≡ 1 mod 2, and then again (66) holds, or degψ ≡ 0 mod 2, in
which case by (63) and (64),

|G| � a1(n/2,K).

But

(67) n ≡ 0 mod 2 implies a1(n/2,K) � a2(n,K),

since if a1(n/2,K) ≡ 1 mod 2, we have

2a1(n/2,K) � n and η2a1(n/2,K) ∈ K.
If c1 + c2 ≡ 1 mod 2, then c1 �= c2, hence χ1 ∈ K[x, y] by Theorem 1, and ζ|G| ∈ K

by Lemma 14. Now (63) implies |G| � n− 1, hence by Definition 7,

|G| � b(n− 1,K),

which together with (65) and (66) proves the first part of the lemma.
To prove the second part we put

f1 = χn−a1(n,K)
1 (p + q), f2 = (χ1χ2)

(n−a2(n,K))/2(p + q), f3 = χn−b(n−1,K)
1 (p + q),

where χ1, χ2 and p, q are given in Definition 5 for G cyclic of order a1(n,K), a2(n,K),
b(n− 1,K), respectively. Now p + q is prime to χ1χ2, is not a perfect power in K[x, y]
and has |G| coprime linear factors over K . Hence the fi are not perfect powers and since
for n � 3, by Corollary 13, a1(n,K) � 3, a2(n,K) � 3, b(n− 1,K) � 2, each fi has at
least three coprime linear factors over K . ��

Lemma 26. Assume n � 3 and either π = 0 or π > n. If f of degree n has at least three
coprime linear factors over K and Aut(f,K) is dihedral, then

|Aut(f,K)| � 2a2(n,K).
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There exists a form f0 ∈ K[x, y] of degree n, with at least three coprime linear factors
over K and not a perfect power in K[x, y], such that

|Aut(f0,K)| � 2a2(n,K).

Proof. If G = Aut(f,K) is dihedral, then by Lemma 7, Theorem 2 and Corollary 8,

(68) f = χc11 χ
c2
2 χ

c3
3 ψ(p, q),

where

degχ1 = degχ2 = |G|/2, degp = deg q = |G|
and ψ is a binary form over K or K if f ∈ K[x, y] or f ∈ K[x, y], respectively. On the
other hand, by Lemma 1,

(69) η|G|/2 ∈ K.
It follows from (68) that

(70) n = c1|G|/2 + c2|G|/2 + 2c3 + |G| degψ.

For n odd it follows that |G|/2 ≡ 1 mod 2 and c1 + c2 ≡ 1 mod 2, hence

|G|/2 � n, |G|/2 ≡ nmod 2,

thus by Definition 7 and (69),

(71) |G| � 2a2(n,K).

For n even, if c1 + c2 ≡ 1 mod 2, the same inequality holds; if c1 + c2 ≡ 0 mod 2, then,
by (70) and the assumption on linear factors of f , either c1 + c2 � 2 or ψ �∈ K , hence

|G|/2 � n/2, |G|/2 � 2a1(n/2,K),

and by (67) we again obtain (71).
In order to prove the second part of the lemma we put

f0 = χ2χ
(n−a2(n,K))/2
3 ,

where χ2, χ3 are given in the Example (p. 802) for G dihedral of order 2a2(n,K) with
a = 1, b = 0. Since degχ2 = a2(n,K) and degχ3 = 2 we have deg f0 = n, and since
χ2, χ3 ∈ K[x, y] we have f0 ∈ K[x, y].

Now, χ2 is prime to χ3, is not a perfect power inK[x, y] and has a2(n,K) � 3 coprime
linear factors over K . Hence f0 is not a perfect power in K[x, y] and has at least three
coprime linear factors over K . ��

Lemma 27. Let n � 3 and either π = 0 or π > n and let f ∈ K[x, y] be a form of
degree n and not a perfect power. If Aut(f,K) contains a subgroup isomorphic to Gi ,
where G1 = A4, G2 = S4, G3 = A5, then

(72) n = c1 |Gi |
i + 2

+ c2
|Gi |

3
+ c3

|Gi |
2

+ c4|Gi |,
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where ci are non-negative integers and

(73) either (c1, c2, c3) = 1 or c4 �= 0.

Moreover,

(74) levelK � 2 and if i = 3, then
√

5 ∈ K.
If (72)–(74) are satisfied with c4 = 0, then there exists a form f ∈ K[x, y] of degree n,
with at least three coprime linear factors overK and not a perfect power inK[x, y], such
that Aut(f,K) contains Gi . Moreover, for i > 1 such a form f exists in K[x, y].
Proof. If Aut(f,K) contains a subgroup isomorphic to Gi , then PGL2(K) contains such a
subgroup, hence (74) holds by Lemma 2. Further, by Corollary 8, we have

(75) f =
k∏
i=1

χ
ci
i ψ(p, q),

where χi and p, q are given in Definition 5 and ψ is a binary form over K . By Lemma 7
we have h = 3,

(76) degχ1 = |Gi |
i + 2

, degχ2 = |Gi |
3
, degχ3 = |Gi |

2
,

while, by Definition 5,

degp = deg q = |Gi |.
Now (72) follows from (75) with c4 = degψ , and (73) follows from (75) and the condition
that f is not a perfect power in K[x, y].

In the opposite direction, if (72)–(74) hold with c4 = 0, we take

f =
3∏
i=1

χ
ci
i .

By Definition 5, χi are coprime and separable, hence the number of coprime linear factors
of f over K is at least

|Gi |
(

sgn c1
i + 2

+ sgn c2
3

+ sgn c3

2

)
� |Gi |
i + 2

� 4.

Also f is not a perfect power in K[x, y], since (c1, c2, c3) = 1 by (73). For i > 1, χi
are of distinct degrees, hence no two of them are conjugate over K and, by Corollary 6,
they are in K[x, y]. Thus f ∈ K[x, y]. ��

Lemma 28. Assume π = 0 or π > 3. A quartic form f ∈ K[x, y] with at least three
coprime linear factors over K , which is not a perfect power in K[x, y] and for which
Aut(f,K) contains a subgroup isomorphic to A4, exists if and only if

√−3 ∈ K .

Proof. If Aut(f,K) contains a subgroup isomorphic to A4, then it has an element of order 3.
By Corollary 3 it follows that either

√−3 ∈ K , or f is square in K[x, y], the possibility
excluded by the condition on f .
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For the opposite direction, we take f = x4 − xy3. This form has two non-trivial weak
automorphs defined over K ,

S =
( −1 1

2 1

)
K∗, T =

(
ζ3 0
0 1

)
K∗.

They satisfy the equations S2 = E, T 3 = E, T ST = ST −1S, hence 〈S, T 〉 ∼= A4. ��

Lemma 29. If levelK � 2,
√

5 ∈ K and either π = 0 or π > 5, then there exists a
form f ∈ K[x, y] of degree 60, with at least three coprime linear factors over K and not
a perfect power in K[x, y], such that Aut(f,K) contains a subgroup isomorphic to A5.

Proof. By Lemma 2, PGL2(K) contains a subgroup isomorphic to A5. Let χ1, χ2, χ3 be
the polynomials defined in Definition 5 for this group G, such that χi ∈ K[x, y] and

degχ1 = 12, degχ2 = 20, degχ3 = 30

(see the proof of Lemma 27). We assert that for a certain ε = ±1,

fε = χ5
1 + εχε2

has the required properties.
If rε is the number of distinct zeros offε(x, 1), then by the abc-theorem for polynomials

(see [18])

rε > 60 − degχ1(x, 1)− degχ2(x, 1) � 28,

thus fε has at least 29 coprime linear factors over K . If fε is a perfect power in K[x, y],
then

fε = g2
ε , gε ∈ K[x, y].

Moreover, Aut(gε,K) = Aut(fε,K), hence Aut(gε,K) contains G and, by Corollary 8,

gε =
3∏
i=1

χ
dεi
i ψε, ψε ∈ K.

Since (fε, χ1χ2) = 1 and deg fε = 2 degχ3 we conclude that

dε1 = dε2 = 0, dε3 = 1

and

fε = ψ2
ε χ

2
3 .

If this holds for ε = 1 and ε = −1, then

2χ5
1 = f1 + f−1 = (ψ2

1 + ψ2−1)χ
2
3 ,

which contradicts (χ1, χ3) = 1. ��

Lemma 30. The equation

(77) m = 3c1 + 4c2 + 6c3
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is solvable in relatively prime non-negative integers for every m � 9, and the equation

(78) m = 6c1 + 10c2 + 15c3

is solvable in such integers if and only if m ∈ M \ {30}.

Proof. Solvability of (77) form < 12 can be checked case by case. By a classical theorem
due to Curran Sharp [8] every integer greater than ab − a − b is a linear combination
of a, b with non-negative coefficients. For m � 12 we have m − 6 � 6 and hence
m− 6 = 3c1 + 4c2, where c1, c2 are non-negative integers. It suffices to take c3 = 1.

Solvability of (78) for odd m < 31 and for even m < 76 can be checked case by
case. For odd m � 31, (m − 15)/2 � 8 is an integer and, by Curran Sharp’s theo-
rem, (m − 15)/2 = 3c1 + 5c2, where c1, c2 are non-negative integers. It suffices to take
c3 = 1. For even m � 76, (m − 30)/2 � 23 is an integer, hence by Curran Sharp’s the-
orem (m− 30)/2 = 3d1 + 5d2, where d1, d2 are non-negative integers. Moreover, since
23 > 3 · 4 + 5 · 2, we have either d1 � 5 or d2 � 3. If at least one di is odd we take
c1 = d1, c2 = d2, c3 = 2, otherwise we take c3 = 2 and either c1 = d1 − 5, c2 = d2 + 3
or c1 = d1 + 5, c2 = d2 − 3. ��

Proof of Theorem 5. The assumption that f is not a perfect power inK[x, y] implies in the
case (46) that k = 1, n = q + 1. This gives A(πg + 1,K) = B(πg + 1,K) = π3g − πg
if Fπg ⊂ K . On the other hand, (47)–(49) imply

|Aut(f,K)| � n(n− 1),

hence A(n,K) � n(n− 1) if either n �= πg + 1 or Fπg �⊂ K . This bound is attained for
every π > 0 and n = πg . Indeed, for q = πg ,

Aut(xq − xyq−1,Fq) ⊃
{(
α β

0 1

)
K∗ : α ∈ F∗

q, β ∈ Fq

}
.

Assume now that π = 0 or π > n. By Theorem 4,

|Aut(f,K)| �≡ 0 mod π

and, by Lemma 7, G = Aut(f,K) is either cyclic, dihedral or polyhedral. The first two
cases are considered in Lemmas 25 and 26. If G is a polyhedral group, then (72) holds by
Lemma 27, and since all terms on the right hand side are even, n is even.

For n odd it follows that Aut(f,K) is either cyclic or dihedral, and by Lemmas 25, 26,

A(n,K) � max{a1(n,K), 2a2(n,K)},
B(n,K) � max{b(n− 1,K), 2a2(n,K)}.

The inequalities in the opposite direction follow from the second part of Lemmas 25 and 26.
This gives the theorem for n odd.

For n even a further study of polyhedral groups is necessary. For n = 4 equation (72)
gives i = 1, |Gi | = 12, c3 = c4 = 0. Since 12 > 8 = max{a1(4,K), 2a2(4,K)} we
obtain from Lemmas 25–27,

A(4,K) =
{

12 if levelK � 2,

max{a1(4,K), 2a2(4,K)} otherwise,
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and from Lemmas 25, 26 and 28,

B(4,K) =
{

12 if
√−3 ∈ K,

max{b(3,K), 2a2(4,K)} otherwise.

For even n > 4 we have 2a2(n,K) � 12, hence the equation (72) is of interest only for
i > 1, and if n < |G|, then (c1, c2, c3) = 1 by (72), (73).

For n = 6, 8, 14 and i > 1, (72) gives i = 2 and 〈c1, c2, c3〉 = 〈1, 0, 0〉 or 〈0, 1, 0〉 or
〈1, 1, 0〉, respectively. It follows by Lemmas 25–27 that for n = 6, 8, 14,

A(n,K) =
{

max{a1(n,K), 2a2(n,K), 24} if levelK � 2,

max{a1(n,K), 2a2(n,K)} otherwise;

B(n,K) =
{

max{b(n− 1,K), 2a2(n,K), 24} if levelK � 2,

max{b(n− 1,K), 2a2(n,K)} otherwise.

For n = 10, 16 the equation (72) has no solution with i > 1 and (c1, c2, c3) = 1, hence,
by Lemmas 25–27,

A(n,K) = max{a1(n,K), 2a2(n,K)},
B(n,K) = max{b(n− 1,K), 2a2(n,K)}.

For n = 12, i > 1 and (c1, c2, c3) = 1, (72) gives i = 2, 〈c1, c2, c3〉 = 〈0, 0, 1〉 or i = 3,
〈c1, c2, c3〉 = 〈1, 0, 0〉. Hence, by Lemmas 25–27,

A(12,K) =

⎧⎪⎨⎪⎩
max{a1(n,K), 2a2(n,K), 24} if levelK � 2,

√
5 �∈ K,

60 if levelK � 2,
√

5 ∈ K,
max{a1(n,K), 2a2(n,K)} otherwise;

B(12,K) =

⎧⎪⎨⎪⎩
max{b(n− 1,K), 2a2(n,K), 24} if levelK � 2,

√
5 �∈ K,

60 if levelK � 2,
√

5 ∈ K,
max{b(n− 1,K), 2a2(n,K)} otherwise.

By Lemma 30 for n = 2m, m � 9, (72) always has a solution with i = 2, c4 = 0,
(c1, c2, c3) = 1, and has a solution with i = 3, c4 = 0, (c1, c2, c3) = 1 if and only
if m ∈ M \ {30}. Since M contains all integers greater than 29 except 32 and 44, by
Lemmas 25–27, the formulae forA(n,K) andB(n,K) hold for all even n, except possibly
for n = 2m,m = 30, 32, 44. Form = 30 the formulae follow from Lemmas 25, 26 and 29,
form = 32 or 44 the only solution of (72) does not satisfy (73), hence the formulae follow
from Lemmas 25–27. ��

Proof of Corollary 14. For K = C we have a1(n,K) = n = a2(n,K). ��

4. Criteria for a form to have a non-trivial automorph
over a given arbitrary field

Theorem 6. Let f ∈ K[x, y] be a form of degree n > 2 without multiple factors over K .
If Aut(f,K) is non-trivial and f (x, 1) of degree m is irreducible overK , then the Galois
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group of f (x, 1) over K is either imprimitive or cyclic of prime order m. For n � 4 the
converse holds unless n = 4 and m = 3.

Corollary 15. Assume that K contains no primitive cubic root of unity and f ∈ K[x, y]
is a form of degree 2, 3 or 4 without multiple factors over K . The group Aut(f,K) is
non-trivial if and only if the Galois group of f (x, 1) overK is either transitive imprimitive
or abelian with the lengths of orbits not 〈3, 1〉.
Corollary 16. Let f ∈ K[x, y] be a cubic form with f (1, 0) �= 0 and without multiple
factors over K and G be the Galois group of f (x, 1) over K . Then Aut(f,K) ∼= D3 if
G ∼= C1, Aut(f,K) ∼= C2 if G ∼= C2, Aut(f,K) ∼= C3 if G ∼= C3, and Aut(f,K) ∼= C1 if
G ∼= D3.

Remark 11. For quartic forms f the structure of the Galois group G(f ) of f (x, 1)
over Q does not determine in general the structure of Aut(f,Q), for instance for
f1 = x4+x3y+x2y2+xy3+y4, f2 = x4+4x3y−6x2y2−4xy3+y4, G(fi) ∼= C4, while
Aut(f1,Q) ∼= C2 (proof by means of Lemma 17), and Aut(f2,Q) contains C4 generated
by
( 1 1
−1 1

)
Q∗.

The proof of Theorem 6 is based on the following

Lemma 31. Given a pair 〈g, h〉 of coprime binary forms overK each of degree at most 2
and not both in K[xπ , yπ ], there exists a non-trivial common weak automorph T of g
and h. Moreover, if

g =
2∑
i=0

aix
2−iyi , h =

2∑
i=0

bix
2−iyi

we can take

T =
(
α β

γ δ

)
K∗, where

(
α β

γ δ

)
=
( −a0b2 + a2b0 − a1b2 + a2b1

a0b1 − a1b0 a0b2 − a2b0

)
.

Proof. If g, h are both of degree 2 and T is as above we have∣∣∣∣ α β

γ δ

∣∣∣∣ = −R(g, h) �= 0,

whereR(g, h) is the resultant of g and h (see [21, p. 219]). Also 〈α, β, γ, δ〉 = 〈α, 0, 0, α〉
implies π = 2, ai = bi = 0, g ∈ K[xπ , yπ ], h ∈ K[xπ , yπ ], contrary to assumption.
Moreover

g(αx + βy, γ x + δy) = R(g, h)g(x, y),
h(αx + βy, γ x + δy) = R(g, h)h(x, y),

thus T is a common weak automorph of g and h. The case where one of the forms g, h is
linear is reduced to the former by replacing this form by its square. ��

Proof of Theorem 6. Necessity. By the assumption f is not divisible by y2, hence f (x, 1)
is of degree m � n − 1 � 2. If m = 2 the assertion is trivial, thus assume m � 3. Let
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Z = {ξ ∈ K ∪ {∞} : ef (ξ) > 0}. By Lemma 17, if T ∈ Aut(f,K), we have T ∗(Z) = Z
and since T ∗∞ ∈ K ∪ {∞}, f has no zeros in K and T ∗(Z \ {∞}) = Z \ {∞}. If
T is non-trivial, the orbits of Z \ {∞} under the action of T ∗, say O1, . . . , Ol, are of
lengths greater than 1, since the equation T ∗ξ = ξ gives [K(ξ) : K] � 2 < m. They
are blocks of imprimitivity of the Galois group G in question, provided l > 1. Indeed,
if τ ∈ G and ξ ∈ Oi , τ(ξ) ∈ Oj , then τ(T ∗ξ) = T ∗τ(ξ) ∈ Oj . If l = 1, but m
is composite, m = m1m2, mi > 1, we replace T by T m1 and l by m1. It remains to
consider the case l = 1, m a prime. Then T ∗ ∈ G. Indeed, since f (x, 1) is irreducible,
G is transitive, thus if f (ξ, 1) = 0 there exists τ0 ∈ G such that τ0(ξ) = T ∗ξ . It follows
that τ0(T ∗iξ ) = T ∗iτ0(ξ) = T ∗i+1(ξ), hence τ0 = T ∗. Also for every τ ∈ G we have
τ(ξ) = T ∗j ξ for some j , thus τ(T ∗iξ ) = T ∗iτ (ξ) = T ∗i+j ξ = T ∗j (T ∗iξ ) for each i, so
τ = T ∗j , hence G is cyclic, generated by T ∗.

Sufficiency for n � 4. In view of Lemma 31 and the condition 〈n,m〉 �= 〈4, 3〉 it suffices to
consider f (x, 1) of degree n and monic. Let n = 3 and f (x, 1) = x3+ax2+bx+c. Since
G is cyclic there exist d, e, g in K such that f (ξ, 1) = 0 implies f (dξ2 + eξ + g, 1) = 0
where 〈d, e, g〉 �= 〈0, 0, g〉, 〈0, 1, 0〉. The system of three linear equations for α, β, γ, δ,

(e − ad)γ + dδ = 0,

−α + (g − bd)γ + eδ = 0,

−β − cdγ + gδ = 0,

has a non-zero solution 〈α, β, γ, δ〉 ∈ K4. This solution satisfies for all zeros ξ of f (x, 1)
the equation

(dξ2 + eξ + g)(γ ξ + δ) = αξ + β.
Note that γ ξ + δ = 0 would give α = β = γ = δ = 0 since ξ �∈ K , a contradiction.
Hence γ ξ + δ �= 0 and

dξ2 + eξ + g = αξ + β
γ ξ + δ .

It follows that for some r ∈ K ,

f

(
αx + β
γ x + δ , 1

)
(γ x + δ)3 = rf (x, 1)

and

f (αx + βy, γ x + δy) = rf (x, y).
Observe that αδ− βγ = 0 or 〈α, β, γ, δ〉 = 〈α, 0, 0, α〉 would give dξ2 + eξ + g ∈ K or
dξ2 + eξ + g = ξ , contrary to [K(ξ) : K] = 3.

Now, let n = 4. Since m = 4, G is imprimitive. It follows that f is reducible over a
separable quadratic extension of K , say K(η). Thus we have

f = b
( 2∑
i=0

aix
2−iyi

)( 2∑
i=0

a′ix2−iyi
)
,

where ai, a′i ∈ K(η) and ai, a′i are conjugate over K , while b ∈ K . Applying Lemma 31
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with bi = a′i we find that the factors of f have a common non-trivial automorph with the
matrix

M =
( −a0a

′
2 + a2a

′
0 −a1a

′
2 + a2a1

a0a
′
1 − a1a

′
0 a0a

′
2 − a2a

′
0

)
,

hence also with the matrixM/(η − η′). However, the last matrix is invariant with respect
to conjugation, so its elements are in K . ��

Proof of Corollary 15. This follows at once from Theorem 6 and Corollary 2. ��

Remark 12. The assumption ζ �∈ K , where ζ is a primitive cubic root of unity, cannot
be omitted in Corollary 15, as the following example shows: K = Q(ζ ), T = ( ζ 0

0 1

)
K∗,

f = x(x3 + 2y3).

Proof of Corollary 16. By Corollary 1, Aut(f,K) can contain a cyclic group Cν for ν = 2
or 3 only. The lengths of the orbits of an arbitrary set under the action of D2 are even, hence,
by Lemma 17, Aut(f,K) cannot contain a copy of D2. On the other hand, |Aut(f,K)| � 6
by Theorem 5. This limits the possible types of Aut(f,K) to D3,C3,C2 and C1. If G ∼= C1,
then f is equivalent overK to axy(x+y) and Aut(f,K) contains the automorphs

( 0 1
1 0

)
K∗

and
( 0 −1

1 1

)
K∗ of orders 2 and 3, respectively, thus Aut(f,K) ∼= D3. If G ∼= C2, then, by

Corollary 2, Aut(f,K) does not contain C3 and, by Lemma 31, Aut(f,K) contains a C2,
thus Aut(f,K) ∼= C2. If G ∼= C3, then, by Theorem 6, Aut(f,K) is non-trivial, while,
by Corollary 1, it does not contain C2, hence Aut(f,K) ∼= C3. Finally, if G ∼= D3, then
Aut(f,K) ∼= C1 by Theorem 6. ��

5. The case of an algebraically closed field

In this section K is an algebraically closed field of characteristic π , and f is a non-
singular binary form over K of degree n.

If n = 3, then Aut(f,K) ∼= D3 by Corollary 16. We shall now consider n = 4.

Definition 10. For a form f (x, y) =
4∑
i=0
aix

4−iyi put

A(f ) = a2
2 − 3a1a3 + 12a0a4,

B(f ) = 27a2
1a4 + 27a0a

2
3 + 2a3

2 − 72a0a2a4 − 9a1a2a3.

Remark 13. A(f ), B(f ) are invariants of f and satisfy

27D(f ) = 4A(f )3 − B(f )2,
where D(f ) is the discriminant of f (see [27, Bd I, §70]).
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Theorem 7. For a non-singular quartic binary form f over K we have

Aut(f,K) ∼=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
S4 if A(f ) = B(f ) = 0,

A4 if A(f ) = 0, B(f ) �= 0,

D4 if A(f ) �= 0, B(f ) = 0,

D2 if A(f )B(f ) �= 0.

The proof is based on three lemmas.

Lemma 32. For a non-singular quartic binary form f over K , Aut(f,K) contains C3 if
and only if A(f ) = 0.

Proof. Necessity. If π �= 3 and the cyclic group in question is generated by
( α β
γ δ

)
K∗ we

have, by Theorem 1,

f = χi(aχ3
i + bχ3

3−i ) = aχ4
i + bχiχ3

3−i ,
where i ∈ {1, 2}, χ1, χ2 are given in Definition 3 and a, b are in K . Denoting by R1 the
resultant of χ1, χ2 and by f1 the form ax4 + bxy3 we obtain, by the above Remark,

A(f ) = R2
1A(f1) = 0.

If π = 3 we have, again by Theorem 1,

f = χ1(aχ
3
1 + b(λ2χ3

2 − χ2χ
2
1 )) = aχ4

1 − bχ3
1χ2 + bλ2χ1χ

3
2 ,

where λ, χ1, χ2 are as in Definition 4 and a, b are in K . Denoting by R2 the resultant of
χ1, χ2 and by f2 the form ax4 − bx3y + bλ2xy3 we obtain, by the Remark,

A(f ) = R2
2A(f2) = 0.

Sufficiency. The form f is clearly equivalent, by a linear transformation overK , to a form

f3 = xy(x2 + axy − y2).

The conditionA(f ) = 0 gives a2 +3 = A(f3) = 0. If π �= 3 we choose a primitive cubic
root of unity � and conclude that a = ±(�2 − �). Then the transformation T2(x, y) =
(�2x ± �y, y) of order 3 in PGL2(K) satisfies f3(T2) = f3, hence Aut(f,K) conjugate
to Aut(f3,K) contains C3.

If π = 3 the condition A(f3) = 0 gives a = 0. Then the transformation T2(x, y) =
(x+y, y) of order 3 in PGL2(K) satisfiesf3(T2) = f3, hence again Aut(f,K) contains C3.

��

Lemma 33. For a non-singular quartic binary form f over K , Aut(f,K) contains C4 if
and only if B(f ) = 0.

Proof. Necessity. If π = 2, then by Lemma 1 no element of PGL2(K) is of order 4, hence
the assumption implies π �= 2. If

( α β
γ δ

)
K∗ is an element of order 4 in Aut(f,K), then by

Theorem 1,

f = aχ4
1 + bχ4

2 ,
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where χ1, χ2 are given in Definition 3. Denoting by R3 the resultant of χ1, χ2 and by f4
the form ax4 + by4 we have, by the Remark,

B(f ) = R3
3B(f4) = 0.

Sufficiency. Since D(f ) �= 0 the assumption B(f ) = 0 implies π �= 2 by the Remark.
Then (see [11, §13]) f is equivalent, by a linear transformation over K , to a form

f5 = x4 +mx2y2 + y4, m ∈ K.
The condition B(f ) = 0 gives

2m3 − 72m = B(f5) = 0,

hence m = 0, ±6. But the forms x4 ± 6x2y2 + y4 are equivalent to f6 = x4 + y4, since

x4 + 6x2y2 + y4 = 1
2 (x + y)4 + 1

2 (x − y)4,
x4 − 6x2y2 + y4 = 1

2 (x + ζy)4 + 1
2 (x − ζy)4,

where ζ is a primitive quartic root of unity. On the other hand, the transformation T3 =
(ζx, y) of order 4 in PGL2(K) satisfies f6(T3) = T3, hence Aut(f,K) conjugate to
Aut(f6,K) contains C4. ��

Lemma 34. For a non-singular quartic binary form f over K , Aut(f,K) contains D2,
but no D2 × C2.

Proof. If π �= 2 then by the already quoted result f is equivalent by a linear transformation
over K to a form

f5 = x4 +mx2y2 + y4, m ∈ K.
The transformations T4(x, y) = (y, x) and T5(x, y) = (−x, y) satisfy T 2

4 = E = T 2
5 ,

T4T5 = T5T4, f5(T4) = f5 = f5(T5), hence Aut(f,K) conjugate to Aut(f5,K) con-
tains D2. On the other hand, it contains no D2 × C2, since this group is not on the list
given in the proof of Lemma 7.

If π = 2 then f is equivalent, by a linear transformation over K , to a form

f7 = xy(x + ξy)(x + ξ−1y), ξ ∈ K \ {0, 1}.
The transformations T6(x, y) = (x + ξy, ξx + y), T7(x, y) = (ξx + y, x + ξy) satisfy
T 2

6 = e = T 2
7 , T6T7 = T7T6, f7(T6) = (ξ + 1)4f7 = f7(T7), hence Aut(f,K) conjugate

to Aut(f7,K) contains D2. On the other hand, it contains no D2 × C2 by Corollary 11. ��

Proof of Theorem 7. If A(f ) = B(f ) = 0, then since D(f ) �= 0 we have π = 3 by the
Remark. The form f is equivalent, by a linear transformation over K , to a form

f3 = xy(x2 + axy − y2)

and the condition A(f ) = 0 implies a = 0. Hence Aut(f,K) ∼= Aut(f3,K) ∼=
PGL2(F3) ∼= S4 by Theorem 4.

If A(f ), B(f ) are not both 0, then (46) is not satisfied, hence by Theorem 4 and
Lemma 34,

(79) |Aut(f,K)| divides 8 or 12.
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If A(f ) = 0 and B(f ) �= 0, then by Lemmas 32–34, Aut(f,K) contains C3 and D2,
but no C4 and no D2×C2. Hence its 2-Sylow subgroup is D2. On the other hand, Aut(f,K)
contains no C6 by Theorem 1. Hence, Aut(f,K) ∼= A4 by (79).

If A(f ) �= 0 and B(f ) = 0, then by Lemmas 32–34, Aut(f,K) contains C4 and D2,
but no C3 and no D2 × C2. Therefore, by (79), |Aut(f,K)| = 8 and Aut(f,K) ∼= D4.

If A(f )B(f ) �= 0, then by Lemmas 32–34, Aut(f,K) contains D2, but no C3, no C4

and no D2×C2. Therefore, by (79), |Aut(f,K)|=4 and Aut(f,K)∼=D2. ��

Now, we proceed to the case n � 5.

Definition 11. Fn(K) is the set of all binary forms f of degree n defined overK such that
Aut(f,K) is non-trivial.

Theorem 8. Fn(C) is Zariski closed for n � 5 only.

Lemma 35. F5(C) is Zariski closed.

Proof. f ∈ F5(C) if and only ifR = 0, whereR is the Hermite invariant of f of degree 18.
Indeed, if f ∈ F5(C), then, by Theorem 1, f is equivalent over C to one of the forms

(80) x5−iyi (0 � i � 2), xy(x3 + y3), x5 + y5,

or

(81) x(Ax4 + Bx2y2 + Cy4).

In each case we check in the tables of Faà di Bruno [13, Anhang, Tabelle III, Die irre-
duciebeln Invarianten IV5] that R = 0. To prove the converse, let α be the covariant of f
of degree 1 and order 5. If α = 0, then according to Clebsch [5, §93], f is either equivalent
over C to one of the forms (80), or has a factor of multiplicity at least three, in which case
it has a non-trivial automorph by Lemma 31. If α �= 0, but R = 0, then again according to
Clebsch [5, §94], f is equivalent over C to a form (81). It now suffices to apply Theorem 1
in the opposite direction. ��

Lemma 36. For k � 2 and n � k + 3 we have

f0(x, y) = xk
n−k∏
i=1

(x − iy) �∈ Fn(C).

Proof. Assuming f0(αx + βy, γ x + δy) = f0(x, y) we obtain

(αx + βy)k |f0(x, y),

hence k � 2 implies β = 0 and we have

αk
n−k∏
i=1

(
(α − iγ )x − iδy) = n−k∏

i=1

(x − iy),
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thus the sequence 〈(α − iγ )/iδ〉1�i�n−k is a permutation of 〈1/i〉1�i�n−k . Clearly,
α/δ, γ /δ ∈ Q and comparing the maxima and minima in both sequences we obtain

for α/δ > 0,
α

δ
− γ
δ
= 1,

α

δ(n− k) −
γ

δ
= 1

n− k ,

for α/δ < 0,
α

δ
− γ
δ
= 1

n− k ,
α

δ(n− k) −
γ

δ
= 1.

In the former case it follows that α/δ = 1, γ /δ = 0, thus the automorph is trivial; in the
latter case

α

δ
= −1,

γ

δ
= −1 − 1

n− k ,
thus comparing the second greatest terms in both sequences we get

− 1

n− k − 1
+ 1 + 1

n− k = 1

2
,

which gives n− k = 2, contrary to assumption. ��

Lemma 37. For an integer n � 5 and a real number t ∈ (0, 1)we have ft (x, y) ∈ Fn(C),
where

ft (x, y) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

n/2∏
i=1

(x − iy)
(
x − 2(i − 1)t

i + it − 2t
y

)
if n ≡ 0 mod 2,

(n−1)/2∏
i=1

(x − iy)
(
x − it

i + it − t y
)

if n ≡ 1 mod 2.

Proof. For t ∈ (0, 1) let

g(x, y) =
)n/2*∏
i=1

(x − iy),

ht (x, y) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

n/2∏
i=1

(
x − 2(i − 1)t

i + it − 2t
y

)
if n ≡ 0 mod 2,

x

(n−1)/2∏
i=1

(
x − it

i + it − t y
)

if n ≡ 1 mod 2,

T (x, y) =
{
(2tx − 2ty, (t + 1)x − 2ty) if n ≡ 0 mod 2,

(tx, (t + 1)x − ty) if n ≡ 1 mod 2.

For n ≡ 0 mod 2 we have

g(T (x, y)) = g(2t, t + 1)ht (x, y), ht (T (x, y)) = ht (2t, t + 1)g(x, y),

hence

ft (T (x, y)) = ft (2t, t + 1)ft (x, y)
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and T is a non-trivial weak automorph of ft .
Similarly, for n ≡ 1 mod 2,

g(T (x, y)) = g(t, t + 1)ht (x, y), ht (T (x, y)) = ht (t, t + 1)g(x, y),

hence

ft (T (x, y)) = ft (t, t + 1)ft (x, y)

and T is again a non-trivial weak automorph of ft . ��

Proof of Theorem 8. For n � 4, Fn(C) consists of all binary forms over C by Lemma 31;
the case n = 5 is covered by Lemma 35. Suppose that, for n � 6, Fn(C) is given by the
alternative of systems of equations Fij (a0, . . . , an) = 0 (j ∈ Ji). Using Lemma 37 and
denoting the coefficients of ft (x, y) by a0(t), . . . , an(t) we obtain for at least one i0 and
t arbitrarily close to 0,

Fi0j (a0(t), . . . , an(t)) = 0 (j ∈ Ji0).
Taking the limit as t tends to 0 we obtain

Fi0j (a0, . . . , an) = 0 (j ∈ Ji0),
where

n∑
i=0
aix

n−iyi=f0(x, y).Thus by our assumptionf0 ∈ Fn(C), contrary to Lemma 36.

��
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Reducibility of symmetric polynomials

To Donald J. Lewis on his 80th birthday

Abstract. A necessary and sufficient condition is given for reducibility of a symmetric polynomial
whose number of variables is large in comparison to degree.

Let K be a field and τi(x1, . . . , xm) the i-th elementary symmetric polynomial of the
variables x1, . . . , xm. We shall show

Theorem 1. Let F ∈K[y1, . . . , yn] \K , n> max{4, degF +1}, τi=τi(x1, . . . , xn). Then
F(τ1, . . . , τn) is reducible inK[x1, . . . , xn] if and only if either F is reducible overK , or

F = cNK(α)/K
(
αn +

n∑
j=1

αn−j yj
)
, c ∈ K∗, α algebraic over K.

Theorem 2. Let F ∈ K[y1, . . . , yn] \ K be isobaric with respect to weights 1, . . . , n
(yi of weight i) and n > degF + 1. Then F(τ1, . . . , τn) is reducible over K if and only if
either F is reducible over K , or F = cyn, c ∈ K∗, or n = 4, charK �= 3, K contains a
primitive cubic root of 1 and

F = a(y2
2 − 3y1y3 + 12y4), a ∈ K∗.

The last part of Theorem 2 shows that the 4 in the formulation of Theorem 1 cannot be
replaced by 3. The example given at the end of the paper shows that degF + 1 cannot be
replaced by degF .

For a polynomial f ∈ K[x1, . . . , xn] and a permutation σ ∈ Sn we set

f σ = f (xσ(1), . . . , xσ(n)).
The proof of Theorem 1 is based on three lemmas.

Lemma 1. For n � 5 the alternating group An is generated by products (ab)(cd) of two
transpositions with a, b, c, d distinct.

Proof. See [1], p. 342. ��

Lemma 2. Assume that C ∈ K[x1, . . . , xn] is invariant with respect to An, but not
symmetric. Then for n � 3,

degxn C � n− 1.
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Proof. By the theorem of P. Samuel (see [2], p. 13)

C = A+ BDn
where A,B ∈ K[x1, . . . , xn] are symmetric, B �= 0 and

Dn = 1

2

(∏
i<j

(xi − xj )+
∏
i<j

(xi + xj )
)
.

For n � 3 we have degxn Dn � n − 1, hence degxn C � n − 1, except possibly when
degxn A = degxn BDn. In that case, let α = degxn A, β = degxn B, and let a, b be the

leading coefficients of A and B with respect to xn. The coefficient of xβ+n−1
n in C equals

c = a + bDn−1

and since Dn−1 is not symmetric, c �= 0, thus again

degxn C � n− 1. ��

Lemma 3. If f ∈ K[x1, . . . , xn] \
n⋃
i=1
K[xi] is irreducible over K and not symmetric,

then for n � 5

(1) degxn l.c.m.
σ∈Sn

f σ � n− 1.

Proof. Let f depend on exactly r variables, where 1 � r < n. The case r = 1 is excluded
by the conditions that f irreducible and f �= cxi . For every subset R of {1, . . . , n} of
cardinality r and containing n there exists σ ∈ Sn such that f σ depends on the variables xi
(i ∈ R) exclusively. For different sets R the forms f σ are projectively different and hence
coprime. For 1 < r < n the number of sets R in question is

(
n−1
r−1

)
� n− 1, thus (1) holds.

Consider now the case r = n and let

G = {σ ∈ Sn : f σ /f ∈ K}, H = {σ ∈ Sn : f σ = f }.
By Bertrand’s theorem (see [1], pp. 348–352) we have either G = Sn or G = An or
[Sn : G] � n. In the first case, if f τ = f for each transposition τ , then f σ = f for
all σ ∈ Sn, since Sn is generated by transpositions, thus f is symmetric, contrary to
assumption. Therefore, there exists a transposition τ = (ij), i �= j , such that

f τ = cf, c �= 1.

Since τ 2 = id, we have c2 = 1, thus charK �= 2, c = −1, and xi = xj implies f = 0.
Since f is irreducible,

f = a(xi − xj ), a ∈ K,
and it is easy to see that

degxn l.c.m.
σ∈Sn

f σ � n− 1.

Consider now the case G = An. By Lemma 1, An is generated by the products
π = (ab)(cd), where a, b, c, d are distinct. Since π2 = id, we have f π = cf , where
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c2 = 1. It follows that (f 2)σ = f 2 for all σ ∈ An. On the other hand, H < G gives either
H = An or [Sn : H ] � n.

If H = An, then by Lemma 2, degxn f � n − 1, hence (1) holds. If [Sn : H ] � n,
then f 2 cannot be symmetric, hence by Lemma 2, degxn f

2 � n− 1, thus

degxn f �
⌈
n− 1

2

⌉
.

Now, by the definition of G it follows that for τ = (12) we have f τ /f �∈ K , hence
(f τ , f ) = 1, thus

degxn [f, f τ ] � 2

⌈
n− 1

2

⌉
� n− 1,

and (1) holds.
It remains to consider the case [Sn : G] � n. Then among the polynomials f σ there

are at least n projectively distinct, hence coprime. Since each of them is of degree at least 1
in xn, (1) follows. ��
Proof of Theorem 1. Necessity. If F(τ1, . . . , τn) is reducible over K , then

(2) F(τ1, . . . , τn) = f1f2,

where fν ∈ K[x1, . . . , xn] \K (ν = 1, 2) and f1 is irreducible over K .
Clearly

degxn l.c.m.
σ∈Sn

f σ1 � degF < n− 1.

If f1 is not symmetric and f1 �∈ K[xi] (1 � i � n), this contradicts Lemma 3, thus
either

(3) f1 is symmetric

or

(4) f1 ∈ K[xi] for some i.

In the case (3), fν = Fν(τ1, . . . , τn), ν = 1, 2, where Fν ∈ K[y1, . . . , yn] \ K , and it
follows from (2) that

F(τ1, . . . , τn) =
2∏
ν=1

Fν(τ1, . . . , τn).

By the algebraic independence of τ1, . . . , τn over K ,

F = F1F2,

thus F is reducible over K .
In the case (4), since f1 is irreducible over K , we have

f1 = c1NL/K(α + xi), where L = K(α), α algebraic over K, c1 ∈ K.
Since F(τ1, . . . , τn) is symmetric, we have

f1(xj ) |F(τ1, . . . , τn) (1 � j � n),
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thus
n∏
j=1

f1(xj )

∣∣∣ F(τ1, . . . , τn).
However,

n∏
j=1

f1(xj ) = cn1
n∏
j=1

NL/K(α + xj ) = cn1NL/K
(
αn +

n∑
j=1

αn−j τj
)
,

hence

NL/K

(
αn +

n∑
j=1

αn−j τj
) ∣∣∣ F(τ1, . . . , τn)

and by the algebraic independence of τ1, . . . , τn,

NL/K

(
αn +

n∑
j=1

αn−j yj
) ∣∣∣ F.

Therefore, either F is reducible over K or

F = cNL/K
(
αn +

n∑
j=1

αn−j yj
)
, c ∈ K∗.

Sufficiency. If F = F1F2, where Fi ∈ K[y1, . . . , yn] \K , then

F(τ1, . . . , τn) =
2∏
ν=1

Fν(τ1, . . . , τn),

and since τ1, . . . , τn are algebraically independent,

Fν(τ1, . . . , τn) �∈ K,
thus F(τ1, . . . , τn) is reducible over K .

If F = cNK(α)/K(αn +
n∑
j=1
αn−j yj ), then

F(τ1, . . . , τn) = cNK(α)/K
( n∏
i=1

(α + xi)
)
= c

n∏
i=1

NK(α)/K(α + xi),

and since n > 1, F(τ1, . . . , τn) is reducible over K . ��

The proof of Theorem 2 is based on two lemmas.

Lemma 4. For n = 3, τ 2
1 + aτ2 is reducible over K only if either a = 0, or a = −3,

charK �= 3 and K contains a primitive cubic root � of 1. In the latter case

(5) τ 2
1 + aτ2 = (x1 + �x2 + �2x3)(x1 + �2x2 + �x3).
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Proof. Assuming reducibility we have

τ 2
1 + aτ2 = (x1 + αx2 + βx3)(x1 + βx2 + αx3), α, β ∈ K,

which gives

αβ = 1, α + β = a + 2, α2 + β2 = a + 2.

Hence

a + 2 = α2 + β2 = (α + β)2 − 2αβ = (a + 2)2 − 2 = a2 + 4a + 2,

so that a(a + 3) = 0, thus either a = 0, or a = −3 and charK �= 3. In the latter case
(x − α)(x − β) = x2 + x + 1, hence α and β are two primitive cubic roots of 1. The
identity (5) is easily verified. ��

Lemma 5. For n = 3, τ 2
2 + aτ1τ3 is reducible over K if and only if either a = 0, or

a = −3, charK �= 3 and K contains a primitive cubic root � of 1. In the latter case

(6) τ 2
2 + aτ1τ3 = (x2x3 + �x1x3 + �2x1x2)(x2x3 + �2x1x3 + �x1x2).

Proof. We have

τ 2
1 + aτ2 = τ 2

3

(
τ2(x

−1
1 , x−1

2 , x−1
3 )2 + aτ1(x−1

1 , x−1
2 , x−1

3 )τ3(x
−1
1 , x−1

2 , x−1
3 )
)
.

Therefore, if

τ 2
2 + aτ1τ3 = f1f2, fν ∈ K[x1, x2, x3] \K (ν = 1, 2),

we obtain

τ 2
1 + aτ2 = τ3f1(x

−1
1 , x−1

2 , x−1
3 )τ3f2(x

−1
1 , x−1

2 , x−1
3 ),

where τ3fν(x
−1
1 , x−1

2 , x−1
3 ) ∈ K[x1, x2, x3] \ K , hence by Lemma 4 either a = 0, or

a = −3, charK �= 3 and K contains a primitive cubic root � of 1. The identity (6) is
easily verified. ��

Proof of Theorem 2. Necessity. If degF = 1, then since F is isobaric, F = cyi , c ∈ K∗,
i � n. If cτi is reducible in K[x1, . . . , xn], then i = n. If n � 5, then Theorem 1 applies
and either F is reducible or

(7) F = cNK(α)/K
(
αn +

n∑
j=1

αn−j yj
)
, c ∈ K∗.

Since F is isobaric, we have α = 0 and F = cyn.
It remains to consider the case 2 � degF < n− 1 � 3, hence n = 4 and degF = 2.

We distinguish the following subcases:

F = y2
1 + ay2 =: F1, a �= 0,

F = y1y2 + ay3 =: F2, a �= 0,

F = ay2
2 + by1y3 + cy4 =: F3, ab �= 0, or ac �= 0, or bc �= 0,

F = y2y3 + ay1y4 =: F4, a �= 0,

F = y2
3 + ay2y4 =: F5, a �= 0.
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We have F1(τ1, τ2) = x2
4 + (a + 2)τ ′1 + (τ ′12 + aτ ′2), where τ ′i = τi(x1, x2, x3). If

F1(τ1, τ2) = (x4 + g)(x4 + h), where g, h are linear forms over K in x1, x2, x3, then
gh = τ ′12 + aτ ′2, hence by Lemma 4, a = −3, charK �= 3 and without loss of generality

g = b(x1 + �x2 + �2x3), h = b−1(x1 + �2x2 + �x3), b ∈ K∗.

Therefore,

b + b−1 = −1, b� + b−1�2 = −1, b�2 + b−1� = −1.

The first equation gives b = � or b = �2, thus either b�2 + b−1� �= −1 or
b� + b−1�2 �= −1, a contradiction. Therefore F1(τ1, τ2) is irreducible over K . Since

F1(τ1, τ2) = τ 2
4F5
(
τ2(x

−1
1 , . . . , x−1

4 ), τ3(x
−1
1 , . . . , x−1

4 ), τ4(x
−1
1 , . . . , x−1

4 )
)
,

the same applies to F5(τ2, τ3, τ4) (cf. proof of Lemma 5).
We have further

F2(τ1, τ2, τ3) = τ ′1x2
4 + (τ ′12 + (a + 1)τ ′2)x4 + (τ ′1τ ′2 + aτ ′3),

hence, if F2(τ1, τ2, τ3) is reducible over K then

F2(τ1, τ2, τ3) = (τ ′1x4 + bτ ′12 + cτ ′2)(x4 + dτ ′1), b, c, d ∈ K,
and

τ ′1τ ′2 + aτ ′3 = bdτ ′13 + cdτ ′1τ ′2.
Since τ ′1, τ ′2, τ ′3 are algebraically independent, it follows that a = 0, a contradiction.
Therefore F2(τ1, τ2, τ3) is irreducible over K . Since

F2(τ1, τ2, τ3) = τ 2
4F4
(
τ1(x

−1
1 , . . . , x−1

4 ), . . . , τ4(x
−1
1 , . . . , x−1

4 )
)

the same applies to F4(τ1, . . . , τ4) (cf. proof of Lemma 5).
It remains to consider F3. We have

F3(τ1, . . . , τ4) = a(τ ′1x4 + τ ′2)2 + b(x4 + τ ′1)(τ ′2x4 + τ ′3)+ cτ ′3x4

= (aτ ′12 + bτ ′2)x2
4 + ((2a + b)τ ′1τ ′2 + (b + c)τ ′3)x4 + (aτ ′22 + bτ ′1τ ′3).

If aτ ′1
2 + bτ ′2 were the leading coefficient with respect to x4 of a proper factor over K

of F3(τ1, . . . , τ4), then since it does not divide aτ ′2
2 + bτ ′1τ ′3, the complementary factor of

F3(τ1, . . . , τ4) would be x4 + dτ ′1, d ∈ K∗, which implies a = 0, bτ ′1τ ′2 + (b + c)τ ′3 =
bdτ ′1τ ′2 + (b/d)τ ′3, d = 1, c = 0, a contradiction.

If aτ ′1
2 + bτ ′2 is not the leading coefficient of any proper factor of F3(τ1, . . . , τ4) and

the latter polynomial is reducible over K , then aτ ′1
2 + bτ ′2 is reducible over K , hence, by

Lemma 4, either b = 0, or b = −3a, charK �= 3 and K contains a primitive cubic root �
of 1. In the former case

F3(τ1, . . . , τ4) = a(τ ′1x4 + d1τ
′
1

2 + e1τ ′2)(τ ′1x4 + d2τ
′
1

2 + e2τ ′2);
a(d1τ

′
1

2 + e1τ ′2)(d2τ
′
1

2 + e2τ ′2) = aτ ′22; d1 = d2 = 0,

(ae1 + ae2)τ ′1τ ′2 = 2aτ ′1τ ′2 + cτ ′3, c = 0, a contradiction.
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In the latter case, by Lemmas 4 and 5, either

F3(τ1, . . . , τ4) = a
(
(x1 + �x2 + �2x3)x4 + d(x2x3 + �x1x3 + �2x1x2)

)
× ((x1 + �2x2 + �x3)x4 + d−1(x2x3 + �2x1x3 + �x1x2)

)
or

F3(τ1, . . . , τ4) = a
(
(x1 + �x2 + �2x3)x4 + d(x2x3 + �2x1x3 + �x1x2)

)
c

×((x1 + �2x2 + �x3)x4 + d−1(x2x3 + �x1x3 + �2x1x2)
)
.

In the first subcase

d
(
x2x3 + �x1x3 + �2x1x2

)(
x1 + �2x2 + �x3

)
+ d−1(x2x3 + �2x1x3 + �x1x2

)(
x1 + �x2 + �2x3

)
= −τ ′1τ ′2 + (c/a − 3)τ ′3,

in the second subcase

d
(
x2x3 + �2x1x3 + �x1x2

)(
x1 + �2x2 + �x3

)
+ d−1(x2x3 + �x1x3 + �2x1x2

)(
x1 + �x2 + �2x3

)
= −τ ′1τ ′2 + (c/a − 3)τ ′3.

In both subcases, the right hand side is invariant with respect to the conjugation �  → �2

and to any permutation σ ∈ S3. The first condition implies d = ±1,±�,±�2, the second
condition eliminates the second subcase and in the first subcase restricts d to ±1. Thus we
obtain

d(6x1x2x3 − x2
1x2 − x2

2x3 − x2
3x1 − x1x

2
2 − x2x

2
3 − x3x

2
1 ) = −τ ′1τ ′2 + (c/a − 3)τ ′3,

d(9τ ′3 − τ ′1τ ′2) = −τ ′1τ ′2 + (c/a − 3)τ ′3, d = 1, c = 12a.

Sufficiency. In view of Theorem 1 it suffices to consider n = 4 andF = y2
2 −3y1y3+12y4.

Then

F(τ1, . . . , τ4) =
(
x1x4 + x2x3 + �(x2x4 + x1x3)+ �2(x3x4 + x1x2)

)
× (x1x4 + x2x3 + �2(x2x4 + x1x3)+ �(x3x4 + x1x2)

)
. ��

Example. Take F =
n∑
i=2
(−1)i yn−i1 yi . We have degF = n− 1 and

F(τ1, . . . , τn) =
n∏
i=1

(τ1 − xi).

This example also shows that the estimate in Lemma 3 cannot be improved.
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Commentary on F:
Hilbert’s Irreducibility Theorem

by Umberto Zannier

The theorem in question (HIT in the sequel) in a basic form asserts that for irre-
ducible polynomials f1, . . . , fn ∈ Q[t1, . . . , tr , x1, . . . , xs], the set of rational points
(t∗1 , . . . , t∗r ) ∈ Qr such that fi(t∗1 , . . . , t∗r , x1, . . . , xs), i = 1, . . . , n, are irreducible in
Q[x1, . . . , xs] is Zariski-dense in Qn (namely, there is no nontrivial equation
g(t1, . . . , tr ) = 0 valid for all such points and in particular the set of such points is
infinite).

I will be concerned with three papers by Schinzel on this topic.

F1. In this paper a substantial strengthening of the above formulation of Hilbert’s
theorem is proved. Namely, Theorem 1 states that: For irreducible f1, . . . , fn ∈
Q[t1, . . . , tr , x1, . . . , xs], the set of points (t∗1 , . . . , t∗r ) ∈ Zr such that

fi(t
∗
1 , . . . , t

∗
r , x1, . . . , xs), i = 1, . . . , n,

are irreducible in Q[x1, . . . , xs] contains a product P1 × . . .×Pr of arithmetical progres-
sions.

Through a usual reduction step in the theory of HIT, the proof relies on a fundamental
Lemma 1, which deals with equations F(t1, . . . , tr , u) = 0 in u; the lemma compares
the identical solvability with u ∈ Q(t1, . . . , tr ) and the solvability with u ∈ Q, after
specializations ti  → t∗i ∈ Q. The proof of the lemma follows a principle already exploited
in a previous paper by Davenport, Lewis, Schinzel [1]; it uses theorems of Chebotarev type
to relate equations F(t∗1 , . . . , t∗r , u) = 0 with congruences F(t∗1 , . . . , t∗r , u) ≡ 0 (mod p),
for suitable primes p and integers t∗i (the relevant arithmetical progressions arise from
such congruences).

Schinzel’s sharpening of Hilbert’s theorem, which motivated further research by au-
thors like S. D. Cohen, M. Fried and others, points out a very elegant and important
one among the striking properties of the “good” specialization sets in HIT; each of these
properties may be crucial in the many applications of Hilbert’s theorem.

F2. The present paper falls into the general theme of value sets f (Z) of polynomials
f (x) ∈ Z[x] on Z. Let ϕ ∈ Z[x] be a fixed polynomial and suppose that, for another
polynomial f ∈ Z[x], each value f (a) of f on a ∈ Z is taken on Z also by ϕ, namely
f (Z) ⊂ ϕ(Z). This will certainly happen if there exists a polynomial h ∈ Z[x] with
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f (x) = ϕ(h(x)). If conversely, for all polynomials f , this is the only possibility for f (Z)
being a subset of ϕ(Z) then ϕ(x) is said to be “good”.

This concept, which appears natural, was introduced by I. Korec in connection with
palindromic squares (see the paper for references).

The object of the paper is to give a simple characterization of good polynomials. In
a Theorem it is proved that ϕ is good if and only if no polynomial ϕ(x/m), for integer
m > 1, has integer coefficients.

The proof of the necessity of the condition exploits the polynomial f (x) :=
ϕ((m − 1)!(x

m

)
); plainly f (Z) ⊂ ϕ(Z), leading easily to the sought conclusion that

if ϕ is good then ϕ(x/m) �∈ Z[x].
The proof of the sufficiency is more involved and uses Hilbert’s Irreducibility Theorem

(which for instance readily yields that if f (Z) ⊂ ϕ(Z) then f (x) = ϕ(h(x)) for some
h ∈ Q[x]).

F3. This paper offers quantitative versions of HIT, in the case of polynomials
f1, . . . , fh ∈ Z[t, x] in two variables. Assuming the fi to be irreducible, one seeks a
“small” integer specialization t  → t∗ ∈ Z such that all the fi(t∗, x) remain irreducible as
polynomials in x.

Let m = max degt fi , n = max degx fi and let H � 20 be an upper bound for the
“height”, i.e. here the maximum absolute value of the involved coefficients. In a Theorem it
is proved that |t∗| may be taken � max{exp(2(6m)5), exp(366), h9 exp(450(logH)5/6 +
11250m5 + 45(m+ 1)2n+ 45n(logH)2/5)}.

This improved on a previous estimate by Dèbes, where the exponent of logH was 2.
The Theorem is deduced from another quantitative form of HIT, i.e. Lemma 2, which

bounds by c(H,m, n)T 8/9 the number of integers t∗ ∈ [0, T ] such that F(t∗, x) is re-
ducible, where f ∈ Z[t, x] is irreducible, of height � H ; here c(m, n,H) is a certain
explicit function of the arguments.

The proofs use a rather sharp and uniform estimate on the distribution of integer points
on algebraic curves, due to E. Bombieri and J. Pila. Actually, it is necessary here to go into
the Bombieri–Pila’s proof and adapt it for the present purposes; this is done in Lemma 1.

More recently, a p-adic version of the Bombieri–Pila’s approach has been developed
by D. R. Heath-Brown (who treats varieties of any dimension). Thep-adic context is some-
times advantageous, in particular in the present application. This use of Heath-Brown’s
estimates in place of the Bombieri–Pila’s has been recently carried out by Y. Walkowiak
in his Ph.D. thesis, see [2].
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On Hilbert’s Irreducibility Theorem

In this paper irreducibility means irreducibility over the rational field and all poly-
nomials and rational functions considered are supposed to have rational coefficients.
Hilbert’s Irreducibility Theorem asserts that if polynomials fm(t1, . . . , tr , x1, . . . , xs)

(m = 1, 2, . . . , n) are irreducible as polynomials in r + s variables and a polyno-
mial z(t1, t2, . . . , tr ) is not identically 0, then there exist infinitely many integer systems
(t ′1, t ′2, . . . , t ′r ) such that all the polynomials fm(t ′1, t ′2, . . . , t ′r , x1, . . . , xs) are irreducible
as polynomials in x1, . . . , xs and z(t ′1, t ′2, . . . , t ′r ) �= 0 (cf. [3], Chapter VIII, §2). The main
aim of this paper is to prove the following refinement of this theorem.

Theorem 1. Let fm(t1, . . . , tr , x1, . . . , xs) (1 � m � n) be irreducible polynomials
in r + s variables and let z(t1, . . . , tr ) be any polynomial �= 0. There exist r arith-
metical progressions P1, . . . , Pr such that if t ′l ∈ Pl (1 � l � r), then all the poly-
nomials fm(t ′1, . . . , t ′r , x1, . . . , xs) are irreducible as polynomials in x1, . . . , xs and
z(t ′1, . . . , t ′r ) �= 0.

The theorem applies also to fractional values of tl if we adopt the following definition.

Definition. An arithmetical progression consists of all rational numbers ≡ b (mod a),
where a, b are fixed integers, a �= 0 and the congruence for rationals is understood in the
ordinary sense.

The proof of the fundamental lemma follows closely the proof of Theorem 1 in [1].

Lemma 1. Let F(t1, . . . , tr , u) be a polynomial such that for no rational function
ϕ(t1, . . . , tr ), F

(
t1, . . . , tr , ϕ(t1, . . . , tr )

) = 0 identically. There exist r arithmetical pro-
gressions P1, . . . , Pr such that if tl ∈ Pl (1 � l � r), then F(t1, . . . , tr , u) �= 0 for all
rational u.

Proof. We may assume without loss of generality that F has integer coefficients. Using
Gauss’s Lemma we factorize F into a product of polynomials with integer coefficients:

(1) F(t1, . . . , tr , u) = F0(t1, . . . , tr )F1(t1, . . . , tr , u) · · ·Fk(t1, . . . , tr , u),
where k � 0 and each Fj (1 � j � k) is irreducible, of positive degree dj in u. Let
aj (t1, . . . , tr ) be the coefficient at udj in Fj (1 � j � k).
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It follows from the assumption that dj > 1 (1 � j � k). It follows from Hilbert’s
theorem that there exist integers t ′1, t ′2, . . . , t ′r such that all the polynomialsFj (t ′1, . . . , t ′r , u)
are irreducible and

F0(t
′
1, . . . , t

′
r )

k∏
j=1

aj (t
′
1, . . . , t

′
r ) �= 0.

Since each Fj (t ′1, . . . , t ′r , u) is irreducible of degree > 1, there exist for each j � k

infinitely many primes q such that the congruence

Fj (t
′
1, . . . , t

′
r , u) ≡ 0 (mod q)

is insoluble ([2], cf. also proof of Theorem 1 in [1]), and in particular there is a prime qjc

with the above property, such that

(2) F0(t
′
1, . . . , t

′
r )aj (t

′
1, . . . , t

′
r ) �≡ 0 (mod qj ) (1 � j � k).

Now, let Pl be the progression q1q2 · · · qkv+ t ′l and assume that tl ∈ Pl (1� l�r), i.e.

(3) tl ≡ t ′l (mod q1 · · · qk) (1 � l � r).

It follows that

F0(t1, . . . , tr )aj (t1, . . . , tr ) ≡ F0(t
′
1, . . . , t

′
r )aj (t

′
1, . . . , t

′
r ) (mod q1q2 · · · qk)

and by (2)

F0(t1, . . . , tr ) �= 0,(4)

aj (t1, . . . , tr ) �≡ 0 (mod qj ) (1 � j � k).(5)

Suppose now that for some rational u0, F(t1, . . . , tr , u0) = 0. It follows from (1)
and (4) that k > 0 and for some j0 � k

(6) Fj0(t1, . . . , tr , u0) = 0.

By (3) the denominators of t1, . . . , tr are not divisible by qj0 . In view of (5) the same is
true for the denominator of u0 and (3) and (6) imply

Fj0(t
′
1, . . . , t

′
r , u0) ≡ 0 (mod qj0),

which is impossible by the choice of qj0 .
This contradiction completes the proof. ��

Proof of Theorem 1. It follows from Kronecker’s criterion for the reducibility of
polynomials in several variables (cf. [3], Chapter VIII, §3) that for every irreducible
polynomial f (t1, . . . , tr , x1, . . . , xs) there exist a finite number of irreducible poly-
nominals gj (t1, . . . , tr , y) and a polynomial Φ(t1, . . . , tr ) �= 0 such that if for some
t ′1, . . . , t ′r all the polynomials gj (t ′1, . . . , t ′r , y) are irreducible andΦ(t ′1, . . . , t ′r ) �= 0, then
f (t ′1, . . . , t ′r , x1, . . . , xs) is irreducible. In view of this fact it is sufficient to prove our
Theorem for s = 1. We shall do that by induction with respect to n.
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For n = 1 let

f1(t1, . . . , tr , x) = f =
j∑
ν=0

αν(t1, . . . , tr )x
j−ν .

By Lemma 1 of [5], for each positive integer i � j there exists a polynomial
Ωi,j (u; v1, . . . , vj ) with integer coefficients (the coefficient at the highest power of u
being equal to 1) having the following property.

If A(x), B(x) are arbitrary polynomials,

A(x) =
j∑
ν=0

aνx
j−ν, B(x) =

h∑
ν=0

bνx
h−ν, a0b0 �= 0, h � i

and B(x) divides A(x), then

(7) Ωi,j

( bi
b0

; a1

a0
, . . . ,

aj

a0

)
= 0.

For i � j let

(8) Ωi,j
(
u;α1(t1, . . . , tr ), α0(t1, . . . , tr )α2(t1, . . . , tr ), . . . ,

. . . , α0(t1, . . . , tr )
j−1αj (t1, . . . , tr )

) = Fi(t1, . . . , tr , u) mi∏
μ=1

(
u− ψi,μ(t1, . . . , tr )

)
,

where mi � 0, Fi and ψi,μ (1 � μ � mi) are polynomials and for no polynomial
ψ(t1, . . . , tr )

Fi
(
t1, . . . , tr , ψ(t1, . . . , tr )

) = 0 identically.

SinceFi(t1, . . . , tr , u) has the coefficient at the highest power of u equal to 1, it follows
that for no rational function ϕ(t1, . . . , tr ),Fi

(
t1, . . . , tr , ϕ(t1, . . . , tr )

) = 0 identically, and
thus for no rational function ϕ(t1, . . . , tr ),

(9)
j∏
i=1

Fi
(
t1, . . . , tr , ϕ(t1, . . . , tr )

) = 0 identically.

Now, let i0 be the least value of i � j such thatmi = 0, if such values exist; otherwise let
i0 = j . For each positive integer h < i0 and each system μ1, . . . , μh, where 1 < μi � mi
(1 � i � h), put

(10) gμ1,...,μh(t1, . . . , tr , x)

= (a0(t1, . . . , tr )x
)h + h∑

i=1

ψi,μi (t1, . . . , tr )
(
a0(t1, . . . , tr )x

)h−i
.

Since f is irreducible and h < j , the polynomials f and gμ1,...,μh are relatively
prime; thus there exist polynomials Qμ1,...,μh(t1, . . . , tr , x), Sμ1,...,μh(t1, . . . , tr , x) and
Rμ1,...,μh(t1, . . . , tr ) such that

(11) Qμ1,...,μhf + Sμ1,...,μhgμ1,...,μh = Rμ1,...,μh �= 0.
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Now by Lemma 1 and (9) there exist r progressions P1, . . . , Pr such that if tl ∈ Pl
(1 � l � r), then

(12) a0(t1, . . . , tr )z(t1, . . . , tr )
∏

μ1,...,μh
h<i0

Rμ1,...,μh(t1, . . . , tr )

j∏
i=1

Fi(t1, . . . , tr , u) �= 0

for all rational u.
We are going to prove that these progressions P1, . . . , Pr have the properties required

in the theorem. Suppose, therefore, that for some t ′1, . . . , t ′r where t ′l ∈ Pl (1 � l � r),
f (t ′1, . . . , t ′r , x) is reducible and divisible by a monic polynomial

(13) g(x) = xh +
h∑
ν=1

βνx
h−ν, where 1 � h < j.

By (12), α0(t
′
1, . . . , t

′
r ) �= 0. Put αν = αν(t ′1, . . . , t ′r ) (0 � ν � j ),

A(x) = αj−1
0 f

(
t ′1, . . . , t ′r ,

x

α0

)
= xj +

j∑
ν=1

αν−1
0 ανx

j−ν,

B(x) = αh0g
( x
α0

)
= xh +

h∑
ν=1

αν0βνx
h−ν .

Clearly B(x) divides A(x), and by (7) for each i � h

Ωi,j
(
αi0βi;α1, α0α2, . . . , α

j−1
0 αj

) = 0.

By (8) and (12) it follows that i0 > 1, h < i0 and that for some system μ′
1, . . . , μ

′
h

αi0βi = ψi,μ′1(t ′1, . . . , t ′r ) (1 � i � h, 1 � μ′
i � mi).

This gives by (13) and (10)

(14) αh0g(x) = (α0x)
h +

h∑
i=1

ψi,μ′i (t
′
1, . . . , t

′
r )(α0x)

h−i = gμ′1,...,μ′h(t ′1, . . . , t ′r , x).

Since h < j , we have by (11) and (12)

Qμ′1,...,μ′h(t
′
1, . . . , t

′
r , x)f (t

′
1, . . . , t

′
r , x)

+ Sμ′1,...,μ′h(t ′1, . . . , t ′r , x)gμ′1,...,μ′h(t ′1, . . . , t ′r , x) = Rμ′1,...,μ′h(t ′1, . . . , t ′r ) �= 0.

It follows hence by (14) that g(x) divides

Rμ′1,...,μ′h(t
′
1, . . . , t

′
r ) �= 0,

which is impossible.
The contradiction obtained completes the proof forn = 1.Assume now that the theorem

holds for n − 1 polynomials (n > 1) and that we are given n irreducible polynomials
fm(t1, . . . , tr , x) (1 � m � n) and a polynomial z(t1, . . . , tr ) not identically 0. By the
inductive assumption there exist r progressions, say alu + bl (1 � l � r), such that
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if t ′l ≡ bl (mod al) (1 � l � r) then fm(t ′1, . . . , t ′r , x) for m < n are irreducible and
z(t ′1, . . . , t ′r ) �= 0.

Now, fn(a1u1 + b1, . . . , arur + br , x) is an irreducible polynomial in u1, . . . , ur , x

and therefore by the already proved case of our theorem there exist r progressions,
say clv + dl (1 � l � r), such that if u′l ≡ dl (mod cl) then fn(a1u

′
1 + b1, . . . ,

. . . , aru
′
r + br , x) is irreducible. Denote by Pl the progression alclv + (aldl + bl)

(1 � l � r). If t ′l ∈ Pl , then the polynomials fm(t ′1, . . . , t ′r , x) (1 � m � n) are ir-
reducible and z(t ′1, . . . , t ′r ) �= 0, which completes the inductive proof. ��

Since rational numbers belonging to a progression according to our definition form a
dense set, we get

Corollary. Let fm(t1, . . . , tr , x1, . . . , xs) (1 � m � n) be irreducible polynomials in
r + s variables. The set of all rational points (t ′1, . . . , t ′r ) for which the polynomials
fm(t

′
1, . . . , t

′
r , x1, . . . , xs) (1 � m � n) are irreducible contains a Cartesian product

of r dense linear sets.

As the second application of Lemma 1 we prove the following generalization of The-
orem 1 in [1].

Theorem 2. LetF(t1, . . . , tr , u)be a polynomial such that for no polynomialψ(t1, . . . , tr ),

F
(
t1, . . . , tr , ψ(t1, . . . , tr )

) = 0

identically. There exist r arithmetical progressions P1, . . . , Pr such that if tl ∈ Pl
(1 � l � r), then

F(t1, . . . , tr , u) �= 0 for all integers u.

Lemma 2. Let ϕm(t1, . . . , tr ) (1 � m � n) be rational but not integer functions. There
exist r arithmetical progressionsP1, . . . , Pr such that if tl ∈ Pl , then neither of the numbers
ϕm(t1, . . . , tr ) is an integer.

Proof by induction with respect to n. For n = 1, let

ϕ1(t1, . . . , tr ) = g(t1, . . . , tr )

h(t1, . . . , tr )
,

where g, h are coprime polynomials with integer coefficients and h is not a constant.
Without loss of generality we may assume that h is of positive degree in t1. Denote by
a0(t2, . . . , tr ) the coefficient at the highest power of t1 in h.

Since (g, h) = 1, there exist polynomialsQ(t1, . . . , tr ), S(t1, . . . , tr ) andR(t2, . . . , tr )
such that

(15) Qg + Sh = R �= 0.

Choose integers t ′2, . . . , t ′r so thata0(t
′
2, . . . , t

′
r )R(t

′
2, . . . , t

′
r ) �= 0. Sinceh(t1, t ′2, . . . , t ′r )

depends upon t1, there exists an integer t ′1 such that

c = |h(t ′1, . . . , t ′r )| > |R(t ′2, . . . , t ′r )|.
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Denote by Pl the progression cv + t ′l (1 � l � r). If tl ∈ Pl (1 � l � r), we have

h(t1, . . . , tr ) ≡ h(t ′1, . . . , t ′r ) ≡ 0 (mod c),

R(t2, . . . , tr ) ≡ R(t ′2, . . . , t ′r ) �≡ 0 (mod c)

and in view of (15)

g(t1, . . . , tr ) �≡ 0 (mod c),

which proves that g(t1, . . . , tr )/h(t1, . . . , tr ) is not an integer.
Assume now that the lemma is true for n− 1 rational functions and that we are given n

rational but not integer functions ϕm(t1, . . . , tr ) (1 � m � n). By the inductive assumption
there exist r progressions, say alu + bl (1 � l � r), such that if tl ≡ bl (mod al), then
none of the numbers ϕm(t1, . . . , tr ) (1 � m � n−1) is an integer. Now ϕn(a1u1+b1, . . . ,

. . . , arur +br) is a rational but not an integer function of u1, . . . , ur , and therefore, by the
already proved case of our lemma, there exist r progressions, say clv+dl (1 � l � r), such
that if ul ≡ dl (mod cl) then the number ϕn(a1u1 + b1, . . . , arur + br) is not an integer.
Denote by Pl the progression alclv + (aldl + bl) (1 � l � r). If tl ∈ Pl (1 � l � r),
then none of the numbers ϕm(t1, . . . , tr ) (1 � m � n) is an integer, which completes the
inductive proof. ��

Proof of Theorem 2. By the assumption, polynomial F can be written in the form

F(t1, . . . , tr , u) = F0(t1, . . . , tr , u)

n∏
m=1

(
u− ϕm(t1, . . . , tr )

)
,

where F0 is a polynomial such that for no rational function ϕ, F0
(
t1, . . . , tr ,

ϕ(t1, . . . , tr )
) = 0 identically, n � 0 and ϕm (1 � m � n) are rational but not inte-

ger functions.
By Lemma 1 there exist r progressions, say alu+ bl (1 � l � r), such that if tl ≡ bl

(mod al), then

F0(t1, . . . , tr , u) �= 0 for all rational u.

By Lemma 2 there exist r progressions, say clv + dl (1 � l � r), such that if
ul ≡ dl (mod cl), then none of the numbers ϕm(a1u1 + b1, . . . , arur + br)

(1 � m � n) is an integer. It follows that the progressions alclv + (aldl + bl) have
the properties required in the theorem. ��

The following modifications of Lemma 1 and Theorem 2 could seem plausible (cf. [6]).

M1. Let F(t1, . . . , tr , u, v) be a polynomial such that for no pair of rational functions
ϕ(t1, . . . , tr ), ψ(t1, . . . , tr )

(16) F
(
t1, . . . , tr , ϕ(t1, . . . , tr ), ψ(t1, . . . , tr )

) = 0 identically.

There exist r arithmetical progressions P1, . . . , Pr (respectively an infinite set S of integer
points) such that if tl ∈ Pl (1 � l � r) (respectively (t1, . . . , tr ) ∈ S), then

F(t1, . . . , tr , u, v) �= 0 for all rational u, v.
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M2. Let F(t1, . . . , tr , u, v) be a polynomial such that for no pair of rational functions
ϕ(t1, . . . , tr ),ψ(t1, . . . , tr ), (16) holds. There exist r arithmetical progressionsP1, . . . , Pr
(respectively an infinite set S of integer points) such that if tl ∈ Pl (1 � l � r) (respectively
(t1, . . . , tr ) ∈ S), then

F(t1, . . . , tr , u, v) �= 0 for all integers u, v.

Now, the strong form of M1 and both forms of M2 are false, as shown by the examples

F1(t, u, v) = t + u2 + v3 and F2(t, u, v) = (2t − 1)u− (v2 + 1)(v2 + 2)(v2 − 2),

respectively. Indeed, as to the former, it is known that the equation 3s6+u2+v3 = 0 is
insoluble in rational u, v for every rational s �= 0, which would not be possible if for some
rational functions ϕ(t), ψ(t) we had an identity F1

(
t, ϕ(t), ψ(t)

) = 0.
On the other hand, if av + b is an arbitrary progression P , then according to a well-

known theorem (cf. [4]) there exist integers u0, v0 such that −u2
0 − v3

0 ∈ P and thus for
t0 = −u2

0 − v3
0, t0 ∈ P and F1(t0, u0, v0) = 0.

As to the second counterexample, if for some polynomialsϕ(t),ψ(t)we had an identity
F2
(
t, ϕ(t), ψ(t)

) = 0, then(
ψ( 1

2 )
2 + 1

)(
ψ( 1

2 )
2 + 2

)(
ψ( 1

2 )
2 − 2

) = 0,

which is impossible. On the other hand, if t is any integer, we easily see by factorizing
2t − 1 into prime factors that the congruence

(v2 + 1)(v2 + 2)(v2 − 2) ≡ 0 (mod 2t − 1)

is soluble and so is the equation F2(t, u, v) = 0.
As to the weak form of M1, I am unable to disprove it and to prove it seems to me very

difficult even for r = 1.
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A class of polynomials

Abstract. We characterize the polynomials ϕ(x) ∈ Z[x] such that for any f (x) ∈ Z[x] from
inclusion {f (a) : a = k, k + 1, . . . } ⊂ {ϕ(b) : b = 0,±1,±2, . . . } follows f (x) = ϕ(h(x)) for
some h(x) ∈ Z[x].

Call a polynomial ϕ(x) good if it has the following property:
For every polynomial f (x) ∈ Z[x] such that for every sufficiently large integer a ∈ Z

there is b ∈ Z such that f (a) = ϕ(b) there is a polynomial h(x) ∈ Z[x] such that
f (x) = ϕ(h(x)).

I. Korec suggested to study good polynomials in connection with his results concerning
palindromic squares in [1].

In this note we prove the following criterion:

Theorem. A polynomial ϕ ∈ Z[x] is good if and only if ϕ(x/m) /∈ Z[x] for all m > 1.

To prove this result we need the

Lemma. Let for a polynomialF with algebraic coefficientsC(F) denote the content ofF ,
i.e. the ideal generated by the coefficients of F . If p ∈ Z[x], q ∈ Q[x] and p(0) = 0, then

C
(
q(p)
) |C(q)C(p)deg q .

Proof. We have

q(x) = q0

deg q∏
i=1

(x − �i),

and by the generalized Gauss lemma

C(q) = (q0)

deg q∏
i=1

C(x − �i) = (q0)

deg q∏
i=1

(1, �i).

Similarly

C
(
q(p)
) = (q0)

deg q∏
i=1

C(p(x)− �i) = (q0)

deg q∏
i=1

(C(p), �i),

and since C(p) is integral, the lemma follows. ��
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Proof of the Theorem. We shall prove first that the condition is necessary. If for an m > 1
ϕ(x/m) ∈ Z[x], we have

f (x) = ϕ
(
(m− 1)!

(
x

m

))
∈ Z[x].

Also for every x∗ ∈ Z there exists a y∗ ∈ Z such that

f (x∗) = ϕ(y∗).
If, however, we had f (x) = ϕ(g(x)), g ∈ Z[x], it would follow that

ϕ

(
(m− 1)!

(
x

m

))
= ϕ(g(x)),

which gives a contradiction, since the leading coefficient of the left hand side is smaller
than the leading coefficient of the right hand side.

In order to prove that the condition is sufficient, let a be the leading coefficient of ϕ
and assume that for an f ∈ Z[x] we have f (x∗) = ϕ(y∗) for every x∗ ∈ Z, x∗ � K andc

a suitable y∗ ∈ Z. Let

(1) ϕ(y)− f (x) =
n∏
i=1

Fi(x, y),

where the polynomials Fi ∈ Z[x, y] are irreducible and Fi viewed as a polynomial in y
has the leading coefficient ai(x). Clearly

a =
n∏
i=1

ai(x),

hence ai(x) ∈ Z for all i � n. Without loss of generality we may assume that

Fi(y) = aiy − hi(x) for i � m,
degy Fi > 1 for i > m.

By Hilbert’s Irreducibility Theorem there exists an integer t∗ such that at∗ � K ,Fi(at∗, y)
is irreducible for all i > m and hence

Fi(at
∗, y) = 0

has no rational root. Since by the assumption

ϕ(y∗)− f (at∗) = 0 for a y∗ ∈ Z,

by (1) there is a j � m such that

Fj (at
∗, y∗) = 0,

which gives

ajy
∗ − hj (at∗) = 0,

and since aj | a
(2) hj (0) ≡ hj (at∗) ≡ 0 (mod aj ).
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Let

C
(
hj (x)− hj (0)

) = (c),
and take in the lemma

p(x) = hj (x)− hj (0)
(c, aj )

, q(x) = ϕ
(

x

aj /(c, aj )
+ hj (0)

aj

)
.

We obtain

C
(
q(p)
) |C(q)C(p)deg q = C(q) ·

(
c

(c, aj )

)deg q

,

and since by (1) q(p) = f ∈ Z[x]

C(q) ·
(

c

(c, aj )

)deg q

⊂ Z.

However by (2)

C(q) ·
(
aj

(c, aj )

)deg q

⊂ Z,

and since (
c

(c, aj )
,
aj

(c, aj )

)
= 1

the two inclusions give

C(q) ⊂ Z;
q ∈ Z[x], ϕ

(
x

aj /(c, aj )

)
= q
(
x − hj (0)

(c, aj )

)
∈ Z[x].

c

By the condition on ϕ:

|aj |/(c, aj ) = 1,

hence aj | c and by (2)

hj (x)

aj
= hj (x)− hj (0)

aj
+ hj (0)

aj
∈ Z[x].

Since by (1)

f (x) = ϕ
(
hj (x)

aj

)
,

the proof is complete. ��
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The simplest case of Hilbert’s Irreducibility Theorem asserts that if F(t, x) is ir-
reducible over Q, then there exists t∗ ∈ Q such that F(t∗, x) is irreducible over Q.
Many different proofs have been given for this theorem, namely Hilbert’s (1892) [10],
Mertens’s (1911) [13], Skolem’s (1921) [17], Dörge’s (1927) [5], Siegel’s (1929) [16],
Eichler’s (1939) [6], Inaba’s (1943) [11], Fried’s (1974) [8], Roquette’s (1975) [14],
Cohen’s (1981) [2], Sprindzhuk’s (1981) [18], Dèbes’s (1986) [3], (1993) [4].

Only the last of the quoted papers explicitly mentions the problem of estimating the
size of a t∗ with the above property in terms of the degree and height of F . By the height
of F , to be abbreviated H(F), we mean the maximum absolute value of the coefficients
of a constant multiple of F that has coprime integer coefficients. Dèbes gives actually an
estimate value for several polynomials Fi . His result reads (see Cor. 3.7 of [4]):

Let F1, . . . , Fh be irreducible polynomials in Q[t, x] such that degFi � D and
H(Fi) � H (1). Then there exists a rational number t∗ = u/v such that each Fi(t∗, x) is
irreducible over Q and

(1) max(|u|, |v|) � exp
(
1010D100hD2 logD(log2H + 1)

)
.

Dèbes also gives a corresponding result for algebraic number fields. We observe that
Cohen’s result, formulated for algebraic number fields, is partially explicit and gives, in
the case of the rational field, the following bound:

Under the same assumptions as before, for H � ee one may find a t∗ ∈ Z with the
above property such that

(2) |t∗| � h2 log(eh)Hc,

where c depends only on D.

(1) Dèbes in fact formulates his result in terms of the logarithmic height.
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Actually, assuming the Riemann Hypothesis for zeta functions of number fields, Cohen
obtained an estimate implying the sharp bound

|t∗| � max{ch2 log(eh), log4H }.
This includes a result by Fogels [7] concerning the special case h = 1, F(t, x) = f1(x)+
tf2(x). Yasumoto [19] asked whether for h = 1 there exists a bound for |t∗| independent
of H .

The aim of the present paper is to prove the following theorem, which improves on
both (1) and (2), as far as the dependence on D and H is concerned.

Theorem. Let F1, . . . , Fh ∈ Z[t, x] be irreducible over Q. There exists a positive integer
t∗ such that Fi(t∗, x) are irreducible for all i � h and

|t∗| � max
{
exp(2(6m)5), exp(366),

h9 exp
(
450(logH)5/6 + 11250m5 + 45(m+ 1)2n+ 45n(logH)2/5

)}
,

where m = max{degt Fi}, n = max{degx Fi}, H = max{20, H(Fi)}.

Auxiliary lemmas

Our proof will make use of a sharp estimate by Bombieri and Pila [1] of the number of
integral points on algebraic plane curves. A direct application of their Theorem 5 would
lead, however, to a bound weaker than the stated above. Nevertheless it is possible to
modify their proof to produce a result which is more suitable for our purposes. This will
be done in the course of the proof of our first lemma.

Lemma 1. Let Φ ∈ Q[t, y] be a polynomial irreducible over Q, of total degree D. Then,
for every positive integer δ < D and for everyN � 1, the number of integer points (t∗, y∗)
such that Φ(t∗, y∗) = 0 and max{|t∗|, |y∗|} � N is bounded by

(3DΔ)Δ+4N8/(3(δ+3)),

where Δ = (δ + 1)(δ + 2)/2.

Proof. Consider first the case when Φ is reducible over C. Then Φ(t∗, y∗) = 0 im-
plies that Ψ (t∗, y∗) = 0 for some factor Ψ of Φ, irreducible over C and with the co-
efficient of the leading term (in the inverse lexicographic order) equal to 1, hence alsoc

Ψ ′(t∗, y∗) = 0, where Ψ ′ is conjugate to Ψ over Q, and so is another factor of Φ. Since
Resy(Ψ,Ψ ′)2 | discy Φ, it follows that the number of integers t∗ such that for some in-
teger y∗, Ψ (t∗, y∗) = Ψ ′(t∗, y∗) = 0, does not exceed 1

2 deg(discy Φ) � D(D − 1).
Since the same estimate applies to integers y∗, the total number of integer points is
� D2(D − 1)2 < (3DΔ)Δ+4.

Assume therefore that Φ is absolutely irreducible. LetG(N) = G(D,N) be the max-
imum number of integer points on the graph of a C∞ function g(t), on an interval � of
length at most N , with |g′(t)| � 1 and g satisfying some algebraic relation Γ (t, g) = 0,
with Γ absolutely irreducible of degree D. Clearly we may assume � ⊂ [0, N ].



F3. Parameter in Hilbert’s Irreducibility Theorem 851

Now fix some positive integer δ < D and let g(t) be such a C∞ function. Given
A � 1, by appealing to Lemma 6 of [1], we can divide the domain � of g into at most
2D2(Δ−1)2 � 2D2Δ2 subintervals �ν such that, for each �ν and each l = 1, . . . , Δ−1,
either (i) or (ii) holds:

(i) |g(l)(t)| � l!Al/(Δ−1)N1−l for all t ∈ �ν ;
(ii) |g(l)(t)| > l!Al/(Δ−1)N1−l for all t ∈ �ν .

After translating the graph of g(t) on each �ν by an integer, we can assume, since
|g′(t)| � 1, that |g(t)| � N for all t ∈ �ν . Now, for each �ν , either (i) or (ii) holds:

(i) |g(l)(t)| � l!Al/(Δ−1)N1−l for all t ∈ �ν and all l = 0, . . . , Δ− 1;
(ii) |g(l)(t)| � l!Al/(Δ−1)N1−l for all t ∈ �ν and all l < k, and

|g(k)(t)| � k!Ak/(Δ−1)N1−k for all t ∈ �ν .

In the case (i) we have

‖g‖Δ−1 := max
0�k�Δ−1

max
t∈�ν

|g(k)(t)|
k! N1−k � A.

In the case (ii) the hypotheses of Lemma 7 of [1] hold with Ak/(Δ−1) in place of A,
and hence

|�ν | � 2A−1/(Δ−1)N.

For the �ν of the first type we apply the Main Lemma of [1], with d replaced by δ, D
replaced by Δ, f replaced by g. We infer that integral points on y = g(t), t ∈ �ν , lie on
the union of at most 4(A1/2N)8/(3(δ+3)) real algebraic curves of degree � d. Since δ < D
these curves cannot contain the appropriate translation of Γ (t, y) = 0, thus we infer from
Bézout’s theorem that each of them intersects the translation in question in at most δD
points. We thus obtain the following recurrence relation for G(N):

G(N) � K1N
α +K2G(λN),

where

K1 = 8D3δΔ2A4/(3(δ+3)), K2 = 2D2Δ2, α = 8

3(δ + 3)
, λ = 2A−1/(Δ−1).

Continuing, we find that, provided λν−1N � 1,

G(N) � K1N
α
(
1 +K2λ

α + . . .+ (K2λ
α)ν−1)+Kν2G(λνN).

We now choose λ so that K2λ
α = 1/2, that is, we set

λ =
( 1

2K2

)1/α = (4D2Δ2)−3(δ+3)/8 < 1

and thus

A =
(2

λ

)Δ−1
> 1.

Finally, we choose ν so that λ/N � λν < 1/N . Then G(λνN) � 1 and

G(N) � 2K1N
α + 2−νλ−αNα � 2(K1 +K2)N

α.
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Now,

K1 +K2 = 8D3δΔ2A4/(3(δ+3)) + 2D2Δ2

= 8D3δΔ224(Δ−1)/(3(δ+3))(4D2Δ2)(Δ−1)/2 + 2D2Δ2

< 10D3δΔ2(8D2Δ2)(Δ−1)/2,

which gives

G(N) < 20D3δΔ2(8D2Δ2)(Δ−1)/2Nα.

Our original curve C : Φ(t, y) = 0 has at most 1
2D(D − 1) singular points, and at

most 2D(D−1) points of slope ±1. Hence C ∩[0, N ]2 is made up of at most 3D2 graphs
of C∞ functions with slope bounded by 1 with respect to one of the axes. The number of
integral points is therefore at most

3D2G(N) < 60D5δΔ2(8D2Δ2)(Δ−1)/2Nα < 1
2 (3DΔ)

Δ+4Nα.

Replacing N with 2N we obtain the lemma. ��

Let F(t, x) ∈ Z[t, x], write F(t, x) = a0(t)
n∏
i=1
(x − xi), where xi are elements of

Q(t), and letD(t) be the discriminant of F with respect to x. For a nonempty subset ω of
{1, . . . , n} and for every positive integer j � #ω, let Pω,j (t, y) be the minimal polynomial
of a0(t)τj (xi : i ∈ ω) over Q(t), where τj is the j th fundamental symmetric function.
We remark that, in virtue of an old theorem of Kronecker (see [15], Theorem 10, p. 48),
a0(t)τj (xi : i ∈ ω) is in any case integral over Z[t], whence Pω,j is a polynomial in
Z[t, y], monic in y.

Lemma 2. For all t∗ ∈ Z, if a0(t
∗)D(t∗) �= 0 and F(t∗, x) is reducible over Q, then for

some ω ⊂ {1, . . . , n} of cardinality k � n/2 all the polynomials Pω,j (t∗, y), j � k, have
a zero yj ∈ Z.

Proof. LetK be the splitting field of F(t, x) over Q(t), and letΔ be the discriminant ofK
(over Q[t]). If D(t∗) �= 0, then t − t∗ is not ramified in K , hence Δ(t∗) �= 0. By a well
known result (see [9], p. 464) there exists a generator θ of K integral over Q[t] and such
that discx T (t∗) �= 0, where T (t, x) is the minimal polynomial of θ over Q(t). We have
accordingly

xi = Li(t, θ)

M(t)
(1 � i � n),

whereM ∈ Q[t], Li ∈ Q[t, u] andM(t∗) �= 0 provided a0(t
∗) �= 0. It follows that in the

ring Q[t, u, x] we have the congruences

(3) a0(t)M(t)
nF (t, x) ≡ a0(t)

n∏
i=1

(M(t)x − Li(t, u)) (mod T (t, u))

and

(4) M(t)j degPPω,j
(
t, a0(t)τj (Li/M : i ∈ ω)) ≡ 0 (mod T (t, u))
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for every nonempty ω ⊂ {1, . . . , n} and every j � #ω.
Assume now that a0(t

∗)D(t∗) �= 0 and F(t∗, x) is reducible over Q. Without loss of
generality we may suppose that

F(t∗, x) = a0(t
∗)

n∏
i=1

(x − x∗i )

and that

(5) a0(t
∗)

k∏
i=1

(x − x∗i ) ∈ Z[x]

where 1 � k � n/2.
Choose u∗ ∈ C such that T (t∗, u∗) = 0. By (3),

a0(t
∗)

n∏
i=1

(x − x∗i ) = a0(t
∗)

n∏
i=1

(
x − Li(t

∗, u∗)
M(t∗)

)
;

hence there exists a subset ω of {1, . . . , n} of cardinality k such that

{x∗1 , . . . , x∗k } =
{
Li(t

∗, u∗)
M(t∗)

: i ∈ ω
}
.

By (4), for every j � k,

Pω,j
(
t∗, a0(t

∗)τj (x∗1 , . . . , x∗k )
) = 0

and since yj := a0(t
∗)τj (x∗1 , . . . , x∗k ) ∈ Z by (5), the assertion follows. ��

Let F have degree m in t and n in x. We have

Lemma 3. The polynomials Pω,j (t, y) defined before the statement of Lemma 2 have, for
k�n/2, the property that, if |t∗|�1, a0(t

∗)D(t∗) �=0 and Pω,j (t∗, y∗)=0, then

(6) |y∗| � 2k
√
n+ 1(m+ 1)H |t∗|m,

where H is the height of F . Moreover, deg(Pω,j ) � m degy(Pω,j ) � m
(
n
k

)
.

Proof. We retain the notation of the proof of Lemma 2. First observe that the polynomial∏
#ω=k

(
y − a0(t)τj (xi : i ∈ ω)

)
,

the product being extended over all subsetsω of {1, . . . , n} having cardinality k, lies clearly
in Q[t, y], and has degree

(
n
k

)
in y. Hence, since Pω,j divides this polynomial, we have

degy Pω,j �
(
n
k

)
.

For the same reason we may write

Pω,j (t, y) =
∏
I∈Ω

(
y − a0(t)τj

(Li(t, θ)
M(t)

: i ∈ I
))
,
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the product being extended over a certain familyΩ of subsets I of {1, . . . , n} with #I = k.
Let

Qω,j (t, u, y) =
∏
I∈Ω

(
y − a0(t)τj

(Li(t, u)
M(t)

: i ∈ I
))
.

Then, as in the proof of Lemma 2, we have the congruence

M(t)j degP (Qω,j (t, u, y)− Pω,j (t, y)) ≡ 0 (mod T (t, u))

whence, setting t = t∗, u = u∗, where T (t∗, u∗) = 0, we get

Pω,j (t
∗, y) = Qω,j (t∗, u∗, y).

Hence all the zeros of Pω,j (t∗, y) are of the form

a0(t
∗)τj
(Li(t∗, u∗)
M(t∗)

: i ∈ I
)
,

namely of the form a0(t
∗)τ ∗j , where τ ∗j is the j th symmetric function of a certain subset

of cardinality k of the set {x∗1 , . . . , x∗n} of all zeros of F(t∗, x).

By a classical theorem of Landau [12], for each t∗ ∈ C,

M := |a0(t
∗)|

n∏
i=1

max{1, |x∗i |} �

√√√√ n∑
i=0

|ai(t∗)|2,

where ai(t) are the coefficients of F(t, x) viewed as polynomial in x.

For |t∗| � 1 we have

|ai(t∗)| � (m+ 1)H |t∗|m,

hence, by the above observations,

|y∗| �
(
k

j

)√
n+ 1(m+ 1)H |t∗|m � 2k

√
n+ 1(m+ 1)H t∗m

and the first part of the lemma follows

In order to prove the second part, write

Pω,j (t, y) = yp +
p∑
i=1

Pi(t)y
p−i .
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For every fixed t∗ ∈ C, Pi(t∗) is, up to a sign, the ith fundamental symmetric function in
the zeros of Pω,j (t∗, y). Hence, if |t∗| � 1, by (6) we have

|Pi(t∗)| �
(
p

i

)
2ki(n+ 1)i/2(m+ 1)iH i |t∗|mi = O(|t∗|mi),

which implies that deg(Pi) � mi, so

deg(Pω,j ) = max
0�i�p

{p − i + deg(Pi)} � mp.

This completes the proof. ��

Lemma 4. Let F(t, x) ∈ Z[t, x] be a polynomial irreducible over Q, of degreem in t and
n � 2 in x, and let H � max{20, H(F )}. If

T � max{exp(2(6m)5), exp(366)},
then the number of positive integers t∗ � T such that F(t∗, x) is reducible over Q does
not exceed

T 8/9 exp
(
50(logH)5/6 + 1250m4 log(m+ 1)+ 5(m+ 1)2n+ 5n(logH)2/5

)
.

Proof. Retaining the notation used in Lemma 2, we let S(T ) be the number of positive
integers t∗ � T such that a0(t

∗)D(t∗) �= 0 and F(t∗, x) is reducible over Q.
Let ω be a nonempty subset of {1, . . . , n}, of cardinality k � n/2. We contend that

at least one of the polynomials Pω,j (t, y), j � k, has degree � 2 in y. If not then, by
definition of the Pω,j ’s, all the symmetric functions τj (xi : i ∈ ω) would lie in Q(t),
whence F(t, x) would have a factor in Q(t)[x] of positive degree k < n, contrary to the
assumptions. Pick for each ω one such polynomial and denote it by Pω(t, y). Then Pω is
a polynomial with rational integral coefficients, irreducible over Q, monic and of degree
� 2 in y. Moreover, if t∗ is such that a0(t

∗)D(t∗) �= 0 and F(t∗, x) is reducible over Q,
then, by Lemma 2, some polynomial Pω(t∗, y) has an integral zero. So

(7) S(T ) �
∑

#ω�n/2
Sω(T ),

where Sω(T ) is the number of positive integers t∗ � T such that Pω(t∗, y) has an integral
zero and a0(t

∗)D(t∗) �= 0.
Letting dω = degy Pω, Dω = degPω, we have, by Lemma 3,

(8) 2 � dω �
(
n

k

)
, Dω � mdω.

To estimate Sω(T ) we shall use Lemma 1 and distinguish three cases, putting, for
simplicity of notation, L1 = logH , L2 = log logH .

Case 1. dω � 3 andDω �
[
max{3m, (L1/L2)

1/5}]+ 1. In this case, ifPω(t∗, y∗) = 0,
where |t∗| � T , then, by (6),

max{|t∗|, |y∗|} � 2n/2
√
n+ 1(m+ 1)HT m � 2n(m+ 1)HT m,
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so we may apply Lemma 1 with

N = 2n(m+ 1)HT m, δ = [max{3m, (L1/L2)
1/5}]

and obtain

Sω(T ) <
(
2n(m+ 1)T m

)8/(3(3m+3))
H (8/3)(L2/L1)

1/5
(3DωΔ)

Δ+4

� T 8/9 exp

(
8

3
(L1)

4/5(L2)
1/5 + 8n log 2

3(3m+ 3)

+ 8 log(m+ 1)

9(m+ 1)
+ (Δ+ 4) log(3DωΔ)

)
.

To estimate the expression

E = 8 log(m+ 1)

9(m+ 1)
+ (Δ+ 4) log(3ΔωΔ) � 8

9e
+ (Δ+ 4) log(3ΔωΔ)

we distinguish two cases, according as 3m � (L1/L2)
1/5 or not. In the first case a calcu-

lation shows that E � 26(m+ 1)2 log(m+ 1)+ 4(m+ 1)2n. In the other case we use the
crude bound Δ+ 5 � 2(L1/L2)

2/5 and obtain

E � L2/5
1 L

3/5
2 + 4n(L1/L2)

2/5.

Adding the bounds obtained we finally have

Sω(T ) < T
8/9 exp

(
4L4/5

1 L
1/5
2 + 5n(L1/L2)

2/5)
× exp

(
26(m+ 1)2 log(m+ 1)+ 4(m+ 1)2n

)
.

Case 2. 3 � dω � Dω <
[
max{3m, (L1/L2)

1/5}]+ 1. In this case we take

E = [max{3m, (L1/L2)
1/5}]+ 2

and apply Lemma 1 to the polynomial Pω(t, tE + y). Now, for every zero (t∗, y∗) with
|t∗| � T we have, again by (6), |y∗| � T E + 2n(m+ 1)HT m < (m+ 1)2nHT E , so we
may take N = (m+ 1)2nHT E and δ = dωE− 1 (note that the polynomial Pω(t, tE + y)
is of exact degree dωE).

We readily see that Δ+ 4�E4/2. Distinguishing again whether 3m>(L1/L2)
1/5 or

not, and adding the bounds obtained for log((3DωΔ)Δ+4) in these cases, we obtain

Sω(T ) < T
8/9 exp

(
25(L1)

4/5(L2)
1/5 + 1250m4 log(m+ 1)+ 8n log 2

9(m+ 1)

)
.

Case 3. dω = 2. In this case, by Lemma 3, Dω � 2m. We take

E = [max
{
3m, 1

2L
1/6
1

}]
and apply Theorem 5 of [1] to the polynomial Pω(t, tE + y), assumed irreducible over C

(if it is reducible over C the opening argument in the proof of Lemma 1 applies). As in
Case 2 we may take N = (m+ 1)2nHT E > T E + (m+ 1)2nHT m (note that the degree
of Pω(t, tE + y) is 2E).
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Observe that the conditionN > exp(26E6) (an assumption of the theorem in question)
is equivalent to

(m+ 1)2nHT E > exp
(
max{(6m)6, logH })

and is satisfied provided T � exp(2(6m)5), as we are assuming.
The mentioned theorem gives

Sω(T ) < N
1/(2E) exp

(
12
√

2E logN log logN
)
.

Now 2E � (logN)1/6, and log logN � (logN)1/6, since logN � log T � 366 by
assumption. Hence

Sω(T ) < exp

(
logN

2E

(
1 + 12(2E)3/2

√
log logN

logN

))
� exp

(
logN

2E

(
1 + 12

( 1

logN

)1/6
))

� exp

(
2 logN

3E

)
� T 2/3 exp

(
2L5/6

1 + 2n log 2

9m

)
.

Observe now that since H > 20 we have

L
4/5
1 L

1/5
2 < 2L5/6

1 .

Using this inequality in the first two cases, comparing the three estimates and summing
over ω, an operation which at most multiplies the bound by 2n, we obtain

S(T ) � T 8/9 exp
(
50L5/6

1 + 250m4 log(m+ 1)+ 4(m+ 1)2n+ 5nL2/5
1

)
.

We have still to take into account the solutions of a0(t
∗)D(t∗) = 0, but these are at

most 2m(n+ 1) < exp((m+ 1)2n) in number. This concludes the proof. ��

Proof of Theorem. Letm, n,H be as in the statement of the Theorem, and let T satisfy the
lower bound in the statement of Lemma 4. Then the total number R of positive integers
t∗ � T such that at least one of the polynomials Fi(t∗, x) is reducible over Q satisfies

R � hT 8/9 exp
(
50(logH)5/6 + 250m4 log(m+ 1)+ 5(m+ 1)2n+ 5n(logH)2/5

)
.

To find a suitable value of t∗ � T it thus suffices that this quantity is less than T , which
holds if

T > h9 exp
(
450(logH)5/6 + 2250m5 + 45(m+ 1)2n+ 45n(logH)2/5

)
.

Combining this with the lower bound necessary for an application of Lemma 4, we
obtain the Theorem. ��

Remark. It is obviously possible by changing the splitting into cases to obtain a corre-
sponding theorem, with different numerical values for the coefficients appearing in the
final estimate.
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with K. Győry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 549
D12 Reducibility of lacunary polynomials XII . . . . . . . . . . . . . . . . . . 563
D13 On reducible trinomials II . . . . . . . . . . . . . . . . . . . . . . . . . . 580
D14 On reducible trinomials III . . . . . . . . . . . . . . . . . . . . . . . . . . 605
D15 On the greatest common divisor of two univariate polynomials I . . . . . . 632
D16 On the greatest common divisor of two univariate polynomials II . . . . . 646
D17 On the reduced length of a polynomial with real coefficients . . . . . . . . 658



x Contents

E. Polynomials in several variables 693
Commentary on E: Polynomials in several variables

by Umberto Zannier . . . . . . . . . . . . . . . . . . . . . . . . . . . 695
E1 Some unsolved problems on polynomials . . . . . . . . . . . . . . . . . . 703
E2 Reducibility of polynomials in several variables . . . . . . . . . . . . . . 709
E3 Reducibility of polynomials of the form f (x)− g(y) . . . . . . . . . . . 715
E4 Reducibility of quadrinomials

with M. Fried . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 720
E5 A general irreducibility criterion . . . . . . . . . . . . . . . . . . . . . . . 739
E6 Some arithmetic properties of polynomials in several variables

with H. L. Montgomery . . . . . . . . . . . . . . . . . . . . . . . . . . 747
E7 On difference polynomials and hereditarily irreducible polynomials

with L. A. Rubel and H. Tverberg . . . . . . . . . . . . . . . . . . . . 755
E8 On a decomposition of polynomials in several variables . . . . . . . . . . 760
E9 On weak automorphs of binary forms over an arbitrary field . . . . . . . . 779
E10 Reducibility of symmetric polynomials . . . . . . . . . . . . . . . . . . . 828

F. Hilbert’s Irreducibility Theorem 835
Commentary on F: Hilbert’s Irreducibility Theorem

by Umberto Zannier . . . . . . . . . . . . . . . . . . . . . . . . . . . 837
F1 On Hilbert’s Irreducibility Theorem . . . . . . . . . . . . . . . . . . . . . 839
F2 A class of polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . 846
F3 The least admissible value of the parameter in Hilbert’s Irreducibility

Theorem
with Umberto Zannier . . . . . . . . . . . . . . . . . . . . . . . . . . 849



Part G
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Andrzej Schinzel
Selecta

Commentary on G: Arithmetic functions

by Kevin Ford

Schinzel spent much of the early years of his career studying Euler’s totient function
ϕ(n) and the sum of divisors function σ(n). His teacher Wacław Sierpiński and Pál Erdős
corresponded about numerous problems concerning ϕ and σ , and Sierpiński encouraged
Schinzel to work on some of these. Papers G1–G6 showcase Schinzel’s considerable skill
with elementary methods.

G1, G4. Arithmetic functions at consecutive integers

Somayajulu [27] proved in 1950 that the ratio ϕ(n+1)/ϕ(n) takes arbitrarily large and
arbitrarily small values. In a series of four papers ([20], [21], [23], G1), Schinzel improved
and generalized this result, finally proving in G1 for any positive integer h that the vectors
(g(n+1)/g(n), . . . , g(n+h)/g(n+h−1)) are dense in [0,∞)h, where g = ϕ or g = σ .

A few years later, he teamed with Erdős in G4 to study analogous problems for a
wide class of multiplicative functions. For a positive multiplicative function g(n), f (n) =
log g(n) is additive, and the authors chose to state their results in terms of additive functions.
To obtain results about ϕ and σ , one applies these theorems with f (n) = log(n/ϕ(n))
and with f (n) = log(σ (n)/n). There is a vast literature on the distribution of additive
functions, and paper G4 is a major contribution to the topic. Erdős and Schinzel give
necessary and sufficient conditions on f so that for any h � 1, there is a ch so that for any
a1, . . . , ah � ch and ε > 0, there are� x integers n � x satisfying |f (n+ i)− ai | < ε
(1 � i � h) (Theorem 2 and discussion at the end of §1). They also give sufficient (and
conjecturally necessary) conditions on f in order to conclude that for any real a1, . . . , ah
and ε > 0, there are� x integers n � x with |f (n+i)−f (n+i−1)−ai | < ε (1 � i � h)
(Theorem 1 and discussion at the end of §1). Finally, they give very general conditions
under which (f (n+1), . . . , f (n+h)) and (f (n+1)−f (n), . . . , f (n+h)−f (n+h−1))
have continuous distribution functions (Theorems 3 and 4). There is no claim that these
conditions are necessary, but likely they cannot be relaxed too much. Condition 1 of
Theorem 1 is closely related to the classical Kolmogorov three series theorem of probability
theory(1).

(1) The editors thank Kevin Ford for correcting a serious mistake in the proof of Lemma and an
inaccuracy in the proof of Theorem 1 in G4. The corrections have been incorporated in the
text.



862 G. Arithmetic functions

Although the results of G4 are “best possible” (or nearly so), the theorems in G1 may
be extended in other directions. For example, Erdős in [8] determined the maximum rate
of growth of h(n) in order to have

lim inf
n→∞ max

1�i�h(n)
ϕ(n+ i)/ min

1�i�h(n)
ϕ(n+ i) = 1.

The answer (Theorems 1, 2 of [8]) involves the 6th iterate of the logarithm! In another
direction, Alkan, Ford and Zaharescu [2] have proven, for a wide class of multiplicative
functions g including ϕ and σ , that for every h � 1 there is a Ch > 0 so that for any
positive a1, . . . , ah there are infinitely many n so that

|g(n+ i)/g(n+ i − 1)− ai | < n−Ch (1 � i � h).

G2, G3, parts of J1, J2. Multiplicity problems

Let A(m) be the number of solutions x of ϕ(x) = m, and let B(m) be the number of
solutions of σ(x) = m. The famous Carmichael Conjecture ([4], [5]) states thatA(m) �= 1
for all m. Around 1955, Sierpiński made related conjectures that for all k � 0, there are
infinitely many m with B(m) = k and for all k � 0, k �= 1, A(m) = k for infinitely
many m. Sierpiński in 1956 gave an infinite sequence of numbers m with A(m) = 2
and in G2, Schinzel gives explicit infinite sequences of numbers m with A(m) = 3.
Schinzel also provides explicit infinite sequences of m for which (i) A(m) = 0 (in G2)
and (ii) A(m) is unbounded (in G3). In fact, in G2 Schinzel gives a construction, for any
positive integer n, of an infinite sequence of integers k with (iii)A(kn) = 0. The existence
of sequences satisfying (i), (ii) or (iii) (without giving them explicitly) had earlier been
proved by Pillai [18] in 1929, as a corollary of his bound V (x)� x/(log x)(log 2)/e, where
V (x) is the number of m � x with A(m) > 0. A couple of years later, Erdős [8] showed
with sieve methods that if there is one integer m with A(m) = k, then there are infinitely
many such integers (the same method works also forB(m)). Later, in J2, Schinzel deduced
both conjectures of Sierpiński (labelled C14 andC15 in J2) from his Hypothesis H, using a
clever construction requiring the values of certain polynomials to be simultaneously prime
for some argument n.

There has been much activity on these problems since Schinzel’s papers. The Sierpiński
conjectures for A(m) and B(m) have now been proved (in [12] and [14], respectively).
Carmichael’s conjecture remains open, but any counterexamplemmust exceed 101010

and
a single counterexample implies that a positive proportion of all m with A(m) > 0 are
counterexamples [11]. Estimates for V (x) have been progressively refined by Erdős [6],
Erdős and Hall, Pomerance, Maier and Pomerance, and Ford [11] (see [11] for more on
the history of the problem and further references). Combining the results of [11], [12] and
[14], it is now known that for any k � 2, a positive proportion of numbers with A(m) > 0
have A(m) = k and for every k � 1, a positive proportion of numbers with B(m) > 0
have B(m) = k. Erdős in [6] showed that for some c > 0 there are infinitely many m
with A(m) > mc. This was proved for any c < 3 − 2

√
2 by Wooldridge in 1979, and

larger c values were obtained successively by Pomerance, Balog, Fouvry and Grupp, and
Friedlander. The current record is c = 0.7039, due to Baker and Harman [3]. The best
value of c is closely tied to the problem of finding primes p for which p− 1 is composed
only of small prime factors (see [3] and the references therein). Trivial modifications of
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the analysis yield infinitely many m with B(m) > mc with the same value of c. Erdős’
conjecture that one may take any c < 1 remains open.

G5. Compositions of ϕ and σ

M ↪akowski and Schinzel examined in G5 the lim sup and lim inf of the functions
ϕ(ϕ(n))/n, ϕ(σ(n))/n, σ(ϕ(n))/n and σ(σ(n))/n. Alaoglu and Erdős [1] had earlier
shown that lim inf ϕ(σ(n))/n = 0 and that lim sup σ(ϕ(n)) = ∞. Five of the six remain-
ing cases are resolved in G5. The proofs use a combination of elementary methods and a
result of Rényi that implies that for some c > 0 and infinitely many primes p, p − 1 has
no prime factor > pc. They could not determine lim inf σ(ϕ(n))/n, but showed that

lim inf σ(ϕ(n))/n � 1

2
+ 1

234 − 4

and conjectured, but could not prove, that the left side is> 0. This last assertion was proved
by Pomerance [19] in 1989 using sieve methods. The authors in G5 also pose a problem
P486: Is the inequality

(1) σ (ϕ(n))/n � 1

2

true for all n? This remains open, the best result to date being σ(ϕ(n))/n � 1
39.4 and due

to Ford [13]. Inequality (1) has been verified for integers of certain types, and Luca and
Pomerance [17] showed that (1) holds for a set of integers of asymptotic density 1.

G6. Integers of the form n − ϕ(n)

Sierpiński conjectured [26] that there are infinitely many integers which are not of the
form n − ϕ(n). Erdős in [9] settled the analogous conjecture for numbers of the form
σ(n) − n, but it was not until 1995 that Sierpiński’s conjecture was proved by Browkin
and Schinzel in G6. The proof uses the fact that there are integers n such that n2k − 1
is composite for all natural numbers k. This fact is proved using covering congruences,
a method introduced by Erdős [7]. The smallest known value of n is 509203 and was
discovered by H. Riesel in 1956. This may be the smallest n with this property, but a few
smaller candidates have not been eliminated yet. In G6, Browkin and Schinzel show that
none of the numbers 509203 · 2k are of the form n − ϕ(n). Computer calculations are
needed for the case k = 1, and then the proof proceeds by induction on k. Building upon
these ideas, Flammenkamp and Luca [10] have discovered similar families of numbers not
of the form n−ϕ(n). Based on computations performed by D. H. Lehmer and A. Odlyzko,
Browkin and Schinzel conjecture that a positive proportion of numbers are not of the form
n− ϕ(n), and this remains an open problem.

Other problems

For every k � 1, it is unknown if the equation

(2) ϕ(n) = ϕ(n+ k)
has infinitely many solutions n. Sierpiński [25] showed that for each k there is at least one
solution of (2), and by the work of Schinzel [22] and Schinzel and Wakulicz [24], we know
that there are at least two solutions for each k � 2 · 1058. When k is even, Schinzel and
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Sierpiński deduced from Hypothesis H (J1, Conjecture C2,1,2) that (2) has infinitely many
solutions. For discussions about the distribution of solutions of (2), see the paper of Graham,
Holt and Pomerance [15] and the references therein. In particular, it is conjectured that
most solutions of (2) when 2 | k are generated by certain pairs of generalized twin primes
([15], Theorems 1 and 2). Solutions when k ≡ 3 (mod 6) are particularly rare.

The infinitude of solutions of the equation σ(m) = ϕ(n) is also unknown, although
it follows easily if there are infinitely many twin primes or infinitely many Mersenne
primes (it also follows from the Extended Riemann Hypothesis for Dirichlet L-functions
by unpublished work of Pomerance). Schinzel and Sierpiński deduce from Hypothesis
H (J1, C8) a stronger result: for every k, there are integers m for which simultaneously
A(m) � k and B(m) � k.

More information about the arithmetic function problems investigated in G1–G6, J1
and J2, including additional references to related work, may be found in Richard Guy’s
book [16], especially sections B13, B36, B38, B39, B41 and B42.

References
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[23] A. Schinzel, W. Sierpiński, Sur quelques propriétés des fonctions ϕ(n) et σ(n). Bull. Acad.
Polon. Sci. Cl. III 2 (1954), 463–466.

[24] A. Schinzel, A. Wakulicz, Sur l’équation ϕ(x + k) = ϕ(x), II. Acta Arith. 5 (1959), 425–426.
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Selecta
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Cl. III 3 (1955), 415–419

On functions ϕ(n) and σ(n)

The object of the present note is to prove the following two theorems:

Theorem 1. For every finite sequence of positive numbers a1, a2, . . . , ak there exists an
increasing infinite sequence of natural numbers n1, n2, . . . such that

lim
k→∞

ϕ(nk + i)
ϕ(nk + i − 1)

= ai for i = 1, 2, . . . , h.

Theorem 2 is obtained from Theorem 1 by replacing the letter ϕ by σ .

Lemma 1. Let un (n = 1, 2, . . . ) denote an infinite sequence of real numbers such that

lim
n→∞ un = +∞, lim

n→∞
un+1

un
= 1.

Then, for every real number C > 1 and for every increasing infinite sequence of natural
numbers nk , there exists an infinite sequence of natural numbers lk such that

lim
k→∞

ulk

unk
= C.

Proof. Letnk (k = 1, 2, . . . ) denote a given increasing infinite sequence of natural numbers.
For every natural number k let us denote by lk the least natural number for which

ulk

unk
> C;

such a number exists, since

lim
l→∞ ul = +∞.

Thus we have
ulk

unk
> C � ulk−1

unk
,

whence

1 > C : ulk
unk

� ulk−1

ulk

Presented by W. Sierpiński on June 21, 1955
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and, in view of

lim
k→∞

ulk−1

ulk
= 1,

lim
k→∞

ulk

unk
= C. 	


Lemma 2. Ifg is a natural number, andA0, A1, . . . , Ag are natural numbers> 1 relatively
prime in pairs, then there exists a natural number m such that, for i = 0, 1, . . . , g,

Ai |m+ i,
(
Ai,

m+ i
Ai

)
= 1, (A0A1 · · ·Ag)2 > m+ i.

Proof. In virtue of so-called Chinese remainder theorem there exists a natural number m1
such that

m1 + i ≡ Ai (mod A2
i ) for i = 0, 1, . . . , g.c

Let m = m1 − A2
0A

2
1 · · ·A2

g

[
m1 + g

A2
0A

2
1 · · ·A2

g

]
. We shall have Ai |m + i and

c (
Ai,

m+ i
Ai

)
= 1, since

Ai |m1 + i, m+ i
Ai

≡ m1 + i
Ai

≡ 1 (mod Ai) for i = 0, 1, . . . , g.

We shall also have −g � m < (A0A1 · · ·Ag)2 − g.c

If we had m � 0, we should have for i = −m, 0 � i � g and A2
i |m + i, which is

impossible, since Ai > 1. Thus m is an integer such that for i = 0, 1, . . . , g

(A0A1 · · ·Ag)2 > m+ i > 0. 	

Lemma 3a. For every finite sequence of real numbers, b1, b2, . . . , bg , satisfying the in-
equality

ϕ(i)

i
> bi > 0 for i = 1, 2, . . . , g,

there exists a sequence mk such that

lim
k→∞

ϕ(mk + i)
mk + i = bi, i = 1, 2, . . . , g.

Proof. Assume in Lemma 1 that

un =
n∏
i=1

(
1

1− 1/pi

)
(where pi is the i-th prime number) and that

Ci = 1

bi

ϕ(i)

i
,

and for k � g, i = 1, 2, . . . , g, let

A0,k = g!p1 · p2 · · ·pk, Ai,k = pli−1,k+1 · · ·pli,k ,
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where l0,k = k and li,k is the number lk from Lemma 1 suitably chosen for the number Ci
and the sequence li−1,k .

In virtue of Lemma 2 there exists a number mk such that

Ai,k |mk + i,
(mk + i
Ai,k

, Ai,k

)
= 1, (A0,kA1,k · · ·Ag,k)2 > mk + i > 0

for i = 0, 1, . . . , g.
Moreover, for i, j > 0

(1) (A0,k, mk + i) = (A0,k, i) = i
(2)

(
p1p2 · · ·pk, mk + i

i

) ∣∣∣ (A0,k

i
,
mk + i
i

)
= 1

c

(3) (Aj,k,mk + i) = (Aj,k, i − j) = 1

for i �= j , because k � g.
Accordingly, for i = 1, 2, . . . , g,

mk + i = iAi,kqαi,1i,1 q
αi,2
i,2 · · · q

αi,si
i,si
,

where

plg,k < qi,1 < qi,2 < . . . < qi,si

are prime numbers and, of course, si < 2lg,k . Hence,

ϕ(i)

i
· ϕ(Ai,k)
Ai,k

>
ϕ(mk + i)
mk + i = ϕ(i)

i
· ϕ(Ai,k)
Ai,k

si∏
j=1

(
1− 1

qi,j

)

>
ϕ(i)

i
· ϕ(Ai,k)
Ai,k

·
s1∏
j=1

(
1− 1

plg,k + j
)
>
ϕ(i)

i
· ϕ(Ai,k)
Ai,k

· plg,k

plg,k + 2lg,k

and, in virtue of the formulas

lim
k→∞

uli−1,k

uli,k
= bi · i

ϕ(i)
, lim

k→∞
plg,k

plg,k + 2lg,k
= 1,

we have

lim
k→∞

ϕ(mk + i)
mk + i = bi. 	


Lemma 3b. For every finite sequence of real numbers, b1, b2, . . . , bg , satisfying the in-
equality

bi >
σ(i)

i
for i = 1, 2, . . . , g,

there exists a sequence mk such that

lim
k→∞

σ(mk + i)
mk + i = bi, i = 1, 2, . . . , g.
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Proof. Assume in Lemma 1 that

un =
n∏
i=1

(
1+ 1

pi

)
(where pi is the i-th prime number) and that Ci = bi · i/σ (i), and, for k � g, i =
1, 2, . . . , g, let

A0,k = g!p1 · p2 · · ·pk, Ai,k = pli−1,k+1 · · ·pli,k ,
where li,k are the numbers from Lemma 1 (on the whole different from those in Lemma 3a).

Analogously to the proof of Lemma 3a, we prove the existence of a number mk such
that, for i = 1, 2, . . . , g,

mk + i = iAi,kqαi,1i,1 q
αi,2
i,2 · · · q

αi,si
i,si
,

where

plg,k < qi,1 < qi,2 < . . . < qi,si

are prime numbers (on the whole different from those in Lemma 3a) and si < 2lg,k . Hence,

σ(i)

i
· σ(Ai,k)
Ai,k

<
σ(mk + i)
mk + i <

σ(i)

i
· σ(Ai,k)
Ai,k

si∏
j=1

( qi,j

qi,j − 1

)

<
σ(i)

i
· σ(Ai,k)
Ai,k

·
si∏
j=1

plg,k + j
plg,k + j − 1

<
σ(i)

i
· σ(Ai,k)
Ai,k

· plg,k + 2lg,k
plg,k

,

whence, as in Lemma 3a,

lim
k→∞

σ(mk + i)
mk + i = σ(i)

i
, lim

k→∞
σ(Ai,k)

Ai,k
= bi. 	


Remark. In the case of g = 1 Lemmas 3a and 3b imply W. Sierpiński’s theorems on the
density of the sets{ϕ(m)

m

}
m=1,2,...

in [0, 1] and
{σ(m)
m

}
m=1,2,...

in [1,∞].

Proof of Theorem 1. Assume in Lemma 3a that g = h + 1 and that b1+i = b1a1 · · · ai
(i = 1, . . . , h), where b1 is so small that

b1+i <
ϕ(i + 1)

i + 1
for i = 0, 1, . . . , h.

Thus there exists a sequence nk such that

lim
k→∞

ϕ(nk + i)
nk + i = b1+i for i = 0, 1, . . . , h.

Hence

lim
k→∞

ϕ(nk + i)
ϕ(nk + i − 1)

= b1+i
bi

= ai for i = 0, 1, . . . , h. 	
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I have been informed that the proof of this theorem, based on Brun’s method, has also
been given by Y. Wang; the proof has not yet appeared in print.

The proof of Theorem 2 is analogous to the preceding one but based on Lemma 3b.

Conclusions. In Theorems 1 and 2 we can, of course, take 0 or∞ for ai (i = 1, 2, . . . , h).

Remark. Setting h = 1 in Theorems 1 and 2 we obtain the theorems on the density of sets{ϕ(n+ 1)

ϕ(n)

}
n=1,2,...

and
{σ(n+ 1)

σ (n)

}
n=1,2,...

in [0,∞] [1].
Setting h = 2, a1 = ∞, a2 = 0; a1 = 0, a2 =∞; a1 =∞, a2 =∞; a1 = 0, a2 = 0,

we obtain a theorem from W. Sierpiński’s and my note [2]; setting a1 = a2 = . . .= ah =∞
and a1 = a2 = . . . = ah = 0, we obtain a theorem from another note of mine [3].

The case of h = 1, a1 = ∞ and a1 = 0 gives a theorem of B. S. K. R. Somayajulu [4].
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Sur l’équation ϕ(x) = m

L’équation ϕ(x) = m, oùm est un nombre naturel donné et ϕ(x) est la fonction connue
de Euler–Gauss (qui exprime le nombre de nombres naturels � x et premiers avec x) a
été étudiée par plusieurs auteurs. En particulier on a examiné combien de solutions peut
admettre cette équation pour m donnés.

M. M. G. Beumer a posé le problème de démontrer qu’il existe une infinité de nombres
naturels pairsmpour lesquels l’équationϕ(x)=mn’a pas de solutions(1). M. W. Sierpiński
a demontré(2) que tels sont par exemple les nombres 2 · 52n, où n = 1, 2, . . . , et aussi
les nombres m = 2p, où p est un nombre premier ≡ 1 (mod 3), et que, dans l’état actuel
de la science nous ne savons pas résoudre le problème s’il existe une infinité de nombres
premiers p pour lesquels l’équation ϕ(x) = 2p a des solutions.

Or, je démontrerai un théorème qui résout une généralisation du problème de
M. G. Beumer.

Théorème 1. Quel que soit le nombre naturel n, il existe une infinité de nombres naturelsm
qui sont des multiples de n, tels que l’équation ϕ(x) = m n’a pas de solutions.

Démonstration. Soit n un nombre naturel, d1, d2, . . . , ds tous les diviseurs naturels de n.
D’après le théorème connu de Lejeune–Dirichlet il existe une infinité de nombres pre-
miers p tels que

(1) p ≡ 1 (mod di + 1) (i = 1, 2, . . . , s).

Soit p un de ces nombres premiers et supposons que le nombre naturel x satisfait à
l’équation ϕ(x) = pkn, où k est un nombre naturel. S’il était p |x, on aurait p− 1 |ϕ(x),
d’où, d’après notre équation, p − 1 |n, ce qui est impossible, vu que d’après (1) on a
p ≡ 1 (mod n+ 1). On a donc (x, p) = 1. Soit x = qα1

1 q
α2
2 · · · qαrr le développement du

nombre x en facteurs premiers. On a donc

q
α1−1
1 (q1 − 1)qα2−1

2 (q2 − 1) · · · qαr−1
r (qr − 1) = pkn

et, comme (x, p) = 1, il existe un indice i � r tel que p |qi − 1, d’où qi − 1 = pldj , où
l � 1 et dj est un diviseur du nombre n. On a donc, d’après (1),

qi = pldj + 1 ≡ 1 · dj + 1 ≡ 0 (mod dj + 1)

et, comme qi = pldj + 1 > dj + 1 et qi est un nombre premier, on aboutit à une

(1) Elem. Math. 10 (1955), 22, problème 230.
(2) Voir solution du problème 230, Elem. Math. 11 (1956), 37.
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contradiction. k pouvant être un nombre naturel quelconque, le théorème 1 se trouve
démontré. 	


Si n = 2, p = 7, on a d1 = 1, d2 = 2, s = 2 et la formule (1) est vérifiée, d’où il
résulte (d’après notre démonstration) que l’équation ϕ(x) = 2 · 7k n’a pas de solutions
pour k naturels. Or, comme on sait, pour k = 0 cette équation n’a que trois solutions :
x = 3, 4 ou 6. On a ainsi ce

Corollaire 1. L’équation ϕ(x) = 2 ·7k a des solutions seulement si k = 0 (et alors x = 3,
4 ou 6).

On connait l’hypothèse de R. D. Carmichael qu’il n’existe aucun nombre naturel m
pour lequel l’équation ϕ(x) = m aurait une et une seule solution, ce qui a été vérifié par
V. L. Klee jr. pourm � 10400 [1]. Or, M. W. Sierpiński a démontré qu’il existe une infinité
de nombres naturels m pour lesquels l’équation ϕ(x) = m a précisément deux solutions :
tels sont par exemple les nombres m = 2 · 36k+1 (k = 1, 2, . . . ). Or, je démontrerai la
généralisation suivante de cette proposition :

Théorème 2. Si p est un nombre premier de la forme 4t + 3 et si k est un nombre naturel,
l’équation ϕ(x) = p6k+1(p − 1) a seulement deux solutions : x = p6k+2 et x = 2p6k+2.

Démonstration. Soit k un nombre naturel donné etp un nombre premier de la forme 4t+3.
On vérifie sans peine que les nombres x = p6k+2 et x = 2p6k+2 satisfont à l’équation
ϕ(x) = p6k+1(p − 1). Supposons maintenant que x est un nombre naturel tel que

(2) ϕ(x) = p6k+1(p − 1), x �= p6k+2 et x �= 2p6k+2.

S’il était x = 2α , où α est un nombre naturel, on aurait p6k+1(p − 1) = ϕ(x) = 2α−1, ce
qui est impossible, puisque p �= 2. On a donc x = 2αpα1

1 p
α2
2 · · ·pαrr , où r est un nombre

naturel, p1, p2, . . . , pr sont des nombres premiers, 2 < p1 < p2 < . . . < pr , α � 0,
αi > 0 (i = 1, 2, . . . , r), ce qui donne

ϕ(x) = ϕ(2α)pα1−1
1 (p1 − 1)pα2−1

2 (p2 − 1) · · ·pαr−1
r (pr − 1)

et, comme 2 |pi − 1 (i = 1, 2, . . . , r) on trouve ϕ(2α)2r |ϕ(x) = p6k+1(p − 1), d’où
α � 1, r = 1, donc x = 2αpα1

1 et ϕ(x) = pα1−1
1 (p1 − 1) = p6k+1(p − 1). S’il était

p1 = p, on aurait α1 − 1 = 6k + 1 et x = 2αp6k+2, où α = 0 ou α = 1, contrairement
à (2). On a donc p1 �= p. S’il était α1 > 1, on aurait donc p1 |p − 1 et p |p1 − 1, ce qui
est impossible. On a donc α1 = 1, d’où p1 − 1 = p6k+1(p − 1) et

p1 = p6k+1(p − 1)+ 1 > p2 + 1 > p2 − p + 1,

et comme, d’autre part

p1 = p6k+2 − p6k+1 + 1 = p6k(p2 − p + 1)− (p6k − 1),

p6 − 1 |p6k − 1, p6 − 1 = (p3 − 1)(p + 1)(p2 − p + 1),

on a 1 < (p2 − p + 1) |p1, ce qui est impossible, vu que le nombre p1 est premier.
Le théorème 2 se trouve ainsi démontré. 	
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Il en résulte immédiatement ce

Corollaire 2. L’équation ϕ(x) = 6 · 712k+1, où k est un nombre naturel, a précisément
deux solutions : x = 712k+2 et x = 2 · 712k+2.

Théorème 3. Il existe une infinité de nombres naturelsm pour lesquels l’équation ϕ(x) =
m a précisément trois solutions. Tels sont, par exemple, les nombres m = 12 · 712k+1 où
k = 1, 2, . . . .

Démonstration. Soit k un nombre naturel et m = 12 · 712k+1. On vérifie sans peine que

m = ϕ(3 · 712k+2) = ϕ(4 · 712k+2) = ϕ(6 · 712k+2).

Supposons maintenant que

(3) ϕ(x) = m, x �= 3 · 712k+2, x �= 4 · 712k+2 et x �= 6 · 712k+2.

D’après ϕ(x) = m il ne peut pas être x = 2α , où α est un entier � 0.
S’il était x = 2αy, où α � 2 et (y, 2) = 1, on aurait

ϕ(x) = 2α−1ϕ(y) = 12 · 712k+1, donc α = 2 et ϕ(y) = 6 · 712k+1,

et, d’après le corollaire 2 on aurait y = 712k+2 [puisque (y, 2) = 1], d’où

x = 4y = 4 · 712k+2,

contrairement à (3).
Donc, le nombre x n’est pas divisible par 4 et on a x = 2αpα1

1 p
α2
2 · · ·pαrr où r est

un nombre naturel, p1, p2, . . . , pr sont des nombres premiers impairs distincts, α � 1 et
αi � 1 (i = 1, 2, . . . , r). On a donc

ϕ(x) = ϕ(pα1
1 )ϕ(p

α2
2 ) · · ·ϕ(pαrr ) = 12 · 712k+1.

S’il était r � 3, on aurait 8 |ϕ(x) = 12 · 712k+1, ce qui est impossible. On a donc r � 2.
S’il était r = 2 alors, les nombres ϕ(pα1

1 ) et ϕ(pα2
2 ) étant pairs, un d’eux, soit ϕ(pα1

1 )

serait égal à 2 · 7l , où l est un entier � 0, d’où, d’après le corollaire 1, l = 0 et pα1
1 = 3,

donc ϕ(pα1
1 ) = 2 et ϕ(pα2

2 ) = 6 ·712k+1 et, d’après le corollaire 2 on aurait pα2
2 = 712k+2,

d’où x = 2α · 3 · 712k+2, contrairement à (3).
On a donc r = 1 et ϕ(x) = ϕ(pα1

1 ) = 12 · 712k+1 et évidemment on a p1 �= 3 et
p1 �= 7, donc α1 = 1 et p1 − 1 = 12 · 712k+1, d’où p1 = 12 · 712k+1 + 1 > 5, ce qui est
impossible, vu que le nombre 12 · 712k+1 + 1 est divisible par 5 (puisque 74 = 5t + 1 et
12 · 7 = 5u− 1).

Nous avons ainsi démontré que l’équation ϕ(x) = m a précisément trois solutions. Le
théorème 3 est ainsi démontré. 	


M. W. Sierpiński a exprimé l’hypothèse que, quel que soit le nombre naturel s > 1, il
existe une infinité de nombres naturelsm pour lesquels l’équation ϕ(x) = m a précisément
s solutions. Or, nous ne savons pas démontrer même que pour tout nombre naturel s > 1
il existe au moins un nombre naturel m tel que l’équation ϕ(x) = m a précisément s
solutions.



874 G. Arithmetic functions

Il est encore à remarquer que dans une communication présentée au Congrès des
mathématiciens tchécoslovaques à Prague en 1955(3) j’ai démontré d’une façon tout-à-
fait élémentaire que, quel que soit le nombre naturelm tel que l’équation ϕ(x) = m a plus
que s solutions. Tel est, par exemple, le nombrem = (p1− 1)(p2− 1) · · · (ps − 1), où pi
désigne le i-ème nombre premier. (L’équation ϕ(x) = m est ici vérifiée par les nombres

x0 = p1p2 · · ·ps et xi = x0
pi − 1

pi
.

où i = 1, 2, . . . , s.)

Bibliographie

[1] V. L. Klee, jr., On a conjecture of Carmichael. Bull. Amer. Math. Soc. 53 (1947), 1183–1186.

(3) Voir G3, p. 875–876.
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Sur un problème concernant la fonction ϕ(n)

Récemment M. W. Sierpiński m’a posé le problème suivant : k étant un nombre naturel
quelconque, existe-t-il toujours un nombre naturelm tel que l’équation ϕ(x) = m ait plus
que k solutions (en nombres naturels x) ?

(ϕ(n) désigne ici le nombre de nombres naturels � n et premiers avec n).
Le but de cette communication est de démontrer que la réponse à ce problème est

positive.
Soit k un nombre naturel donné, pi — le i-ème nombre premier. Posons

m = (p1 − 1)(p2 − 1) · · · (pk − 1),(1)

xi = p1p2 · · ·pi−1(pi − 1)pi+1 · · ·pk pour i = 1, 2, . . . , k,(2)

xk+1 = p1p2 · · ·pk.(3)

Les nombres x1, x2, . . . , xk, xk+1 sont évidemment naturels et distincts deux à deux.
Soit maintenant i un des nombres 1, 2, . . . , k. Le nombre pi −1 évidemment n’est pas

divisible par aucun nombre premier > pi−1 :

(4) pi − 1 = pγ1
1 p

γ2
2 · · ·pγi−1

i−1

où γ1, γ2, . . . , γi−1 sont des entiers � 0. D’après (2) on a donc

xi = pγ1+1
1 p

γ2+1
2 · · ·pγi−1+1

i−1 pi+1pi+2 · · ·pk,
d’où

ϕ(xi) = pγ1
1 p

γ2
2 · · ·pγi−1

i−1 (p1 − 1) · · · (pi−1 − 1)(pi+1 − 1) · · · (pk − 1)c

et, d’après (4) et (1) on trouve ϕ(xi) = m.
Or, d’après (3) et (1) on a évidemment ϕ(xk+1) = m.
Les k + 1 nombres naturels distincts x1, x2, . . . , xk+1 satisfont donc à l’équation

ϕ(x) = m et notre assertion se trouve démontrée.
En ce qui concerne l’équationϕ(x) = m il est encore à remarquer que R. D. Carmichael

suppose qu’il n’existe aucun nombre naturel m pour lequel elle ait précisément une so-
lution [1] ; comme l’a démontré V. L. Klee jr., cela est vrai pour m � 10400 [2]. Or,
M. W. Sierpiński a récemment démontré qu’il existe une infinité de nombres naturels m
pour lesquels l’équation ϕ(x) = m a précisément deux solutions : tels sont, par exemple,

Communication présentée le 2 septembre 1955 au Congrès des mathématiciens tchécoslo-
vaques à Prague par M. W. Sierpiński.
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les nombres m = 2 · 36k+1, où k = 1, 2, . . . . (Ces deux solutions sont ici x = 36k+2 et
x = 2 · 36k+2).

Après avoir pris connaissance avec la communication de A. Schinzel, M. P. Erdős a
remarqué que S. Pillai a prouvé que le nombre des entiersm � x pour lesquels l’équation
ϕ(y) = m a des solutions est d’ordre o(x).

En 1935 P. Erdős a démontré (dans le Quarterly Journal of Mathematics) l’existence
d’une suite infinie croissante d’entiers nk (k = 1, 2, . . . ) telle que le nombre de solutions
de l’équation ϕ(y) = nk est plus grand que nck où c est un nombre fixe positif, et il énonce
l’hypothèse que pour tout ε > 0 il existe un tel c > 1− ε.

Quant à la démonstration deA. Schinzel, M. P. Erdős la considére comme la plus simple
de toutes qui lui sont connues.

Travaux cités

[1] R. D. Carmichael, Note on Euler’s ϕ-function. Bull. Amer. Math. Soc. 28 (1922), 109–110.

[2] V. L. Klee, jr., On a conjecture of Carmichael. Bull. Amer. Math. Soc. 53 (1947), 1183–1186.
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Distributions of the values
of some arithmetical functions

with P. Erdős (Budapest)

1.

Y. Wang and A. Schinzel proved, by Brun’s method, the following theorem ([3]):

For any given sequence of h non-negative numbers a1, a2, . . . , ah and ε > 0, there
exist positive constants c = c(a, ε) and x0 = x0(a, ε) such that the number of positive
integers n � x satisfying∣∣∣ ϕ(n+ i)

ϕ(n+ i − 1)
− ai

∣∣∣ < ε (1 � i � h)

is greater than cx/ logh+1 x, whenever x > x0.

They also proved the analogous theorem for the function σ .
Shao Pin Tsung, also using Brun’s method, extended this result to all multiplicative

positive functions fs(n) satisfying the following conditions ([4]):

I. For any positive integer l and prime number p:

lim
p→∞

(
fs(p

l)/pls
) = 1 (p denotes primes).

II. There exists an interval 〈a, b〉, a = 0 or b = ∞, such that for any integerM > 0 the
set of numbers fs(N)/Ns , where (N,M) = 1, is dense in 〈a, b〉.

(This formulation is not the same but equivalent to the original one.)

In this paper we shall show without using Brun’s method that if we replace the condi-
tion I by the condition ∑ (

fs(p)− ps
)2

p2s+1 <∞
(but preserving condition II) then there exists more than C(a, ε)x positive integers n � x
for which ∣∣∣ fs(n+ i)

fs(n+ i − 1)
− ai

∣∣∣ < ε (i = 1, 2, . . . , h).
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This theorem follows easily from the following stronger theorem.

Theorem 1. Let f (n) be an additive function, satisfying the following conditions
1.

∑
p

(‖f (p)‖2/p
)

is convergent, where ‖f ‖ denotes f (p) for |f (p)| � 1 and 1 for

|f (p)| > 1.
2. There exists a number c1 such that, for any integerM > 0, the set of numbers f (N),

where (N,M) = 1, is dense in (c1,∞).
Then, for any given sequence of h real numbers a1, a2, . . . , ah and ε > 0, there exist

more than C(a, ε)x positive integers n � x for which

(1)
∣∣f (n+ i)− f (n+ i − 1)− ai

∣∣ < ε (i = 1, 2, . . . , h);
C(a, ε) is a positive constant, depending on ε and ai .

Lemma. There exists an absolute constant c such that the number of integers of the form
pq > x for which one can find n � x satisfying n ≡ b (mod a), n ≡ 0 (mod p) and
n+ 1 ≡ 0 (mod q) is for x > x0(a) less than cx/a.

Proof. Let c1, c2, . . . denote absolute constants. Assume p > x1/2 (q > x1/2 can be dealt
similarly). Denote by Al(x) the number of integers of the form pq satisfying

pq > x, x1−1/2l � p < x1−1/2l+1
, n ≡ b (mod a), p |n, q |n+ 1,

for some n, 1 � n � x,c

and by A′l (x) the number of integers pq for which

x1−1/2l � p < x1−1/2l+1
, q > x1/2l+1

, n ≡ b (mod a), p |n, q |n+ 1,

for some n, 1 � n � x,

Clearly A′l (x)�Al(x) and it will suffice to prove that for x>x0(a),
∞∑
l=1
A′l (x)<cx/a.

Define positive integer lx by the inequality

2lx � log log x > 2lx−1.c

The number k of integers n satisfying

(2) n � x, n ≡ b (mod a), n ≡ 0 (mod p), x1−1/2l < p < x1−1/2l+1

for an l � lx does not exceed
∑

x�p>x1−2−lx

([ x
pa

]
+ 1
)

, thus by theorems of Mertens and
c

Chebyshev

k <
c1x

a · 2lx +
c2x

log x

and by the definition of lx

k <
c3x

a log log x
for x > x1(a).

c
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Denote the numbers satisfying (2) for an l � lx and satisfying ν(n+ 1) � 10 log log xc

by a1 < a2 < . . . < ah � x and denote the numbers satisfying (2) for an l � lx and
satisfying ν(n+ 1) > 10 log log x by b1 < b2 < . . . < bj � x. Since∑

n�x
2ν(n+1) �

∑
n�x

d(n+ 1) = O(x log x)

we have

j <
c4x

log5 x
.

Clearly h � k and ν(n+ 1) � 2 log(n+ 1) � 3 log x for all n � x, thus

(3)
∑
l�lx

A′l (x) �
h∑
i=1

ν(ai + 1)+
j∑
i=1

ν(bi + 1) � 10k log log x + 3j log x <
c5x

a

for x > x2(a).

For l < lx denote numbers satisfying (2) by a(l)1 < a
(l)
2 < . . . < a

(l)
kl

. For the same

reason as for k we have for kl the inequalityc

kl <
c6x

a · 2l+1 +
c2x

log x

hence by l < lx

(4) kl <
c7x

a · 2l for x > x3(a).c

We shall prove that for l < lx and sufficiently large x

(5) A′l (x) =
kl∑
i=1

νl(a
(l)
i + 1) <

c8x

a · l2

where νl(m) denotes the number of prime factors > x1/2l+1
of m.

For this purpose, we split the summands of the sum (5) into two classes. In the first
class are the integers a(l)i for which νl(a

(l)
i + 1) � 2l/ l2. From (4) it follows that the

contribution of these integers a(l)i to (5) is less than c7x/al
2. The integers in the second

class satisfy νl(a
(l)
i + 1) > 2l/ l2. Thus these integers are divisible by more than 2l/ l2

primes q > x1/2l+1
.

Let g = [2l/ l2]. Given distinct primes q1, q2, . . . , qg greater than x1/2l+1
withc

q1q2 · · · qg � x + 1, the number of integers n � x satisfying n ≡ a (mod b) and

q1 · · · qg |n+ 1 is at most
x

aq1 · · · qg + 1. Thus, by theorems of Chebyshev and Mertens,
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the number of integers of the second class is less than

x

ag!
( ∑
x1/2l+1

<q�x

1

q

)g
+O

( ∑
q1,...,qg−1

x

gq1 · · · qg−1 log(x/q1 · · · qg−1)

)

<
x(c9l)

g

ag! +O
(

2l+1(c9l)
g−1x

g! log x

)
<

x

a · 4l

for l > c10, x > x4(a). By definition, νl(a
(l)
i + 1) < 2l+1. Thus, for l > c10, thec

contribution of the numbers of the second class to (5) is < x/a · 2l−1; for l � c10 the
contribution is clearly < 2c10+1x. Thus, for l < lx , x > x4(a),c

A′l (x) < c8x/al
2

and in view of (3) we have for x > x0(a)

∞∑
l=1

A′l (x) <
c5x

a
+
∑
l<lx

c8x

al2
<
cx

a

which proves the lemma. 	


Proof of the theorem. Let ε be a positive number and let a sequence ai (i = 1, 2, . . . , h)
be given.

By condition 2 we can find positive integers N0, N1, . . . , Nh such that(
Ni, (h+ 1)!) = 1 (i = 0, 1, . . . , h), (Ni,Nj ) = 1 (0 � i < j � h),(6)

f (N0) > c1 + max
1�i�h

{
f (i + 1)−

i∑
j=1

aj

}
and ∣∣∣f (Ni)− {f (N0)− f (i + 1)+

i∑
j=1

aj

}∣∣∣ < 1
4ε (1 � i � h);

hence

(7)
∣∣f ((i + 1)Ni

)− f (iNi−1)− ai
∣∣ < 1

2ε (1 � i � h).

Let k1 be the greatest prime factor of N0N1 · · ·Nh or h if N0N1 · · ·Nh = 1. Put μ =c

ε/
√

96hc (c is the constant of the Lemma). By condition 1,
∑

|f (p)|�μ
(1/p) is convergent.

Since
∑
p

(1/p2) is also convergent, there exists a k2 such that

(8)
∑

|f (p)|�μ
p>k2

1

p
+
∑
p>k2

1

p2 <
1

3(h+ 1)
.
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Finally by condition 1 there exists a k3 such that

(9)
∑

|f (p)|<μ
p>k3

f (p)2

p
<
ε2

48h
.

Let us put

k = max(k1, k2, k3), N = N1N2 · · ·Nh, P =
∏

p�k, p/|N
p, Q = (h+ 1)!N2P

and let us consider the following system of congruences

n ≡ 1 (mod (h+ 1)!P), n ≡ −i +Ni (modN2
i ), 0 � i � h.

By (6) and the Chinese Remainder Theorem there exists a number n0 satisfying these
congruences.

It is easy to see that

(10) for every integer t the numbers (Qt+n0+ i)/(i+1)Ni (i = 1, 2, . . . , h) are integers
which are not divisible by any prime � k;

(11) the number of terms not exceeding x of the arithmetical progression Qt + n0 is
x/Q+O(1).

In order to prove Theorem 1 we shall estimate the number of integers n of the progres-
sionQt + n0 which satisfy the inequalities

(12) n � x,
h∑
i=1

(
f (n+ i)− f (n+ i − 1)− f ((i + 1)Ni

)+ f (iNi−1)
)2
> 1

4ε
2.

We divide the set of integers n ≡ n0 (modQ) for which the inequalities (12) hold into
two classes. Integers n such that n(n + 1) · · · (n + h) is divisible by a prime p > k with
|f (p)| � μ, or by p2, p > k, are in the first class and all other integers are in the second
class.

(13) The number of integers n � x, n ≡ r (modQ) which are divisible by a given integer
d > 0 is equal to x/dQ+O(1) for (d,Q) = 1,

hence the number of integers n � x, n ≡ n0 (modQ) of the first class is less than

(h+ 1)
x

Q

( ∑
p>k

|f (p)|�μ

1

p
+
∑
p>k

1

p2

)
+O

( ∑
p�x+h

1+
∑

p2�x+h
1

)
.

By the inequality (8) and the definition of k this number is less than 1
3x/Q+ o(x).
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For the integers of the second class, by remark (10) we have

∑
n

′′ h∑
i=1

(
f (n+ i)− f (n+ i − 1)− f ((i + 1)Ni

)+ f (iNi−1)
)2

= S =
∑
n

′′ h∑
i=1

{ ∑
p |n+i
p>k

f (p)−
∑

p |n+i−1
p>k

f (p)

}2

,

where
∑′′ means that the summation runs through the integers of the second class. In view

of remark (13), since (Q, p) = 1 we have

S �
∑

n≡n0 (mod Q)
n�x

h∑
i=1

{ ∑
p |n+i

p>k, |f (p)|<μ

f (p)−
∑

p |n+i−1
p>k, |f (p)|<μ

f (p)

}2

=
∑

x+h�p>k
|f (p)|<μ

f 2(p)
(2hx

Qp
+O(1)

)

+
∑

n≡n0 (mod Q)
n�x

h∑
i=1

{
2

∑
pq |n+i, q>p>k

|f (p)|<μ, |f (q)|<μ

f (p)f (q)

+ 2
∑

pq |n+i−1, q>p>k
|f (p)|<μ, |f (q)|<μ

f (p)f (q)− 2
∑

p |n+i, q |n+i−1, q>k
p>k, |f (p)|<μ, |f (q)|<μ

f (p)f (q)

}

� 2hx

Q

∑
p>k, |f (p)|<μ

f 2(p)

p
+

∑
n≡n0 (mod Q)

n�x

h∑
i=1

2
∑

p |n+i, q |n+i−1
pq�x, p>k, q>k
|f (p)|<μ, |f (q)|<μ

|f (p)f (q)|

+O
( ∑
p�x+h
|f (p)|<μ

f 2(p)+
∑

p>q>k, pq�x+h
|f (p)|<μ, |f (q)|<μ

|f (p)f (q)|
)
.

Thus finally from (9), Lemma, the equality μ2 = ε2/96hc and from the fact that the
number of integers of the form pq not exceeding x + h is o(x), we get

S <
ε2

12
· x
Q
+ o(x).

Thus the number of integers of the second class is less than 1
3x/Q+ o(x).

Hence there exist less than 2
3x/Q+ o(x) positive integers n � x, n ≡ n0 (modQ) for

which
h∑
i=1

(
f (n+ i)− f (n+ i − 1)− f ((i + 1)Ni)+ f (iNi−1)

)2
> 1

4ε
2.
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Therefore by (11) there exist more than 1
3x/Q+ o(x) positive integers n � x for which

h∑
i=1

(
f (n+ i)− f (n+ i − 1)− f ((i + 1)Ni)+ f (iNi−1)

)2 � 1
4ε

2

and then∣∣(f (n+ i)− f (n+ i − 1)− f ((i + 1)Ni)+ f (iNi−1)
∣∣ � 1

2ε (i = 1, 2, . . . , h).

In view of (7), the proof is complete. 	


Theorem 2. Let f (n) be an additive function satisfying the conditions of Theorem 1 and
such that partial sums of

∑(‖f (p)‖/p) are bounded:

(14) A > |Sk|, Sk =
∑
p�k

‖f (p)‖
p

.

Then for any given natural number h there exists a number ch such that for any ε > 0
and every sequence of h numbers: a1, a2, . . . , ah � ch, there exist more than C(a, ε)x
positive integers n � x for which

(15) |f (n+ i)− ai | < ε (i = 1, 2, . . . , h).

C(a, ε) is a positive constant, depending on ε and ai .

Proof. Let ε be a positive number, ch = c1 + max
1�i�h

f (i) and let a sequence ai � ch
c

(i = 1, 2, . . . , h) be given.
By condition 2 we can find positive integers N1, N2, . . . , Nh such that

(16) (Ni, h!) = 1 (i = 1, 2, . . . , h), (Ni,Nj ) = 1 (1 � i < j � h)
and

(17) |f (Ni)− ai + f (i)| < 1
2ε (i = 1, 2, . . . , h).

Let k1 be the greatest prime factor of N1N2 · · ·Nh or h if N0N1 · · ·Nh = 1. Let C be anc

absolute constant such that∑
y�p<z

1

p
< C log

log z

log y
for all z > 2y � 2.

c

Put μ = ε/20C
√
h. By condition 1,

∑
|f (p)|�μ

(1/p) is convergent. Since
∑
(1/p2) is also

c

convergent, there exists a k2 such that

(18)
∑

|f (p)|�μ,p>k2

1

p
+
∑
p>k2

1

p2 <
1

3h
.

By condition 1 there exists also a k3 such that

(19)
∑

p>k3, |f (p)|<μ

f (p)2

p
<
ε2

24h
.
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Put η = ε/√96h, A′ = ∑
|f (p)|�μ

(1/p), B = A+ ηA′ and denote by Iν the interval
c [

νη − 1
2η, νη + 1

2η
]
, ν = 0,±1,±2, . . . ,±[B/η + 1]

and let kν be the least integer k >max{k1, k2, k3} such that
∑

p�k, |f (p)|<μ
(
f (p)/p

)∈ Iν if
c

such integers k exist, otherwise let kν = 1.

Now if
∑

p�x+h, |f (p)|<μ
(
f (p)/p

) ∈ Iνx—by the condition (14) and by (18) such νx

certainly exists—we put kνx = k and then we get

(20)

∣∣∣∣ ∑
x+h�p>k, |f (p)|<μ

f (p)

p

∣∣∣∣ < η, k � max|ν|�[B/η]+1
kν = k̄.

Let
∑′ denote that the summation runs through all primes p, q satisfying conditions

p > q > k, pq � x + h, |f (p)| < μ, |f (q)| < μ. From (20) we get

(21) 2
∑′ f (p)f (q)

pq
�
( ∑
x+h�p>k
|f (p)|<μ

f (p)

p

)2

+ 2
∑

x+h�p>√x+h

μ

p

∑
x+h�q>(x+h)/p

μ

q

� ε2

96h
+ 2

∞∑
l=2

∑
(x+h)1−1/2l�p>(x+h)1−1/2l−1

p�(x+h)/4

μ

p

∑
x+h�q>(x+h)/p

μ

q

+ 2
∑

x+h�p>(x+h)/4

μ

p

∑
x+h�q

μ

q

� ε2

96h
+ 2μ2C2

∞∑
l=2

l log 2

2l − 2
+O

(
μ2 log log x

log x

)
<
ε2

24h
.

c

Let us put N = N1N2 · · ·Nh, P = ∏
p�k, p/|N

p,

(22) Q = h!N2P � h!N2
∏

p�k, p/|N
p = Q

and let us consider the following system of congruences:

n ≡ 0 (mod h!P), n ≡ −i +Ni (modN2
i ).

By (16) and the Chinese Remainder Theorem there exists a number n0 satisfying these
congruences.

It is easy to see that

(23) for every integer t the numbers
Qt + n0 + i

iNi
(i = 1, 2, . . . , h) are integers which are

not divisible by any prime � k.
Analogously, as in the proof of Theorem 1, we shall estimate the number of integers n of
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the progressionQt + n0 which satisfy the inequalities

(24) n � x,
h∑
i=1

(
f (n+ i)− f (iNi)

)2
> 1

4ε
2.

We divide the set of integers n ≡ n0 (modQ) for which the inequalities (24) hold into
two classes. Integers n such that (n+ 1)(n+ 2) · · · (n+ h) is divisible by a prime p > k
with |f (p)| � μ or by p2, p > k, are in the first class and all other integers are in the
second class.

By remark (13) the number of integers n � x, n ≡ n0 (modQ) of the first class is less
than

h
x

Q

( ∑
p>k, |f (p)|�μ

1

p
+
∑
p>k

1

p2

)
+O

( ∑
p�x+h

1+
∑

p2�x+h
1

)
.

By the inequality (18) and the definition of k this number is less than 1
3x/Q+ o(x).

For the integers of the second class, by remark (23), we have

h∑
i=1

(
f (n+ i)− f (iNi)

)2 = h∑
i=1

( ∑
p |n+i, p>k
|f (p)|<μ

f (p)

)2

c

and ∑
n

′′ h∑
i=1

(
f (n+ i)− f (iNi)

)2 =∑
n

′′ h∑
i=1

( ∑
p |n+i, p>k
|f (p)|<μ

f (p)

)2

,

c

where
∑
n

′′ means that the summation runs through the integers of the second class. In view

of remark (13), we have

∑
n

′′ h∑
i=1

(
f (n+ i)− f (iNi)

)2 �
∑

n≡n0 (mod Q)
n�x

h∑
i=1

( ∑
p |n+i, p>k
|f (p)|<μ

f (p)

)2

c

=
∑

x+h�p>k
|f (p)|<μ

f 2(p)
( hx
Qp

+O(1)
)
+ 2

∑′
f (p)f (q)

( hx
Qpq

+O(1)
)

� hx

Q

( ∑
p>k, |f (p)|<μ

f 2(p)

p
+ 2

∑′ f (p)f (q)
pq

)

+O
( ∑
p�x+h
|f (p)|<μ

f 2(p)+
∑′∣∣f (p)f (q)∣∣).

Thus, finally from (19), (21) and from the fact that the number of integers of the form
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pq not exceeding x + h is o(x) we get∑′′ h∑
i=1

(
f (n+ i)− f (iNi)

)2
<
ε2

12
· x
Q
+ o(x).

Thus the number of integers of the second class is less than 1
3x/Q+ o(x).

Hence, there exist less than 2
3x/Q + o(x) positive integers n � x, n ≡ n0 (modQ),

for which

h∑
i=1

(
f (n+ i)− f (iNi)

)2
> 1

4ε
2.

c

By (11) and (22) there exist, therefore, more than 1
3x/Q + o(x) positive integers n � x

for which

h∑
i=1

(
f (n+ i)− f (iNi)

)2 � 1
4ε

2,

and then ∣∣f (n+ i)− f (iNi)∣∣ � 1
2ε (i = 1, 2, . . . , h).

In view of (16) and (17), this completes the proof. 	


Theorem 2 is best possible. Assume only that there exists an a and a c > 0 so that the
number of integers n � x satisfying |f (n)| < a is greater than cx.

Then
∑ ‖f (p)‖2

p
converges and

∑ ‖f (p)‖
p

has bounded partial sums.

In the paper [2], P. Erdős proved(1) the following theorem:

If there exist two constants c1 and c2 and an infinite sequence xk →∞ so that for every
xk there are at least c1xk integers:

1 � a1 < a2 < . . . < al � xk, l � c1xk,

for which

|f (ai)− f (aj )| < c2, 1 � i < j � l,

then

f (n) = α log n+ g(n), where
∑ ‖g(p)‖2

p
<∞.

In our case the conditions of this theorem are clearly satisfied and, in fact, we clearly

(1) The proof of Lemma 8 [2] is not clear and on p. 15 needs more details similar to these given
above.
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must have α = 0. This implies that∑ ‖f (p)‖2

p
<∞.

Assume now that
∑(‖f (p)‖/p) does not have bounded partial sums. Let e.g.∑

p<x

(‖f (p)‖/p) = A, A large. Then by the method of Turán ([5], cf. also [2]) we ob-

tain
x∑
n=1

(
f (n)− A)2 < c3x

which implies that |f (n)−A| < A−a for all butηx integersn � x, whereη = c3/(A−a)2.
For sufficiently large A, it contradicts the assumption that |f (n)| < a has cx solutions
n � x, thus the proof is complete.

[According to a remark of P. Erdős made without proof in his letter to A. Schinzelc

of August 17, 1961, also the condition 2 of Theorem 1 follows from the conclusion of
Theorem 2.]

In Theorem 1 one can replace
∑(‖f (p)‖2/p

)
< ∞ by: there is an α so that if we

put f (n) − α log n = g(n) then
∑(‖g(p)‖2/p

)
< ∞. We think that here we again

have a necessary and sufficient condition, but we cannot prove this. In fact, we conjecture
that if there exist an a and a c > 0 such that the number of integers n � x satisfying
|f (n+ 1)− f (n)| < a is > cx, then

f (n) = α log n+ g(n) with
∑ ‖g(p)‖2

p
<∞.

2.

The proof of Theorem 2 is very similar to the proof of Lemma 1 of P. Erdős’ paper [1].
Using ideas and results from that paper we can prove the following theorem.

Theorem 3. Let f (n) be an additive function satisfying condition 1 of Theorem 1 and
let

∑
f (p)�=0

(1/p) be divergent,
∑(‖f (p)‖/p) convergent, then the distribution function of

h-tuples
{
f (m+ 1), f (m+ 2), . . . , f (m+ h)} exists, and it is a continuous function.

Proof. We denote by N(f ; c1, c2, . . . , ch) the number of positive integers m not exceed-
ing n for which

f (m+ i) � ci, i = 1, 2, . . . , h,

where ci are given constants.
It is sufficient to consider, as in [1], the special case in which, for any α, f (pα) = f (p),

so that

f (m) =
∑
p |m
f (p).
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Let us also consider the function fk(m) = ∑
p |m,p�k

f (p). We are going to show that

the sequence N(fk; c1, c2, . . . , ch)/n is convergent. Since fk(m + A) = fk(m), where
A = ∏

p�k
p, we can see that the integers m for which

c

fk(m+ i) � ci (i = 1, 2, . . . , h)

are distributed periodically with the period A. Hence N(fk; c1, c2, . . . , ch)/n has a limit.c

To prove the existence of a limit of N(f ; c1, c2, . . . , ch)/n it is sufficient to show that
for arbitrary ε > 0 there exists k0 such that for every k > k0 and n > n(ε)∣∣N(f ; c1, c2, . . . , ch)−N(fk; c1, c2, . . . , ch)

∣∣/n < ε.
To show this, it is enough to prove that the number of integersm � n for which there exists
i � h such that fk(m+ i) < ci and f (m+ i) � ci or fk(m+ i) � ci and f (m+ i) < ci
is less that εhn. But it is an immediate consequence of the analogous theorem for h = 1
proved in [1], p. 123.

In order to prove that the distribution function is continuous we must show that for
every ε > 0, there exists a δ > 0 such that

Δ = N(f ; c1 − δ, c2 − δ, . . . , ch − δ)−N(f ; c1 + δ, c2 + δ, . . . , ch + δ) < ε.
Now

Δ =
h∑
i=1

{
N(f ; c1 + δ, . . . , ci−1 + δ, ci − δ, . . . , ch − δ)

−N(f ; c1 + δ, . . . , ci + δ, ci+1 − δ, . . . , ch − δ)
}

and by Lemma 2 of [1] each term of this sum is less than ε/h for suitably chosen δ. This
completes the proof. 	


We conclude from Theorems 2 and 3 that if an additive function f satisfies condi-
tions 1, 2,

∑
f (p)�=0

(1/p) is divergent and
∑(‖f (p)‖/p) convergent, then the distribution

function of {f (m + 1), . . . , f (m + h)} exists, is continuous and strictly decreasing on
some half straight-line, thus the sequence of integers n for which inequality (15) holds has
a positive density. Similarly we can prove the following:

Theorem 4. Assume that
∑

f (p) �=0

1

p
= ∞ and that

∑ ‖f (p)‖2

p
< ∞ then{

f (n + 1) − f (n), f (n + 2) − f (n + 1), . . . , f (n + k) − f (n + k − 1)
}

has a con-
tinuous distribution function.

It is easy to see that condition 2 can be replaced by the conditions

lim
p→∞ f (p) = 0 and

∑
p

|f (p)| = ∞.
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3.

Y. Wang proved in [6] that the number N of primes p < x satisfying∣∣∣ϕ(p + ν + 1)

ϕ(p + ν) − aν
∣∣∣ < ε, 1 � ν � k,

is greater than

c(a, ε)
x

(log x)k+2 log log x
.

By our methods we can obtain in that case

N > c1(a, ε)
x

log x
.

After having passed to the additive function log
(
ϕ(n)/n

)
the proof is similar to the proof of

Theorem 1. We use the fact that log
(
ϕ(n)/n

)
is always negative, and apply the asymptotic

formula for the number of primes in arithmetical progression instead of (11) and the
Brun–Titchmarsh theorem instead of (13).

We can also prove that there exists distribution function N(c1, c2, . . . , ck) defined as

lim
x→∞

1

π(x)
N
(
p < x; ϕ(p + ν)

p + ν � cν, ν = 1, 2, . . . , k
)
.
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On the functions ϕ(n) and σ(n)

with A. M
↪
akowski (Warsaw)

In this paper ϕ(n) and σ(n) denote the Euler function and the sum of the divisors of n,
respectively, p denotes odd primes, pi the i-th prime.

It has been asked in [5] whether the inequality

lim inf

k times︷ ︸︸ ︷
σ . . . σ (n)

n
<∞

holds for every k and it has been remarked that for k = 2 the affirmative answer follows
from a certain deep theorem of Rényi [4]. The aim of this paper is to give an elementary
proof of the equality

lim inf
σσ(n)

n
= 1

and to evaluate other similar limits.

Theorem. The following formulae hold:

lim inf
σσ(n)

n
= 1,(1)

lim sup
ϕσ(n)

n
= ∞,(2)

lim sup
ϕϕ(n)

n
= 1

2
,(3)

lim inf
σϕ(n)

n
� inf

4|m
σϕ(m)

m
� 1

2
+ 1

234 − 4
.(4)

The proof is based on two lemmata. The first is a generalization of a result of Bojanić [2]
and is elementary, the second is related to a theorem of Rényi and is used only to show (3)
and (4).

Lemma 1. If a is an integer > 1 and N(a, p) = (ap − 1)/(a − 1), thenc

lim
p→∞

ϕ
(
N(a, p)

)
N(a, p)

= lim
p→∞

σ
(
N(a, p)

)
N(a, p)

= 1.
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Proof. Put N(a, p) = N = qα1
1 q

α2
2 · · · qαss , where qi (1 � i � s) are different primes,

αi � 1. Clearly

(5)
s∏
i=1

(
1− 1

qi

)−1
� σ(N)

N
� 1 � ϕ(N)

N
�

s∏
i=1

(
1− 1

qi

)
.

For p > a + 1, we have p /| a − 1, thus qi ≡ 1 (mod p) (cf. [3], p. 381) and qi > p
(i = 1, 2, . . . , s). It follows that

N � pα1+...+αs � ps

and

s � logN

logp
=

log
(ap − 1

a − 1

)
logp

<
log ap

logp
= p log a

logp
.

Hence

(6)
s∏
i=1

(
1− 1

qi

)
�
(

1− 1

p

)s
>
(

1− 1

p

)p log a/ logp → 1.

The lemma follows from (5) and (6). 	


Lemma 2. The following formula holds:

lim sup
ϕ
( 1

2 (p − 1)
)

1
2 (p − 1)

= lim inf
σ
( 1

2 (p − 1)
)

1
2 (p − 1)

= 1.

Proof. Clearly

(7)
ϕ
( 1

2 (p − 1)
)

1
2 (p − 1)

� 1 �
σ
( 1

2 (p − 1)
)

1
2 (p − 1)

.

On the other hand, it has been proved by Wang ([6], Appendix, formulae (7) and (8))
that

Pω(x, q, x
1/6.5q) > 12.9η

cq(x)

ϕ(q) log2 x
+O

( cqx
log3 x

)
.

Here, Pω(x, q, ξ) is the number of primes p satisfying p � x, p ≡ a (mod q), p �≡ ai
(mod p′i ) (i = 1, . . . , r), where ω = 〈a, q, ai (1 � i � r)〉 is a sequence of integers such
that q � x, (a, q) = 1, ai �≡ 0 (mod p′i ) and p′i are all primes � ξ not dividing 2q; cq is a
certain positive constant (cf. [6], formula (6)), η = δ/(δ − 1), where as stated on p. 1054

one can take δ = 1.5. It follows after the substitution ω = 〈3, 4,
r times︷ ︸︸ ︷

1, . . . , 1〉 that there exist
infinitely many primes p such that every prime factor of (p − 1)/2 is greater than p1/20.
Let ε be any number > 0 and take p of the above kind greater than 2020ε−20. Let

1
2 (p − 1) = qα1

1 q
α2
2 · · · qαss ,
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where qi (1 � i � s) are different primes and αi � 1. Clearly s < 20, and

s∏
i=1

(
1− 1

qi

)
>
(

1− 1

p1/20

)20
> 1− 20

p1/20 > 1− ε.

On the other hand,
s∏
i=1

(
1− 1

qi

)−1
�
σ
( 1

2 (p − 1)
)

1
2 (p − 1)

�
ϕ
( 1

2 (p − 1)
)

1
2 (p − 1)

�
s∏
i=1

(
1− 1

qi

)
.

It follows that

(1− ε)−1 >
σ
( 1

2 (p − 1)
)

1
2 (p − 1)

�
ϕ
( 1

2 (p − 1)
)

1
2 (p − 1)

> 1− ε.

In view of (7), this completes the proof. 	


Proof of the Theorem. We begin with formula (1). For any ε > 0 we take a prime
r > 1+ ε−1 and put a = r in Lemma 1. We have N(r, p) = σ(rp−1). Hence

lim
p→∞

σσ(rp−1)

rp−1 = lim
p→∞

σσ(rp−1)

σ (rp−1)
· σ(r

p−1)

rp−1

= lim
p→∞

σ
(
N(r, p)

)
N(r, p)

· lim
p→∞

σ(rp−1)

rp−1 = r

r − 1
< 1+ ε.

Since σσ(n)/n � 1 for all n, formula (1) is proved.

Proof of formula (2) is similar. For anyM we take a number t such that

t∏
i=1

pi

pi − 1
> M

and put successively a = p1, p2, . . . , pt in Lemma 1. We have

σ

( t∏
i=1

p
p−1
i

)
=

t∏
i=1

N(pi, p).

Hence

lim sup
p→∞

ϕσ
( t∏
i=1
p
p−1
i

)
t∏
i=1
p
p−1
i

= lim sup
p→∞

ϕ
( t∏
i=1
N(pi, p)

)
t∏
i=1
p
p−1
i

� lim sup
p→∞

t∏
i=1

ϕ
(
N(pi, p)

)
p
p−1
i

=
t∏
i=1

lim
p→∞

ϕ
(
N(pi, p)

)
N(pi, p)

·
t∏
i=1

lim
p→∞

N(pi, p)

p
p−1
i

=
t∏
i=1

pi

pi − 1
> M.

This completes the proof of (2).
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Formula (3) follows at once from Lemma 2, since

lim sup
p→∞

ϕϕ(p)

p
= lim sup

p→∞
ϕ(p − 1)

p
� lim sup

p→∞
ϕ
( 1

2 (p − 1)
)

1
2 (p − 1)

· p − 1

2p
,

and, on the other hand, ϕϕ(n)/n � 1
2 for all n > 1.

In order to prove formula (4) assume that m is any positive integer divisible by 4. By
Lemma 2

lim inf
p→∞

σϕ
( 1

2mp
)

1
2mp

� lim inf
p→∞

σ
(
2ϕ( 1

2m)
)
σ
( 1

2 (p − 1)
)

1
2mp

= σϕ(m)
m

· lim inf
p→∞

σ
( 1

2 (p − 1)
)

1
2p

= σϕ(m)
m

.

Since

σϕ(234 − 4)

234 − 4
= 233 − 1

234 − 4
= 1

2
+ 1

234 − 4
,

the proof of the theorem is complete. 	


The following equalities supplement the theorem:

lim sup
σσ(n)

n
= ∞,(8)

lim inf
ϕσ(n)

n
= 0,(9)

lim inf
ϕϕ(n)

n
= 0,(10)

lim sup
σϕ(n)

n
= ∞.(11)

Equalities (8) and (10) are trivial, equalities (9) and (11) have been proved by Alaoglu
and Erdős [1]. In that paper the following conjecture has been announced: for sufficiently
large n the sequence

σ(n), σσ(n), ϕσσ(n), σϕσσ(n), . . .

tends to infinity. We remark that this conjecture implies the finiteness of the set of Mersenne
primes. Indeed, if 2p − 1 is a prime, then

ϕσσ(2p−1) = ϕσ(2p − 1) = ϕ(2p) = 2p−1,

and the sequence in question is periodical.
It seems a natural question to ask whether formula (4) can be improved. Mrs. K. Kuhn

has investigated the quotient σϕ(n)/n for n having at most 6 prime factors and has found
that σϕ(n)/n � 1

2 for such n’s, the equality being realized only if n = 22i+1 − 2
(0 � i � 5). This suggests a problem

P486. Is the inequality σϕ(n)/n � 1
2 true for all n ?
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Remark. Even the weaker inequality inf σϕ(n)/n > 0 remains still unproved.
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[1] L. Alaoglu, P. Erdős, A conjecture in elementary number theory. Bull. Amer. Math. Soc.
50 (1944), 881–882.
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On integers not of the form n− ϕ(n)

with J. Browkin (Warszawa)

W. Sierpiński asked in 1959 (see [4], pp. 200–201, cf. [2]) whether there exist infinitely
many positive integers not of the form n−ϕ(n), where ϕ is the Euler function. We answer
this question in the affirmative by proving

Theorem. None of the numbers 2k · 509203 (k = 1, 2, . . . ) is of the form n− ϕ(n).

Lemma 1. The number 1018406 is not of the form n− ϕ(n).

Proof. Suppose that

(1) 10108406 = n− ϕ(n)
and let

(2) n =
j∏
i=1

q
αi
i (q1 < q2 < . . . < qj primes).

If for any i � j we have αi > 1 it follows that qi |2 ·509203, and since 509203 is a prime,
either qi = 2 or qi = 509203. In the former case n− ϕ(n) ≡ 0 �≡ 10108406 (mod 4), in
the latter case n− ϕ(n) > 1018406, hence

(3) αi = 1 (1 � i � j).

Since n > 2 we have ϕ(n) ≡ 0 (mod 2), hence n ≡ 0 (mod 2). However, n/2 cannot
be a prime since 1018405 is composite. Hence ϕ(n) ≡ 0 (mod 4) and n ≡ 2 (mod 4).
Moreover, n ≡ 1 (mod 3) would imply ϕ(n) ≡ n − 1018406 ≡ 2 (mod 3), which is
impossible, since

ϕ(n) ≡
{

0 (mod 3) if at least one qi ≡ 1 (mod 3),

1 (mod 3) otherwise.

Hence n ≡ 2 (mod 12) or n ≡ 6 (mod 12) and

(4) n− ϕ(n) > 1

2
n.
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Let pi denote the ith prime and consider first the case n = 12k + 2. We have q1 = 2,
qi � pi+1 (i � 2). Since

(5)
7∏
i=2

pi+1 > 1018406,

it follows from (1)–(4) that j � 6 and

1

2

6∏
i=2

(
1− 1

pi+1

)
� ϕ(n)

n
�
{

2/5 if n ≡ 0 (mod 5),

1/2 otherwise.

Hence if n = 12k + 2 satisfies (1) we have either 116381 < k < 141446 or 141446 �
k < 169735 and k �≡ 4 (mod 5).

Consider now n = 12k + 6. Here q1 = 2, q2 = 3, qi � pi . By (1)–(5), j � 7 and

7∏
i=1

(
1− 1

pi

)
� ϕ(n)

n
� 1

3
.

Hence if n = 12k + 6 satisfies (1) we have

103561 < k < 127301.

The computation performed on the computer SUN/SPARC of the Institute of Applied
Mathematics and Mechanics of the University of Warsaw using the program GP/PARI has
shown that no n corresponding to k in the indicated range satisfies (1). 	


Lemma 2. All the numbers 2k · 509203− 1 (k = 1, 2, . . . ) are composite.

Proof. We have

509203 ≡ 2ai (mod qi),

where 〈qi, ai〉 is given by 〈3, 0〉, 〈5, 3〉, 〈7, 1〉, 〈13, 5〉, 〈17, 1〉 and 〈241, 21〉 for i =
1, 2, . . . , 6, respectively. Now, 2 belongs mod qi to the exponentmi , wheremi = 2, 4, 3,
12, 8 and 24 for i = 1, 2, . . . , 6, respectively.

It is easy to verify that every integer n satisfies one of the congruences

n ≡ −ai (modmi) (1 � i � 6).

If k ≡ −aj (modmj) we have

2k · 509203 ≡ 2aj−aj ≡ 1 (mod qj ),

and since 2k · 509203− 1 > qj the number 2k · 509203− 1 is composite. 	


Remark 1. Lemma 2 was proved by H. Riesel, already in 1956 (see [3], Anhang).

The following problem, implicit in [1], suggests itself.

Problem 1. What is the least positive integer n such that all integers 2kn−1 (k = 1, 2, . . . )
are composite?
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Proof of the theorem. We shall prove that n− ϕ(n) �= 2k · 509203 by induction on k. For
k = 1 this holds by virtue of Lemma 1. Assume that this holds with k replaced by k − 1
(k � 2) and that

(6) n− ϕ(n) = 2k · 509203.

If ϕ(n) ≡ 0 (mod 4) we have n ≡ 0 (mod 4) and
n

2
− ϕ

(n
2

)
= 2k−1 · 509203,

contrary to the inductive assumption. Thus ϕ(n) ≡ 2 (mod 4) and n = 2pα , where p is an
odd prime. From (6) we obtain

pα−1(p + 1) = 2k · 509203.

By Lemma 2, α = 1 is impossible. If α > 1 we have

p |2k · 509203,

and since 509203 is a prime, p = 509203, α = 2 and

509204 = 2k,

which is impossible. The inductive proof is complete. 	


Remark 2. D. H. Lehmer on the request of one of us has kindly computed the table of
all numbers not of the form n − ϕ(n) up to 50 000. This table and its prolongation up
to 100 000 seems to indicate that the numbers not of the form n − ϕ(n) have a positive
density, about 1/10.

This suggests

Problem 2. Have the integers not of the form n− ϕ(n) a positive lower density?

Added in proof (November 1994). A computation performed by A. Odlyzko has shown that there
are 561 850 positive integers less than 5 000 000 not of the form n− ϕ(n).
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Commentary on H: Divisibility and congruences

by H. W. Lenstra jr.

The eleven papers in Section H are naturally divided in two categories: four papers in
elementary number theory, and seven papers on local-global results concerning exponential
equations.

The four papers H1, H3, H6, H8 in the first category show Schinzel’s resourcefulness in
elementary arithmetic. Problem P217, formulated in H1, has been studied by E. Burkacka
and J. Piekarczyk in their master dissertations at the University of Warsaw; see Colloq.
Math. 10 (1963), 365. The joint paper H6 with G. Baron, which has a combinatorial flavour,
has applications in ring theory. An algebraic proof of the main result of this paper was
obtained by M. Van Den Bergh and M. Van Gastel [5]. Especially noteworthy is the joint
paper H8 with J. Wójcik, which was suggested by work in group theory. The theme of
the paper is reminiscent of the local-global results discussed below, but the tools used are
quite different and more elementary. A negative answer to the question posed at the end
of the paper was given by J. Wójcik [7].

The seven papers H2, H4, H5, H7, H9, H10, H11 in the second category address
fundamental issues related to exponential diophantine equations, the emphasis being on
local-global results such as the following Theorem 2 from H4: if H is a finitely gener-
ated subgroup of the multiplicative group of an algebraic number field K , and a non-zero
element b ∈ K has the property that for almost all primes p of K the element bmod p

belongs toH mod p, then b belongs toH . The result admits numerous variations and appli-
cations, and Schinzel investigated many of them. His work helped inspire a development
in which the role of the multiplicative group is played by general algebraic groups. A good
discussion and a substantial bibliography can be found in a paper by E. Kowalski [1].

The technique used by Schinzel in most papers in the second category, consists of
combining density theorems from algebraic number theory with information on Galois
groups of field extensions obtained by adjoining radicals. Several of Schinzel’s auxiliary
results on such Galois groups are new. The most notable one (H5, Theorem 2) asserts
the following. Let K be a field, n a positive integer not divisible by the characteristic
of K , and w the number of nth roots of unity in K . Then, for a ∈ K , the Galois group
of Xn − a over K is abelian if and only if there exists b ∈ K with aw = bn. This basic
result has been finding its way into the field-theoretic literature as Schinzel’s theorem. It is
important in the context of Stark’s conjectures (J. Tate, [4]; see Chapitre IV, Exercice 1.4).



902 H. Divisibility and congruences

One also encounters Schinzel’s theorem when one attempts to describe, for any field K
with algebraic closure K̄ , the Galois group of the “maximal radical extension” ofK , which
one obtains by adjoining all α ∈ K̄ for which there exists an integer n not divisible by the
characteristic of K with αn ∈ K .

P. Stevenhagen ([3], cf. [6]) gave a proof of Schinzel’s theorem that is so elegant that
it deserves to be included here. We may assume a �= 0. Denote by L the splitting field of
Xn − a over K , and generally by ζm a primitive mth root of unity. First suppose aw = bn
with b ∈ K . Then L is contained in the composite of the Kummer extensionK(b1/w) and
the cyclotomic extensionK(ζwn) ofK . Both of these extensions are abelian, and therefore
so isL. For the converse, supposeL has an abelian Galois groupG. We fix an nth root α of
a in L. For each σ ∈ G, one has σ(α)/α = ζσ ∈ 〈ζn〉, and σ(ζn) = ζ c(σ )n with c(σ ) ∈ Z.
For any σ , τ ∈ G one has τ(αc(σ))/αc(σ) = ζ c(σ )τ = σ(τ(α)/α) = τσ (α)/σ (α); hence
αc(σ)/σ (α) is fixed by all τ so belongs to K , and taking the nth power one sees that
ac(σ)−1 ∈ K∗n. Thus, if v denotes the gcd of n and all numbers c(σ )−1 (for σ ∈ G), then
one has av ∈ K∗n. To finish the proof it suffices to show v = w. A divisor d of n divides v
if and only if d divides all numbers c(σ )−1, if and only if all elements σ(ζd)/ζd = ζ c(σ )−1

d

are 1, if and only if ζd ∈ K , and if and only if d divides w. Therefore we have v = w, as
required.

The Corollary to Theorem 5 in H5 has the condition a �= d3 + 3d . Schinzel himself
proved that this condition can be omitted [2].
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Sur un problème de P. Erdős

Désignons pour k naturels et n entiers par Hk,n la proposition suivante :

Hk,n : il existe un entier i tel que 0 � i < k et n− i ∣∣ (n
k

)
.

P. Erdős a posé le problème, siHk,n subsiste pour tous les nombres naturels k et n � 2k.
La réponse à ce problème est négative, comme le prouve l’exemple k = 15, n = 99215.
En effet, les décompositions en facteurs premiers

99215 = 5 · 19843, 99214 = 2 · 113 · 439, 99213 = 3 · 33071,

99212 = 22 · 17 · 1459, 99211 = 7 · 14173, 99210 = 2 · 3 · 5 · 3307,

99209 = 11 · 29 · 311, 99208 = 23 · 12401, 99207 = 32 · 73 · 151,

99206 = 2 · 49603, 99205 = 5 · 19841, 99204 = 22 · 3 · 7 · 1181,

99203 = 132 · 587, 99202 = 2 · 193 · 257, 99201 = 3 · 43 · 769

entraînent que

1◦
(
n
k

) = 13P , où (P, 15!) = 1,
2◦ chacun des nombres n− i (0 � i < k) a un diviseur premier pi < 15.

Donc, si l’on avait n− i ∣∣ (n
k

)
pour un i, où 0 � i < k, on aurait pi

∣∣ (n
k

) = 13P , donc

pi = 13 |n− i, n− i = 99203, 132 |n− i
∣∣∣ (n
k

)
= 13P, 13 |P,

ce qui implique une contradiction.
On peut démontrer que la proposition Hk,n est vraie pour k < 15, n � 2k et pour

k = 15, 30 � n < 99215.
En omettant la démonstration assez pénible de ce dernier fait, j’indiquerai plus loin

certaines méthodes d’examiner si pour un k fixé, il existe un n pour lequel Hk,n est un
défaut.

Je commencerai par les remarques suivantes.

1. Soit n1 ≡ n2 (mod k!). Alors on l’équivalence Hn1,k ≡ Hn2,k .
En effet, on a

n1 − i
∣∣∣ (n1

k

)
dans ce et seulement dans ce cas n1 · · · (n1 − i + 1)(n1 − i − 1) · · · (n1 − k + 1) ≡ 0
(mod k!), c’est-à-dire, si n2 · · · (n2− i + 1)(n2− i − 1) · · · (n2− k+ 1) ≡ 0 (mod k!), ce
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qui équivaut à

n2 − i
∣∣∣ (n2

k

)
.

Il en résulte que si pour un nombre naturel k donné il existe un nombre naturel n � 2k
tel que la proposition Hk,n est fausse, il existe une infinité de tels nombres naturels n.

2. On a l’équivalence Hk,n ≡ Hk,−n+k−1.
En effet, vu l’identité (

n

k

)
= (−1)k

(−n+ k − 1

k

)
,

on a la formule n− i ∣∣ (n
k

)
, où 0 � i < k, dans ce et seulement dans ce cas, si

(−n+ k − 1)− j
∣∣∣ (−n+ k − 1

k

)
, où 0 � j = k − i − 1 < k.

La proposition Hk,n étant vraie pour 0 � n < 2k (ce qu’on déduit sans peine du
théorème de Tchebycheff), il résulte de la remarque 2 que siHk,n est vraie pour le nombre
naturel k et pour les entiers n � 2k, elle est vraie pour n entier quelconque.

Désignons par Hk la proposition affirmant que Hk,n subsiste pour tout entier n.

Lemme 1. S’il existe pour k et n donnés un i tel que 0� i<k,
(
n− i, (k

i

)
(k − i))=1, lac

proposition Hk,n est vraie.

Démonstration. On a l’identité(
n

k

)(
k

i

)
(k − i) =

(
n

i

)(
n− i − 1

k − i − 1

)
(n− i).

Donc, si pour un i, 0 � i < k,
(
n− i, (k

i

)
(k − i)) = 1, on a n− i ∣∣ (n

k

)
. 	


Théorème 1. La proposition Hk est vraie pour k = pα , où p est un nombre premier et α
un entier � 0.

Démonstration. Si (n, p) = 1, on a(
n− 0,

(
k

0

)
(k − 0)

)
= (n, k) = (n, pα) = 1.

Or, si (n, p) > 1, on a p |n donc (n+ 1, p) = 1 et(
n− (k − 1),

(
k

k − 1

)(
k − (k − 1)

)) = (n− k + 1, k) = (n+ 1, k) = (n+ 1, pα) = 1.
c

Dans tous les deux cas Hk,n est vraie d’après le Lemme 1. 	


Théorème 2. La proposition Hk est vraie pour k = 6, 10, 12, 14, 18, 20, 24, 26, 28, 30.

Démonstration. À titre d’exemple nous donnerons la démonstration pour k = 30. Pour les
autres k la démonstration est analogue.
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Supposons d’abord que n ≡ 0 (mod 2). La vérité de Hk,n résulte alors du Lemme 1
dans lequel selon les restes de n de la division par 3, 5, 29, 7, 13, 23 et 11 on substitue les
valeurs envisagées dans la table suivante, pour lesquels on a

(
n− i, (30

i

)
(30− i)) = 1 :

le reste de la division
de n par

3 5 29 7 13 i

n �≡2 n �≡4 29
0 4 n �≡1 1
0 4 1 n �≡4 n �≡12 25
0 4 1 n �≡5 12 5
0 4 1 5 12 23
0 4 1 4 n �≡5 5
0 4 1 4 5 23
1 4 n �≡27 n �≡6 27
1 4 n �≡3 6 3
1 4 3 6 n �≡5 5
1 4 3 6 5 23
1 4 27 n �≡3 3
1 4 27 3 n �≡5 5
1 4 27 3 5 23
2 n �≡1 n �≡1 1
2 n �≡2 1 n �≡6 27
2 n �≡3 1 6 3
2 1 n �≡27 n �≡6 27
2 1 n �≡3 6 3
2 1 3 6 n �≡12 25

le reste de la division
de n par

3 5 29 7 13 23 11 i

2 1 3 6 12 n �≡7 7
2 1 3 6 12 7 n �≡9 9
2 1 3 6 12 7 9 19
2 1 27 n �≡3 3
2 1 27 3 n �≡12 25
2 1 27 3 12 n �≡7 7
2 1 27 3 12 7 n �≡9 9
2 1 27 3 12 7 9 19
2 2 1 n �≡3 3
2 2 1 3 n �≡12 25
2 2 1 3 12 n �≡21 n �≡10 21
2 2 1 3 12 n �≡9 10 9
2 2 1 3 12 9 10 19
2 2 1 3 12 21 n �≡9 9
2 2 1 3 12 21 9 19
2 3 1 6 n �≡12 25
2 3 1 6 12 n �≡7 7
2 3 1 6 12 7 n �≡10 21
2 3 1 6 12 7 10 9

Le cas n ≡ 1 (mod 2) qui reste à examiner se réduit au précédant d’après la remarque 2
et la congruence −n+ k − 1 ≡ −n+ 29 ≡ 0 (mod 2). 	


Lemme 2. Soient 2 = p1 < p2 < . . . < pl � k tous les nombres premiers � k. S’il
existe un système des entiers a(p1), a(p2), . . . , a(pl) tel que

1◦ tout entier i, 0 � i < k, satisfait à une des congruences i ≡ a(pj ) (mod pj )
(1 � j � l),

2◦ quel que soit le nombre naturel j � l, on a[ k
pj

]
+
[a(pj )− k

pj

]
=
[a(pj )
pj

]
,

alors Hk est en défaut.

Démonstration. Supposons que le système a(pj ) (1 � j � l) satisfait aux conditions
1◦–2◦. Posons

αj =
[ ln k

lnpj

]
+ 1, ā(pj ) = a(pj )−

[a(pj )
pj

]
pj .
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D’après 2◦ on a pour j � l

(1)
[ k
pj

]
+
[ ā(pj )− k

pj

]
=
[ ā(pj )
pj

]
= 0.

D’après le théorème chinois sur les restes il existe un entier n tel que

(2) n ≡ ā(pj )− pj (mod p
αj
j ) (1 � j � l).

Admettons que, pour un certain i0, 0 � i0 < k et

(3) n− i0
∣∣∣ (n
k

)
.

D’après la condition 1◦ il existe un j0 � l tel que i0 ≡ ā(pj0) (mod pj0), d’où,
d’après (2), n− i0 ≡ 0 (mod pj0) et d’après (3)

(4) pj0

∣∣∣ (n
k

)
.

D’autre part, parmi les nombres n− i (0 � i < k) les seuls nombres divisibles par pj0
sont, d’après (2), les nombres n− i(t), où

i(t) = ā(pj0)+ tpj0 , 0 � t � −
[ ā(pj0)− k

pj0

]
− 1.

Or, d’après (1), [ ā(pj0)− k
pj0

]
= −

[ k
pj0

]
,

donc i(t) � ā(pj0)+ [k/pj0 ]pj0 − pj0 , d’où 0 < −ā(pj0)+ pj0 + i(t) � k < pαj0j0 .

D’autre part, d’après (2), −ā(pj0)+ pj0 + i(t) ≡ −[n− i(t)] (mod p
αj0
j0
). Donc pj0

figure dans le développement de−ā(pj0)+ pj0 + i(t) en facteurs premiers avec le même
exposant que dans le développement de n− i(t).

On a donc
(
pj0 ,

(
n
k

)) = 1, contrairement à la formule (4), ce qui achève la démonstra-
tion. 	


Théorème 3. S’il existe un système de nombres premiers � k,
Q(k) = {q1, q2, . . . , qm}

tel que pour tout nombre s = q
β1
1 q

β2
2 · · · qβmm � k, où β1, β2, . . . , βm � 0, on ac

(k + 1− s, q1q2 · · · qm) > 1, alors Hk est en défaut.

Démonstration. Soient r1, r2, . . . , rl−m tous les nombres premiers � k qui n’appartiennent
pas àQ(k) et posons a(qj ) = −1, a(rj ) = k. Nous prouverons que le système des nombres
a ainsi défini remplit les conditions 1◦ et 2◦ du Lemme 2.

1◦ Pour tout nombre i, 0 � i < k, on a

k − i = qβ1
1 q

β2
2 · · · qβmm · rγ1

1 r
γ2
2 · · · rγl−ml−m , où β1, . . . , βm, γ1, . . . , γl−m � 0.

Donc (k − i, r1r2 · · · rl−m) > 1 ou bien k − i = qβ1
1 · · · qβmm .
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Dans le premier cas il existe un j � l −m tel que i ≡ k = a(rj ) (mod rj ), et dans le
second cas, en posant s = k−i, nous obtenons d’après l’hypothèse (i+1, q1q2 · · · qm) > 1,
d’où, pour un certain j � m, i ≡ −1 = a(qj ) (mod qj ).

2◦ Il faut vérifier que[−1− k
qj

]
+
[ k
qj

]
= −1 (1 � j � m)

et que [k − k
rj

]
+
[ k
rj

]
=
[ k
rj

]
(1 � j � l −m).

La deuxième de ces égalités est évidente et on obtient la première en changeant le signe
dans l’inégalité [ k

qj

]
+ 1 � 1+ k

qj
>
[ k
qj

]
. 	


Corollaire 1. La proposition Hk est fausse pour k = 15, 21, 33, 35, 45, 55, 63, 65, 69,
75, 77, 85, 87, 91, 93, 95, 99.

La démonstration résulte du Théorème 3 dans lequel il faut prendre comme Q(k) les
systèmes suivants des nombres premiers :

Q(15) = {5, 11}, Q(21) = {5, 7, 17},
Q(33) = {11, 23}, Q(35) = {7, 29},
Q(45) = {3, 19, 37, 43}, Q(55) = {5, 13, 17, 31, 43},
Q(63) = {3, 11, 31, 37, 53, 61}, Q(65) = {13, 53},
Q(69) = {23, 47}, Q(75) = {5, 17, 59, 71},
Q(77) = {11, 67}, Q(85) = {7, 17, 23, 37, 79},
Q(87) = {29, 59}, Q(91) = {13, 79},
Q(93) = {5, 7, 23, 29, 31, 59, 71, 89}, Q(95) = {11, 17, 19, 79},
Q(99) = {11, 89}.

Comme on voit, pour k = 15, 33, 35, 65, 69, 77, 87, 91, 99 le systèmeQ(k) est formé
de deux nombres. Comme on le vérifie aisément, cela a lieu dans ce et seulement dans ce
cas si k = aq1, où les nombres q1 > a > 1 et q2 = (a − 1)q1 + 1 sont tous les deux
premiers, donc, par exemple, si k = 3q1, où les nombres q1 > 3 et 2q1 + 1 sont tous les
deux premiers. Grâce à ce fait, la réponse positive au problème suivant est très probable :

P216. Existe-t-il une infinité de nombres k pour lesquels Hk est fausse ?

Théorème 4. La proposition Hk est fausse pour k = 22.

La démonstration résulte du Lemme 2 où l’on pose a(2) = 0, a(3) = 1, a(5) = 4,
a(7) = 3, a(11) = 10, a(13) = 11, a(17) = 5, a(19) = 15.
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Des théorèmes 1, 2 et 4 et du corollaire 1 il résulte le

Corollaire 2. La proposition Hk est vraie pour tous les nombres k � 33 sauf pour les
nombres k = 15, 21, 22 et 33.

Il se pose ici le problème suivant :

P217. Est-ce que la proposition Hk est vraie pour une infinité de nombres k �= pα , où p
est un nombre premier et α un entier � 0 ?

Je suppose que la réponse est négative.

Ajouté pendant la correction des épreuves. P. Erdős a demontré que la réponse au
Problème P216 est positive. Voici l’esquisse de sa démonstration — l’extrait de sa lettre à
l’auteur du 5 février 1957 :

“Let q be a large prime. I want to find an n = aq so thatHn is false. Letp ≡ 1 (mod q),
p = (a1 − 1)q + 1, n1 = a1q, p < e

√
q but p so large that the number of primes ≡ 1

(mod q) which are � p is (
1+ o(1)) p

q logp

(such a p exists by Page–Walfisz–Siegel theorem).
Choose a(q) = 0, a(r) = −1 (r prime) except for a “few” primes pi which I define

now, a(p) = q − 1. All the primes pi for which a(pi) �= −1 will satisfy pi ≡ 1 (mod q),
pi > n/2. Thus the only numbers � n which are not yet eliminated by our congruences
are q2 − 1, q3 − 1, …, qk − 1 (qk − 1 < n1 � qk+1 − 1).

If there are at least l primes pi ≡ 1 (mod q) in (n1, n1 − ql + 1) for every l � 2,
we successively eliminate these integers by the primes pi and avoid contradiction against
Lemma 2. If not, then for some l there are fewer than l primes pi ≡ 1 (mod q) in (n1 −
ql + 1, n1). Consider then the greatest prime p2 ≡ 1 (mod q), p2 < n1 − ql + 1, put
p2 = (a2 − 1)q + 1, n2 = a2q and repeat the same argument until nk < n1/2. But then
the number of primes ≡ 1 (mod q) in (n1/2, n1) is < n1/q

2, but since q was “small”
compared with n1, by Page–Walfisz, the number of these primes is(

1+ o(1)) n1

2q log n1
>
n1

q2

if n1 < e
√
q .

This contradiction shows that before nk becomes< n1/2, we have that for every l � 2,
(nk − ql + 1, nk), where nk = akq, (ak − 1)q + 1 is a prime, contains at least l primes
p ≡ 1 (mod q) and Hnk is false.”
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On the congruence ax ≡ b (mod p)

The aim of this paper is to prove the following theorem signalled in [1].

Theorem. If a, b are rational integers, a > 0 and b �= ak (k—rational integer), then there
exist an infinite number of rational primes, p, for which the congruence ax ≡ b (mod p)
has no solutions in rational integers x.

Lemma. Let l be an arbitrary rational prime, ζl—a primitive root of unity of order l,
k = Γ (ζl)—the field obtained by adjoining ζl to the field Γ of rational numbers. If a
system of rational integers γ1, γ2, . . . , γt has the property that γm1

1 γ
m2
2 · · · γmtt is an l-th

power of a rational integer only when l |mi (i = 1, . . . , t), then for arbitrary rationalc

integers c1, c2, . . . , ct there exists an infinite number of prime ideals p of the field k whose
degree is 1, and for which (γi

p

)
= ζ cil (i = 1, 2, . . . , t).

c

Proof. If the number γm1
1 γ

m2
2 · · · γmtt is not an l-th power of a rational integer, then thec

polynomial xl − γm1
1 γ

m2
2 · · · γmtt is irreducible over Γ . On the basis of a well knownc

theorem ([2], p. 298, Th. 16) the polynomial remains irreducible over the field Γ (ζl),
therefore γm1

1 γ
m2
2 · · · γmtt is not an l-th power of the integer of the field k. The thesis ofc

the lemma follows from this directly, in view of Chebotarev’s improvement of a Hilbert’s
theorem ([3], cf. [4], p. 276, Th. 152). 	


Proof of the Theorem. The cases a = 1 and b = 0 are trivial. Assume that a > 1, b �= 0,
hence |ab| > 1 and let q1, q2, . . . , qs be all the prime factors of ab.

Let further

a = qα1
1 q

α2
2 · · · qαss , b = ±qβ1

1 q
β2
2 · · · qβss (αi, βi � 0).c

If b < 0, we observe that the numbers l = 2, t = s + 1, γi = qi (i = 1, 2, . . . , s),c

γs+1 = −1 satisfy the conditions of our Lemma. Then there exists an infinite number of
prime ideals p of the field Γ (−1) (i.e., simply rational primes) for which we have(qi

p

)
= 1,

(−1

p

)
= −1,
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whence (a
p

)
= 1,

(b
p

)
= −1.

Assume now that b > 0 and that for some indices i, j � s we have αiβj − βiαj �= 0.
Choose a rational prime l > |αiβj − βiαj |.c

The numbers γi = qi (i = 1, 2, . . . , s), as different rational primes and the number l
satisfy the conditions of the Lemma. Then there exists an infinite number of prime ideals
p of the field Γ (ζl), the degree of which is 1 and for which we have(qν

p

)
= 1 (ν �= i, j),

(qi
p

)
= ζ−αjl ,

(qj
p

)
= ζ αil ,c

whence (a
p

)
= 1,

(b
p

)
= ζ αiβj−βiαjl �= 1.

c

In both considered cases, therefore, there exists such a rational prime l that the fieldc

Γ (ζl) contains infinitely many prime ideals p, of the degree 1, for which
(b

p

)
�= 1, but(a

p

)
= 1, whence

(ax
p

)
= 1, then the congruence ax ≡ b (mod p) is insoluble.

c

The same property has, of course, the congruence ax ≡ b (mod p), where the rational
prime p is the norm of the ideal p. As a prime p can be a norm of only a finite � l numberc

of prime ideals, there exists in the considered cases an infinite number of rational primes
for which the congruence ax ≡ b (mod p) is insoluble.

We have still to examine the case, whenb > 0 and when for all i, j � s:αiβj − αjβi = 0.
As αi + βi > 0 (i = 1, 2, . . . , s) and not all αi are = 0, it follows from the last formulac

that all αi are �= 0 and that, for i � s, βi
αi
= β1

α1
holds.

c

Let
α1

(α1, β1)
= α, β1

(α1, β1)
= β.

c

As (α, β) = 1,
βi

αi
= β

α
(i � s), we have αi = αδi , βi = βδi , where δi are positivec

integers.
Putting c = γ δ11 γ

δ2
2 · · · γ δss we get a = cα , b = cβ .c

If α = 1, one obtains b = aβ , in spite of the conditions assumed. Hence, α > 1 and
there exists a rational prime l |α. Choose a positive integer h so that lh /| 2(δ1, δ2, . . . , δs).c

As the numbers qi are primes, it follows from the last formula that c is neither of the form
nl
h

nor of the form 2l
h/2
nl
h
, where n is a rational integer. By Trost’s theorem ([5]) there

exists, therefore, an infinite set P of rational primes p, for which c is not a residue of
lh-th degree.

As l |α, l /| β for any rational integer x: l /| αx − β. Hence, for all p ∈ P , for all x:c

cαx−β is not a residue of lh-th degree, then the congruence cαx ≡ cβ (mod p), i.e. thec

congruence ax ≡ b (mod p) is impossible.
This completes the proof. 	
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Remark. The Theorem remains true, if a > 0 is not assumed, but the proof is longer.c
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On the composite integers of the form c(ak + b)! ± 1

Summary. The author raises the problem whether there exist infinitely many composite integers of
the form c(ak+b)!±1. An affirmative answer in many cases when c = 1 follows immediately from
Wilson’s theorem; other cases are answered in the Theorem.

It follows immediately from the theorems of Wilson(1) and Leibniz(2) that there exist
infinitely many composite integers of the forms (ak + b)! + 1 and (ak + b)! − 1 if a > 0
and (a, b + 1) = 1 or (a, b + 2) = 1 respectively. This suggests the problem whether
for arbitrary integers a > b � 0 and rational c > 0 there exist infinitely many composite
integers of the form c(ak + b)! ± 1. All the cases, except the two mentioned above, for
which I have found a positive answer to this problem are given by the following

Theorem. There exist infinitely many composite integers of each of the forms

1) c(4k)! + 1, c(4k + 2)! + 1, c(6k)! + 1, c(6k + 2)! + 1, c(6k + 4)! + 1;
2) c(2k)! − 1, c(2k + 1)! + 1, c(2k + 1)! − 1;
3) [b(2k + 1)]! + 1.

Here b is a positive odd integer and c a positive rational number.

Proof. An immediate generalisation of the theorem of Wilson gives

(p − i − 1)! i! ≡ (−1)i+1 (mod p), p prime, 0 � i � p − 1.

Hence for arbitrary c = d/n (d, n positive integers):c

p |ni! + ε(−1)i+1d implies p |d(p − i − 1)! + εn(1)

(0 � i � p − 1, ε = ±1).

Let now a = 4 or 6, b even. For sufficiently large lwe have
(al − b − 2)!

c
≡ 0 (mod a),

therefore

(al − b − 2)!
c

− 1 ≡ −1 (mod a),

(1) (p − 1)! ≡ −1 (mod p).
(2) (p − 2)! ≡ +1 (mod p).
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and since positive integers of the form 4t − 1 resp. 6t − 1 have a prime factor of the same

form,
(al − b − 2)!

c
− 1 has a prime factor pl ≡ −1 (mod a). For sufficiently large l, pl

must be > al − b − 2 > n, and in view of (1):

(2) pl |d(pl − al + b + 1)! + n.
It follows that d(pl − al + b + 1)! + n � pl > al − b − 2, whence

lim
l→∞(pl − al + b + 1) = ∞,

and for l large enough, c(pl − al+ b+ 1)! ≡ 0 (mod a). Since pl ≡ −1 (mod a) we have
pl �= c(pl − al + b + 1)! + 1, and the number c(pl − al + b + 1)! + 1 is composite,
because by (2)

pl | c(pl − al + b + 1)! + 1.

Since pl − al + b + 1 ≡ b (mod a), the proof of part 1 of the theorem is complete.

To prove part 2, let us assume a = 2, b = 0 or 1, ε = ±1, and if 2l − b � d denote

by pl the greatest prime factor of
(2l − b)!
c

+ ε(−1)b+1. For l large enough, each prime

factor p of the above number is > 2l − b > n, thus in view of (1):

p |d(p − 2l + b − 1)! + εn.
It follows hence that d(p − 2l + b − 1)! + εn � p > 2l − b. For sufficiently large l we
have n | (p − 2l + b − 1)! and thus

(3) p | c(p − 2l + b − 1)! + ε.
In particular

(4) pl | c(pl − 2l + b − 1)! + ε.
Suppose that

(5) pl = c(pl − 2l + b − 1)! + ε.

If
(2l − b)!
c

+ ε(−1)b+1 has any prime factor p < pl , we have

p � c(p − 2l + b − 1)! + ε
in view of (3), and therefore for sufficiently large l:

pl − p � c(pl − 2l + b − 1)! + ε − c(p − 2l + b − 1)! − ε
= c(p − 2l + b − 1)![(pl − 2l + b − 1) · · · (p − 2l + b)− 1

]
� (p − ε)(pl − p − 1) � (2l − b)(pl − p − 1) > pl − p,

which is impossible. Equality (5) implies therefore

(6)
(2l − b)!
c

+ ε(−1)b+1 = pαl .



914 H. Divisibility and congruences

For sufficiently large l we have further

6 | c(pl − 2l + b − 1)! = pl − ε,
2l − b � pl − ε

2
>
pl − ε

3
> 6d,

thus d(pl − ε)2 | (2l − b)! and in view of (6):

(pl − ε)2 |pαl − ε(−1)b+1.

Hence

(pl − ε)2 |α(pl − ε)εα−1 + εα − ε(−1)b+1, (pl − ε) |α,
and we get

(2l − b)!
c

+ ε(−1)b+1 = pαl � ppl−εl > (2l − b)2l−b,
which for l large enough gives a contradiction. We must therefore have pl �= c(pl − 2l +
b − 1)! + ε, and in view of (4) the number c(pl − 2l + b − 1)! + ε is composite. Since
pl ≡ 1 (mod 2),

pl − 2l + b − 1 ≡ b (mod 2),

which proves part 2 of the theorem.
In order to prove part 3, we shall show that if b is odd and b(2l + 1) > 3, at least one

of the numbers [b(2l + 1)]! + 1 and
{[b(2l + 1)]! − b(2l + 1)

}! + 1 is composite. In fact,
suppose that [b(2l + 1)]! + 1 is a prime p. Then, in view of (1):

p | {[b(2l + 1)]! − b(2l + 1)
}! + 1,

and if
{[b(2l + 1)]! − b(2l + 1)

}! + 1 is not composite, we have{[b(2l + 1)]! − b(2l + 1)
}! + 1 = p = [b(2l + 1)]! + 1,

[b(2l + 1)]! − b(2l + 1) = b(2l + 1),

[b(2l + 1)− 1]! = 2, b(2l + 1) = 3,

against the assumption. On the other hand, both numbers b(2l + 1) and [b(2l + 1)]! −
b(2l + 1) are of the form b(2k + 1), which completes the proof.
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Originally published in
Acta Arithmetica XXVII (1975), 397–420

On power residues and exponential congruences

In memory of Yu. V. Linnik

The main aim of this paper is to extend the results of [6] to algebraic number fields.
We shall prove

Theorem 1. Let K be an algebraic number field, ζq a primitive qth root of unity and
τ the greatest integer such that ζ2τ + ζ−1

2τ ∈ K . Let n1, . . . , nk, n be positive inte-
gers, ni |n; α1, . . . , αk, β be non-zero elements of K . The solubility of the k congruences
xni ≡ αi mod p (1 � i � k) implies the solubility of the congruence xn ≡ β mod p for
almost all prime ideals p of K if and only if at least one of the following four conditions
is satisfied for suitable rational integers l1, . . . , lk , m1, . . . , mk and suitable γ, δ ∈ K:

(i) β
k∏
i=1
α
nmi/ni
i = γ n;

(ii) n �≡ 0 mod 2τ ,
∏

2|ni
α
li
i = −δ2 and β

k∏
i=1
α
nmi/ni
i = −γ n;

(iii) n ≡ 2τ mod 2τ+1,
∏

2|ni
α
li
i = −δ2 and

β

k∏
i=1

α
nmi/ni
i = −(ζ2τ + ζ−1

2τ + 2
)n/2
γ n;

(iv) n ≡ 0 mod 2τ+1 and β
k∏
i=1
α
nmi/ni
i = (ζ2τ + ζ−1

2τ + 2
)n/2
γ n.

If ζ4 ∈ K , the conditions (ii), (iii), (iv) imply (i); if τ = 2, (ii) implies (i) for not
necessarily the same m1, . . . , mk and γ .

Almost all prime ideals means all but for a set of Dirichlet density zero or all but finitely
many. In this context it comes to the same in virtue of Frobenius density theorem.

Corollary 1. If each of the fieldsK(ξ1, ξ2, . . . , ξk), where ξnii = αi , contains at least one
η satisfying ηn = β then at least one of the conditions (i)–(iv) holds.

This corollary may be regarded as a generalization of the well known result concerning
Kummer fields (see [3], p. 42). As one can see from Lemmata 6 and 7 below it holds for
arbitrary fields K of characteristic not dividing n (with τ = ∞, if necessary).
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Corollary 2. The congruences xn ≡ α mod p and xn ≡ β mod p are simultaneously
soluble or insoluble for almost all prime ideals p of K if and only if either

βαu = γ n,
or n ≡ 0 mod 2τ+1 and

βαu = (ζ2τ + ζ−1
2τ + 2

)n/2
γ n

where (u, n) = 1 and γ ∈ K .

This is a simultaneous refinement of the theorems of Flanders [1] and Gerst [2] con-
cerning α = 1 and K = Q, respectively.

We shall prove further

Theorem 2. If α1, . . . , αk, β are non-zero elements of K and the congruence

α
x1
1 α

x2
2 · · ·αxkk ≡ β mod p

is soluble for almost all prime ideals p of K then the corresponding equation is solublec

in rational integers.

This is a refinement of a theorem of Skolem [7], in which he assumes that the congruence
is soluble for all moduli (also composite). Skolem’s proof is defective but it can be amended.

On the lines indicated by Skolem we prove

Theorem 3. Letαij , βi (i = 1, . . . , h, j = 1, . . . , k) be non-zero elements of K ,D a pos-
itive integer. If the system of congruences

k∏
j=1

α
xj
ij ≡ βi mod m (i = 1, . . . , h)

is soluble for all moduli m prime to D then the corresponding system of equations is
soluble in integers.

We show on an example that already for h = 2, k = 3 one cannot replace here “all
moduli prime to D” by “all prime moduli”.

On the other hand, the present approach gives no clue to Skolem’s very interesting
conjecture:

If the congruence

h∑
i=1

αi0α
x1
i1 · · ·αxkik ≡ 0 mod m

is soluble for all moduli m then the corresponding equation is soluble in rational integers.

The proof of Theorem 1 is based on nine lemmata. In formulating and proving them
we use as much as possible the matrix notation. Integral matrices are denoted by bold
face capital letters, integral vectors are treated as matrices with one row and denoted by
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bold face lower case letters. AT is the transpose of A. A congruence a ≡ b mod M or
aT ≡ bT mod M means that for a certain x, a−b = xM , a congruence a ≡ b mod (M,N)
means that a−b = xM+yN . Instead of mod nI or mod (nI ,N), where I is the identity
matrix, we write mod n or mod (n,N), respectively. The congruence a ≡ b mod (n,N)
implies aR ≡ bR mod (n,NR) for any R and a ≡ b mod (n,RN) for any unimodular R.

Lemma 1. For every integral matrix A there exist two unimodular matrices P and Q

such that all elements of PAQ outside the diagonal are zero.

Proof. See [8], p. 13. 	


Lemma 2. Let A be an integral matrix, b an integral vector. If for all integral vectors x

the congruence xA ≡ 0 mod n implies xbT ≡ 0 mod n then bT ≡ AcT mod n for anc

integral vector c.

Proof. Let A = [aij ]i�r
j�s

, b = [b1, . . . , br ]. If aij = 0 for i �= j then the congruence

xA ≡ 0 mod n is satisfied byc

xi =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
0, . . . , 0,

n

(n, aii)︸ ︷︷ ︸
i

, 0, . . . , 0
)
(1 � i � q = min(r, s)),

(0, . . . , 0, 1︸ ︷︷ ︸
i

, 0, . . . , 0) (q < i � r).

It follows that xib
T ≡ 0 mod n (1 � i � r) and hence

bi ≡
{

0 mod (n, aii) (1 � i � q),
0 mod n (q < i � r).

Thus bi ≡ aiici mod n for suitable ci (1 � i � q) and setting c = [c1, . . . , cq, 0, . . . , 0]
we get bT ≡ AcT mod n.

In the general case let P ,Q have the property asserted in Lemma 1. If
xPAQ ≡ 0 mod n then xPA ≡ 0 mod n hence xPbT ≡ 0 mod n. By the already
proved case of our lemma PbT ≡ PAQdT mod n for a suitable integral d and since P

is unimodular bT ≡ AQdT mod n. Thus we can take c = dQT . 	


Lemma 3. Let A and b satisfy the assumptions of Lemma 2, let besides a ≡ 0 mod np−1

and b ≡ 0 mod np−1, where p is a prime and p ‖n. If for all integral vectors x the
congruence xA ≡ a mod n implies xbT ≡ bmod n then

bT ≡ AdT mod n and b ≡ adT mod n

for an integral vector d.

Proof. Let A = [aij ]i�r,
j�s

, a = (a01, . . . , a0s). As in the proof of Lemma 2 it is enough

to consider the case where aij = 0 for i �= 0, j . In virtue of that lemma we have
bT ≡ AcT mod n, for a certain c.
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If the congruence xA ≡ a mod n is soluble then we take d = c. Indeed, we have for a
suitable x0

b ≡ x0b
T ≡ x0AcT ≡ acT mod n.

If the congruence xA ≡ a mod n is insoluble we have, for a certain j � min(r, s),
(n, ajj ) /| a0j , hence in view of a0j ≡ 0 mod np−1

(1) p |ajj and p /| a0j .

We determine d from the system of congruences

d ≡ 0 mod np−1,(2)

a0j d ≡ (b − acT )mod p(3)

and set d = c + (0, . . . , 0, d︸ ︷︷ ︸
j

, 0, . . . , 0).

It follows from (1) and (2) that AdT ≡ AcT ≡ bT mod n and by (3) adT ≡ bmod n.

Lemma 4. Let An be a subgroup of the multiplicative group of residues mod n and B
the set of all integers b ≡ 1 mod (4, n) the residues of which belong to An. Let d be the
greatest common factor of all numbers b − 1, where b ∈ B; n = n1n2, where each prime
factor of n1 divides d and (n2, d) = 1. If an integer valued function h on B satisfies the
congruences

h(ab) ≡ ah(b)+ h(a)mod n,(4)

h(b) ≡ 0 mod n1 if b ≡ 1 mod n1(5)

then

h(b) ≡ c(b − 1)mod n

for a suitable c and all b ∈ B.

Proof. Let n = pν1
1 p

ν2
2 · · ·pνss be the factorization of n into primes. Assume that pi |n1

for i � r , pi |n2 for i > r . Let bi be an element of B such that ordpi (bi − 1) is minimal,
equal to, say μi . We have

d = pμ1
1 p

μ2
2 · · ·pμrr , 1 � μi � νi (i � r), μi = 0 (i > r).

For i � r let gi be a primitive root mod pνi+1
i or if pi = 2, νi � 2 then gi = 5. Let, for

a �≡ 0 mod pi , a ≡ 1 mod 4, if pi = 2, νi � 2, indi a be defined by the congruencec

g
indi a
i ≡ a mod pνi+1

i

and set

(6) ϕ′(pν) =
{

2ν−2 if p = 2, ν � 2,

pν−1(p − 1) otherwise.
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indi a is determined mod ϕ′(pνi+1
i ), moreover for μ � νi + 1

(7) a ≡ 1 mod pμi if and only if indi a ≡ 0 mod ϕ′(pμi ).c

Since indi aν ≡ ν indi a mod ϕ′(pνi+1
i ) it follows from (6) and (7) that

min
(
νi + 1, ordpi (a

ν − 1)
) = min

(
νi + 1, ordpi ν + ordpi (a − 1)

)
and since νi can be arbitrarily large

(8) ordpi (a
ν − 1) = ordpi ν + ordpi (a − 1),

provided pi > 2, a ≡ 1 mod pi or pi = 2, a ≡ 1 mod 4 or pi = 2, aν odd.c

Since for all a ∈ B
(9) ordpj (a − 1) � μj ,

we have in particular

ordpj (b
n1d

−1

i − 1) � νj (1 � j � r)

and hence bn1d
−1

i ≡ 1 mod n1. By (5)

(10) h(b
n1d

−1

i ) ≡ 0 mod n1.

On the other hand, by (4)c

(11) h(be) ≡ b
e − 1

b − 1
h(b)mod n.

The formula (8) gives ordpi (b
nid

−1

i −1) = νi and we infer from (10) and (11) thatpμii |h(bi)
for all i � r . The same holds clearly for i > r . We now choose c to satisfy the system of
congruences

(12) c ≡ h(bi)p
−μi
i

(bi − 1)p−μii

mod pνii (1 � i � s).

For every b ∈ B and i � r we have by (6), (7) and (9)c (
indi bi , ϕ

′(pνii )
) | indi b.

Choosing xi so that

xi indi bi + indi b ≡ 0 mod ϕ′(pνii )

we get

(13) b
xi
i b ≡ 1 mod pνii .

It follows from (8) and (9) with a = bxii b that

ordpj
(
(b
xi
i b)

n1p
−νi
i − 1

)
� νj (1 � j � r)
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and thus

(b
xi
i b)

n1p
−νi
i ≡ 1 mod n1.

Hence by (5) and (11)c

h
(
(b
xi
i b)

n1p
−νi
i
) ≡ (bxii b)n1p

−νi
i − 1

b
xi
i b − 1

h(b
xi
i b) ≡ 0 mod n1.

However by (8) the cofactor of h(bxii b) above is prime to pi , thus

h(b
xi
i b) ≡ b

b
xi
i − 1

bi − 1
h(bi)+ h(b) ≡ 0 mod pνii

and by (12) and (13)

(14) h(b) ≡ c(b − 1)mod pνii (1 � i � r).

On the other hand, for i > r we have by (4)

h(bbi) ≡ bh(bi)+ h(b) ≡ bih(b)+ h(bi)mod pνii ,

hence by (12)

(15) h(b) ≡ h(bi)

bi − 1
(b − 1) ≡ c(b − 1)mod pνii (r < i � s),

and the lemma follows from (14) and (15). 	


Lemma 5. Let An be a subgroup of the multiplicative group of residues mod n and A
the set of all integers the residues of which belong to An. Let M be a non-singular square
matrix such that nM−1 is integral. Let f and g be functions on A into set of integral
vectors or integers respectively, satisfying the conditions

f (a) ≡ f (b), g(a) ≡ g(b)mod n if a ≡ bmod n,(16)

f (ab) ≡ af (b)+ f (a)mod M,(17)

g(ab) ≡ ag(b)+ g(a)mod n.(18)

If for all a ∈ A the congruence

f (a) ≡ 0 mod (a − 1,M)

implies the congruence

g(a) ≡ 0 mod (a − 1, n)

then there exist vectors u1 and u2 and an integer c such that for all a ∈ A, a ≡ 1 mod (4, n)c

g(a) ≡ c(a − 1)+ f (a)nM−1uT1 mod n

and for all a ∈ A
g(a) ≡ f (a)uT2 mod (2, n), MuT2 ≡ 0 mod (2, n).
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Proof. By Lemma 1 there exist unimodular matrices P and Q such that

(19) PMQ =

⎡⎢⎢⎢⎣
e1 0 . . . 0
0 e2 . . . 0
...

...
. . .

...

0 0 . . . ek

⎤⎥⎥⎥⎦ .
Since M is non-singular the entries ei are non-zero and since nM−1 is integral we

have ei |n (1 � i � k). Any congruence x ≡ 0 mod (m,PMQ) where x = [x1, . . . , xk]
is equivalent to the system of congruences xi ≡ 0 mod (m, ei) (1 � i � k), which will be
frequently used in the sequel.

Let n1, n2 have the meaning defined in Lemma 4.
For each prime pi |n2 there exists bi ∈ A such that bi �≡ 1 mod pi .
If pνii ‖n2 we get by (17) for all a ∈ A

f (a)(bi − 1) ≡ f (bi)(a − 1)mod M,

f (a)(bi − 1)Q ≡ 0 mod (a − 1,PMQ),

f (a)Q ≡ 0 mod
(
(a − 1, pνii ),PMQ

)
,

f (a)Q ≡ 0 mod
(
(a − 1, n2),PMQ

)
.(20)

Let a1, . . . , ar represent all residue classes of An congruent to 1 mod n1.
If x1, . . . , xr are integers not necessarily positive and

a ≡ ax1
1 · · · axrr mod n

we have by (16), (17) and (18)

f (a) ≡ x1f (a1)+ . . .+ xrf (ar)mod (n1,M),(21)

g(a) ≡ x1g(a1)+ . . .+ xrg(ar)mod n1.(22)

Let us set

F =

⎡⎢⎢⎢⎣
f (a1)

f (a2)
...

f (ar)

⎤⎥⎥⎥⎦ , g = [g(a1), . . . , g(ar)].

By (21)

f (a) ≡ xF mod (n1,PM)

and

(23) f (a)Q ≡ xFQ mod (n1,PMQ).

Now suppose that for a vector x we have

(24) xFnM−1 ≡ 0 mod n1.

Then

n2xFQ ≡ 0 mod PMQ
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and in view of (19)

xFQ ≡ 0 mod (n1,PMQ).

By (23) we can write the above congruence in the form

f (a)Q ≡ 0 mod (n1,PMQ).

This together with (20) gives

f (a)Q ≡ 0 mod
(
(a − 1, n),PMQ

)
and since ei |n we infer that

f (a)Q ≡ 0 mod (a − 1,PMQ),

f (a) ≡ 0 mod (a − 1,M).

By the assumption

g(a) ≡ 0 mod (a − 1, n)

and by (22)

(25) xgT ≡ 0 mod n1.

Thus (24) implies (25) and by Lemma 2 we get

gT ≡ FnM−1uT1 mod n1

for a suitable u1. On comparing the components it follows

g(ai) ≡ f (ai)nM
−1uT1 mod n1 (1 � i � r).

However every a ≡ 1 mod n1 satisfies a ≡ ai mod n for a suitable i � r , thus by (16) the
function

h(a) = g(a)− f (a)nM−1uT1

satisfies h(a) ≡ 0 mod n1 for all a ≡ 1 mod n1. By (17) and (18) it satisfies also
h(ab) ≡ ah(b)+h(a)mod n and by Lemma 4 we infer that for alla ∈ A,a ≡ 1 mod (4, n),c

h(a) ≡ c(a − 1)mod n

for suitable c. This gives the first assertion of the lemma.
In order to prove the second one it is enough to consider the case where 4 |n and A

contains an integer ā0 ≡ −1 mod 4. Let n0 be the greatest odd factor of n1 and a0 = ān0
0 .

Clearly a0 ≡ −1 mod 4 and by (8)

a0 ≡ 1 mod n0(ā0 − 1).

Hence by (17) and (18)

f (a0) ≡ a0 − 1

ā0 − 1
f (ā0) ≡ 0 mod (n0,M),(26)

g(a0) ≡ a0 − 1

ā0 − 1
g(ā0) ≡ 0 mod n0.(27)
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Let a1, . . . , as represent all residue classes of A congruent to 1 mod 4n0. If

(28) a ≡ a0a
x1
1 · · · axss mod n

we have by (16), (17) and (18)

(29) f (a) ≡ f (a0)+ f (a
x1
1 · · · axss )

≡ f (a0)+ x1f (a1)+ . . .+ xsf (as)mod (4n0,M),

(30) g(a) ≡ g(a0)+ g(ax1
1 · · · axss ) ≡ g(a0)+ x1g(a1)+ . . .+ xsg(as)mod 4n0.

Let us set

F 0 =
⎡⎢⎣f (a1)

...

f (as)

⎤⎥⎦ , g0 = [g(a1), . . . , g(as)].

By (29)

f (a) ≡ f (a0)+ xF 0 mod (4n0,PM)

and

(∗) f (a)Q ≡ f (a0)Q+ xF 0Q mod (4n0,PMQ).c

Now suppose that for a vector x we have

(31) xF 0R + f (a0)R ≡ 0 mod 2n0,

where

R = Q

⎡⎢⎢⎢⎢⎣
2n0

(2n0, e1)
. . . 0

...
. . .

...

0 . . .
2n0

(2n0, ek)

⎤⎥⎥⎥⎥⎦ .
Then

xF 0Q+ f (a0)Q ≡ 0 mod (2n0,PMQ)

and since by (28) (2n0, ei) = (a − 1, n1, ei) we have by (∗)c

f (a)Q ≡ 0 mod
(
(a − 1, n1),PMQ

)
.

This together with (20) gives

f (a)Q ≡ 0 mod (a − 1,PMQ),

f (a) ≡ 0 mod (a − 1,M).

By the assumption

g(a) ≡ 0 mod (a − 1, n)

and by (30)

(32) xgT0 + g(a0) ≡ 0 mod 2n0.
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Thus (31) implies (32). On the other hand, by the already proved part of the lemma and
since a − 1 ≡ 0 mod 2n0,

gT0 ≡ F 0nM
−1uT1 mod 2n0.c

Also

nM−1 = R

⎡⎢⎢⎢⎢⎣
n(2n0, e1)

2n0e1
. . . 0

...
. . .

...

0 . . .
n(2n0, ek)

2n0ek

⎤⎥⎥⎥⎥⎦P

and finally by (26) and (27)

f (a0)R ≡ 0 mod n0, g(a0) ≡ 0 mod n0.

The assumptions of Lemma 3 are satisfied with p = 2 and we infer that for a suitable
vector d

gT0 ≡ F 0RdT mod 2n0, g(a0) ≡ f (a0)RdT mod 2n0.

Setting u2 = dRT we get

(33) MuT2 =MRdT = P−1

⎡⎢⎢⎢⎢⎣
2n0e1

(2n0, e1)
. . . 0

...
. . .

...

0 . . .
2n0ek

(2n0, ek)

⎤⎥⎥⎥⎥⎦ dT ≡ 0 mod 2.

On the other hand, for each i � s
g(ai) ≡ f (ai)u

T
2 mod 2n0

and since every a ∈ A, a ≡ 1 mod 2n0 is congruent to ai or to a0ai mod n we infer fromc

(16), (29) and (30) that

g(a) ≡ f (a)uT2 mod 2n0

for all a ∈ A, a ≡ 1 mod 2n0. By (8) for any a ∈ A, an0 ≡ 1 mod n0 and hencec

g(an0)− f (an0)uT2 ≡ 0 mod 2n0.

On the other hand by (17), (18) and (33)

g(an0)− f (an0)uT2 ≡
an0 − 1

a − 1

(
g(a)− f (a)uT2

)
mod 2

and since
an0 − 1

a − 1
is odd

g(a) ≡ f (a)uT2 mod 2. 	


Lemma 6. LetK be an arbitrary field,na positive integer not divisible by the characteristic
of K , ni divisors of n and α1, . . . , αk, β non-zero elements of K . Let G be the Galois
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group of the fieldK(ζn, n1
√
a1, . . . ,

nk
√
ak) and assume that every element of G which fixes

one of the fieldsK(ξ1, . . . , ξk), where ξnii = αi , fixes at least one η with ηn = β. Then for
any choice of numbers ξi and η and for suitable exponents m0,m1, . . . , mk, q1, . . . , qk

ζm0
n ηξ

m1
1 · · · ξmkk ∈ K(ζ4),

and if n ≡ 0 mod 2,

ηn/2ξ
q1
1 · · · ξqkk ∈ K, 2qi ≡ 0 mod ni (1 � i � k).

Proof. Let us choose some ξi and η. It is clear that

η ∈ K(ζm, ξ1, . . . , ξk) = L.
The elements σ of G act on L in the following way

σ(ζn) = ζαn , σ (ξi) = ζ tini ξi .
G contains a normal subgroup H = {σ : σ(ζn) = ζn}. The vectors [t1, . . . , tk] such that
for a σ ∈H

σ(ξi) = ζ tini ξi (1 � i � k)
constitute a lattice Λ. The fundamental vectors of Λ written horizontally form a matrix,
say M . Since the vectors [n1, 0, . . . , 0], [0, n2, 0, . . . , 0], …, [0, . . . , 0, nk] belong to Λ,
M is non-singular and

(34) nM−1 = SN for S =
⎡⎢⎣ n/n1 . . . 0

...
. . .

...

0 . . . n/nk

⎤⎥⎦
and a certain integral matrix N .

Let A be the set of all integers a such that for a σ ∈ G : σ(ζn) = ζ an . The residues
of a ∈ A mod n form a subgroup An of the multiplicative group of residues mod n,
isomorphic to G /H , and every integer the residue of which belongs to An is in A. Let
f (1) = 0, for an a ∈ A, 1 < a < n, f (a) = [f1(a), . . . , fk(a)] be any vector such that
for a σ ∈ G :

σ(ζn) = ζ an , σ (ξi) = ζ fi(a)ni ξi (1 � i � k)

and for all the other a let f (a) = f
(
a − n

[a
n

])
. Thus f (a) = f (b) for a ≡ bmod n.

On the other hand, for every σ ∈ G we have

(35) σ(ζn) = ζ an , σ (ξi) = ζ fi(a)+tini ξi

for a suitable a ∈ A and a suitable [t1, . . . , tk] ≡ 0 mod M . Since G is a group with respect
to superposition we get for all a, b ∈ A

f (ab) ≡ af (b)+ f (a)mod M.

Now for every pair a, t where a ∈ A, t ≡ 0 mod M we define σ by (35) and ϕ(a, t)
by the condition

(36) σ(η) = ζ ϕ(a,t)n η, 0 � ϕ(a, t) < n.
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Since σ2σ1(η) = σ2
(
σ1(η)

)
we get

(37) ϕ
(
a1a2, a2

(
t1 + f (a1)

)+ t2 + f (a2)− f (a1a2)
)

≡ a2ϕ(a1, t1)+ ϕ(a2, t2)mod n

and in particular

ϕ(1, t1 + t2) ≡ ϕ(1, t1)+ ϕ(1, t2)mod n for t1 ≡ t2 ≡ 0 mod M.

It follows that ϕ(1, 0) = 0 and if t = xM ,c

M =

⎡⎢⎢⎢⎣
m1
m2
...

mk

⎤⎥⎥⎥⎦
then

ϕ(1, t) ≡ x1ϕ(1,m1)+ . . .+ xkϕ(1,mk)mod n.c

Since tS ≡ 0 mod n implies ϕ(1, t) = ϕ(1, 0) = 0 we infer by Lemma 2 that for anc

integral vector c ⎡⎢⎣ϕ(1,m1)
...

ϕ(1,mk)

⎤⎥⎦ ≡MScT mod n

and thus ϕ(1, t) ≡ tScT mod n. Hence by (37) with a2 = 1, t1 = 0

(38) ϕ(a, t) ≡ ϕ(a, 0)+ tScT mod n.

The condition (37) takes the form

ϕ(a1a2, 0)+ (a2t1 + t2)ScT + (a2f (a1)+ f (a2)− f (a1a2)
)
ScT

≡ a2ϕ(a1, 0)+ a2t1ScT + ϕ(a2, 0)+ t2ScT mod n.

It follows that the function

(39) g(a) = ϕ(a, 0)− f (a)ScT

satisfies the conditions g(a) ≡ g(b)mod n for a ≡ bmod n and

g(ab) ≡ ag(b)+ g(a)mod n.

Now suppose that for an a ∈ A we have

(40) f (a) ≡ 0 mod (a − 1,M).

It follows that for a suitable v = [v1, . . . , vk]
f (a)− (a − 1)v ≡ 0 mod M

and G contains σ such that

σ(ζn) = ζ an , σ (ξi) = ζ (a−1)vi
ni

ξi (1 � i � k).c
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We have

σ(ζ−vini
ξi) = ζ−vini

ξi (1 � i � k),

thus by the assumption

σ(ζ−v0
n η) = ζ−v0

n η

for a suitable v0. We obtain from (36), (38) and (39)

−v0a + ϕ
(
a, (a − 1)v − f (a)

) ≡ −v0 mod n,

ϕ(a, 0)+ ((a − 1)v − f (a)
)
ScT ≡ (a − 1)v0 mod n,

g(a) ≡ 0 mod (a − 1, n).(41)

Thus (40) implies (41) and we infer by Lemma 5 that for all a ∈ A, a ≡ 1 mod (4, n)c

(42) g(a) ≡ −m0(a − 1)+ f (a)nM−1uT1 mod n

and for all a ∈ Ac

(43) g(a) ≡ f (a)uT2 mod (2, n), MuT2 ≡ 0 mod (2, n).

Set m = [m1, . . . , mk] = −c−u1N
T , where N is defined by (34). If σ is defined by (35)

and a ≡ 1 mod (4, n) we get

σ(ζm0
n ηξ

m1
1 · · · ξmkk ) = ζ e1n ηξm1

1 · · · ξmkk ,
where by (36), (38), (39) and (42)

e1 = am0 + ϕ(a, t)+
(
f (a)+ t

)
SmT

≡ am0 + g(a)+
(
f (a)+ t

)
ScT + (f (a)+ t

)
SmT

≡ am0 −m0(a − 1)+ f (a)nM−1uT1 −
(
f (a)+ t

)
SNuT1

≡ m0 − tnM−1uT1 ≡ m0 mod n.

Thus σ(ζ4) = ζ4 implies

σ(ζm0
n ηξ

m1
1 · · · ξmkk ) = ζm0

n ηξ
m1
1 · · · ξmkk

and the first assertion of the lemma follows. In order to prove the second one assume 2 |n
and set

(44) q = [q1, . . . , qk] = n
2

c + n
2

u2S
−1.

q is integral since by (34) and (43)

(nu2S
−1)T = nS−1uT2 = NMuT2 ≡ 0 mod 2.

If σ is defined by (35) we get

σ(ηn/2ξ
q1
1 · · · ξqkk ) = ζ e2n ηn/2ξq1

1 · · · ξqkk ,
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where by (36), (38), (39) and (43)

e2 = n
2
ϕ(a, t)+ (f (a)+ t)SqT

≡ n
2
g(a)+ n

2

(
f (a)+ t)ScT + (f (a)+ t

)n
2

ScT + (f (a)+ t
)n

2
uT2 ≡ 0 mod n.

It follows that

ηn/2ξ
q1
1 · · · ξqkk ∈ K.

Also, by (44), 2qi ≡ 0 mod ni . 	


Lemma 7. LetK be an arbitrary field of characteristic different from 2 and τ the greatest
integer such that ζ2τ + ζ−1

2τ ∈ K if there are only finitely many of them, otherwise τ = ∞.
If ϑ ∈ K(ζ4), ϑn ∈ K , then at least one of the following four conditions is satisfied for a
suitable γ ∈ K:

(i) ϑn = γ n,
(ii) n �≡ 0 mod 2τ , ϑn = −γ n,
(iii) n ≡ 2τ mod 2τ+1, ϑn = −(ζ2τ + ζ−1

2τ + 2
)n/2
γ n,

(iv) n ≡ 0 mod 2τ+1, ϑn = (ζ2τ + ζ−1
2τ + 2

)n/2
γ n.

Remark. If n is a power of 2 the lemma is contained in Satz 2 of [4].

Proof. Set ζ4 = i, ϑ = α + βi, α, β ∈ K . If i ∈ K we have (i); if i /∈ K then
(α + βi)n = κ ∈ K implies (α − βi)n = κ hence

α + βi = ζ νn (α − βi),(45)

ζ νn + ζ−νn = α + βi
α − βi +

α − βi
α + βi =

2(α2 − β2)

α2 + β2 ∈ K.

It follows that the only conjugate of ζ νn over K is ζ−νn and the only possible conjugates
of ζ ν2n are

ε1ζ
ε2ν
2n (ε1 = ±1, ε2 = ±1).

(ζ2n is chosen so that ζ 2
2n = ζn.)

Let

(46) μ = ord2 2n/(2n, ν).

Then

(47) ζ2μ = ζ ν�2n , � ≡ 1 mod 2.

If σ is an automorphism of K(ζ ν2n) and

(48) σ(ζ ν2n) = ε1ζ
ε2ν
2n

we get

(49) σ(ζ2μ) = ε1ζ
ε2
2μ.
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If μ = 2 we have ζ νn �= 1, by (45)

α = βi ζ
ν
n + 1

ζ νn − 1
,

ϑn = βn
(

2i

ζ νn − 1

)n
= βn(−1)ν

(
2i

ζ ν2n − ζ−ν2n

)n
(50)

and by (48) and (49) for all automorphisms σ of K(ζ ν2n) over K

σ

(
2i

ζ ν2n − ζ−ν2n

)
= 2i

ζ ν2n − ζ−ν2n

.

Thus
2i

ζ ν2n − ζ−ν2n

∈ K and by (46) and (50) we get (i) if ν is even and (ii) if ν is odd.

If μ �= 2, ζ νn �= −1 and by (45)

βi = α ζ
ν
n − 1

ζ νn + 1
,

ϑn = αn
(

2

ζ νn + 1

)n
= αn(−1)ν

(
2

ζ ν2n + ζ−ν2n

)n
.(51)

If σ is an automorphism of K(ζ ν2n),

δ = (ζ ν2n + ζ−ν2n )(ζ2μ + ζ−1
2μ )

we have by (48) and (49)

σ(δ) = δ.
Thus δ ∈ K and since ζ2μ + ζ−1

2μ �= 0 we get from (51)

(52) ϑn = (−1)ν(ζ2μ + ζ−1
2μ )

n
(2α

δ

)n
.

On the other hand, μ � τ + 1. This is clear if μ = 0 and if μ > 0 it follows from (47) that

ζ2μ−1 + ζ−1
2μ−1 = ζ ν�n + ζ−ν�n =

(α + βi
α − βi

)� + (α − βi
α + βi

)� ∈ K
thus μ− 1 � τ .

Denoting by γ a suitable element of K we can draw from (46) and (52) the following
conclusions:

If μ � τ , ν ≡ 0 mod 2 then ϑn = γ n;
if μ � τ , ν ≡ 1 mod 2 then ϑn = −γ n; n �≡ 0 mod 2τ ;

if μ = τ + 1, ν ≡ 1 mod 2, then ϑn = −(ζ2τ + ζ−1
2τ + 2

)n/2
γ n and n ≡ 2τ mod 2τ+1;

if μ = τ + 1, ν ≡ 0 mod 2, then ϑn = (ζ2τ + ζ−1
2τ + 2

)n/2
γ n,

which correspond to the conditions (i), (ii), (iii), (iv), respectively. 	


Lemma 8. Let K be an algebraic number field, fi(x) polynomials over K with integral
coefficients and discriminants Di and p a prime ideal of K not dividing D1 · · ·Dk . The k
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congruences fi(x) ≡ 0 mod p (1 � i � k) are soluble mod p if and only if p has a prime
factor of degree one in at least one field K(ξ1, . . . , ξk), where fi(ξi) = 0.

Proof.The sufficiency of the condition is obvious. In order to prove the necessity we proceed
by induction. For k = 1 the condition follows from Dedekind’s theorem applied to a
suitable irreducible factor off . Suppose that the condition holds for less than k polynomials
and that the k congruences fi(x) ≡ 0 mod p are soluble. Then p has a prime factor P
of degree one in K(ξ1, . . . , ξk−1), where ξi is a certain zero of fi(x). The congruence
fk(x) ≡ 0 mod P being soluble it follows by Dedekind’s theorem that P has a prime
factor of relative degree one in at least one field K(ξ1, . . . , ξk) where fk(ξk) = 0. This
factor is of degree one over K , which completes the proof. 	


Lemma 9. IfK is an algebraic number field, τ is defined as in Theorem 1 and ν > τ then
the congruence x2ν ≡ (ζ2τ + ζ−1

2τ + 2)2
ν−1

mod p is soluble for all prime ideals p of K .

Proof. See [5], p. 156. 	


Proof of Theorem 1. Necessity. Suppose that the Galois group G of the extension
L = K(ζn, n1

√
α1, . . . ,

nk
√
αk
)

of K contains an element σ which fixes one of the fields
K(ξ1, . . . , ξk), where ζ nii = αi , but does not fix any η with ηn = β. By Frobenius density
theorem prime ideals p of K belonging to the division of σ in G have a positive density.
Every such prime ideal p has a prime factor of degree one in K(ξ1, . . . , ξk) (1 � i � k)
where ξ1, . . . , ξk are suitably chosen roots of ξnii = αi , but it has no prime factor of de-
gree one in any of the fields K(η), where ηn = β. By Lemma 8, for almost all p’s the
congruences xni ≡ αi mod p are soluble and the congruence xn ≡ β mod p is insoluble.
The obtained contradiction shows that the assumptions of Lemma 6 are satisfied. Let us
choose some values of ξ1, . . . , ξk and η. By Lemma 6 there exist integersm0,m1, . . . , mk ,
q1, . . . , qk such that

ϑ = ζm0
n ηξ

m1
1 · · · ξmkk ∈ K(ζ4)

and if n ≡ 0 mod 2

(53) κ = ηn/2ξq1
1 · · · ξqkk ∈ K, 2qi ≡ 0 mod ni (1 � i � k).

Since

ϑn = β
k∏
i=1

α
nmi/ni
i ∈ K

we have by Lemma 7 for a suitable γ ∈ K either

(54) β

k∏
i=1

α
nmi/ni
i = γ n,

or n �≡ 0 mod 2τ

(55) β

k∏
i=1

α
nmi/ni
i = −γ n
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or n ≡ 2τ mod 2τ+1

(56) β

k∏
i=1

α
nmi/ni
i = −(ζ2τ + ζ−1

2τ + 2
)n/2
γ n

or n ≡ 0 mod 2τ+1

(57) β

k∏
i=1

α
nmi/ni
i = (ζ2τ + ζ−1

2τ + 2
)n/2
γ n.

(54) and (57) correspond to the conditions (i) and (iv), respectively.
If n �≡ 0 mod 2, (55) reduces to (54). If n ≡ 0 mod 2 we get from (53)

β

k∏
i=1

α
2qi/ni
i = κ2, κ ∈ K.

This together with (55) and (56) gives on division

k∏
i=1

α
li
i = −λ2, where li = nmi − 2qi

ni
, λ ∈ K.

However if ni is odd, li is even, thus∏
ni even

α
li
i = −δ2, δ ∈ K.

Sufficiency. The sufficiency of the condition (i) is obvious. To show that (ii) and (iii) are
sufficient we argue as follows. The equality∏

ni even

α
li
i = −δ2

implies that for any choice of ξi satisfying ξnii = αi
ζ4 ∈ K(ξ1, . . . , ξk).

Since

ζ2τ + ζ−1
2τ ∈ K, 2ζ2τ = ζ2τ + ζ−1

2τ + ζ4
(
ζ 1−2τ−2

2τ + ζ−1+2τ−2

2τ
)

we have K(ζ4) = K(ζ2τ ). Hence ζ2τ ∈ K(ξ1, . . . , ξk).
Let ν = ord2 n. The conditions

β

k∏
i=1

α
nmi/ni
i = −γ n, ν < τ,

and

β

k∏
i=1

α
nmi/ni
i = −(ζ2τ + ζ−1

2τ + 2
)n/2
γ n, ν = τ,
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can be rewritten for a suitable η and � as

η

k∏
i=1

ξ
mi
i = ζ �2τ γ and η

k∏
i=1

ξ
mi
i = (ζ2τ + 1)γ,

respectively.
It follows that η ∈ K(ξ1, . . . , ξk) and any ideal p which has a prime factor of degree

one in K(ξ1, . . . , ξk) has a prime factor of degree one in K(η). Since this is valid for
any choice of ξi and a suitable η, we infer by Lemma 8 that the solubility of xn ≡ αi
(1 � i � k) implies the solubility of xn ≡ β mod p.

The sufficiency of condition (iv) follows from Lemma 9, since the solubility of the
congruence

x2ν ≡ (ζ2τ + ζ−1
2τ + 2

)2ν−1
mod p

clearly implies the solubility of the congruence

xn ≡ (ζ2τ + ζ−1
2τ + 2

)n/2 mod p.

If ζ4 ∈ K then ζ2τ ∈ K and the equalities

−1 = ζ n2ν+1 if ν < τ,

(−1)n/2
τ (
ζ2τ + ζ−1

2τ + 2
)n/2 = (ζ2τ + 1

)n
, if ν � τ

show that the conditions (ii), (iii), (iv) imply (i).
If τ = 2 and n �≡ 0 mod 2τ we have either n ≡ 1 mod 2 in which case −γ n = (−γ )n

or n ≡ 2 mod 4. In the latter case we get from (ii)

β

k∏
i=1

α
nmi/ni
i

∏
ni even

α
lin/2
i = (γ δ)n,

which leads to (i). The proof is complete. 	


Proof of Corollary 1 follows at once from Lemma 8. 	


Proof of Corollary 2. If the congruences xn ≡ α mod p and xn ≡ β mod p are for almost
all p simultaneously soluble or insoluble, we have by Theorem 1 the following seven
possibilities:

α
n= βt , β

n= αs;(58)

n �≡ 0 mod 2τ , α
n= βt = −δ2, β

n= −αs;(59)

n ≡ 2τ mod 2τ+1, α
n= βt = −δ2, β

n= −ωαs;(60)

n ≡ 0 mod 2τ+1, α
n= βt , β

n= ωαs;(61)

n �≡ 0 mod 2τ , α
n= −βt = −δ2

1, β
n= −αs = −δ2

2;(62)
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n ≡ 2τ mod 2τ+1, α
n= −ωβt = −δ2

1, β
n= −ωαs = −δ2

2;(63)

n ≡ 0 mod 2τ+1, α
n= ωβt , β

n= ωαs(64)

and three other possibilities obtained by the permutation of α and β in (59), (60) and (61).
Here γ

n= δmeans that γ /δ is an nth power inK andω = (ζ2τ +ζ−1
2τ +2

)n/2. Moreover, in
(59) to (64) it is assumed that ζ4 /∈ K . Let us choose an integer x such that u = s+(st−1)x
is prime to n. If s is even or t is odd x will be chosen odd, which is possible because then(
s + st − 1, 2(st − 1)

) = 1.

Now, (58) gives α
n= αst , αst−1 n= 1, β

n= αu;

(59) gives t ≡ 1 mod 2, α
n= −αst , αst−1 n= −1, β

n= αu;

(60) gives t ≡ 1 mod 2, α
n= −ωαst , αst−1 n= −ω, β

n= αu;

(61) gives α
n= ωtαst , αst−1 n= ωt , β n= ωt+1αu;

(62) gives s ≡ t ≡ 0 mod 2. Indeed, if for instance t ≡ 1 mod 2 then−δ2
1 = −βt = δ2t

2

and ζ4 ∈ K . If s ≡ t ≡ 0 mod 2 then α
n= −αst , αst−1 n= −1, β

n= αu.

(63) gives like (62) that s ≡ t ≡ 0 mod 2. In that case α
n= −ωαst , αst−1 n= −ω,

β
n= αu.

Finally (64) gives α
n= ωt+1αst , αst−1 n= ωt+1, β

n= ωt+x+1αu.

On the other hand, if β
n= αu or n ≡ 0 mod 2τ+1 and β

n= ωαu, where (u, n) = 1 then
also α

n= βν or α
n= ωβν , respectively and by Theorem 1 the congruences xn ≡ α mod p

and xn ≡ β mod p are simultaneously soluble or insoluble for almost all prime ideals p

of K . 	


To prove Theorem 2 we need two lemmata both due to Skolem.

Lemma 10. In every algebraic number fieldK there exists an infinite sequence of elements

πj such that every element of K is represented uniquely in the form ζ
l∏
j=1
π
dj
j , where ζ is

a root of unity and dj are rational integers.

Proof. See [9]. 	


Lemma 11. If a system of linear congruences is soluble for all moduli, then the corre-
sponding system of equations is soluble in rational integers.

Proof. See [7]. 	


Proof of Theorem 2. Let

αi = ζ ai0w
l∏
j=1

π
aij
j , β = ζ b0

w

l∏
j=1

π
bj
j ,
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where w is the number of roots of unity contained in K , πj have the property asserted in
Lemma 10 and aij , bj are rational integers. If the congruence

α
x1
1 · · ·αxkk ≡ β mod p

is soluble for almost all p then for every positive integern the solubility of the k congruences
xn ≡ αi mod p (1 � i � k) implies the solubility of xn ≡ β mod p. It follows hence by
Theorem 1 with n = 2τ+1m that for every positive integer n there exist γ ∈ K and rational
integers m1, . . . , mk such that

βα
m1
1 · · ·αmkk = γm.

By Lemma 10 the last equality implies for a suitable m0

b0 +
k∑
i=1

ai0mi + wm0 ≡ 0 modm,

bj +
k∑
i=1

aijmi ≡ 0 modm (1 � j � l).

By Lemma 11 there exist rational integers m0, . . . , mk such that

b0 +
k∑
i=1

ai0mi + wm0 = 0,

bj +
k∑
i=1

aijmi = 0 (1 � j � l)

and this gives

β =
k∏
i=1

α
mi
i . 	


The above proof is modelled on Skolem’s proof ([7]) of his theorem that the solubility
of the congruence αx1

1 · · ·αxkk ≡ β mod m for all moduli implies the solubility of the
corresponding equation. That proof uses instead of Theorem 1 the case D = 1 of the
following

Lemma 12. Let ξ0 = ζw, ξ1, . . . , ξt be any t distinct terms of the sequence πj . For any
positive integer m there exists μ ∈ K prime to D such that the congruence

ξ
y0
0 ξ

y1
1 · · · ξytt ≡ 1 mod μ

implies y0 ≡ 0 mod w, y1 ≡ . . . ≡ yt ≡ 0 modm.

Skolem’s proof of the above lemma given only in the case of fields with class number
one is defective because he claims the existence of prime ideals p0, . . . , pl of K such that
xm ≡ ξr mod ps is soluble for r �= s and xm ≡ ξjr mod pr is insoluble for j �≡ 0 modm,
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r �= 0 and j �≡ 0 mod (m,w), r = 0. The assertion is false for K = Q, t = 1, ξ1 = 2,c

m = 4.

Proof of Lemma 12. We can assume without loss of generality that m ≡ 0 mod 2τ+1w.
For every p |m set n = m(p, 2). Suppose that the solubility of

(65) xn ≡ ξi mod p (i �= r �= 0)

implies the solubility of

(66) xn ≡ ξm/pr mod p

for almost all p. Then by Theorem 1

ξ
m/p
r

∏
i �=r
ξ
mi
i = γ n/2

for suitable γ ∈ K and suitable exponents mi . We get

m

p
≡ 0 mod

n

2
,
m

p
≡ 0 mod

m(p, 2)

2
,

which is impossible.
The obtained contradiction shows that for a certain prime ideal p prime to D the

congruences (65) are soluble, but (66) is insoluble. Denoting this prime ideal by pp,r we
infer from

ξ
x0
0 ξ

x1
1 · · · ξxtt ≡ 1 mod pp,r

that (
m(p, 2), xr

)
/| m
p
,

hence

ordp xr � ordp m.

If p |w, suppose that the solubility of the congruences

(67) xn ≡ ξi mod p (1 � i � t)

implies the solubility of the congruence

(68) xn ≡ ζp mod p

for almost all p. Then by Theorem 1

ζp

t∏
i=1

ξ
mi
i = γ n/2

for suitable γ ∈ K and suitable exponents mi . We get

w

p
≡ 0 mod

(n
2
, w
)
,
w

p
≡ 0 mod

w(p, 2)

2
.
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The obtained contradiction shows that for a certain prime ideal p prime to D the
congruences (67) are soluble, but (68) is insoluble. Denoting this prime ideal by pp,0 we
infer from

ξ
x0
0 ξ

x1
1 · · · ξxtt ≡ 1 mod pp,0

that

(x0, w) /| w
p

hence ordp x0 � ordp w.

For μ we can choose any number prime to D divisible by

∏
p |m

k∏
r=1

pp,r
∏
p |w

pp,0. 	


Proof of Theorem 3. Let for i � h, j � k

αij =
t∏
s=0

ξ
aijs
s , βi =

t∏
s=0

ξai0ss

in the notation of Lemma 12 and let m, D be positive integers.

Let μ be a modulus with the property asserted in Lemma 12. Then the congruences

k∏
j=1

α
xj
ij ≡ βi mod μ (i = 1, . . . , h)

imply

k∑
j=1

aij0xj ≡ ai00 mod w (i = 1, . . . , h),

k∑
j=1

aijsxj ≡ ai0s modm (i = 1, . . . , h; s = 1, . . . , t)

and by Lemma 11 there exist rational integers xj (j = 1, . . . , k), yi (i = 1, . . . , h)
satisfying the system of equations

k∑
j=1

aij0xj = ai00 + wyi (i = 1, . . . , h),

k∑
j=1

aijsxj = ai0s (i = 1, . . . , h; s = 1, . . . , t).
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Hence
k∏
j=1

α
xj
ij = βi (i = 1, . . . , h).

The proof is complete. 	


We proceed to the example showing that Theorem 3 is no longer valid if the solubility
for all moduli prime to D is replaced by the solubility for all prime moduli.

Let us consider the system

(69)
2x3y ≡ 1 mod p,

2y3z ≡ 4 mod p.

For p = 2, 3 it has the solution (x, y, z) = (0, 1, 0), (0, 0, 0), respectively. For other p it
is equivalent to the system

(70)
x ind 2+ y ind 3 ≡ 0 mod p − 1,

y ind 2+ z ind 3 ≡ 2 ind 2 mod p − 1,

where indices are taken with respect to a fixed primitive root mod p. Now(
(ind 2)2, (ind 3)2

) | ind 2 ind 3.

Hence ( (ind 2)2

(ind 2, ind 3)
, ind 3

) ∣∣∣ ind 2

and the equation

t
(ind 2)2

(ind 2, ind 3)
+ z ind 3 = 2 ind 2

is soluble in integers. The numbers x = −t ind 3

(ind 2, ind 3)
, y = t ind 2

(ind 2, ind 3)
and z satisfy

the system (70) and hence also (69).
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Abelian binomials,
power residues and exponential congruences*

In memory of Marceli Stark

This paper supplements the results of [6] concerning power residues and extends those
pertaining to exponential congruences. We begin however with the study of binomials.
G. Darbi [1] and E. Bessel-Hagen (cf. [10], p. 302) have found all binomials xn − a
normal over the rational field Q. (Their argument extends to fieldsK such that a primitive
n-th root of unity ζn is of degree ϕ(n) over K .) We shall do the same for an arbitrary field
and n equal to a prime power. In fact, we shall prove

Theorem 1. LetK be a field, p a prime different from the characteristic of K . A binomial
xp

ν − α is the product of factors normal overK if and only if at least one of the following
conditions is satisfied for a suitable integer λ and a suitable γ ∈ K:

(i) αp
min(ω,ν) = γ pν ;

(ii) p = 2, ω = 1, ν � τ , α = −γ 2;

(iii) p = 2, ω = 1, ν = τ + 1, α = −γ 2,

√
−(ζ2τ + ζ−1

2τ + 2
) ∈ K;

(iv) p = 2, ω = 1, ν = τ + 1, α = −(ζ2τ + ζ−1
2τ + 2

)2λ
γ 2λ+1

, 1 � λ � τ − 2;

(v) p = 2, ω = 1, ν � τ + 2, α = −(ζ2τ + ζ−1
2τ + 2

)2ν−2
γ 2ν−1

.

Here ω is the greatest integer such that ζpω ∈ K if there are only finitely many of them,
ω = ∞ otherwise; τ is the greatest integer such that ζ2τ + ζ−1

2τ ∈ K if there are only
finitely many of them, τ = ∞ otherwise.

If the binomial in question is irreducible (iv) implies
√
−(ζ2τ + ζ−1

2τ + 2
)
/∈ K , λ = 1,

τ � 3; (v) implies τ = 2.

Theorem 2. Let n be a positive integer not divisible by the characteristic of K . A binomial
xn − α has over K an abelian Galois group if and only if αwn = γ n, where γ ∈ K and
wn is the number of n-th roots of unity contained in K . When a binomial satisfying this
condition is irreducible then its group is cyclic if n �≡ 0 mod 4 or ζ4 ∈ K and the product
of cyclic groups of order 2 and n/2 otherwise.

From Theorem 2 and a result of Hasse [2] concerning the case n = pν we shall deduce

Addendum and corrigendum, Acta Arith. 36 (1980), 101–104.
* Written within the Research Program I.1.
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Theorem 3. Let n be a positive integer not divisible by the characteristic of K . If

α = ϑn, ϑ ∈ K(ζn)
then

ασ = γ n, γ ∈ K,
where

(vi) σ = (wn, l.c.m.
q |n

q prime or q=4

[K(ζq) : K]
)
.

Moreover if for a certain m prime to n

(vii)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
either ζ(4,n) ∈ K and nm ≡ 0 mod wn l.c.m.

q |n
q prime

[K(ζq) : K]

or ζ(4,n) /∈ K, τ <∞ and nm ≡ 0 mod 2τwn l.c.m.
q |n

q prime

[K(ζq) : K]

then

α = γ n/σ , γ ∈ K.

Next we shall assume that K is an algebraic number field and prove the following
extension of Kummer’s theorem (see [3], Satz 152) on power residues.

Theorem 4. LetK be an algebraic number field,w the number of roots of unity contained
in K , σ given by (vi). If α1, . . . , αk ∈ K∗ are such thatc

(viii) α
σx1
1 · · ·ασxkk = γ n, γ ∈ K implies x1 ≡ x2 ≡ . . . ≡ xk mod n/σ

then for any integers c1, . . . , ck ≡ 0 mod σ there exist infinitely many prime ideals p
of K(ζn) such that (αi

p

)
n
= ζ cin .

If α1, . . . , αk satisfy the stronger condition that

(ix) ζ x0
w α

x1
1 · · ·αxkk = γ n/σ implies x1 ≡ x2 ≡ . . . ≡ xk ≡ 0 mod n/σ

and n satisfies the condition (vii) of Theorem 3 then for any integers c1, . . . , ck ≡ 0 mod σ
and any c0 there exist infinitely many prime ideals p of K(ζn) such that(ζw

p

)
n
= ζ c0(w,n),

(αi
p

)
n
= ζ cin .

If n = pν , p prime and p > 2 or ν = 1 or w ≡ 0 mod 4 then the assertion holds
without any restriction on ci . Thus, for n = p, ν = 1 we obtain Chebotarev’s refinement
[9] of Kummer’s theorem. For K = Q and n arbitrary a more precise result has been
obtained by Mills [5].

We shall use Theorem 4 to prove two theorems on exponential congruences.
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Theorem 5. Let f (x) be a polynomial of degree g over K , α1, . . . , αk ∈ K∗. If the
congruence

f (α
x1
1 · · ·αxkk ) ≡ 0 mod p

is soluble for almost all prime ideals p of K then the equation f (αx1
1 · · ·αxkk ) = 0 is

soluble in rational numbers x1, . . . , xk with the least common denominator not exceeding
max{1, g − 1}.

This is a generalization of Theorem 2 of [6] and the examples which we give further
show that it is essentially best possible.

Corollary. Let a sequence un of rational integers satisfy the recurrence relation
un+1 = aun + bun−1, where a2 + 4b �= 0. If the congruence un ≡ cmod p is solu-
ble for almost all primes p and either b = 0, −1 or b = 1, a �= d3 + 3d (d integer), then
c = um for an integer m.

Here as in Theorem 5 almost all means all except a set of density zero.
It is conjectured that the Corollary holds for all recurring sequences of the second order

satisfying a2 + 4b �= 0.

Theorem 6. Let αhij , βhi be non-zero elements of K , D a positive integer. If the system
of congruences

gi∏
h=1

( k∏
j=1

α
xj
hij − βhi

)
≡ 0 mod m (i = 1, 2, . . . , l)

is soluble for all moduli prime toD then the corresponding system of equations is soluble
in integers.

This is a generalization of Theorem 3 of [6]. According to Skolem’s conjecture Theo-
rem 6 with D = 1 remains valid if

gi∏
h=1

( k∏
j=1

α
xj
hij − βhi

)
is replaced by

gi∑
h=1

βhi

k∏
j=1

α
xj
hij ,

but that we cannot prove.

Lemma 1. If p is a prime different from the characteristic of K , ζp ∈ K , ξp
μ ∈ K∗,

ηp
ν ∈ K∗〈ξ〉 and η ∈ K(ξ) then either η ∈ K∗〈ξ〉 or p = 2, ζ4 /∈ K and ζ4 ∈ K∗〈ξ〉.

Here K∗〈ξ〉 is the multiplicative group generated by K∗ and ξ .
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Proof. For p > 2 this is an easy consequence of a theorem of Kneser [4], since however
for p = 2 we have to go through Kneser’s proof all over again, we can cover at once the
general case. The proof is by induction with respect to μ and ν. If μ = 0 or ν = 0 the
lemma is obvious. Assume it is true for μ = m− 1 and all ν. We prove it first for μ = m,
ν = 1.

Suppose that ξ ∈ K(ξp). Then using the inductive assumption with ξ1 = ξp, η1 = ξ ,
ν1 = 1 we get either ξ ∈ K∗〈ξp〉 or p = 2, ζ4 /∈ K and ζ4 ∈ K∗〈ξ2〉. The formerc

possibility gives ξ ∈ K , the latter ζ4 ∈ K∗〈ξ〉, thus in this case lemma holds.c

Suppose now that ξ /∈ K(ξp). Then also ξζp /∈ K(ξp), ξ satisfies over K(ξp) the
irreducible equation xp − ξp = 0 and denoting by N the norm from K(ξ) to K(ξp) we
have

Nξ = (−1)p−1ξp.

On the other hand, ηp ∈ K∗〈ξ〉, hence ηp = aξpk+q , where 0 � q < p, a ∈ K∗.c

Consider first the case q > 0. Taking the norms of both sides we get(
(−1)p−1ξp

)q = (Nη)pa−pξ−p2k.

For p > 2 it follows that ξp ∈ K(ξp)p and ξ ∈ K(ξp) which has been excluded. Forc

p = 2 we get

−ξ2 = (Nη)2a−2ξ−4k, ζ4ξ ∈ K(ξ2), η2 = ±ζ4N(η),
hence ζ4 ∈ K(ξ), ζ4 /∈ K(ξ2). Writing η = g + ζ4h with g, h ∈ K(ξ2) we obtainc

g2 = h2, η = (1± ζ4)g. Hence g4 = −η4/4 ∈ K∗〈ξ2〉 and by the inductive assumptionc

with ξ1 = ξ2, η1 = g, ν1 = 2 we infer that g ∈ K∗〈ξ2〉, ζ4 = ± 1
2η

2g−2 ∈ K∗〈ξ〉.
Consider now the case q = 0. Let S be an automorphism of the normal closure ofK(ξ)

over K(ξp) such that Sξ = ξζp. From q = 0 we infer that ηp ∈ K(ξp), Sηp = ηp,c

Sη = ζ rpη. It follows that S(ηξ−r ) = ηξ−r , ηξ−r ∈ K(ξp). Since ηpξ−rp ∈ K∗〈ξp〉,c

we apply the inductive assumption with ξ1 = ξp, η1 = ηξ−r , ν1 = 1 and obtain that
ηξ−r ∈ K∗〈ξp〉 or p = 2, ζ4 /∈ K , ζ4 ∈ K∗〈ξ2〉. The former possibility gives η ∈ K∗〈ξ〉cc

and the proof for μ = m, ν = 1 is complete. Assume now that n � 2, the lemma holds
for μ = m, ν < n and that ηp

n ∈ K∗〈ξ〉. Using the inductive assumption with η1 = ηp,c

ν1 = n − 1, we get ηp ∈ K∗〈ξ〉, or p = 2, ζ4 /∈ K and ζ4 ∈ K∗〈ξ〉. In the former casec

we use the inductive assumption with ν1 = 1 and obtain η ∈ K∗〈ξ〉, which completes thec

inductive proof. 	


Lemma 2. Let K be a field of characteristic different from 2. If ϑ ∈K(ζ4), ϑ2ν ∈K then
at least one of the following four conditions is satisfied for a suitable γ ∈ K:

ϑ2ν = γ 2ν ;(1)

ν < τ, ϑ2ν = −γ 2ν ;(2)

ν = τ, ϑ2ν = −(ζ2τ + ζ−1
2τ + 2

)2ν−1
γ 2ν ;(3)

ν > τ, ϑ2ν = (ζ2τ + ζ−1
2τ + 2

)2ν−1
γ 2ν .(4)
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Proof. This is a special case, n = 2ν of Lemma 7 of [6]. Let us remark that the conditions
(3) and (4) do not depend upon the choice of ζ2τ . Indeed, for any odd j(

ζ
j

2τ+1 + ζ−j2τ+1

)(
ζ2τ+1 + ζ−1

2τ+1

)−1 ∈ K,
hence (

ζ
j
2τ + ζ−j2τ + 2

)2ν−1(
ζ2τ + ζ−1

2τ + 2
)−2ν−1 ∈ K2ν .c

(The same remark applies to the general case.) 	


Lemma 3. Let τ1 be the greatest integer such that ζ2τ1 ∈ K(ζ4), if there are only finitely
many of them, τ1 = ∞ otherwise. Then

τ1 =
{
τ + 1 if τ <∞ and

√
−(ζ2τ + ζ−1

2τ + 2
) ∈ K,

τ otherwise.

Proof. We have for all σ � 2

2ζ2σ =
(
ζ2σ + ζ−1

2σ
)+ ζ4(ζ 1−2σ−2

2σ + ζ−1+2σ−2

2σ
)

which implies τ1 � τ . If we had τ <∞ and ζ2τ+2 ∈ K(ζ4) it would follow by Lemma 2
that

−1 = ζ 2τ+1

2τ+2 = γ 2τ+1
or

(
ζ2τ + ζ−1

2τ + 2
)2τ
γ 2τ+1

, γ ∈ K,
hence ζ4 ∈ K and ζ2τ+2 ∈ K , ζ2τ+2+ζ−1

2τ+2 ∈ K contrary to the definition of τ . This proves
τ1 < τ + 2.

If ζ2τ+1 ∈ K(ζ4), then ζ4 /∈ K and ζ2τ is conjugate over K to ζ−1
2τ . Hence ζ4ζ2τ+1 is

conjugate over K either to ζ4ζ
−1
2τ+1 or to −ζ4ζ−1

2τ+1 . However the latter possibility gives

ζ 1+2τ−1

2τ+1 +ζ−1−2τ−1

2τ+1 ∈K contrary to the definition of τ .Thus the former possibility holds and

ζ4ζ2τ+1+ζ4ζ−1
2τ+1 ∈ K ,

√
−(ζ2τ + ζ−1

2τ + 2
) ∈ K . Conversely if

√
−(ζ2τ + ζ−1

2τ + 2
) ∈ K

then

ζ2τ+1 + ζ−1
2τ+1 ∈ K(ζ4) and ζ2τ+1 = ζ2τ + 1

ζ2τ+1 + ζ−1
2τ+1

∈ K(ζ4).

This proves the lemma. 	


Lemma 4. If ξp
μ = β ∈ K , ζpμ ∈ K(ξ) and either p > 2, ζp ∈ K or p = 2, ζ4 ∈ K

then

β = ζ jpκ γ p
μ−κ
, 0 � κ � min(μ, ω), (j, p) = 1, γ ∈ K.

Proof. By Lemma 1 we have in any case

ζpμ ∈ K∗〈ξ〉,
(5) ζpμ = δξ i, δ ∈ K∗, 1 � i � pμ.c
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Let

i = pκh, (h, p) = 1, hj ≡ 1 mod pμ−κ .

Raising both sides of (5) to the power pμ−κj we get

ζ
j
pκ = δp

μ−κ j βhj ,c

hence κ � ω and the lemma holds with γ = β(1−hj)pκ−μδ−j . 	
c

Proof of Theorem 1. Necessity. Assume that xp
ν − α is the product of normal factors. Let

μ be the least nonnegative integer such that

α = βpν−μ, β ∈ K.
If μ = 0 then the theorem holds with γ = βmin(ν,ω). If μ > 0 then

(6) β �= ζ j
pν−μδ

p, δ ∈ K.
Hence if p > 2 or p = 2, ζ4 ∈ K , then xp

μ − β is irreducible and by the assumption
normal. Denoting any of its zeros by ξ we get

(7) ζpμ ∈ K(ξ), ζp ∈ K(ξ)
and since [K(ξ) : K] = pμ, [K(ζp) : K] |p− 1, it follows that ζp ∈ K . By Lemma 4 we
have

(8) β = ζ jpκ γ p
μ−κ ; 0 � κ � min(μ, ω)

and αp
κ = γ pν , which proves (i).

Assume now that p = 2, ζ4 /∈ K . Then either x2μ − β is irreducible or μ � 2,
β = −4δ4, δ ∈ K . In the former case we get again (7) for any zero ξ of x2μ − β, in the
latter case let � be the least nonnegative integer such that

(1+ ζ4)δ = η2μ−2−�
, η ∈ K(ζ4).

The binomial x2� − η is irreducible over K(ζ4), hencec

f (x) = NK(ζ4)/K(x2� − η)
is irreducible over K . The polynomial f (x) is a factor of

NK(ζ4)/K
(
x2μ−2 − η2μ−2−�) = x2μ−1 + 2δx2μ−2 + 2δ2 |x2μ + 4δ4,c

hence it is normal. Let ξ be a zero of x2� − η, ξ ′ a zero of x2� − η′, where η′ is conjugate
to η over K . We have

(9)
ξ ′

ξ
∈ K(ξ),

on the other hand (ξ ′
ξ

)2μ−2

=
(η′
η

)2μ−2−�
= (1− ζ4)δ
(1+ ζ4)δ = −ζ4,
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hence ξ ′/ξ = ζ j2μ , (j, 2) = 1 and from (9) we get again (7). Using now Lemma 1 we get
ζ4 ∈ K∗〈ξ〉. Hence

ζ4 = δξ i, δ ∈ K,(10)

2 = [K∗〈ζ4〉 : K∗] = [K∗〈ξ i〉 : K∗] = 2μ−ord2 i , i = 2μ−1j, (j, 2) = 1

and on squaring both sides of (10) we get

−1 = δ2βj , β = −γ 2.

It follows from (6) that μ = ν
(11) α = β = −γ 2.

On the other hand, applying Lemma 4 to the field K(ζ4) we get

α = ζ2σ ϑ2ν−σ , 0 � σ � min(ν, τ1), ϑ ∈ K(ζ4).
If ν � τ1, then by (11) and Lemma 3 we have (ii) or (iii). If ν > τ1 then, since ζ4 /∈ K

by (11) and Lemma 2, σ = 0 is impossible. We get

α2σ−1 = −ϑ2ν−1

and by Lemma 2 either

(12) α2σ−1 = −γ 2ν−1
, γ ∈ K

or

(13) ν − 1 = τ = τ1, α2σ−1 = (ζ2τ + ζ−1
2τ + 2

)2τ−1
γ 2τ

c

or

(14) ν − 1 > τ, α2σ−1 = −(ζ2τ + ζ−1
2τ + 2

)2ν−2
γ 2ν−1

c

Since ζ4 /∈ K , (12) and (14) imply σ = 1 and then we get (i) or (v) respectively. Finally
(13) in view of (11) implies σ > 1

α = ±(ζ2τ + ζ−1
2τ + 2

)2τ−σ
γ 2τ−σ+1

,

again by (11) and Lemma 3, σ < τ and the upper sign is excluded. This gives (iv).

Sufficiency. To prove the sufficiency of (i) we proceed by induction with respect to ν. The
case ν � ω is trivial. If ν > ω (i) gives

(15) α = ζpκ γ pν−ω , 0 � κ � ω.

If κ < ω we have

xp
ν − α =

p−1∏
j=0

(
xp

ν−1 − ζ jpζpκ+1γ p
ν−ω−1)

.
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Each of the factors on the right hand side is by the inductive assumption the product of
normal factors, hence the same holds for xp

ν − α. If κ = ω = 0 we have

xp
ν − α = α

ν∏
μ=0

Xpμ
( x
γ

)
,

where Xn(x) is the nth cyclotomic polynomial. Every zero of Xn
( x
γ

)
generates over K

all the other zeros, hence the desired result.
Finally if κ = ω > 0 let ξ denote as in the sequel any zero of xp

ν − α.
We have by (15) (

ξp
ω

γ−1)pν−ω = ζpω
hence for an integer jc

ζpν =
(
ξp

ω

γ−1)j .
If (ii) or (iii) holds then

ζ4 = ±ξ2ν−1
γ−1.

Since, by Lemma 3, ν � τ1 and by definition ζ2τ1 ∈ K(ζ4), it follows that

ζ2ν ∈ K(ξ).
If (iv) holds then

ξ2τ−λ = ζ j
2λ+2γ

(
ζ2τ+1 + ζ−1

2τ+1

)
, (j, 2) = 1,

thus

ξ2τ−λζ2τ+1 ∈ K(ζ2τ ), ζ4 ∈ K(ξ2τ ).

Since, by Lemma 3, K(ζ2τ ) = K(ζ4) it follows that

ξ2τ−λζ2τ+1 ∈ K(ξ2τ )

and

ζ2τ+1 ∈ K(ξ).
If (v) holds then

ξ2 = ζ j2ν
(
ζ2τ+1 + ζ−1

2τ+1

)
γ, (j, 2) = 1,

thus ξ2 ∈ K(ζ2ν ). We shall show that ξ2 has as many distinct conjugates over K as ζ2ν .
Indeed, if S is an automorphism of K(ζ2ν ) over K then

S
(
ζ2τ+1 + ζ−1

2τ+1

) = ±(ζ2τ+1 + ζ−1
2τ+1

)
.

Hence Sξ2 = ξ2 implies Sζ j2ν = ζ j2ν , Sζ2ν = ζ2ν or

Sζ
j
2ν = −ζ j2ν , S

(
ζ2τ+1 + ζ−1

2τ+1

) = −(ζ2τ+1 + ζ−1
2τ+1

)
.
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The latter case is however impossible, since Sζ2τ+1 = S(ζ2ν )2ν−τ−1
. It follows that

ζ2ν ∈ K(ξ2).

If the binomial xp
ν − α is irreducible, then for p = 2, ν � 2 we have α �= −4γ 4,

hence for τ � 3, α �= −γ 4, γ ∈ K . Thus (iv) implies τ � 3,
√
−(ζ2τ + ζ−1

2τ + 2
)
/∈ K ,

λ = 1; (v) implies τ = 2. 	


Remark. Note that in case (i) if κ = ω > 0 and in cases (ii)–(v) every root of xp
ν − αc

generates all the others.

Lemma 5. If a binomial xp
ν − α satisfies condition (i) then its Galois groupG overK is

abelian. If it is irreducible then G is cyclic unless p = 2, ν � 2, ω = 1, in which case G
is of type (2, 2ν−1).

If λ is the least nonnegative integer such that

α = ζpκ γ pν−λ , 0 � κ � λ � ω, γ ∈ K,
then the Galois group of each irreducible factor of xp

ν − α contains an element of order
pλ and besides an element of order

pν−ω+κ if 〈p,ω〉 �= 〈2, 1〉 and κ > max{0, ω − ν + λ},
pν−τ+1 if 〈p,ω〉 = 〈2, 1〉 and κ = λ = 1 > τ − ν + 1.

Proof. We start by proving that an irreducible binomial satisfying (i) has a cyclic group G
unless p = 2, ν � 2,ω = 1. Since it is irreducible we have either ν−λ = 0 or κ = ω = λ.
In the former case ν � ω; if ξ is any zero of xp

ν − α and S the substitution ξ → ζpν ξ we

have Sj (ξ) = ζ jpν ξ hence G is cyclic, generated by S. In the latter case let ξ be any zero

of xp
ν − α satisfying

ξp
ω = ζpν γ

and consider the substitution S : ξ → ζpν ξ . We have

S(ζpν ) = ζp
ω+1
pν , Sj (ξ) = ζ

∑j−1
i=0 (p

ω+1)i

pν ξ.

The order of S is the least j such that

(16)
j−1∑
i=0

(pω + 1)i = (p
ω + 1)j − 1

pω
≡ 0 mod pν.

However if p > 2, a ≡ 1 mod p or p = 2, a ≡ 1 mod 4 we have

(17) ordp(a
j − 1) = ordp j + ordp(a − 1)

(see [6], p. 401(1), formula (8)). Hence if p > 2 or p = 2, ω � 2, (16) implies

ordp j � ν

(1) Page 919 in this volume.
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and S is of order pν . The same is clearly true for pν = 2.
The remaining assertions of the lemma are trivial for λ = 0. If λ > 0 we consider first

the case p > 2 or p = 2, ω � 2. If κ > max{0, ω − ν + λ} we have the factorization

xp
ν − α =

pω−κ−1∏
j=0

(
xp

ν−ω+κ − ζ j
pω−κ ζpωγ

pν−λ−ω+κ )
and the factors are irreducible since ζpω+1 /∈ K . By the fact already established the Galois
groups are cyclic of order pν−ω+κ and since ν − ω + κ > λ contain also an element of
order pλ.

If κ � ω − ν + λ then

α = γ pν−λ1 , γ1 = ζpκ+ν−λγ ∈ K.
We have the factorization

xp
ν − α =

pν−λ−1∏
j=0

(
xp

λ − ζ j
pν−λγ1

)
and the factors are irreducible, since ζ j

pν−λγ1 = γ p2 , γ2 ∈ K would imply

αp
λ−1 = γ pν2

contrary to the choice of λ. The Galois groups are cyclic of order pλ.
If κ = 0 > ω − ν + λ we have the factorization

xp
ν − α =

pω−1∏
j=0

(
xp

λ − ζ jpωγ
) ν−ω∏
μ=λ+1

pω−1∏
j=0

(j,p)=1

(
xp

μ − ζ jpωγ p
μ−λ)

.

The factors of the first product are irreducible for the same reason as before, the
other factors are irreducible since ζpω+1 /∈ K . The Galois groups are cyclic of order pμ

(λ � μ � ν − ω).
Consider now the case p = 2, ω = λ = 1. Let τ1 have the meaning of Lemma 3.
If κ = 1 > τ − ν + 1 we have ν � τ + 1 � τ1 and the factorization

x2ν − α =
2τ1−1∏
j=1

j≡1 mod 4

NK(ζ4)/K
(
x2ν−τ1+1 − ζ j2τ1γ 2ν−τ1 ).

If fj (x) = x2ν−τ1+1 − ζ j2τ1γ 2ν−τ1 were reducible over K(ζ4), then since ζ2τ1+1 /∈ K(ζ4)
we should have ν = τ1 = τ + 1 and

ζ
j

2τ1γ = ϑ2, ϑ ∈ K(ζ4),
whence −γ 2τ = ϑ2τ+1

contrary to Lemma 2. Thus fj (x) is irreducible over K(ζ4) and
NK(ζ4)/Kfj (x) = fj (x)f ′j (x) is irreducible over K .c



H5. Abelian binomials, power residues and exponential congruences 949

In order to determine the Galois group of fjf ′j it is necessary to distinguish between
the cases τ1 = τ + 1 and τ1 = τ .

Let ξ be a zero of fj (x) satisfying

(18) ξ2 = ζ j2ν γ .c

If τ1 = τ + 1 then −ζ−j2τ1 is conjugate over K to ζ j2τ1 hence ζ−j (1+2τ−1)
2ν ξ is a zero of

f ′j (x). Let S be the substitution

ξ → ζ
−j (1+2τ−1)
2ν ξ.

We have by (18)

S(ζ
j
2ν ) = ζ−j (1+2τ )

2ν

hence

Sr(ξ) = ζ−j (1+2τ−1)
∑r−1
i=0 (−1−2τ )i

2ν ξ.

The order of S is the least r such that

−j (1+ 2τ−1)

r−1∑
i=0

(−1− 2τ )i = j (−1− 2τ )r − 1

2
≡ 0 mod 2ν .

Clearly r must be even and since by (17)

ord2
(
(1+ 2τ )r − 1

) = ord2 r + τc

we get r ≡ 0 mod 2ν−τ+1. The order of S is thus equal to the degree of fjf ′j and since the

latter polynomial is normal, its group is cyclic of order 2ν−τ+1.

If τ1 = τ then ζ−j2τ1 is conjugate overK to ζ j2τ1 hence ζ−j2ν ξ is a zero of f ′j (x). Let S be

the substitution ξ → ζ
−j
2ν ξ and T the substitution ξ → ζ

j

2ν−τ+1ξ . We have by (18)

S(ζ
j
2ν ) = ζ−j2ν , S2(ξ) = ξ ;

T (ζ
j
2ν ) = ζ j (1+2τ )

2ν , T r (ξ) = ζ j
∑r−1
i=0 (1+2τ )i

2ν−τ+1 ξ.

Using (17) we infer that T is of order 2ν−τ+1, moreover−j �≡ 0 mod 2τ−1, hence S �= T r .
However

ST (ξ) = S(ζ j
2ν−τ+1)S(ξ) = ζ−j2ν−τ+1ζ

−j
2ν ξ = ζ−j (1+2τ−1)

2ν ξ,

T S(ξ) = T (ζ−j2ν )T (ξ) = ζ−j (1+2τ )
2ν ζ

j

2ν−τ+1ξ = ζ−j (1+2τ−1)
2ν ξ,

thus ST (ξ) = T S(ξ) and the group of fjf ′j being of order 2ν−τ+2 must be abelian of type

(2, 2ν−τ+1).
In particular, if x2ν − α is irreducible, we have τ1 = τ = 2 and the group is abelian of

type (2, 2ν−1).
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Consider now the case κ = 1 � τ − ν + 1. We have the factorization

x2ν − α =
2ν−1∏
j=1

j≡1 mod 4

NK(ζ4)/K(x
2 − ζ j2ν γ ).

The factors that are not irreducible are products of two quadratic factors and hence satisfy
the condition of the lemma. The irreducible factors have groups abelian of type (2, 2)
generated by the substitutions (ξ →−ξ) and (ξ → ζ

−j
2ν ξ ), where ξ is a zero of x2−ζ j2ν γ .

In particular this applies to the case of an irreducible binomial x4 + γ 2.
It remains to consider the case κ = 0. Then the assertions of the lemma follow by

induction with respect to ν. They are true for ν = 1. For ν > 1 we have the factorization

x2ν − γ 2ν−1 = (x2ν−1 − γ 2ν−2)(
x2ν−1 + γ 2ν−2)

.

The first factor on the right hand side has an abelian Galois group and all its irreducible
factors are of even degree by the inductive assumption, the second factor has this property
by the already considered case κ = 1 of the lemma. 	


Proof of Theorem 2. Necessity. Assume that the splitting field of xn−α is abelian overK .
Then also the splitting field of xp

ν − α is abelian over K for any pν |n and since every
subgroup of an abelian group is normal xp

ν − α is the product of normal factors. Thus
we have one of the conditions (i)–(v) listed in Theorem 1. We shall show that under our
assumption (ii)–(v) lead to (i). Consider first (ii), (iii) or (iv).

Let μ be the least nonnegative integer such that

α = −γ 2ν−μ
1 , γ1 ∈ K.

Clearly μ < ν. If μ � 1 we have (i). If μ > 1 then ν − μ+ 2 � τ , unless ν = τ + 1,
μ = 2, in which case by (iii) or (iv) and, by Lemma 3, ν − μ+ 2 � τ1. Thusc

(19) ζ2ν−μ+2 ∈ K(ζ4).
x2ν − α has over K(ζ4) the factorc

f (x) = x2μ − ζ2ν−μ+1γ1.c

Now

ζ2ν−μ+1γ1 �= ϑ2, ϑ ∈ K(ζ4),c

since otherwise, by (19) γ1 = ϑ2
1 , γ1 ∈ K(ζ4) and by Lemma 2

γ1 = ±γ 2
2 , γ2 ∈ K; α = −γ 2ν−μ+1

2

contrary to the choice of μ. Thus f (x) is irreducible over K(ζ4) and NK(ζ4)/Kf (x) =c

f (x)f ′(x) is irreducible overK . By the assumption the latter polynomial is normal overK .c

Let ξ be any zero of f (x),

ξ1 = ζ−1
2ν ξ, ξ2 = ζ−1−2ν−μ

2ν ξ.
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ξ1, ξ2 are zeros of f ′(x). Let Si be the automorphism of the Galois group of ff ′ over K
such that

Siξ = ξi (i = 1, 2).

We have Siζ2ν−μ+1 = ζ−1
2ν−μ+1 hence Siζ2ν = εiζ−1

2ν (εi = ±1). It follows that

S1S2ξ = S1ξ2 = S1(ζ
−1−2ν−μ
2ν )S1ξ = ε1ζ2μξ,

S2S1ξ = S2ξ1 = S2(ζ
−1
2ν )S2ξ = ε2ζ

−1
2μ ξ.

By Lemma 3 we have ε1 = ε2 unless ν = τ + 1 and
√
−(ζ2τ + ζ−1

2τ + 2
)
/∈ K . In thec

latter case by (iv) μ = ν − λ � 3, thus in both cases S1S2ξ �= S2S1ξ and the group inc

question is not abelian.

Consider now the case (v). If
√
−(ζ2τ + ζ−1

2τ + 2
) ∈ K then we get (i). If√

−(ζ2τ + ζ−1
2τ + 2

)
/∈ K then by Lemma 3

(20) ζ2τ+1 /∈ K(ζ4).
x2ν − α has over K(ζ4) the factorc

f (x) = x2ν−τ+1 − ζ2τ
(
ζ2τ + ζ−1

2τ + 2
)2ν−τ−1

γ 2ν−τ .

By (20) and the inequality ν � τ + 2, f (x) is irreducible over K(ζ4). Hencec

NK(ζ4)/Kf (x) = f (x)f ′(x) is irreducible over K and by the assumption normal.c

Let ξ be a zero of f (x) satisfying

(21) ξ2 = ζ2ν
(
ζ2τ+1 + ζ−1

2τ+1

)
γ

and let

ξ1 = ζ−1
2ν ξ, ξ2 = ζ−1−2τ−1

2ν ξ.

ξ1 and ξ2 are zeros of f ′(x). Let Si (i = 1, 2) be the automorphism of the Galois group of
ff ′ over K such that

Siξ = ξi (i = 1, 2).

We have for a suitable εi = ±1

Si
(
ζ2τ+1 + ζ−1

2τ+1

) = ε1
(
ζ2τ+1 + ζ−1

2τ+1

);
then by (21)

(22) S1ζ2ν = ε1ζ
−1
2ν , S2ζ2ν = ε2ζ

−1−2τ
2ν

hence

S1
(
ζ2τ+1 + ζ−1

2τ+1

) = (ε1ζ
−1
2ν
)2ν−τ−1 + (ε1ζ2ν

)2ν−τ−1 = ζ2τ+1 + ζ−1
2τ+1 ,

S2
(
ζ2τ+1 + ζ−1

2τ+1

) = (ε2ζ
−1−2τ
2ν

)2ν−τ−1 + (ε2ζ
1+2τ
2ν )2

ν−τ−1 = −ζ2τ+1 − ζ−1
2τ+1 .



952 H. Divisibility and congruences

Thus ε1 = 1, ε2 = −1 and (22) implies

S1S2ξ = S1ξ2 = S1
(
ζ−1−2τ−1

2ν
)
S1ξ = ζ2ν−τ+1ξ,

S2S1ξ = S2ξ1 = S2
(
ζ−1

2ν
)
S2ξ = −ζ2ν−τ+1ξ.

Hence S1S2ξ �= S2S1ξ and the group in question is not abelian. Therefore, if n =
k∏
i=1
p
νi
i

is the canonical factorization of n we get for each i � k

αw
i = γ p

νi
i

i , γi ∈ K,
where we have put for abbreviation wi = w

p
νi
i

. It follows that

αnwn/p
νi
i = γ nwn/wii .

If now

(23)
1

n
=

k∑
i=1

ri

p
νi
i

we obtain

αwn =
( k∏
i=1

γ
riwn/w

i

i

)n
and the proof is complete.

Sufficiency. Assume that

αwn = γ n, γ ∈ K,

and let again n =
k∏
i=1
p
νi
i , wi = w

p
νi
i

.

Since
(wn
wi
, p
νi
i

)
= 1 we have

(24) αw
i = γ p

νi
i

i .

Thus α satisfies the assumptions of Lemma 5 for all pi and by that lemma the Galois
groups over K of all binomials

(25) xp
νi
i − α (1 � i � k)

are abelian. If ξ is any zero of xn − α then ξn/p
νi
i is a zero of (25) and defining ri by (23)

we get

ξ =
k∏
i=1

(
ξn/p

νi
i
)ri .

Hence the splitting field of xn−α as the composite of the splitting fields of (25) is abelian.
Moreover if xn−α is irreducible then also the binomials (25) are irreducible and their

groups are cyclic of order pνii unless pνii ≡ 0 mod 4 and ζ4 /∈ K in which case the group
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of (25) has a cyclic factor of order 2νi−1. Since the direct product of cyclic groups of orders
prime in pairs is again cyclic we get all assertions of the theorem. 	


Lemma 6 (Hasse). If α = ηpν , η ∈ K(ζpν ), then at least one of the following conditions
is satisfied for a suitable γ ∈ K:

α = γ pν ;(26)

p = 2, ω = 1, 1 < ν < τ, α = −γ 2ν ;
p = 2, ω = 1, ν = τ, α = −(ζ2τ + ζ−1

2τ + 2
)2τ−1

γ 2τ ;
p = 2, ω = 1, ν > τ, α = (ζ2τ + ζ−1

2τ + 2
)2ν−1

γ 2ν ,

where ω and τ have the meaning of Theorem 1, p �= charK .c

Proof which we give is based on the previous results and therefore much shorter than the
original Hasse’s proof ([2], for charK = 0).

Since all the subextensions ofK(ζpν ) are normal overK the binomial xp
ν −α satisfies

the conditions of Theorem 1. Hence we have either (26) orω � 1. In the latter case Lemma 1
applies with ξ = ζpν , and we get either

(27) η ∈ K∗〈ζpν 〉; η = γ ζ jpν , γ ∈ K∗c

or p = 2, ζ4 /∈ K . (27) gives at once (26). To settle the case p = 2 we apply the already
proved case of our lemma for the field K(ζ4) and get

α = ϑ2ν , ϑ ∈ K(ζ4).
Now Lemma 6 follows immediately from Lemma 2. 	


Proof of Theorem 3. We start by estimating for each pν ‖n the greatest exponent μp
such that pμp divides the order of an element in Gal

(
K(ζnp−ν )/K

)
. SinceK(ζnp−ν ) is the

composite of K(ζqs ), where q �= p is a prime and qs ‖n, we have

(#) μp � max
qs ‖n
q �=p

ordp[K(ζqs ) : K].

Let r be the largest integer such that ζqr ∈ K(ζq). Then for qs > 2

[K(ζqs ) : K] =
{
qmax(0,s−r)[K(ζq) : K] if (q, r) �= (2, 1),
2max(0,s−τ1)[K(ζ4) : K] if (q, r) = (2, 1).

This gives

(28) μp � max
q |n

q prime

ordp[K(ζq) : K].

(Actually we have here the equality(2).)

(2) See Addendum, p. 967.
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Assume now that

(29) α = ϑn, ϑ ∈ K(ζn).
Then for each pν ‖n, the binomial xp

ν − α is abelian over K and by Theorem 2

(30) α = ζpκ γ p
ν−λ

p ; κ � λ � min(ν, ω), γp ∈ K.c

where ω has the meaning of Theorem 1.
Suppose first pν �≡ 0 mod 4 or ζ4 ∈ K . Then by Lemma 6 it follows from (29) that

(31) α = ϑpν1 , ϑ1 ∈ K(ζnp−ν ).
By Lemma 5 Gal

(
K(ϑ1)/K

)
contains an element of order pλ hence Gal

(
K(ζnp−ν )/K

)
contains such an element and by (28) we have

λ � μp � max
q |n

q prime

ordp[K(ζq) : K].

By (30) we have also

(32) λ � ordp wn

hence λ � ordp σ .
The same inequality follows directly from (32) ifpν ≡ 0 mod 4, ζ4 /∈ K . Thus, by (30),c

for each p we have

ασ = δpνp , δp ∈ K,
whence by the standard argument (see the proof of Theorem 2)

ασ = γ n, γ ∈ K.
Assume now in addition to (29) that for a certain m prime to n

(33)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
either ζ(4,n) ∈ K and nm ≡ 0 mod wn l.c.m.

q |n
q prime

[K(ζq) : K]

or ζ(4,n) /∈ K and nm ≡ 0 mod 2τwn l.c.m.
q |n

q prime

[K(ζq) : K]

and consider again (30) for any pν ‖n.
If ν � ω then from (30) we get immediately

(34) α = δpν−λp , δp ∈ K.
If ν > ω and either p > 2 or ζ4 ∈ K we get from (28) and (33),c

(35) ν � ω + μp,
hence in particular

(##) ω − ν + λ � −μp + ordp σ � 0.
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Thus if (30) holds with κ > 0 we get by Lemma 5 and (31)

ν − ω + 1 � μp,

which contradicts (35). If ν > ω = 1 and p = 2 we get from (33)

(36) ν � τ + 1+ μ2 > τ.

Let τ2 be the greatest integer such that

ζ2τ2 + ζ−1
2τ2 ∈ K

(
ζn2−ν

)
.

Since K
(
ζ2τ2 + ζ−1

2τ2

)
is over K cyclic of degree 2τ2−τ we have

τ2 − τ � μ2

and by (36)

ν � τ2 + 1.

Hence by (29) and Lemma 6

α = ϑ2ν−1

1 , ϑ1 ∈ K(ζn2−ν
)
.

Thus if (30) holds with κ > 0 we get by Lemma 5 that Gal(K(ϑ1)/K) contains an element
of order 2ν−τ , hencec

ν − τ � μ2

contrary to (36). Therefore (34) holds in any case and by the standard argument

α = γ n/σ , γ ∈ K. 	

Remark (3). If (wn, n/wn) = 1 the number σ occurring in Theorem 3 is the least integer
with the required property. Indeed, by the definition of σ there exists a character χ mod n
belonging to exponent σ on the group G = Gal

(
K(ζn)/K

)
.

Let τ(χ, ζn) be the corresponding Gauss sum. Clearly τ(χ) ∈ K(ζn). Suppose that
τ(χ)n� = γ n, γ ∈ K , 0 < � < σ . Then τ(χ)� = ζ αn γ and applying an automorphismc

(∗) ζn→ ζ
j
n

from G we get χ(j)� = ζ a(j−1)
n . It follows that

ζ
a(j2−1)
n = χ(j2)� = χ(j)2� = ζ 2a(j−1)

n ; ζ
a(j−1)2
n = 1,

a(j − 1)2 ≡ 0 mod n and since this holds for all automorphisms (∗) from G,
aw2

n ≡ 0 mod n. Since (wn, n/wn) = 1 we get

a ≡ 0 mod
n

wn
, a(j − 1) ≡ 0 mod n and χ(j)� = 1

contrary to the choice of χ .

(3) See Addendum, p. 967.
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Lemma 7. Under the assumption (viii) of Theorem 4 the group

G0 = Gal
(
K(ζn,

n
√
α1, . . . ,

n
√
αk
)
/K(ζn)

)
contains the substitution

n
√
αi → ζ cin

n
√
αi (1 � i � k),

under the assumptions (vii) and (ix) the group

G1 = Gal
(
K(ζn,

n
√
ζw,

n
√
α1, . . . ,

n
√
αk
)
/K(ζn)

)
c

contains the substitution

n
√
ζw → ζ

c0
(w,n)

n
√
ζw,

n
√
αi → ζ cin

n
√
αi (1 � i � k)

for any c0 and any ci ≡ 0 mod σ (1 � i � k).

Proof. Let us denote any value of n
√
αi by ξi (1 � i � k) and of n

√
ζw by ξ0. To prove

the first part of the lemma it is clearly sufficient to prove that G0 contains each of the
substitutions (1 � i � k)

(37) ξj → ξj (1 � j � k, j �= i), ξi → ζ σn ξi .

If (37) were not contained in G0, we should have

(38) di = Gal
(
K(ζn, ξ1, . . . , ξk)/K(ζn, ξ1, . . . , ξi−1, ξi+1, . . . , ξk) �≡ 0 mod

n

σ
.

Now by Kneser’s theorem

di =
[
K(ζn)

∗〈ξ1, . . . , ξk〉 : K(ζn)∗〈ξ1, . . . , ξi−1, ξi+1, . . . , ξk〉
]

c

hence di is the least exponent such that

(39) ξ
di
i = ϑξx1

1 · · · ξxi−1
i−1 ξ

xi+1
i+1 · · · ξxkk , ϑ ∈ K(ζn).c

By raising (39) to nth power we get that

α
di
i = ϑnαx1

1 · · ·αxi−1
i−1 α

xi+1
i+1 · · ·αxkk ,

ϑn ∈ K and, by Theorem 3, ϑnσ = γ n; γ ∈ K ,

α
−σx1
1 · · ·αdiσi · · ·α−σxkk = γ n.

By the assumption diσ ≡ 0 mod n, contrary to (38).
To prove the second part of the lemma we have similarly to prove that G1 contains

each of the substitutions (1 � i � k)
ξ0 → ζ(n,w)ξ0, ξj → ξj (1 � j � k);

ξ0 → ξ0, ξj → ξj (1 � j � k, j �= i), ξi → ζ σn ξi .

This reduces to proving that the least exponents ei (0 � i � k) such that

(40) ξ
ei
i ∈ K(ζn)〈ξ0, . . . , ξi−1, ξi+1, . . . , ξk〉
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satisfy e0 ≡ 0 mod (n,w), ei ≡ 0 mod n/σ . Now (40) implies for i = 0

ζ e0w = ϑnαx1
1 · · ·αxkk , ϑ ∈ K(ζn);

hence by (vii) and (ix)c

ζ e0w α
−x1
1 · · ·α−xkk = γ n/σ , γ ∈ K; xi ≡ 0 mod n/σ ;

ζ e0w = γ n/σ αy1n/σ
1 · · ·αykn/σk = γ n/σ1 .

γ1 must be a root of unity contained in K; γ1 = ζ jw and so we get e0 ≡ 0 mod (w, n/σ).
However by the condition (vii) n/σ ≡ 0 mod (w, n) and thus e0 ≡ 0 mod (w, n).c

For i > 0, (40) implies

α
ei
i = ϑnζ x0

w α
x1
1 · · ·αxi−1

i−1 α
xi+1
i+1 · · ·αxkk , ϑ ∈ K(ζn);

ζ−x0
w α

−x1
1 · · ·αeii · · ·α−xkk = γ n/σ , γ ∈ K; ei ≡ 0 mod n/σ. 	


Proof of Theorem 4. We use Chebotarev’s density theorem and get the existence of infinitely
many prime ideals P of L0 = K(ζn, ξ1, . . . , ξk) or L1 = K(ζn, ξ0, . . . , ξk) dividing p in
K(ζn) such that for all η ∈ L0 or L1 respectively

ηNp ≡ Sηmod P,

where S is the automorphism described in Lemma 7, ξn0 = ζw, ξni = αi . Setting η = ξi
we get

ξ
Np
i ≡ ξiζ cin mod P (i > 0),

ξ
Np
0 ≡ ξ0ζ c0(w,n) mod P,

consequently

α
(Np−1)/n
i ≡ ζ cin mod P,

ζ (Np−1)/n
w ≡ ζ c0(w,n) mod P

and the same mod p. One has only to remark that Np ≡ 1 mod n. 	


Remark. If (wn, n/wn) = 1 the number σ occurring in the first part of Theorem 4 is the
least integer with the required property. This follows from the Remark after Theorem 3 on
taking k = 1, α = τ(χ)σ . If (wn, n/wn) > 1 σ need not be best possible. In particular, if
ζ4 /∈ K , n �≡ 0 mod 2τ+1, σ can be replaced by

(
wn, l.c.m.

q |n, q prime
[K(ζq) : K]

)
.

Lemma 8. If every integral vector [t0, t1, . . . , tr ] satisfies at least one of the congruences

(41)
r∑
s=0

ahsts ≡ 0 modm (1 � h � g)

then for at least one h we have

ah0 ≡ 0 mod (ah1, . . . , ahr ,m)
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and

(42)
m

(ah1, . . . , ahr ,m)
� max(g − 1, 1).

Proof. Let us choose in {1, 2, . . . , g} a minimal subset M with the property that every
integral vector [1, t1, . . . , tr ] satisfies at least one congruence (41) with h ∈ M .

Put dh = (ah1, . . . , ahr ,m). For h ∈ M we have ah0 ≡ 0 mod dh, since otherwise the
congruence

(43) ah0 +
r∑
s=1

ahsts ≡ 0 modm
c

would not be satisfied by any [t1, . . . , tr ].
Hence, by a theorem of Frobenius the congruence (43) has dhmr−1 solutions modm.

If for a certain h ∈ M we have m/dh < g (42) follows. If for all h ∈ M , m/dh � g then
either ∑

h∈M

dh

m
< 1

or |M| = g and dh = m/g (1 � h � g). The former case is impossible since then the
alternative of congruences (43) forh ∈ M would havemr

∑
dh/m < m

r solutions modm,c

contrary to the choice ofM . In the latter case, we consider the system of congruences
r∑
s=1

ahsts ≡ 0 modm

obtained from (41) by the substitution t0 = 0. Since every integral vector [t1, . . . , tr ]
satisfies at least one of these congruences and

g∑
h=1
dh/m = 1, every vector must satisfy ex-

actly one congruence. However, vector [0, . . . , 0] satisfies them all. This is a contradiction
unless g = 1, m = d1. 	


Lemma 9. In any number field K there exists a multiplicative basis, i.e. such a sequence

π1, π2, . . . that any non-zero element of K is represented uniquely as ζ
t∏
s=1
π
xs
s , where xs

are rational integers and ζ is a root of unity contained in K .

Proof. See Skolem [8]. 	


Proof of Theorem 5. Letβ1, . . . , βg be the zeros of fi . We assume without loss of generality
that βi �= 0 and put K1 = K(β1, . . . , βg). Let in K1

αj = ζ aj0
w

t∏
s=1

π
ajs
s (1 � j � k),

βh = ζ bh0
w

t∏
s=1

πbhss (1 � h � g),
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where w is the number of roots of unity contained in K1 and πs are elements of the
multiplicative basis described in Lemma 9. Let A = [ajs]1�j�k

1�s�t
and let P and Q be

unimodular matrices such that

PAQ =

⎡⎢⎢⎢⎢⎢⎢⎣

e1
e2
. . .

er
. . .

⎤⎥⎥⎥⎥⎥⎥⎦ ,

where all the elements outside the principal diagonal are zero, on the diagonal precisely
e1, . . . , er are non-zero and ei | ei+1. Let

P

⎡⎢⎣a10
...

ak0

⎤⎥⎦ =
⎡⎢⎣c1
...

ck

⎤⎥⎦ , [bh1, . . . , bht ]Q = [dh1, dh2, . . . , dht ].

We choose integers ηr+1, . . . , ηt divisible by w so that for all h � g
t∑

s=r+1

dhsηs = 0 implies dhs = 0 (r < s � t)

and set

m = max
1�h�g

∣∣∣∣ t∑
s=r+1

dhsηs

∣∣∣∣+ 1.

Further we set

n = 2τwmer l.c.m.
q�m+er
q prime

(q − 1), ηs = (w, cr+1, . . . , ck)
n

esw
ts + cs n

esw
t0,

c

(1 � s � r)

where τ is the relevant parameter of the field K1,

ε0 = −t0,
⎡⎢⎣ε1
...

εt

⎤⎥⎦ = Q

⎡⎢⎣η1
...

ηt

⎤⎥⎦ .
By Theorem 4 there exist infinitely many prime ideals p of K1(ζn) such that(

ζw

p

)
n

= ζ ε0
w ,

(
πs

p

)
n

= ζ εsn (1 � s � t).

The congruence

f
(
α
x1
1 · · ·αxkk

) ≡ 0 mod p
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gives for a suitable h � g (
α
x1
1 · · ·αxkk

p

)
n

=
(
βh

p

)
n

hence
k∑
j=1

xj

(
n

w
aj0ε0 +

t∑
s=1

ajsεs

)
≡ n

w
bh0ε0 +

t∑
s=1

bhsεs mod n.

Setting [y1, . . . , yk] = [x1, . . . , xk]P−1 we get

k∑
j=1

yj

( n
w
cj ε0 + ejηj

)
≡ n

w
bh0ε0 +

t∑
s=1

dhsηs mod n,

where ej = 0 for j > r , hencec

n

w

( r∑
j=1

yj (w, cr+1, . . . , ck)tj −
k∑

j=r+1

yj cj t0

)

≡ − n
w
bh0t0 + n

w

r∑
s=1

dhs

(
(w, cr+1, . . . , ck)

es
ts + cs

es
t0

)
+

t∑
s=r+1

dhsηs mod n.
c

It follows that
t∑

s=r+1

dhsηs ≡ 0 modm,
t∑

s=r+1

dhsηs = 0

and by the choice of ηr+1, . . . , ηs : dhs = 0 (r < s � t).
Hence all integer vectors [t0, . . . , tr ] satisfy at least one congruencec

r∑
s=1

ndhs

wes
(w, cr+1, . . . , ck)ts + t0

( r∑
s=1

ncsdhs

wes
− n
w
bh0

)
≡ 0 mod

n

w
(w, cr+1, . . . , ck),

c

such that dhs = 0 (r < s � t).c

It follows by Lemma 8 that for a certain h

(44) q = n/w( n
w
, g.c.d.

1�s�r

n

w

dhs

es

) � max(g − 1, 1), dhs = 0 (r < s � t)

and

(45)
r∑
s=1

n

w

csdhs

es
− n

w
bh0 ≡ 0 mod

n

wq
(w, cr+1, . . . , ck).

For h satisfying (44) we have

dhs

es
= ps
q
, ps integer (1 � s � r), (p1, . . . , pr , q) = 1

c
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and by (45) there exist integers u1, . . . , uk such that

(46)
r∑
s=1

n

w

csdhs

es
− n

w
bh0 +

r∑
s=1

n
dhs

es
us +

k∑
s=r+1

n

wq
csus ≡ 0 mod n.

c

Let us fix any values of logπs (1 � s � t) and set log ζw = 2πi

w
. The function αxj is

many valued and
k∏
j=1
α
xj
j can take any value

V = exp

[
2πi

w

k∑
j=1

aj0xj +
t∑
s=1

logπs

k∑
j=1

ajsxj + 2πi
k∑
j=1

vjxj

]
,

where [v1, . . . , vk] is an integral vector. Taking

[v1, . . . , vk] = [u1, . . . , ur , 0, . . . , 0](P−1)T ,

[x1, . . . , xk] =
[
dh1

e1
, . . . ,

dhr

er
,
ur+1

q
, . . . ,

uk

q

]
P

we get

V = exp

[
2πi

w

( r∑
j=1

dhj

ej
cj +

k∑
j=r+1

uj

q
cj

)
+

t∑
s=1

bhs logπs + 2πi
r∑
j=1

dhj

ej
uj

]
.

By (46) V = βh, hence f (V ) = 0. 	


Remark. Theorem 5 is essentially best possible, as the following example shows:

f (t) = (t − β1)

q−1∏
j=0

(
t − βj1β2

)
,

where q is a prime and β1, β2 are integers of K multiplicatively independent.
The congruence

f
(
α
x1
1 α

x2
2

) ≡ 0 mod p, where α1 = βq1 , α2 = βq2 ,
is soluble for every prime ideal p. Indeed, let γ be a primitive root mod p.

If ordq indγ β1 > ordq indγ β2 then the equation

qx1 indγ β1 + qx2 indγ β2 = indγ β1

is soluble and so is the congruence

α
x1
1 α

x2
2 ≡ β1 mod p.

If on the other hand, ordq indγ β1 � ordq indγ β2 then there is a j < q such that

ordq
(
j indγ β1 + indγ β2

)
> ordq indγ β1.
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This implies the solubility of the equation

qx1 indγ β1 + qx2 indγ β2 = j indγ β1 + indγ β2

and of the congruence
α
x1
1 α

x2
2 ≡ βj1β2 mod p.

The solubility of f
(
α
x1
1 α

x2
2

) ≡ 0 mod p if p |α1α2 is trivial. On the other hand, the equationc

f
(
α
x1
1 α

x2
2

) = 0 has only the solutions (x1, x2) =
( 1

q
, 0
)

,
( j
q
,

1

q

)
(0 � j � q).

For β1 = ζq , β2 different from a root of unity we get an example with k = 1.

Let us note further that Theorem 5 does not extend to all exponential congruences even
in one variable, e.g. the congruence

(αx + α)((−α)x − α) ≡ 0 mod p

is soluble for all prime ideals p, but the corresponding equation has no rational solutions
if α is not a root of unity.

Proof of the Corollary. For b = 0 it suffices to put in Theorem 5

f (t) = u1t − c, k = 1, α1 = a.
For b = −1, we have t2 − at − b = (t − α)(t − α−1) with α �= ±1 since a2 − 4 �= 0. It
is well known that un = λ1α

n + λ2α
−n and it suffices to put in Theorem 5c

f (t) = λ1t
2 − ct + λ2, k = 1, α1 = α.

For b = 1 we have t2 − at − b = (t − α)(t + α−1) with α �= ±1 since a �= 0. Now
un = λ1α

n + λ2(−α)−n, where λ1, λ2 are conjugate in the field Q(α). If c = 0, we set in
Theorem 5

f (t) = λ1t + λ2, k = 1, α1 = −α2.

If c �= 0, we set

f (t) = (λ1t
2 − ct + λ2)(λ1t

2 − ct − λ2), k = 1, α1 = α,
where α is chosen negative (one of the numbers α,−α−1 is always negative). We infer that
the equation f (αx) = 0 has a solution x = m/q, where (m, q) = 1, q � 3. If q = 1 and

λ1α
2m − cαm + (−1)mλ2 = 0

we get c = um. If q = 1 and

(47) λ1α
2m − cαm − (−1)mλ2 = 0

we get a contradiction. Indeed, since

λ1α
2m − umαm + (−1)mλ2 = 0

we obtain

2λ1α
2m − (c + um)αm = 0, λ1 = 1

2 (c + um)α−m, λ2 = 1
2 (c + um)(−α)−m

and from (47) c = 0.
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q = 2 is impossible since then both numbers λ1α
2x − cαx ± λ2 have a non-zero

imaginary part.
Finally q = 3 is impossible for the following reason. If α �= β3, β ∈ Q(α) then αm/3

is of degree 3 over Q(α) and cannot satisfy the equation λ1t
2− ct±λ2 = 0 for any choicec

of sign. If α = β3, β ∈ Q(α) then β satisfies an equation t2 − dt − 1 = 0, d integer, and
we get a = Tr β3 = d3 + 3d , contrary to the assumption. 	


Lemma 10. If every integral vector [t1, . . . , tk] satisfies at least one congruence of the
set S:

(48) ah0 +
k∑
j=1

ahj tj ≡ 0 modm (1 � h � g)

and no proper subset of S has the same property then for all h, j

M(g)ahj ≡ 0 modm,

where

M(g) =
∏
p�g
p prime

p[(g−1)/(p−1)].

Proof. Let dh = (ah1, ah2, . . . , ahk,m). If dh /| ah0 the congruence

k∑
j=1

ahj tj + ah0 ≡ 0 modm

is never satisfied contrary to the minimal property of S. Hence for all h

(49) ah0 ≡ 0 mod dh

and the congruences (48) take the form

(50)
k∑
j=1

ahj

dh
tj + ah0

dh
≡ 0 mod

m

dh
(1 � h � g).

For a given prime p let nr be the number of indices h � g such that pr ‖ m
dh

and let s

be the largest r with nr �= 0. We have

(51)
nr

p
+ nr+1

p2 + . . .+ ns

ps−r+1 � 1 (1 � r � s).

In order to prove this assume that for a certain r � s

(52)
nr

p
+ nr+1

p2 + . . .+ ns

ps−r+1 < 1.

The congruences (48) with pr /| m
dh

form a proper subset of the set S and by the assumption

there is a vector t0 which does not satisfy any of them.
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On the other hand, a congruence (50) with pq ‖ m
dh

(q � r) is in virtue of Frobenius’s

theorem (used in proof of Lemma 8) satisfied by at most(ah1

dh
, . . . ,

ahk

dh
, pq−r+1

)
p(q−r+1)(k−1) = p(q−r+1)(k−1)

integral vectors t mod pq satisfying

(53) t ≡ t0 mod pr−1.

The alternative of all congruences in question is satisfied by at most

s∑
q=r

nq

pq−r+1 p
(s−r+1)k

integral vectors t mod ps satisfying (53). Since the number of all integral vectors t mod ps

satisfying (53) is p(s−r+1)k , (52) implies the existence of a vector t1 ≡ t0 mod pr−1 which

satisfies no congruence (50) and consequently no congruence (48) with pr | m
dh

. By the

Chinese remainder theorem there exists a vector t such that

t ≡ t0 mod l.c.m.
pr /|m/dh

m

dh
,

t ≡ t1 mod ps.

This vector satisfies no congruence (48). The obtained contradiction proves (51).
Consider the lower bound of the function n1 + n2 + . . . + ns = f (n1, . . . , ns)

under the condition (51), where now n1, . . . , ns are nonnegative real numbers. Since
f (n1, n2, . . . , ns) � max

1�r�s
nr the lower bound is attained.

Let (n(0)1 , . . . , n
(0)
s ) be a point in which it is attained. We shall show by induction with

respect to s − r
(54) n(0)r = p − 1 (1 � r < s), n(0)s = p.
Indeed, (51) for r = s gives n(0)s � p. If n(0)s > p, we set n(1)r = n(0)r for r < s−1, n(1)s−1 =
n
(0)
s−1 +

1

p
(n
(0)
s − p), n(1)s = p, verify (51) and find f (n(1)1 , . . . , n

(1)
s ) < f (n

(0)
1 , . . . , n

(0)
s )

which is impossible. Assume now that (54) holds for s − r < s − q, i.e. r > q. The
condition (51) for r = q gives

n
(0)
q

p
� 1−

s−1∑
q=r+1

p − 1

pq−r+1 −
p

ps−r+1

p − 1

p
; n(0)q � p − 1.

If n(0)q > p − 1, we set

n(1)r = n(0)r for r �= q − 1, q;
n
(1)
q−1 = n(0)q−1 +

1

p
(n(0)q − p + 1), n(1)q = p − 1,
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verify (51) and find again

f (n
(1)
1 , . . . , n

(1)
s ) < f (n

(0)
1 , . . . , n

(0)
s ),

which is impossible.
Since n(0)1 + . . .+ n(0)s � g it follows from (54) that

s(p − 1)+ 1 � g, s �
[ g − 1

p − 1

]
and thus for all h � g,

m

dh
|M(g).

This together with (49) gives the lemma. 	


Lemma 11. If every integral vector [t1, . . . , tr ] satisfies at least one of the congruences

(55) ah0 +
r∑
s=1

ahsts ≡ 0 modm

(1 � h � g) then for at least one h

(56) ah0 ≡ 0 modm and M(g)ahs ≡ 0 modm (1 � s � r),
whereM(g) has the meaning of Lemma 10.

Proof. Choose in {1, 2, . . . , g} a minimal subset M with the property that every integral
vector satisfies at least one congruence (55) with h ∈ M . To the set of these congruences
Lemma 10 applies. The congruence satisfied by the vector [0, 0, . . . , 0] satisfies also the
conditions (56). 	


Remark. M(g) is the least number with the property formulated in Lemmata 10 and 11,
as the following example shows already in dimension one: m = p[(g−1)/(p−1)] (p prime),
a11 = 1, a10 = 0 and for h = (p − 1)q + r + 1, 1 � r � p − 1, 2 � h � g, ah1 = pq ,

ah0 = m
p
r .

For k = 1 Lemma 10 is contained in a stronger result of S. Znám [11], however hisc

proof does not extend to k > 1.

Lemma 12. Let H, I be two finite sets and let Mhi (h ∈ H , i ∈ I ) be inhomogeneous
linear forms with integral coefficients. If for every positive integerm and a suitable h ∈ H
the system of congruences

(57) Mhi(x) ≡ 0 modm (i ∈ I )
is soluble then for a suitable h ∈ H the system of equations

(58) Mhi(x) = 0 (i ∈ I )
is soluble in integers.

Proof. Suppose that no system (58) is soluble in integers. Then by Lemma 9 of [6] for
each h ∈ H there exists an mh such that the system (57) is insoluble for m = mh. Taking
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m = ∏
h∈H

mh we infer that the system (57) is insoluble for any h ∈ H contrary to the

assumption. 	


Proof of Theorem 6. Let us set

(59) αhij = ζ ahij0
w

r∏
s=1

π
ahijs
s , βhi = ζ bhi0w

r∏
s=1

πbhiss ,

where w is the number of roots of unity contained in K and πs are elements of the
multiplicative basis described in Lemma 9. Consider the linear forms

(60)

Lhi0 = wx0 +
k∑
j=1

ahij0xj − bhi0,

Lhis =
k∑
j=1

ahijsxj − bhis (1 � s � r)

and letH be the set of all vectors h = [h1, h2, . . . , hl]with 1 � hi � gi (1 � i � l), I be
the set of all vectors i = [i, s] with 1 � i � l, 0 � s � r .

For any h ∈ H , i = [i, s] ∈ I we put

(61) Mhi = Lhiis .
We assert that for any positive integer m there exists an h ∈ H such that the system of

congruences

(62) Mhi(x0, x1, . . . , xk) ≡ 0 modm (i ∈ I )
is soluble.

Let us take n = 2τwM(max gi)m l.c.m.
q�m+max gi
q prime

(q−1), where τ is the relevant parameter

of K .
By Theorem 4 for any choice of t1, . . . , tr mod n/w there exists a prime ideal p of

K(ζn) prime to D such that

(63)
(ζw

p

)
n
= ζw,

(πs
p

)
n
= ζwtsn (1 � s � r).

Let m be the product of all these prime ideals p.
The solubility of the system of congruences

gi∏
h=1

( k∏
j=1

α
xj
hij − βhi

)
≡ 0 mod m (i = 1, . . . , l)

implies that for any vector [t1, . . . , tr ] and any i � l there is an h � gi such that

k∏
j=1

α
xj
hij ≡ βhi mod p,

k∏
j=1

(
αhij

p

)xj
n

=
(
βhi

p

)
n
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for some p satisfying (63). This implies by (59) that

k∑
j=1

(
n

w
ahij0 +

r∑
s=1

wtsahijs

)
xj ≡ n

w
bhi0 +

r∑
s=1

wtsbhis mod n,

whence

n

w

( k∑
j=1

ahij0xj − bhi0
)
+ w

r∑
s=1

ts

( k∑
j=1

ahijsxj − bhis
)
≡ 0 mod n.

Using now Lemma 11 we get that for any i � l and a certain hi � gi
k∑
j=1

ahi ij0xj − bhi i0 ≡ 0 mod w,

k∑
j=1

ahi ijsxj − bhi is ≡ 0 modm (1 � s � r).
c

In virtue of (60) and (61) this is equivalent for a suitable x0 to the system (62) in which
h = [h1, . . . , hl]. Therefore, by Lemma 12 there exists a vector h0 = [h0

1, . . . , h
0
l ] such

that the system of equations

Mh0i(x0, x1, . . . , xk) = 0 (i ∈ I )
is soluble in integers. Denoting a solution by [x0

0 , x
0
1 , . . . , x

0
k ] we get from (60) and (61)

for all i � l

wx0
0 +

k∑
j=1

ah0
i ij0x

0
j − bh0

i i0
= 0,

k∑
j=1

ah0
i ijs
x0
j − bh0

i is
= 0 (1 � s � r)

hence by (59)

gi∏
h=1

( h∏
j=1

α
x0
j

hij − βhi
)
= 0 (1 � i � l). 	


Addendum

1. Dr. J. Wójcik has pointed out that the equality in formula (28) which is only said to
hold but not proved is actually used in the formula (##) on p. 954. The equality in question
follows from the formula (#) on p. 953, where also � can be replaced by =. The latter is
a consequence of the fact that for q > 2 the extension K(ζqs )/K is cyclic and for q = 2,
p �= 2 we have ordp[K(ζqs ) : K] = 0.

2. The remark made on p. 955 has not been proved rigorously, since it is not clear why
τ(χ) �= 0. Therefore, we return to the question and we shall prove more than was asserted
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namely that the number σ occurring in Theorem 3 is the least integer with the required
property, provided (σ, n/wn) = 1.

By the definition of σ there exists a character χ belonging to the exponent σ on the
groupG = Gal

(
K(ζn)/K

)
represented as a multiplicative group of residue classes mod n.

Let

τy =
∑
x∈G

χ(x)ζ
xy
n .

Since χ(x) are non-zero and the Vandermonde determinant |ζ xyn | x∈G
y=1,2,...,|G|

is non-zero

there exists a y such that τy �= 0. Let us fix such a y and denote the corresponding
τy by τ(χ) �= 0. Since χ(x) ∈ K , χ(x)σ = 1 we have τ(χ) ∈ K(ζn), τ(χ)σ ∈ K ,
τ(χ)nσ ∈ Kn. Suppose that τ(χ)nσ = γ n, γ ∈ K . Then

τ(χ)(n/wn)� = ζ αwnγ ∈ K
and applying an automorphism ζn→ ζ

j
n with j ∈ G we get

τ(χ)(n/wn)� χ(j)(n/wn)� = τ(χ)(n/wn)�.
Since τ(χ) �= 0 it follows that

χ(j)(n/wn)� = 1c

and by the choice of χ

σ

∣∣∣ n
wn
�.

Hence if (σ, n/wn) = 1 we get σ |�. If (σ, n/wn) �= 1 σ need not be the least integer
with the property asserted in Theorem 3. In particular if ζ4 /∈ K , n ≡ 0 mod 2τ+1,√
−(ζ2τ + ζ−1

2τ + 2
) ∈ K , σ can be replaced by (wn, l.c.m.

q |n, q prime
[K(ζq) : K]).

The remark on p. 957 remains valid on replacing (wn, n/wn) by (σ, n/wn) which
makes it stronger.

3. Theorem 6 has the following equivalent form much more useful in applications.

Theorem 7. Let fr(z1, . . . , zp) (1 � r � s) be polynomials with coefficients in an
algebraic number field K and αij (1 � i � p, 1 � j � q) non-zero elements of K ,
M a positive integer. If the system of equations

(A1) fr(z1, . . . , zp) = 0 (1 � r � s)

has only finitely many solutions in the complex field and the system of congruences

(A2) fr

( q∏
j=1

α
xj
1j , . . . ,

q∏
j=1

α
xj
pj

)
≡ 0 modm (1 � r � s)
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is soluble for all moduli m prime toM then the system of equations

(A3) fr

( q∏
j=1

α
xj
1j , . . . ,

q∏
j=1

α
xj
pj

)
= 0 (1 � r � s)

is soluble in rational integers xj .

Proof. Since the system (A1) has only finitely many solutions they all lie in a finite extension
K1 of K . Let them be (βh1, . . . , βhp) (1 � h � g). Thus we have the equivalence∧

r�s
fr (z1, . . . , zp) = 0 ≡

∨
h�g

∧
i�p
zi = βhi

and by the distributive property of alternative with respect to conjunction

(A4)

∧
r�s
fr (z1, . . . , zp) = 0 ≡

∧
i1�p

∧
i2�p

· · ·
∧
ig�p

∨
h�g

zih = βhih

≡
∧
i1�p

∧
i2�p

· · ·
∧
ig�p

g∏
h=1

(zih − βhih) = 0.

By the Hilbert theorem on zeros it follows that for every integral vector i = [i1, . . . , ig] ∈
{1, 2, . . . , p}g = I and a suitable exponent ei we have

(A5)
g∏
h=1

(
zih − βhih

)ei = s∑
r=1

fr(z1, . . . , zp)Fri(z1, . . . , zp),

whereFri ∈ K1[z1, . . . , zp]. If m is prime to the denominators ofFri and to the numerators
as well as the denominators of αij , the system of congruences (A2) with m = me, e =
max
i∈I ei , and the identity (A5) imply

(A6)
g∏
h=1
βhih �=0

( q∏
j=1

α
xj
ihj
− βhih

)
≡ 0 mod m (i ∈ I ).

Therefore, the system (A6) is soluble for all moduli prime toD = M times a certain finite
product. Applying Theorem 6 we infer that the system of equations

g∏
h=1

( q∏
j=1

α
xj
ihj
− βhih

)
= 0 (i ∈ I )

is soluble in integers. By the equivalence (A4) this system is equivalent to (A3) and the
proof is complete. 	
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An extension of Wilson’s theorem

with G. Baron (Wien)

The aim of this note is to prove the following extension of Wilson’s theorem conjectured
by W. Snyder in his Ph.D. thesis A concept of Bernoulli numbers in algebraic function
fields, Univ. of Maryland 1977. Snyder has found interesting applications of his conjecture
to differentials in rings of characteristic p.

Theorem. For any prime p and any residues xi mod p we have

(1)
∑
σ∈Sp−1

xσ(1)
(
xσ(1) + xσ(2)

) · · · (xσ(1) + . . .+ xσ(p−1)
)

≡ (x1 + . . .+ xp−1
)p−1 mod p,

where the summation is taken over all permutations σ of {1, 2, . . . , p − 1}.

Let for positive integers a1, . . . , ar C(a1, . . . , ar ) denote the coefficient ofX =
r∏
i=1
x
ai
i

in the sum
∑
σ∈Sn

Pσ , where

Pσ = xσ(1)
(
xσ(1) + xσ(2)

) · · · (xσ(1) + . . .+ xσ(n)) (σ ∈ Sn).

Lemma 1. Let aj > 1 for j � s, aj = 1 for s < j � r ,
r∑
i=1
ai = n. Then

C(a1, . . . , ar ) = (n− r)
s∑
i=1

C(a1, . . . , ai−1, ai − 1, ai+1, . . . , ar )

+ (n− r + 1)(r − s)C(a1, . . . , ar−1).

Proof. We have ∑
σ∈Sn

Pσ =
n∑
j=1

∑
σ∈Sn,σ (n)=j

Pσ =
n∑
j=1

�j .

Presented by P. Ribenboim, F.R.S.C.
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The coefficient of X in Pσ is the same as in Pτσ where τ ∈ Sn is any permutation stable
on {1, 2, . . . , s} and fixing the set {s + 1, . . . , r}. Hence the coefficient of X in �j is 0 if
j � s, is equal to the coefficientC1 ofX in�r if s < j � r and equal to the coefficientC2

ofX in�n = (x1+ . . .+ xn) ∑
σ∈Sn−1

Pσ if j > r . If r > s, C1 is equal to C(a1, . . . , ar−1).

On the other hand

C2 =
s∑
i=1

C(a1, . . . , ai−1, ai − 1, ai+1, . . . , ar )+
r∑

i=s+1

C(a1, . . . , ar−1).

Hence

C(a1, . . . , ar ) =
r∑

j=s+1

C1 +
n∑

j=r+1

C2

= (n−r)
s∑
i=1

C(a1, . . . , ai−1, ai−1, ai+1, . . . , ar )+(n−r+1)(r−s)C(a1, . . . , ar−1). 	


In order to evaluate C(a1, . . . , ar ) we introduce the following notation valid for all
systems of r � b � a � 0 positive real numbers ai : R = {1, 2, . . . , r},

S1(a, b, r, q) =
b∑

i=a+1

ai
∑∗

i

q∑
k=1

(|Tk| + 1)!
A(Tk)+ ai

q∏
j=1, j �=k

|Tj |!
A(Tj )+ 1

,

S2(a, b, r, q) =
b∑

i=a+1

∑∗
i

q∏
j=1

|Tj |!
A(Tj )+ 1

,

where 1 � q < r and the inner summation
∑∗
i in both sums is taken over all partitions

(the order of summands neglected) of R− {i} into q non-empty sets Tj of cardinality |Tj |
and A(Tj ) = ∑

l∈Tj
al . Moreover we set

S1(a, b, r, r) = 0, S2(a, b, r, 0) = 0 (r � 2),

S2(0, 0, 1, 0) = 0, S2(0, 1, 1, 0) = 1.

Lemma 2. For any positive q � r the following identity holds

S1(0, r, r, q)+ S2(0, r, r, q − 1) = (A(R)+ q)
∑∗∗ q∏

j=1

|Rj |!
A(Rj )+ 1

,

where
∑∗∗ is taken over all partitions of R into q non-empty sets Rj .

Proof. For q = r = 1 the identity holds trivially. For q = 1, r � 2 we have

S1(0, r, r, q)+ S2(0, r, r, q − 1) =
r∑
i=1

ai
r!
A(R)

= r! = (A(R)+ 1)
r!

A(R)+ 1
.
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For q � 2 we group together all terms in S1(0, r, r, q) in which Tk ∪ {i} = T . For any i, k
we get |T | � 2. On the other hand for any T ⊂ R with |T | � 2 we have

r∑
i=1

ai
∑∗

i

q∑
k=1, Tk∪{i}=T

(|Tk| + 1)!
A(Tk)+ ai

q∏
j=1, j �=k

|Tj |!
A(Tj )+ 1

=
∑
i∈T
ai
∑∗

T

|T |!
A(T )

q−1∏
j=1

|Tj |!
A(Tj )+ 1

=
∑∗

T
|T |

q−1∏
j=1

|Tj |!
A(Tj )+ 1

,

where
∑∗
T is taken over all partitions of R − T into q − 1 non-empty sets Tj .

Hence

S1(0, r, r, q) =
∑

T⊂R, |T |�2

∑∗
T
|T |!

q−1∏
j=1

|Tj |!
A(Tj )+ 1

.

Now setting in S2(0, r, r, q − 1), {i} = T we get

S2(0, r, r, q − 1) =
∑

T⊂R, |T |=1

∑∗
T
|T |!

q−1∏
j=1

|Tj |!
A(Tj )+ 1

,

thus

S1(0, r, r, q)+ S2(0, r, r, q − 1) =
∑∗∗ q∏

j=1

|Rj |!
A(Rj )+ 1

q∑
j=1

(A(Rj )+ 1)

= (A(R)+ q)
∑∗∗ q∏

j=1

|Rj |!
A(Rj )+ 1

. 	


Lemma 3. For any positive integers r , a1, . . . , ar with a1 + . . .+ ar = n we have

(2) C(a1, . . . , ar ) = (n− r)!
a1! · · · ar !

r∑
q=1

(−1)r−q(n+ q)
∑∗∗ q∏

j=1

|Rj |!
A(Rj )+ 1

,

the inner sum being taken over all partitions of R into q non-empty subsets Rj .

Proof by induction on n. For n = 1 the lemma holds trivially. Assume that it is true for all

sequences a′i satisfying
r∑
i=1
a′i = n− 1 and consider a sequence ai with

r∑
i=1
ai = n � 2. In

view of symmetry we may assume that aj > 1 for j � s, aj = 1 for j > s. Let us denote
the right hand side of (2) by D(a1, . . . , ar ). By Lemma 1 and the inductive assumption
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we have

C(a1, . . . , ar ) = (n− r)!
a1! · · · ar !

r∑
q=1

(−1)r−q(n+ q − 1)! (S1(0, s, r, q)+ S2(0, s, r, q − 1)
)

+ (n− r + 1)!
a1! · · · ar !

r−1∑
q=1

(−1)r−q−1(n+ q − 1)! S2(s, r, r, q).

On the other hand, by Lemma 2

D(a1, . . . , ar )

= (n− r)!
a1! · · · ar !

r∑
q=1

(−1)r−q(n+ q − 1)! (S1(0, r, r, q)+ S2(0, r, r, q − 1)
)

hence

a1! · · · ar !
(n− r)!

(
D(a1, . . . , ar )− C(a1, . . . , ar )

) = (n+ r − 1)! S1(s, r, r, r)

+
r−1∑
q=1

(−1)r−q(n− q + 1)! (S1(s, r, r, q)− (r + q − 1)S2(s, r, r, q)
)

+ (−1)r−1n! S2(s, r, r, 0).

However S1(s, r, r, r) = 0,

S1(s, r, r, q) =
r∑

i=s+1

∑∗
i

q∑
k=1

(|Tk| + 1)!
A(Tk)+ 1

q∏
j=1, j �=k

|Tj |!
A(Tj )+ 1

=
r∑

i=s+1

∑∗
i

q∑
k=1

(|Tk| + 1
) q∏
j=1

|Tj |!
A(Tj )+ 1

= (r + q − 1)S2(s, r, r, q)

and since r � 2 or s � 1, S2(s, r, r, 0) = 0. This gives

D(a1, . . . , ar ) = C(a1, . . . , ar ). 	


Proof of the theorem. Since both sides of the congruence (1) are symmetric it is enough
to show that a1 + . . .+ ar = n = p − 1 implies

C(a1, . . . , ar ) ≡ (p − 1)!
a1! · · · ar ! mod p.

Now in formula (2) terms corresponding to q > 1 are divisible by p since (n + q)! ≡
0 mod p and A(Rj )+ 1 < A(R)+ 1 = p. Hence

C(a1, . . . , ar ) ≡ (n− r)!
a1! · · · ar ! (−1)r−1 (n+ 1)! r!

n+ 1

≡ (p − 1)!
a1! · · · ar ! (−1)r−1(p − r − 1)! r! ≡ (p − 1)!

a1! · · · ar ! (p − 2)!mod p
c

and (1) follows from Wilson’s theorem.c
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Some years ago I proved the following theorem ([1], Theorem 2). LetK be an algebraic
number field, α1, . . . , αk, β non-zero elements of K . If for almost all prime ideals p of K
the congruence

k∏
j=1

α
xj
j ≡ β (mod p)

is soluble in integers xj then the equation

k∏
j=1

α
xj
j = β

is soluble in integers. I have shown by an example that this theorem does not extend to
systems of congruences of the form

(1)
k∏
j=1

α
xj
ij ≡ βi (mod p) (i = 1, 2, . . . , h)

even for h = 2, k = 3.

Recently L. Somer [4] has considered systems of the form (1) for k = 1. The study of
his work has suggested to me that the connection between the local and the global solubility
of (1) may hold if for some i � h the numbers αij are multiplicatively independent. The
aim of this paper is to prove this assertion in the form of the following theorem.

Theorem 1. LetK be an algebraic number field,αij ,βi (i = 1, 2, . . . , h; j = 1, 2, . . . , k)
non-zero elements of K and assume that for some i � h

k∏
j=1

α
xj
ij = 1, xj ∈ Z implies xj = 0 for all j � k.

If for almost all prime ideals p of K in the sense of the Dirichlet density the system (1) is
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soluble in integers xj then the system of equations

(2)
k∏
j=1

α
xj
ij = βi (i = 1, 2, . . . , h)

is soluble in integers.

The following corollary is almost immediate.

Corollary. If the system of congruences

αxi ≡ βi (mod p) (i = 1, 2, . . . , h)

is soluble in integers x for almost all prime ideals p of K then the system of equations

αxi = βi (i = 1, 2, . . . , h)

is soluble in integers.

Somer [4] has proved the above corollary under the assumption that either none of the
αi’s is a root of unity or all the αi’s are roots of unity.

The next theorem shows that Theorem 1 cannot be extended further.

Theorem 2. For every k � 2 there exist non-zero rational integers αij , βi (i = 1, 2;
j = 1, 2, . . . , k) such that α12, . . . , α1k are multiplicatively independent, the system (1)
with h = 2 is soluble for all rational primes p, but the system (2) is insoluble in integers.

In the sequel ζq denotes a primitive q-th root of unity.
For a rational matrixM denM denotes the least common denominator of the elements

ofM andMT the transpose ofM .
The proofs are based on eight lemmata.

Lemma 1. For every rational square matrixA there exists a non-singular matrixU whose
elements are integers in the splitting field of the characteristic polynomial of A such that

(3) U−1AU =

⎡⎢⎢⎢⎣
A1
A2
. . .

An

⎤⎥⎥⎥⎦
with Aν a square matrix of degree �ν :

(4) Aν =

⎡⎢⎢⎢⎢⎢⎣
λν 1
λν 1
. . .
. . .

λν 1
λν

⎤⎥⎥⎥⎥⎥⎦ (ν = 1, 2, . . . , n)

where the empty places (not the dots) are zeros.
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Proof (see [5], §88). The elements ofU can be made algebraic integers, since the left hand
side of (3) is invariant with respect to the multiplication of U by a number. 	


Lemma 2. Let L0, Lj ,Mj ∈ Z[t1, . . . , tr ] (j = 1, 2, . . . , k) be homogeneous linear
forms andMj (j = 1, 2, . . . , k) linearly independent. If the system of congruences

(5)

k∑
j=1

xjLj (t1, . . . , tr ) ≡ L0(t1, . . . , tr ) (modm)

k∑
j=1

xjMj (t1, . . . , tr ) ≡ 0 (modm)

is soluble in xj for all moduli m and all integer vectors [t1, . . . , tr ], then L0 = 0.c

Proof. Let Lj =
r∑
s=1
ljs ts (0 � j � k),Mj =

r∑
s=1
mjsts (1 � j � k). Taking if necessary

ljs = mjs = 0 for s > k we can assume that r > k. SinceMj ’s are linearly independent
we can assume also that the matrix

M = [mjs]j,s�k
is non-singular. Put

M∗ = [mjs] j�k
k<s�r

,

L = [ljs]1�j,s�k, L∗ = [ljs]1�j�k
k<s�r

,

l0 = [l01, . . . , l0k], l∗0 = [l0,k+1, . . . , l0r ].
LetK0 be the splitting field of the characteristic polynomial ofLM−1. In virtue of Lemma 1
there exists a matrix U whose elements are integers of K0 such that

(6) U−1LM−1U =

⎡⎢⎢⎢⎣
A1
A2
. . .

An

⎤⎥⎥⎥⎦
where Aν of order �ν is given by (4) (ν = 1, 2, . . . , n).c

We proceed to show that l0 = 0 and l∗0 = 0. Let us write

(7) l0M
−1U = [l1, . . . , lk].

Suppose that l0 �= 0 hence l0M
−1U �= 0 and let the least κ � k for which lκ �= 0 satisfy

(8) σν =
∑
μ<ν

�μ < κ �
∑
μ�ν

�μ.

Let p be a prime which factorizes in K0 into distinct prime ideals of degree one which
divide neither denM−1 nor the numerator of lκ nor the denominator of λν .c
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Take the modulus m = p�ν and let t := [t1, . . . , tk]T ∈ Zk satisfy the congruence

(9) U−1Mt ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...

0
1
p
...

p�ν−1

0
...

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎬⎪⎭ σν

(mod p�ν ),

where p is a prime ideal factor of p in K0. Since p is unramified of degree one and does
not divide denM−1 the congruence is soluble for rational integers. Take further

(10) t∗ := [tk+1, . . . , tr ]T = 0.

Setting y = [y1, . . . , yk] = [x1, . . . , xk]U we can rewrite the system (5) in the form

y(U−1LM−1U)(U−1Mt) ≡ l0M
−1U(U−1Mt) (mod p�ν )

y(U−1Mt) ≡ 0 (mod p�ν ),

hence by (6)–(10)

(111)

σν+1∑
j=σν+1

yj
(
λνp

j−σν−1 + pj−σν )+ yσν+1λνp
�ν−1

c

≡
σν+1∑
j=σν+1

ljp
j−σν−1 (mod p�ν ),

(112)

σν+1∑
j=σν+1

yjp
j−σν−1 ≡ 0 (mod p�ν ).

The left hand side of (111) is congruent mod p�ν to the left hand side of (112) multiplied
by (λν + p). Since λ−1

ν �≡ 0 (mod p) it follows that

σν+1∑
j=σν+1

ljp
j−σν−1 ≡ 0 (mod p�ν ),

hence lκ ≡ 0 (mod p) contrary to the choice of p.c

Therefore l0 = 0 and it remains to prove that l∗0 = 0. Assume without loss of generality
that

l0r �= 0.
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Choose a rational integer λ �= λν (ν = 1, 2, . . . , n) and take

m = 2|l0r | den(L− λM)−1 > 0,(12)

t∗ = [0, . . . , 0, den(L− λM)−1]T .
With this choice of t∗ we can find a t ∈ Zk such that

(L− λM)t = λM∗t∗ − L∗t∗
and then the system (5) gives for x = [x1, . . . , xk]

xλ(Mt +M∗t∗) ≡ l0r den(L− λM)−1 (modm),

x(Mt +M∗t∗) ≡ 0 (modm),

hence l0r den(L− λM)−1 ≡ 0 (modm).
The obtained contradiction with (12) completes the proof. 	


Lemma 3. For every rational square matrix A there exists a non-singular matrix U such
that (3) holds withAν a square matrix of order �ν (in general not the same as in Lemma 2),c

(13) Aν =

⎡⎢⎢⎢⎢⎢⎣
−αν1 1
−αν2 1
...

. . .

−αν,�ν−1 1
−αν�ν

⎤⎥⎥⎥⎥⎥⎦
c

where ανj ∈ Q and x�ν +
�ν∑
j=1
ανjx

�ν−j is a power of a polynomial irreducible over Q.

Proof (see [5], §88). The form of the matrix A has been changed by applying central
symmetry (matrices symmetric to each other with respect to the common centre are similar).
U can be made integral via multiplication by a suitable integer. 	


Lemma 4. Let L0, Lj ,Mj ∈ Z[t1, . . . , tr ] (j = 1, 2, . . . , k) be homogeneous linear
forms, Mj ’s linearly independent. Let a0, aj , bj ∈ Z (j = 1, 2, . . . , k) and w be a fixed
positive integer.

If for all moduli m ≡ 0 (mod w) and for all integer vectors [t1, . . . , tr ] the system of
congruences

(14)

k∑
j=1

xj

(
Lj (t1, . . . , tr )+ aj m

w

)
≡ L0(t1, . . . , tr )+ a0

m

w
(modm),

k∑
j=1

xj

(
Mj(t1, . . . , tr )+ bj m

w

)
≡ 0 (modm)

is soluble in integers xj then L0 = 0 and a0 ≡ 0 (mod w).
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Proof. When m runs through all positive integers divisible by w, m/w runs through all
positive integers, hence applying Lemma 2 we infer that L0 = 0. In order to show a0 ≡ 0
(mod w) we adopt the meaning of L,L∗,M,M∗ from the proof of Lemma 2.

In virtue of Lemma 3 there exists a non-singular integral matrix U such that

(15) U−1LM−1U =

⎡⎢⎢⎢⎣
A1
A2
. . .

An

⎤⎥⎥⎥⎦ ,
where Aν of order �ν is given by (13). We can assume without loss of generality thatc

αν�ν = 0, �1 � �ν for ν � n0 and αν�ν �= 0 for ν > n0 (n0 may be 0). It follows from the

condition on x�ν +
�ν∑
j=1
ανjx

�ν−j that
c

(16) Aν =

⎡⎢⎢⎢⎣
1

1
. . .

1

⎤⎥⎥⎥⎦ (1 � ν � n0),

where the empty places are zeros as before. Now put

(17) U−1

⎡⎢⎣a1
...

ak

⎤⎥⎦ = con(a1, . . . , an), U−1

⎡⎢⎣b1
...

bk

⎤⎥⎦ = con(b1, . . . , bn),

where con denotes concatenation and for ν = 1, 2, . . . , n

(18) aν =
⎡⎢⎣ aν1
...

aν�ν

⎤⎥⎦ , bν =
⎡⎢⎣ bν1
...

bν�ν

⎤⎥⎦ .
c

Take

(19) m0 = w denM−1 denU−1 l.c.m.
n0<ν�n

denA−1
ν

and put

(20) m = m�1+1
0 ,

(21) t =
⎡⎢⎣t1...
tk

⎤⎥⎦ = M−1U

⎡⎢⎣u1
...

un

⎤⎥⎦ , t∗ =
⎡⎢⎣tk+1
...

tr

⎤⎥⎦ = 0,

where

(22) uν = A−1aν
m
�1+1
0

w
(n0 < ν � n)
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and, for ν � n0, uν is a vector with �ν components and the j -th componentc

uνj = 1

w

�ν∑
i=j
m
�1−i+j
0 (aνi −m0bνi) (1 � j � �ν).

Since by (19) uν ≡ 0 (mod denM−1) (1 � ν � n) the vector t defined by (21) is integral.
Moreover by (16), (18) and the above we have

(23) Aνuν + aν
m
�1+1
0

w
= m0

(
uν + bν

m
�1+1
0

w

)
(1 � ν � n0).

c

Setting

[x1, . . . , xk]U = [x1, . . . , xn],
where xν is a vector with �ν components, and using (15), (17), (20) and (21) we can rewrite
the system (14) in the form

n∑
ν=1

xν

(
Aνuν + aν

m
�1+1
0

w

)
≡ a0

m
�1+1
0

w
(modm�1+1

0 ),

n∑
ν=1

xν

(
uν + bν

m
�1+1
0

w

)
≡ 0 (modm�1+1

0 ).

In virtue of (22) this gives

(241)
n0∑
ν=1

xν

(
Aνuν + aν

m
�1+1
0

w

)
≡ a0

m
�1+1
0

w
(modm�1+1

0 ),

(242)
n0∑
ν=1

xν

(
uν + bν

m
�1+1
0

w

)
≡

n∑
ν=n0+1

xν
(
A−1
ν aν − bν

)m�1+1
0

w
(modm�1+1

0 ).

In virtue of (23) the left hand side of (241) equals the left hand side of (242) multiplied
by m0. Hence

a0
m
�1+1
0

w
= m�1+1

0

n∑
ν=n0+1

xν
(
A−1
ν aν − bν

)m0

w
(modm�1+1

0 ).

Since by (19) the vectors
(
A−1
ν aν − bν

)m0

w
are integral we get

a0
m
�1+1
0

w
≡ 0 (modm�1+1

0 ), a0 ≡ 0 (mod w),

which completes the proof. 	
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Lemma 5. For every integral matrixA with all the k rows linearly independent there exist
unimodular integral matrices B and C such that

(25) B−1AC =

⎡⎢⎢⎢⎣
e1
e2
. . .

ek

⎤⎥⎥⎥⎦ ,
where the elements outside the principal diagonal are zeros, ek �= 0 and ei | ei+1

(1 � i < k).

Proof. Without the condition ek �= 0 the lemma is proved in [5], §85. The condition ek �= 0
follows from the linear independence of the rows of A. 	


Lemma 6. Let Lij ∈ Z[t1, . . . , tr ] (1 � i � h, 0 � j � k) be homogeneous linear forms
and suppose L1j (1 � j � k) linearly independent. Let lij ∈ Z (1 � i � h, 0 � j � k).
If the system of congruences

(26)
k∑
j=1

xj

(
Lij (t1, . . . , tr )+ lij m

w

)
≡ Li0(t1, . . . , tr )+ li0 m

w
(modm) (1 � i � h)

is soluble for all moduli m ≡ 0 (mod w) and for all integer vectors [t1, . . . , tr ] then there
exist integers ξj (1 � j � k) such that

(27)
k∑
j=1

ξjLij = Li0 (1 � i � h)

and

(28)
k∑
j=1

ξj lij ≡ li0 (mod w).
c

Proof. Let

(29) L1j =
r∑
s=1

ajs ts (0 � j � k), A = [ajs]1�j�k
1�s�r

.

In virtue of Lemma 5 there exist unimodular integral matrices B,C such that (25) holds.
Let

B−1

⎡⎢⎣l11
...

l1k

⎤⎥⎦ =
⎡⎢⎣b1
...

bk

⎤⎥⎦ , C−1

⎡⎢⎣t1...
tr

⎤⎥⎦ =
⎡⎢⎣t
′
1
...

t ′r

⎤⎥⎦ ,(30)

[a01, . . . , a0r ]C = [c1, . . . , cr ].
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Setting [y1, . . . , yk] = [x1, . . . , xk]B we get from (25), (26) and (30)

(31)
k∑
j=1

yj

(
ej t

′
j + bj

m

w

)
≡

r∑
s=1

cst
′
s + l10

m

w
(modm).

Assume that cs are not all zero for s > k and that σ is the least index> k such that cσ �= 0
we take m = 2wek|cσ |,

t ′s =

⎧⎪⎪⎨⎪⎪⎩
−bs
es

m

w
for s � k,

1 for s = σ,
0 for s > k, s �= σc

and get from (31)

cσ ≡ 0 (mod 2|cσ |),
a contradiction. Therefore cs = 0 for all s > k and taking m = 2wek , t ′j = −

bj

ej

m

w
for

j � k we get from (31)

l10
m

w
−

k∑
j=1

bj cj

ej

m

w
≡ 0 (modm),

hence

(32) l10 ≡
k∑
j=1

bj cj

ej
(mod w+).

Finally taking m = wek and for a fixed j � k

t ′s =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−m
w

bs

es
+ ek
ej

if s = j,

−m
w

bs

es
if s �= j, s � k

0 if s > k,

we get from (31) and (32)

yj ek ≡ cj ek/ej (mod ek), cj /ej ∈ Z.

Integers ξj defined by

[ξ1, . . . , ξk] = [c1/e1, . . . , ck/ek]B−1

satisfy (27) and (28) for i = 1 in virtue of (25), (29), (30) and (32). Take now i � 1 and
consider the system of two congruences:

k∑
j=1

xj

(
Lij (t1, . . . , tr )+ lij m

w

)
≡ Li0(t1, . . . , tr )+ li0 m

w
−

k∑
j=1

ξj

(
Lij (t1, . . . , tr )+ lij m

w

)
(modm)
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and

k∑
j=1

xj

(
L1j (t1, . . . , tr )+ l1j m

w

)
≡ 0 (modm).

If [x0
1 , . . . , x

0
m] is a solution of the system (26), the above system has the solution

[x0
1 − ξ1, . . . , x0

m − ξm], hence it is soluble for all moduli m and all integer vectors
[t1, . . . , tr ]. Since L1j are linearly independent we have in virtue of Lemma 4

Li0 −
k∑
j=1

ξjLij = 0 and li0 −
k∑
j=1

ξj lij ≡ 0 (mod w),

thus (27) and (28) hold for all i � h. 	


Lemma 7. In any algebraic number fieldK there exists a multiplicative basis, i.e., such a

sequence π1, π2, . . . that any non-zero element ofK is represented uniquely as ζ
r∏
s=1
π
xs
s ,

where xs are rational integers and ζ is a root of unity.

Proof. See [3]. 	


Lemma 8. Let K be an algebraic number field, w the number of roots of unity contained
in K , w ≡ 0 (mod 4), n a positive integer,

σ = (w, n, l.c.m.
q |n, q prime

[K(ζq) : K]
)
.

If

(33) n ≡ 0
(
mod (w, n) l.c.m.

q |n, q prime
[K(ζq) : K]

)
and α1, . . . , αr ∈ K have the property that

(34) ζ x0
w

r∏
s=1

αxss = γ n/σ , γ ∈ K implies x1 ≡ x2 ≡ . . . ≡ xr ≡ 0 (mod n/σ)

then for any integers c1, . . . , cr ≡ 0 (mod σ) and any c0 there exists a set of prime ideals
q of K(ζn) of a positive Dirichlet density such that

(35)
(ζw

q

)
n
= ζ c0(w,n),

(αs
q

)
n
= ζ csn (1 � s � r).

Proof. This is a special case (ζ4 ∈ K) of Theorem 4 of [2]. In this theorem only the
existence of infinitely many prime ideals q with property (35) is asserted, but the existence
of a set of a positive Dirichlet density is immediately clear from the proof based on the
Chebotarev density theorem. 	
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Proof of Theorem 1. Without loss of generality we may assume that ζ4 ∈ K and that α1j

(j = 1, 2, . . . , k) are multiplicatively independent. Let us set

(36) αij = ζ aij0
w

r∏
s=1

π
aijs
s , βi = ζ bi0w

r∏
s=1

πbiss ,

where w is the number of roots of unity contained in K and πs are elements of the
multiplicative basis described in Lemma 7. Take an arbitrary modulus m ≡ 0 (mod w)
and set in Lemma 8 n = mm1, where m1 = l.c.m.

p�P, p prime
(p − 1) and P is the greatest

prime factor of m. Since every prime factor q of n satisfies q � P the number n satisfies
(33). The condition (34) is clearly satisfied by αs = πs (1 � s � r). Hence for any integers
c1, . . . , cr ≡ 0 (mod w) there exists a set S of prime ideals q ofK(ζn) of positive Dirichlet
density such that

(37)
(ζw

q

)
n
= ζw,

(πs
q

)
n
= ζ csn (1 � s � r).

The ideals p of K divisible by at least one q ∈ S form a set of positive Dirichlet density,
hence by the assumption there exist integers xj satisfying

k∏
j=1

α
xj
ij ≡ βi (mod q) (i = 1, 2, . . . , h)

for at least one q ∈ S. It follows from (36) and (37) that

k∑
j=1

xj

( r∑
s=1

aijscs + aij0
n

w

)
≡

r∑
s=1

biscs + bi0 n
w
(mod n) (1 � i � h).

Now take cs = wm1ts (1 � s � r),

(38)

⎧⎪⎪⎨⎪⎪⎩
Lij = w

r∑
s=1
aijs ts (1 � i � h, 1 � j � k),

Li0 = w
r∑
s=1
bis ts (1 � i � h).

It follows that for all modulim ≡ 0 (mod w) and all integer vectors [t1, . . . , tr ] the system
of congruences

k∑
j=1

xjLij (t1, . . . , tr )+ aij0
m

w
≡ Li0(t1, . . . , tr )+ bi0 m

w
(modm)

is soluble in integers xj . Since the numbers α1j are multiplicatively independent the linear
forms L1j are linearly independent (1 � j � k). Hence by Lemma 6 there exist integers
ξ1, . . . , ξk such that

k∑
j=1

ξjLij = Li0 and
k∑
j=1

ξj aij0 ≡ bi0 (mod w) (1 � i � h).

It follows from (36) and (38) that ξ1, . . . , ξk satisfy the system (2). 	
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Proof of Corollary. In view of Theorem 1 it remains to consider the case when for each
i � h the number αi is a root of unity. But then either there exists a positive integer x � w
such that

αxi = βi (1 � i � h)
or the system of congruences

αxi ≡ βi (mod p) (1 � i � h)
is soluble only for prime ideals p dividing

w∏
x=1

g.c.d.
1�i�h

(αxi − βi). 	


Proof of Theorem 2. Since hereK = Q we write p instead of p and denote by pj the j -th
prime. We take

α11 = −1, α1j = pj−1 (2 � j � k), β1 = −1,c

α21 = 2, α2j = 1 (2 � j � k), β2 = 1.

For p = 2 (1) has the solution xj = 0 (1 � j � k). For p > 2 we consider the index

of 2, ind 2 with respect to a fixed primitive root of p. If
p − 1

(ind 2, p − 1)
is odd, (1) has a

solution determined by

x1 ≡
⎧⎨⎩

1 (mod 2)

0
(

mod
p − 1

(ind 2, p − 1)

)
,

xj = 0 (2 � j � k).

If
p − 1

(ind 2, p − 1)
is even, (1) has a solution determined by

x1 = 0, x2 ind 2 ≡ p − 1

2
(mod p − 1), xj = 0 (3 � j � k).

On the other hand, (2) is clearly insoluble. 	
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On a problem in elementary number theory

with J. Wójcik (Warsaw)

Let ordq(a)be the exponent with which a primeq occurs in the factorization of a rational
number a �= 0 and, if ordq(a) = 0, letMq(a) be the multiplicative group generated by a
modulo q. In the course of a group-theoretical investigation J. S. Wilson found he needed
some results about integers a, b such that Mq(a) = Mq(b), indeed also for algebraic
integers, and he proved some of what he needed. J. W. S. Cassels observed that Wilson’s
argument naturally proved the existence of infinitely many primes q withMq(a) = Mq(b)
for rational integers a, b with ab > 0, |a| > 1, |b| > 1. J. G. Thompson found a proof
for the case of integers a, b with ab < 0, |a| > 1, |b| > 1. He also posed the problem for
rational a, b (all this is unpublished). The aim of this paper is to prove that the answer to
Thompson’s question is affirmative. We also include the case ab > 0 settled by Thompson
himself. We use the same technique devised by Wilson which has been elaborated by
Cassels and Thompson. We thank Professor Cassels for the simplification of our original
exposition and the referee for his suggestions.

Theorem. For all a, b ∈ Q \ {0, 1,−1} there exist infinitely many primes q such that
Mq(a) = Mq(b).

Without loss of generality a �= b. The strategy is first to find one prime q with

ordq a = ordq b = ordq(a − b) and Mq(a) = Mq(b).
This requires a fairly elaborate subdivision into cases. At the end, a uniform argument
deduces the existence of infinitely many such q.

It is convenient to enunciate one key idea in the following trivial

Proposition. Let q be a prime. Suppose that ordq a = ordq b = 0 and that

an ≡ bmod q

where n is prime to q − 1. ThenMq(a) = Mq(b).

In the argument, we shall most often take n to be prime. Given a, bwe consider primes
l in an appropriate arithmetic progression. A study of the factorization of al−b then shows
that it must be divisible by some prime q �≡ 1 mod l.
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Notation. For all primes p put

αp = ordp a, βp = ordp b, γp = ordp(a − b)
and further put

P =
∏

αp=βp=0

pγp , P1 =
∏
p |P
(p − 1).

Lemma 1. If either ab > 0, |a| �= 1, |b| �= 1 or for some prime p0 we have αp0βp0 > 0
and αp0 , βp0 , γp0 not all equal, then there exists a prime q such that αq = βq = γq = 0
andMq(a) = Mq(b).

Proof. Replacing if necessary a by a−1 and b by b−1, we may assume without loss of
generality

1 < |a| < |b| if ab > 0,(1)

0 < αp0 � βp0 if ab < 0.(2)

Let l be a sufficiently large prime such that

l ≡ 1 mod pγp(p − 1) for all p |P.
Then

al ≡ a mod pγp+1,

so that

ordp(a
l − b) = γp for all p |P.

On the other hand for all primes p with αpβp > 0 we have since l is large

(3) ordp(a
l − b) =

{
lαp if αp < 0,

βp if αp > 0

and for all primes p with αpβp � 0 the same is true in an obvious way. Finally if αp = 0,
βp �= 0 we have

(4) ordp(a
l − b) = min{0, βp}.

Hence

al − b = sgn a · P
∏
αp<0

plαp
∏
αp=0
βp �=0

pmin{0,βp} ∏
αp>0

pβps,

where s is an integer prime to the numerators and the denominators of a, b, a − b and
positive by (1). We have

(5) al − b ≡ a − bmod l,
∏
αp<0

plαp ≡
∏
αp<0

pαp mod l
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and if s ≡ 1 mod l

sgn a · P
∏
αp<0

pαp
∏
αp=0
βp �=0

pmin{0,βp} ∏
αp>0

pβp ≡ a − b mod l.

For l large enough it follows that

sgn a · P
∏
αp<0

pαp
∏
αp=0
βp �=0

pmin{0,βp} ∏
αp>0

pβp = a − b,

and hence

(6) sgn a = sgn(a − b), αp > 0 implies γp = βp, αp � βp.
By (1) and (6), ab < 0, so by (2), αp0 = βp0 = γp0 contrary to the assumption. Hence
s �≡ 1 mod l and s has a prime factor q �≡ 1 mod l, αq = βq = γq = 0. By the Proposition
with n = l we haveMq(a) = Mq(b). 	


Lemma 2. Let ab < 0. If for a prime p0 |P there exists an integer r > 0 prime to the

exponent λ(a) or λ(b) to which a or b, respectively belongs mod p
γp0+1
0 and such that

ordp0(a
r − b) �= γp0 or ordp0(b

r − a) �= γp0 ,

respectively, then there exists a prime q such that αq = βq = γq = 0 andMq(a) = Mq(b).

Proof. Assume without loss of generality that (r, λ(a)) = 1 and

ordp0(a
r − b) �= γp0 .

We choose a positive integer r0 prime to PP1 in the arithmetic progression λ(a)x + r . Let

ordp(a
r0 − b) = ep for all p |P.

Let l be a sufficiently large prime in the arithmetic progression
∏
p |P
pepP1x + r0. We have

al ≡ ar0 mod pep+1 for all p |P,
and hence

ordp(a
l − b) = ep for all p |P.

Since l is large we again have (3) and (4). Hence

al − b = sgn a
∏
p |P
pep

∏
αp<0

plαp
∏
αp=0
βp �=0

pmin{0,βp} ∏
αp>0

pβps,

where s is an integer prime to the numerators and the denominators of a, b, a − b and is
positive since ab < 0. We again have (5) and if s ≡ 1 mod l we would have

sgn a
∏
p |P
pep

∏
αp<0

pαp
∏
αp=0
βp �=0

pmin{0,βp} ∏
αp>0

pβp ≡ a − bmod l.
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For l large enough both sides of the congruence are equal, so

γp0 = ep0 = ordp0(a
r0 − b).

However r0 ≡ r mod λ(a), ar0 ≡ ar mod p
γp0+1
0 and so

γp0 = ordp0(a
r − b),

contrary to the assumption. Hence s �≡ 1 mod l and s has a prime factor q �≡ 1 mod l,
αq = βq = γq = 0. By the Proposition with n = l we haveMq(a) = Mq(b). 	


Lemma 3. If for a prime p0 |P we have

γp0 > min
{
ordp0(a

2 − 1), ordp0(b
2 − 1)

}
,

then p0 satisfies the assumptions of Lemma 2.

Proof. Without loss of generality we may assume that

γp0 > ordp0(a
2 − 1).

Let λ0 be the exponent to which a belongs mod p
γp0
0 . Clearly λ0 > 2, hence there exists

an r0 �≡ 1 mod λ0 such that (r0, λ0) = 1. The arithmetic progression λ0x + r0 contains a
positive integer r prime to λ(a) and we have

ordp0(a
r − ar0) = ordp0(a

r−r0 − 1) � γp0 ,

ordp0(a
r0 − a) = ordp0(a

r0−1 − 1) < γp0 ,

ordp0(a
r − b) = ordp0(a

r − ar0 + ar0 − a + a − b) < γp0 . 	


Lemma 4. If for a prime p0 |P we have

(7) γp0 = ordp0(a
2 − 1) = ordp0(b

2 − 1)

then p0 satisfies the assumptions of Lemma 2.

Proof. The condition (7) implies

a = ε + pμ0 a1, b = ε + pμ0 b1, where ε = ±1, a1, b1 ∈ Q,(8)

ordp0 a1 = ordp0 b1 = 0,(9)

μ =
{
γp0 − 1 if p0 = 2,

γp0 if p0 > 2.
(10)

We choose a positive integer r such that

(11)

{
a1r ≡ b1 mod 4 if p0 = 2,

a1r ≡ b1 mod p0 if p0 > 2

and

(12)
(
r, p0(p0 − 1)

) = 1.
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This is possible in view of (9). Now (8), (10) and (11) imply

ordp0(a
r − b) � γp0 + 1,

while (12) implies
(
r, λ(a)

) = 1. 	


Lemma 5. For all a, b ∈ Q\{0, 1,−1}, there exists a prime q such thatαq = βq = γq = 0
andMq(a) = Mq(b).

Proof. In view of Lemmas 1–4 it suffices to consider the case where ab < 0 and for all
primes p

(13) either αpβp � 0 or αp = βp = γp,
for all p |P ,

(14) γp � min{ordp(a
2 − 1), ordp(b

2 − 1)}
and

(15) γp < max{ordp(a
2 − 1), ordp(b

2 − 1)}.
The last two conditions can be reformulated. If p = 2,

γ2 < ord2(a
2 − b2) = ord2

(
(a2 − 1)− (b2 − 1)

)
and so (15) implies

(16) γ2 < min
{
ord2(a

2 − 1), ord2(b
2 − 1)

}
,

which is stronger than (14). If p > 2

γp = ordp(a
2 − b2) � min

{
ordp(a

2 − 1)
}
, ordp(b

2 − 1)}
hence (14) and (15) are equivalent to (16) and

(17) min
{
ordp(a

2 − 1), ordp(b
2 − 1)

} = γp
< max

{
ordp(a

2 − 1), ordp(b
2 − 1)

}
(p �= 2).

Note that (16) and (17) are invariant under the replacement of 〈a, b〉 by 〈a−1, b−1〉.
Assume first that for a prime l /| P

αl = βl = γl �= 0.

Replacing if necessary 〈a, b〉 by 〈a−1, b−1〉 we may suppose that

αl = βl = γl > 0.

Hence l > 2. For every p with |αp| + |βp| > 0, αpβp � 0 we have

ordp(a
l − b) =

⎧⎪⎨⎪⎩
lαp if αp < 0,

min{0, βp} if αp = 0,

βp = γp if αp > 0.

The same is true by virtue of (13) if αpβp > 0.
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For p |P if p = 2 or p > 2, ordp(a2 − 1) > γp we have

ordp(a
l − a) > γp, ordp(a

l − b) = ordp(a
l − a + a − b) = γp;

if p > 2, ordp(a2 − 1) = γp < ordp(b2 − 1) we have

ordp(a
2l − 1) = γp,

ordp(a
l − b) = ordp(a

2l − b2) = ordp(a
2l − 1− (b2 − 1)) = γp.

Therefore

al − b =
∏
αp<0

p(l−1)αp (a − b)s,

where s is a positive integer prime to the numerators and the denominators of a, b, a − b.
Here pl−1 ≡ 1 mod l. If also s ≡ 1 mod l we would have

a − b ≡ (a − b)s
∏
αp<0

p(l−1)αp = al − b ≡ −bmod lαl+1, a ≡ 0 mod lαl+1,

a contradiction.
Hence s �≡ 1 mod l and s has a prime factor q �≡ 1 mod l, αq = βq = γq = 0. By

Proposition with n = l we haveMq(a) = Mq(b).
Therefore we may assume that

(18) αpβp � 0 for all primes p.

Let

a = A1

A2
, b = B1

B2
,

where

Ai, Bi ∈ Z, A1B1 < 0, A2 > 0, B2 > 0,

(A1, A2) = (B1, B2) = 1.

By (18), (Ai, Bi) = 1 (i = 1, 2) and we have

P = |A1B2 − A2B1| � 2.

If P is odd, it has an odd prime factor l. If P is even we have by (16)

a ≡ b ≡ εmod 2γ2 , ε = ±1,

hence

(19) A1 = εA2 + 2γ2A3, B1 = εB2 + 2γ2B3, A3, B3 ∈ Z \ {0}
and

P = 2γ2 |A3B2 − A2B3| = 2γ2 |A3B1 − A1B3|.
Since A1B1 < 0 < A2B2 it follows that P > 2γ2 , so P has an odd prime factor l. By (17)
and since |a| �= 1, |b| �= 1 we may assume without loss of generality that

a = ε + lμa1, b = ε + lνb1,
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where

ε = ±1, a1, b1 ∈ Q, ordl a1 = ordl b1 = 0, μ = γl < ν.
Clearly

(20) a − b ≡ lγl a1 mod lγl+1.

Consider now the number al
n−μ − b (where n � μ).

For every prime p with |αp| + |βp| > 0 we have by (18)

ordp(a
ln−μ − b) =

⎧⎪⎨⎪⎩
ln−μαp if αp < 0,

min{0, βp} if αp = 0,

βp if αp > 0.

For every p |P with p �= l, if p = 2 or p > 2, ordp(a2 − 1) > γp, we have

ordp(a
ln−μ − a) > γp, ordp(a

ln−μ − b) = ordp(a
ln−μ − a + a − b) = γp;

if p > 2, ordp(a2 − 1) = γp < ordp(b2 − 1) we have

ordp(a
2ln−μ − 1) = γp,

ordp(a
ln−μ − b) = ordp(a

2ln−μ − b2) = ordp
(
a2ln−μ − 1− (b2 − 1)

) = γp.
Finally we obtain by induction on n � μ

al
n−μ ≡ ε + lna1 mod ln+1,

hence

al
ν−μ − b ≡ lν(a1 − b1)mod lν+1,(21)

al
ν−μ+1 − b ≡ −lνb1 mod lν+1.(22)

If a1 �≡ b1 mod l we obtain

al
ν−μ − b =

∏
αp<0

p(l
ν−μ−1)αp lν−μ(a − b)s,

where s is a positive integer prime to the numerators and the denominators of a, b, a − b.
If s ≡ 1 mod l we obtain from (20) and (21)

a1l
ν ≡ (a − b)lν−μs = (alν−μ − b)

∏
αp<0

p−(lν−μ−1)αp

≡ lν(a1 − b1)mod lν+1, b1 ≡ 0 mod l,

a contradiction. Hence s �≡ 1mod l and s has a prime factor q �≡ 1 mod l,αq = βq = γq = 0.
By the Proposition with n = lν−μ we haveMq(a) = Mq(b).

If a1 ≡ b1 mod l we obtain

al
ν−μ+1 − b =

∏
αp<0

p(l
ν−μ+1−1)αp lν−μ(a − b)s,
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with s as above. If s ≡ 1 mod l we obtain from (20) and (22)

a1l
ν ≡ (a − b)lν−μs = (alν−μ+1 − b)

∏
αp<0

p−(lν−μ+1−1)αp ≡ −lνb1 mod lν+1,

and hence a1 ≡ −b1 mod l, 2a1 ≡ 0 mod l, a contradiction. Thus s �≡ 1 mod l and by the
Proposition with n = lν−μ+1, s has a prime factor q with the desired property. 	


Proof of the Theorem. Replacing a by a−1, or b by b−1, if necessary we may assume that

(23) |a| > max{1, |b|}.
We shall construct inductively an infinite sequence of distinct primes q1, q2, . . . such that

Mqk(a) = Mqk(b), αqk = βqk = γqk = 0 (k = 1, 2, . . . )

and three infinite sequences of positive integers ak , bk and ck such that (ak, bk) = 1 and
for every integer t � 0

(24) aakt+bk − b = sgn a
∏
αp<0

p(akt+bk)αp
∏
αp=0
βp �=0

pmin{0,βp} ∏
αp>0

pβp
∏
p |P
pep

k∏
i=1

q
ci
i s,

where s is a positive integer prime toq1q2 · · · qk and to the numerators and the denominators
of a, b, a − b. Here ep are non-negative integers independent of k and t . For k = 1 we
take q1 = q, where q is a prime, the existence of which is asserted in Lemma 5. By that
Lemma, Mq(a) = Mq(b), hence b ≡ ar mod q, (r, λ) = 1, where λ is the exponent to
which a belongs mod q. We choose a positive integer b1 such that

(25) b1 > max
αp �=0

βp

αp
, b1 ≡ r mod λ, (b1, 2qPP1) = 1

and put

ordp(a
b1 − b) = ep (p |P),

ordq(a
b1 − b) = c1

a1 = 2λqc1
∏
p |P
pep (p − 1).

Clearly (a1, b1) = 1 and by virtue of (25) we have for t � 0

ordp(a
a1t+b1 − b) =

⎧⎪⎨⎪⎩
(a1t + b1)αp if αp < 0,

min{0, βp} if αp = 0, βp �= 0,

βp if αp > 0;
aa1t+b1 − b ≡ ab1 − bmod

∏
p |P
pep+1 · qc1+1,

hence

ordp(a
a1t+b1 − b) = ep for all p |P,

ordq(a
a1t+b1 − b) = c1.
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Finally, since a1t + b1 is odd we have by (23)

sgn(aa1t+b1 − b) = sgn a.

Hence (24) holds for k = 1.
Assume now that we have constructed q1, a1, b1, c1, . . . , qk−1, ak−1, bk−1, ck−1. Let

l be a sufficiently large prime in the arithmetic progression ak−1t + bk−1 (t � 0).
By the inductive assumption

al − b = sgn a
∏
αp<0

plαp
∏
αp=0
βp �=0

pmin{0,βp} ∏
αp>0

pβp
∏
p |P
pep

k−1∏
i=1

q
ci
i s,

where s is a positive integer, prime to q1q2 · · · qk−1 and to the numerators and the denom-
inators of a, b, a − b. Since

al − b ≡ a − bmod l,
∏
αp<0

plαp ≡
∏
αp<0

pαp mod l

we have s �≡ 1 mod l. Hence s has a prime factor qk different from q1, q2, . . . , qk−1 and
such that qk �≡ 1 mod l. By Proposition with n = l we have

Mqk(a) = Mqk(b) and αqk = βqk = γqk = 0.

We take

bk � bk−1, bk ≡ l mod ak−1(qk − 1), (bk, qk) = 1,

ck = ordqk (a
bk − b), ak = ak−1(qk − 1)qckk

and easily verify that (ak, bk) = 1 and (24) holds. 	


Remark. We do not know whether for all a, b, c ∈ Q, abc �= 0, |a| �= 1, |b| �= 1, |c| �= 1
there exist infinitely many primes q withMq(a) = Mq(b) = Mq(c).
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On exponential congruences

In memory of N. I. Feldman

This paper is concerned with two problems on exponential congruences considered
recently, the first one by C. Corralez Rodrigáñez and R. Schoof, the second by S. P. Tung.

Corralez Rodrigáñez and Schoof [1] have proved the following: LetK be an algebraic
number field and let α, β ∈ K∗. If, for almost all prime ideals p of K and for all positive
integers n, αn ≡ 1 mod p implies βn ≡ 1 mod p, then β = αe, e ∈ Z (almost all here and
in the sequel means all except for a set of Dirichlet’s density 0). This will be generalized
as follows.

Theorem 1. Let K be an algebraic number field and α1, . . . , αk, β1, . . . , βk ∈ K∗. If for
almost all prime ideals p of K and all integers n1, . . . , nk

(1)
k∏
i=1

α
ni
i ≡ 1 mod p implies

k∏
i=1

β
ni
i ≡ 1 mod p,

then αi = βei (1 � i � k), e ∈ Z.

If ϕ ∈ Q(t) \Q[t] then there exists an arithmetic progression P such that for n ∈ P ,
ϕ(n) �∈ Z (see [3], lemma to Theorem 36, p. 195). S. P. Tung has asked in the correspon-
dence with the author, whether a similar theorem holds for expressions

f (t)2F(t) + g(t)
h(t)

and his question has been subsequently extended by J.-L. Nicolas to expressions

f (t)aF(t) + g(t)bG(t)
h(t)

.

The answer is given by the following

Theorem 2. Let f, g, h, F,G ∈ Z[t], (f, g, h) = 1, h �∈ Z, a, b ∈ N, aF(n)b−G(n) be not
constant for n ∈ Z. Then there exists an arithmetic progression P such that for n ∈ P

(2)
f (n)aF(n) − g(n)bG(n)

h(n)
�∈ Z.

Theorem 1 is an immediate consequence of the following two lemmas.
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Lemma 1. Let a, b ∈ Zk , n ∈ N. If for all x ∈ Zk , ax ≡ 0 mod n implies bx ≡ 0 mod n,
then b ≡ aemod n, e ∈ Z.

Proof. This is a special case of Lemma 2 in [2]. 	


Lemma 2. Let [K : Q] <∞, α1, . . . , αk, β1, . . . , βk ∈ K∗. If the system of congruences

αxi ≡ βi mod p (1 � i � k)
is solvable for almost all prime ideals p of K then the corresponding system of equations
is solvable in rational integers.

Proof. This is Corollary 1 in [4]. 	


Proof of Theorem 1. Let g be a primitive root of a prime ideal p and indg α the index
of α with respect to g determined mod ϕ(p), where ϕ is Euler’s function. If ordp αi =
ordp βi = 0 (1 � i � k) the implication (1) gives

k∑
i=1

ni indg αi ≡ 0 mod ϕ(p) implies
k∑
i=1

ni indg αi ≡ 0 mod ϕ(p),

hence by Lemma 1

indg βi ≡ ep indg αi mod ϕ(p), where ep ∈ Z.

Thus

βi ≡ αepi mod p and βi = αei (1 � i � k) for an e ∈ Z,

by Lemma 2. 	


In order to prove Theorem 2 we need three more lemmas.

Lemma 3. Let q be a prime, [K : Q] <∞, A,B ∈ K∗. If for almost all prime ideals p
of K the solvability in K of the congruence xq ≡ Amod p implies the solvability in K of
the congruence xq ≡ B mod p then

(3) B = ArΓ q, where r ∈ Z, Γ ∈ K∗.
Proof. This is a special case of Theorem 1 in [2]. 	


Lemma 4. If h, F,G ∈ Z[t], h irreducible over Q; a, b, c ∈ N, aF(n) �= bG(n) for some
n ∈ Z then there exists an arithmetic progression P such that for n ∈ P

(4) C
aF(n) − bG(n)

h(n)
�∈ Z.

Proof. Consider first the case where a, b are multiplicatively dependent. Then there exists
a c ∈ N and α, β ∈ N ∪ {0} such that c is not a perfect power in Q and

(5) a = cα, b = cβ.
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Let

(6) h(ϑ) = 0, K = Q(ϑ), d = [K : Q].
Since aF(n) �= bG(n) for some n ∈ Z we have αF −βG �= 0. Hence there exists an integer
n1 and a prime q1 > d such that

(7) αF (n1)− βG(n1) �≡ 0 mod q1.

Take in Lemma 3 q = q1, A = 1, B = c. We cannot have (3) since Γ satisfying (3)
would be of degree q1 and thus by (6) d > q1, contrary to the choice of q1. Therefore,
by Lemma 3 there exists a prime ideal p1 of degree 1 in K dividing neither cCq1 nor the
denominator of ϑ and such that the congruence xq1 ≡ cmod p1 is unsolvable in K . We
have ϑ ≡ m1 mod p1, m1 ∈ Z. Consider the arithmetic progression

P1 = {n ∈ Z : n ≡ n1 mod q1, n ≡ m1 mod p1},
where p1 is the prime divisible by p1. If n ∈ P1 and (4) does not hold we have

h(n) ≡ h(ϑ) ≡ 0 mod p1,

hence by (5)

cαF(n)−βG(n) ≡ 1 mod p1

and by (7)

αF(n)− βG(n) �≡ 0 mod q1.

It follows that for some integers ξ, η

1 = q1ξ − (αF (n)− βG(n))η
and c ≡ (cξ )q1 mod p1 contrary to the choice of p1.c

Consider now the case where a, b are multiplicatively independent. Let

a =
k∏
i=1

p
αi
i , b =

k∏
i=1

p
βi
i ,

where pi are distinct primes and αi, βi ∈ N ∪ {0} (1 � i � k). The vectors [α1, . . . , αk],
[β1, . . . , βk] are linearly independent, hence renumbering if necessary the primes pi we
may assume that

D = α1β2 − α2β1 �= 0.

Since aF(n) �= bG(n) for some n ∈ Z we may assume without loss of generality thatG �= 0.
Hence there exists an integer n2 and a prime q2 > d such that

(8) G(n2) �≡ 0 mod q2, q2 /| D.
Take in Lemma 3 q = q2, A = a, B = b. We cannot have (3) with Γ ∈ Q since it would
imply q2 |D, henceΓ satisfying (3) would be of degree q2 and thus by (6) d � q2, contrary
to the choice of q2. Therefore, by Lemma 3 there exists a prime ideal p2 of degree 1 in K
dividing neither Cabq2 nor the denominator of ϑ and such that xq2 ≡ a mod p is solvable
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inK , but xq2 ≡ bmod p is not. We have ϑ ≡ m2 mod p2,m2 ∈ Z. Consider the arithmetic
progression

P2 = {n ∈ Z : n ≡ n2 mod q2, n ≡ m2 mod p2},
where p2 is the prime divisible by p2. If n ∈ P2 and (4) does not hold we have

h(n) ≡ h(ϑ) ≡ 0 mod p2,

hence

aF(n) ≡ bG(n) mod p2,

and by (8) G(n) �≡ 0 mod q2. It follows that for some integers ξ, η

1 = q2ξ −G(n)η.
Since a ≡ aq2

2 mod p2, a2 ∈ K we infer that

b = bq2ξ−G(n)η ≡ (bξa−F(n)η2

)q2 mod p2,c

contrary to the choice of p2. 	


Lemma 5. Let [K : Q] < ∞; α1, α2, β ∈ K∗. If the congruence αx1
1 α

x2
2 ≡ β mod p is

solvable for almost all prime ideals p ofK then the corresponding equation is solvable in
rational integers.

Proof. This is a special case of Theorem 2 of [2]. 	


Proof of Theorem 2. It suffices to consider the case where h is irreducible over Q and
primitive. The case h |fg is trivial, hence assume that h/| fg. Let us again define ϑ,K
and d by (6). We shall consider two cases.

Case 1.

g(ϑ)

f (ϑ)
= akb−l , k, l ∈ Z;

Case 2.

g(ϑ)

f (ϑ)
�= akb−l , k, l ∈ Z.

1. In this case we have h(t) |f (t)ak−g(t)bl and since h is primitive, also for all n ∈ Z

h(n) |a−min{0,k}b−min{0,l}(f (n)ak − g(n)bl).
If (2) does not hold it follows that

h(n) | (f (n), h(n))a−min{0,k}b−min{0,l}(aF(n)bl − akbG(n)).
Now (f (n), h(n)) |R, where R is the resultant of f and h and since h/| f , R �= 0. The
assertion follows on taking in Lemma 4

C = ak−min{0,k}bl−min{0,l}|R|
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and on replacing there F by F − k, G by G− l .

2. In this case by Lemma 5 there exists a prime ideal p0 of degree 1 in K not dividing
the denominator of ϑ such that for all x, y ∈ Z : f (ϑ)ax − g(ϑ)by �≡ 0 mod p0. We have
ϑ ≡ m0 mod p0, m0 ∈ Z. Let P0 = {n ∈ Z : n ≡ m0 mod p0}, where p0 is the primec

divisible by p0. If n ∈ P0 and (2) does not hold we have h(n) ≡ h(ϑ) ≡ 0 mod p0, hence
f (ϑ)aF(n) − g(ϑ)bG(n) ≡ f (n)aF(n) − g(n)bG(n) ≡ 0 mod p0 contrary to the choice
of p0. 	


Remark. By a slightly more complicated argument one can prove the following extension
of Theorem 2.

Let [K : Q] < ∞, f, g, h ∈ K[t]; (f, g, h) = 1, h �∈ K; F,G ∈ Q[t] be integer
valued, α, β ∈ K∗, αF(n)β−G(n) be not constant for n ∈ Z. Then there exists an arithmetic
progression P such that for n ∈ P

f (n)αF(n) − g(n)βG(n)
h(n)

is not an integer of K.
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Une caractérisation arithmétique
de suites récurrentes linéaires

avec Daniel Barsky (Villetaneuse) et Jean-Paul Bézivin (Caen)

A Monsieur le Professeur Martin Kneser
pour le soixante-dixième anniversaire de sa naissance

Résumé. On étudie la relation entre deux suites récurrentes un et vn de nombres algébriques, quand
tout diviseur premier de un divise vn pour chaque n.

I. Introduction

Soit u = (un)n∈N une suite récurrente linéaire d’éléments de Z, c’est-à-dire une suite
vérifiant une relation de la forme :

un+s + as−1un+s−1 + . . .+ a0un = 0c

avec les ai dans Z fixés.
On considère l’ensemble A(u) = {p premier : ∃ n ∈ N, un �= 0 et p |un}, que nous

appelerons l’ensemble des diviseurs premiers de la suite u = (un)n∈N.
On sait qu’en général l’ensemble A(u) est infini, [10].
On peut demander quelle est la proportion des nombres premiers qui sont des diviseurs

d’une suite récurrente donnée. Le premier pas dans cette direction a été accompli par
H. Hasse, [6], qui montre par exemple que la densité au sens de Dirichlet de l’ensemble
des diviseurs premiers de la suite un = 2n + 1 est 7/24. D’autres résultats de ce type,
utilisant la méthode de démonstration de Hasse, ont été obtenus par J. Lagarias, [7], et
C. Ballot, [1].

On peut demander aussi dans quelle mesure cet ensemble caractérise la suite récurrente
linéaire. On voit aisément que si la suite possède un zéro entier, i.e. s’il existe m ∈ N tel
que um = 0, alors l’ensemble A(u) est l’ensemble des nombres premiers, à un nombre
fini d’exception près. Il nous faut donc préciser un peu les conditons à imposer.

Nous allons nous intéresser à un résultat démontré par C. Corrales et R. Schoof, [4],
et généralisé par A. Schinzel, [12], dont un cas particulier est le suivant :
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Soient a et b deux éléments de Z, tels que |a| > 1 et |b| > 1. Alors si

{p premiers : p |an − 1} = {p premiers : p |bn − 1}
pour tout n ∈ N, on a a = b.

Soit K un corps de nombres. Nous généralisons ce résultat à des suites récurrentes
linéaires liées à des polynômes de K[x1, . . . , xs] dont l’ensembleΩ des solutions dans les
racines de l’unité est non vide et fini. Typiquement soit P(x, y) = x + y + 1 et soit j une
racine primitive cubique de l’unité alors Ω = {(j, j2), (j2, j)} et si l’on a pour tout n :

{p, idéaux premiers de K : p |an+bn+1} = {p, idéaux premiers de K : p |αn+βn+1}
où a, b, α, β ∈ K∗ alors, avec quelques conditions techniques sur a, b, α, β (voir plus
loin) et quitte à permuter, a = α, b = β.

II. Résultats

Soit T un polynôme à s variables, à coefficients dans K. On note Γ∞ le groupe des
racines de l’unité et Γm le groupe des racines m-ièmes de l’unité (éventuellement plongé
dans un corps suffisamment grand). On note :

Ω = Ω(T ) = {γ = (γ1, . . . , γs) : γi ∈ Γ∞, 1 � i � s, tels que T (γ1, . . . , γs) = 0},
Ωm(T ) = Γ sm ∩Ω(T ).

Soient α1, . . . , αr , β1, . . . , βs des éléments non nuls de K. Nous allons démontrer aux
paragraphes III et IV les résultats suivants :

Théorème 1. Soient

T ′(x1, . . . , xr ) ∈ K[x1, . . . , xr ] et T (x1, . . . , xs) ∈ K[x1, . . . , xs]c

deux polynômes tels que Ω(T ′) soit non vide et que Ω(T ) soit fini. Soient

α = (α1, . . . , αr) ∈ (K∗)r et β = (β1, . . . , βs) ∈ (K∗)s .
On suppose que les αi sont multiplicativement indépendants, c’est-à-dire que l’égalité
r∏
i=1
α
xi
i = 1 avec x1, . . . , xr ∈ Z implique x1 = . . . = xr = 0.

Enfin on suppose que pour tout entier n > 0 et que pour presque tout idéal premier p
de K (i.e. tous sauf un nombre fini) on a :

p |T ′(αn1 , . . . , αnr ) =⇒ p |T (βn1 , . . . , βns ).
Alors Ω(T ) est non vide et il existe un entier naturel d > 0 tel que, pour tout

j ∈ {1, . . . , s}, il existe des ei,j ∈ Z tels que :

βdj = αej,11 · · ·αej,rr .

Théorème 2. On suppose que dans les hypothèses du théorème 1, on a r = s = 1, de
sorte que α = (α1) et n’est pas une racine de l’unité, et que β = (β1). On pose α1 = α et
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β1 = β. On suppose en outre que T ′(x) est séparable et T ′(0) �= 0. Soit w le nombre de
racines de l’unité contenues dans le corps K, et ζw une racine primitive w-ième de 1.

L’implication

p |T ′(αn) =⇒ p |T (βn)
est vraie pour presque tout idéal premier p de K et pour tout entier n > 0, si et seulement
s’il existe des entiers a0, a1 > 0, b0, b1 et γ ∈ K tels que (a1, b1) = 1 et α = ζ a0

w γ
a1 ,

β = ζ b0
w γ

b1 et si, pour tout μ ∈ {0, . . . , w − 1}
T ′(ζ a0μxa1) |T (ζ b0μxb1)x−min{0,b1} deg(T ).

Théorème 3. Soit Φn le polynôme cyclotomique d’ordre n, et k, l deux entiers positifs,
avec l sans facteur carré. Soient α, β ∈ K∗, avec α non racine de l’unité. L’implication

p |Φk(αn) =⇒ p |Φl(βn)
est vraie pour tout entier n > 0 et presque tout idéal premier de K, si et seulement si l
divise k et β = αkλ/l , où (λ, l) = 1.

Corollaire 1. On suppose que dans les hypothèses du théorème 1, on a r = s, et que de
plus les αi et les βi sont des entiers de K, et qu’aucun d’eux n’est une unité de K ni égal, à
une racine de l’unité près, à une puissance parfaite dans K. On suppose de plus que les αi
sont deux à deux premiers entre eux, ainsi que les βi . Alors l’implication

p |T ′(αn1 , . . . , αns ) =⇒ p |T (βn1 , . . . , βns )
est vraie pour tout entier n > 0 et presque tout idéal premier p seulement s’il existe une
permutation ji de {1, . . . , s}, et des entiers bi tels que :

βi = ζ biw αji .

Corollaire 2. On suppose que les éléments α1, α2, β1, β2 satisfont aux hypothèses du
corollaire 1, avec s = r = 2 ; on suppose de plus que w = 2. Si

p |αn1 + αn2 + 1 =⇒ p |βn1 + βn2 + 1

pour tout entier n > 0 et presque tout idéal premier p de K, alors on a {α1, α2} = {β1, β2}.

III. Lemmes préliminaires

Lemme 1. Dans le corps de nombres K, il existe une base multiplicative, c’est-à-dire une
suite πi (i = 1, . . . ) d’éléments non nuls de K telle que tout élément α ∈ K∗ possède une
unique représentation sous la forme :

α = ζ a0
w

h∏
i=1

π
ai
i

où a0 ∈ {0, . . . , w − 1}, et ai ∈ Z, 1 � i � h.
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Preuve. Voir Skolem [15]. 	


Lemme 2. Avec les mêmes notations que dans le lemme précédent, pour tout entier positif
m et tout vecteur (t0, . . . , th) de Zh+1, il existe une infinité d’idéaux premiers p de K(ζwm)

tels que
(ζw

p

)
wm
= ζ t0w et

(πi
p

)
wm
= ζwtiwm, 1 � i � h, où l’on a noté

(α
p

)
wm

le symbole

de Legendre pour les puissances wm-ièmes.

Preuve. C’est un cas particulier du théorème 4 de Schinzel, [13]. 	


Lemme 3. Soient k, l deux entiers positifs, et a ∈ Zr , A ∈ Mr,h(Z). On suppose que A
est de rang r , et que la matrice B ∈ Ms,h(Z) possède la propriété que pour tout t ∈ Zh et
tout entier positif m divisible par k on ait :

(1) At = m
k

a =⇒ lBt ≡ 0 (modm).

Alors il existe une matrice C ∈ Ms,r (Q) telle que B = CA.

Preuve. On peut supposer sans nuire à la généralité, que la matrice A1 constituée des
r premières colonnes de A est inversible. Soit B1 la matrice constituée des r premières
colonnes des B. Supposons que B �= (B1A

−1
1 )A. Alors r < h et on peut supposer que si

ar+1 et br+1 sont les r + 1-ième colonnes de A et B respectivement, on a :⎛⎜⎝c1
...

ch

⎞⎟⎠ = br+1 − (B1A
−1
1 )ar+1 �= 0.

Soit

(2) c = max
1�i�h

{|ci |}

et posons

(3) m = 2ckl (det(A1))
2 .

Comme c det(A1) ∈ Z, m est un entier positif divisible par k det(A1).

On définit maintenant un vecteur entier (t1, . . . , tr ) par

(4)

⎛⎜⎝t1...
tr

⎞⎟⎠ = m
k
A−1

1 a − det(A1)A
−1
1 ar+1
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et posons

(5) t =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t1
...

tr
det(A1)

0
...

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Les formules précédentes impliquent que At = m
k

a, et par suite on a

(6) lBt ≡ 0 (modm).

On a de plus, en tenant compte de (4) et de (5) :

lBt = lB1

⎛⎜⎝t1...
tr

⎞⎟⎠+ l det(A1)br+1

= lm
k
B1A

−1
1 a − l det(A1)B1A

−1
1 ar+1 + l det(A1)br+1.

Avec la relation (6), ceci donne :

l det(A1)
(
br+1 − (B1A

−1
1 )ar+1

) ≡ 0
(

mod
m

k det(A1)

)
.

En vertu de (3), on obtient alors

br+1 − (B1A
−1
1 )ar+1 ≡ 0 (mod 2c)

ce qui est une contradiction avec la relation (2). On a donc bien B=(B1A
−1
1 )A. 	


Lemme 4. Si A,B,C, l sont des entiers tels que l |C, l sans facteur carré, et pour tout

t ∈ Z on a (At + B,C) = C
l

, alors C |A.

Preuve. En prenant t = 0 et t = 1 on trouve que A = C
l
a, B = C

l
b, avec a, b ∈ Z.

En outre, pour tout t ∈ Z, on a (at + b, l) = 1. Comme l est sans facteur carré, si l /| a,c

il existe un nombre premier p divisant l et ne divisant pas a. En résolvant la congruence
at + b ≡ 0 (mod p), on trouve (at + b, l) ≡ 0 (mod p), ce qui est impossible. 	


Lemme 5. Soient � et m entiers positifs. On a

Φ�(x
m) =

∏
d |m
Φ�d(x), si (�,m) = 1,

Φ�(x
m) = Φ�m(x), si tout facteur premier de m divise �.
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Preuve. Pourm premier le lemme est bien connu. La cas général en résulte par récurrence
sur le nombre de facteurs premiers de m. 	


IV. Démonstrations des résultats

Preuve du théorème 1. On pose :

αi = ζ ai,0w

h∏
j=1

π
ai,j
j , 1 � i � r,(7)

βi = ζ bi,0w

h∏
j=1

π
bi,j
j , 1 � i � s,(8)

A = (ai,j ), B = (bi,j ).
Comme les αi sont multiplicativement indépendants, le rang de la matrice A est r .
Par hypothèse, il existe deux entiers k, l tels que

(9) Ωk(T
′) �= ∅, Ω(T ) ⊂ Ωl(T ).

Soit ζk une racine primitive k-ième de 1, et (ζ a1
k , . . . , ζ

ar
k ) ∈ Ωk(T ′) ; on pose a =

⎛⎜⎝a1
...

ar

⎞⎟⎠.

Nous allons démontrer que, pour tout vecteur t ∈ Zh, et tout entier positif m divisible
par k, l’égalité

(10) At = m
k

a

implique que

(11) lBt ≡ 0 (modm).

En vertu du lemme 2, il existe une infinité d’idéaux premiers p de K(ζwm) tels que

(12)
(ζw

p

)
wm
= 1,

(πj
p

)
wm
= ζwtjwm , 1 � j � h,

où l’on a choisi la racine primitive ζwm telle que ζwm/kwm = ζk . Donc en vertu de (7) et
de (10), (αi

p

)
wm
= ζ akk

et comme

T ′
((α1

p

)
wm
, . . . ,

(αr
p

)
wm

)
= 0

il en résulte que

T ′
(
α
(N(p)−1)/(wm)
1 , . . . , α

(N(p)−1)/(wm)
r

) ≡ 0 (mod P)
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où N est la norme de K(ζwm) sur K, et P désigne l’idéal premier de K divisible par p.
Si la norme de p est assez grande, on a par hypothèse que

T
(
β
(N(p)−1)/(wm)
1 , . . . , β

(N(p)−1)/(wm)
s

) ≡ 0 (mod P)c

donc

T

((β1

p

)
wm
, . . . ,

(βs
p

)
wm

)
≡ 0 (mod p)

ce qui implique

N

(
T

((β1

p

)
wm
, . . . ,

(βs
p

)
wm

))
≡ 0 (modN(p)).

Le côté gauche de cette congruence est borné par une constante ne dépendant que de T et
de m. Si N(p) est suffisamment grande, cette congruence implique donc que

T

((β1

p

)
wm
, . . . ,

(βs
p

)
wm

)
= 0

et par suiteΩ(T ) �= ∅. Par l’inclusion (9)Ω(T ) ⊂ Ωl(T ), il en résulte que
(βi

p

)l
wm
= 1

pour tout i = 1, . . . , s.
Il suffit alors d’utiliser (8) et (12), qui donne la relation (11). Le lemme 3 implique

alors l’existence d’une matrice C ∈ Ms,r (Q) telle que

B = CA.
On pose C =

(ei,j
d

)
, 1 � i � s, 1 � j � r , où d est un entier positif divisible par w

et où les ei,j sont dans Z, et on obtient

βdi =
∏
α
ei,j
j . 	


Preuve du théorème 2. Nous montrons tout d’abord que la condition est nécessaire. Sup-
posons donc que pour tout entier n et presque tout idéal premier p de K on ait

p |T ′(αn) =⇒ p |T (βn).
En vertu du théorème 1, il existe d ∈ N∗, et e ∈ Z tels que βd = αe.
Posons

e

d
= b1

a1
, avec a1, b1 ∈ Z, a1 > 0 et (a1, b1) = 1.

Comme

(
βa1

αb1

)(d,e)
= 1, on a βa1 = ζ c1w αb1 .

En prenant des entiers u, v tels que ua1 − vb1 = 1, et en posant a0 = c1u, b0 = c1v,
et γ = αuβ−v , il vient

α = ζ a0
w γ

a1 , β = ζ b0
w γ

b1 .

Comme α n’est pas une racine de l’unité, il en est de même de γ .
Supposons maintenant que pour une valeur de μ ∈ {0, . . . , w − 1}, on ait

(13) T ′(ζ a0μ
w xa1) /| T (ζ b0μ

w xb1)x−min{0,b1} deg(T ).
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Comme T ′ est séparable, et T ′(0) �= 0, le polynôme T ′(ζ a0μ
w xa1) est aussi séparable, et si

on pose

D(x) = (T ′(ζ a0μ
w xa1), T (ζ b0μ

w xb1)x−min{0,b1} deg(T ))
on a

1 =
(T ′(ζ a0μ

w xa1)

D(x)
, T (ζ b0μ

w xb1)x−min{0,b1} deg(T )
)
.

Il existe donc des polynômes U,V ∈ K[x] tels que

(14)
T ′(ζ a0μ

w xa1)

D(x)
U(x)+ T (ζ b0μ

w xb1)x−min{0,b1} deg(T )V (x) = 1.

Puisque T ′(0) �= 0, on a que
T (ζ

a0μ
w xa1)

D(x)
n’est pas de la forme cxm, avec c ∈ K et

m ∈ N.

Par un résultat d’Evertse ([5]), il en résulte que la suite récurrente
T ′(ζ a0μ

w γ a1(wν+μ))
D(γ wν+μ)

(ν = 1, 2, . . . ) a une infinité de diviseurs p de K.
En choisissant un diviseur p tel que γ soit une unité p-adique et les coefficients de

U,V,D des entiers p-adiques, il en résulte du fait que

p |T ′(αwν+μ) =⇒ p |T (βwν+μ)
une contradiction avec la relation (14).

On a donc bien

T ′(ζ a0μ
w xa1) |T (ζ b0μ

w xb1)x−min{0,b1} deg(T ) ∀μ ∈ {0, . . . , w − 1}.c

Montrons maintenant que la condition est suffisante.
On suppose donc que

α = ζ a0
w γ

a1 , β = ζ b0
w γ

b1

et

T ′(ζ a0μ
w xa1) |T (ζ b0μ

w xb1)x−min{0,b1} deg(T ) ∀μ ∈ {0, . . . , w − 1}.
Soit p un idéal premier tel que γ soit une unité p-adique, et que les coefficients des
polynômes

T (ζ
b0μ
w xb1)x−min{0,b1} deg(T )

T ′(ζ a0μ
w xa1)

soient des entiers p-adiques.
Alors :

p |T ′(ζ a0μ
w γ (wν+μ)a1) =⇒ p |T (ζ b0μ

w γ (wν+μ)b1).c

Donc, pour tout n ≡ μ (mod w), on a :

p |T ′(αn) =⇒ p |T (βn)
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et comme cette propriété est vraie pour tout μ ∈ {0, . . . , w − 1}, ceci achève la démon-
stration. 	


Preuve du théorème 3. Montrons d’abord que la condition est nécessaire. On applique le
théorème 2 avec T ′ = Φk , T = Φl , et on obtient

(15) α = ζ a0
w γ

a1 , β = ζ b0
w γ

b1 , (a1, b1) = 1, a1 > 0

et

Φk(ζ
a0μ
w xa1) |Φl(ζ b0μ

w xb1) ∀μ ∈ {0, . . . , w − 1}.
Comme les zéros de Φk sont les ζ κk , κ premier à k, et les zéros de Φl les ζ λl , λ premier

à l, on obtient que pour μ ∈ Z, tout κ premier à k et tout t ∈ Z on a :

ζ b0μ
w ζ−a0μ

wa1
ζ κ+tkka1

= ζ b0μka1−b1a0μk+b1w(κ+tk)
kwa1

= ζ λl
avec λ premier à l.

Donc l divise kwa1, et

(16)
(
k(b0a1 − b1a0)μ+ wκb1 + wkb1t, kwa1

) = kwa1

l
.

En appliquant le lemme 4 deux fois, on obtient

(17) kwa1 |wkb1, kwa1 | k(b0a1 − b1a0)

comme (a1, b1) = 1, la première relation donne a1 = 1, et la seconde w | (b0 − a0b1) ;
donc en vertu de (15), il vient β = αb1 .

Il résulte de (16) et de (17) que

(wκb1, kw) = kw
l

et comme (k, κ) = 1, on trouve b1 = k
l
λ, (λ, l) = 1, donc l | k et β = αkλ/l .

Montrons maintenant que la condition est suffisante.
Si l divise k et si β = αkλ/l , désignons par τ le plus grand diviseur de k premier à l et

soit n ∈ N. Alors d’après le lemme 5

Φl(β
n) = Φl(αkλn/l) =

∏
d |λτ

Φld(α
kn/(lτ )) =

∏
d |λτ

Φkd/τ (α
n).

c

Il en résulte que

Φl(β
n)Φk(α

n)−1 =
∏

d |λτ, d �=τ
Φkd/τ (α

n)

et donc, pour tout idéal premier p de K tel que α soit une unité p-adique on a :

p |Φk(αn) =⇒ p |Φl(βn). 	


Preuve du corollaire 1. La condition que les αi sont premiers deux à deux et ne sont pas
des unités de K implique qu’ils sont multiplicativement indépendants. En appliquant le



1010 H. Divisibility and congruences

théorème 1, il vient que

βdi =
r∏
j=1

α
ei,j
j

avec d entier> 0. Comme lesβi sont des entiers et lesαi ne sont pas des unités algébriques,
il vient que les ei,j sont des entiers � 0. Comme les βi sont premiers entre eux deux à
deux, il vient que pour chaque j , au plus un des ei,j est non nul. Mais comme βi n’est pas
une unité de K, il en résulte que pour chaque i au moins un des ei,j est non nul. Il existe
donc une permutation ji de {1, . . . , r} telle que

βdi = α
ei,ji
ji
.

Comme ni αi , ni βi n’est, aux racines de l’unité près, une puissance parfaite dans K, il
vient finalement que βi = ζ biw αj , avec bi ∈ Z. 	


Preuve du corollaire 2. On applique le corollaire 1 avec T = T ′ = x1 + x2 + 1. Il en
résulte, que quitte à renuméroter, on peut écrire βi = εiαi , où εi ∈ {±1}, pour i = 1, 2.

• Si ε1ε2 = −1, on obtient une contradiction pour n impair en utilisant un idéal premier
de norme assez grande divisant αn1 + αn2 + 1 et donc 2αn1 ou 2αn2 .

• Si ε1 = ε2 = −1, on obtient de même que p divise la somme

(αn1 + αn2 + 1)+ (βn1 + βn2 + 1) = 2.

D’où le résultat. 	


V. Exemples de polynômes

Proposition 1. Soit F(x) = ∑
h

ah1,...,ht x
h1
1 · · · xhtt et G(y) = ∑

l

bl1,...,ls y
l1
1 · · · ylss des

polynômes à coefficients dans Z tels que Ω(F) et Ω(G) soient finis et non vides.
Soit ‖F‖ = ∑

h

∣∣ah1,...,ht

∣∣. Posons H(x, y) = μF(x) + λG(y) avec λ,μ ∈ Z et

|λ| > |μ| · ‖F‖. Alors Ω(H) = Ω(F)×Ω(G) et est donc fini et non vide.

Preuve. Soit z = (x, y) ∈ Ω(H), et K un corps de nombres de degré N , contenant tous
les xi, yj et leur conjugués. Soit T = Gal(K/Q), alors :

μN
∏
σ∈T

F (xσ ) = (−λ)N
∏
σ∈T

G(yσ ) =⇒
∣∣∣(−λ)N ∏

σ∈T
G(yσ )

∣∣∣ � ‖F‖N |μ|N.
Si G(y) �= 0, il vient |λ| � |μ| · ‖F‖, contradiction. Donc G(y) = 0 et par conséquent
F(x) = 0. 	


Cette proposition permet de construire des exemples à volonté :

(a) 1+ x1 + λ(1+ y1) avec |λ| � 3.



H10. Suites récurrentes linéaires 1011

(b) 1+ x1 + x2 + λ(1+ y1 + y2) avec |λ| � 4.
(c) On peut aussi mélanger les variables 1 + x1 + x2 + λ(1 + x1 + y2) avec |λ| � 4

(il faut vérifier que Ω est non vide).
(d) Le polynôme x + y + z− 3xyz, oùΩ = {(1, 1, 1), (−1,−1,−1)}, permet aussi de

construire des exemples de suites récurrentes linéaires caractérisées par l’ensemble
de leurs diviseurs premiers.

(e) Enfin, on trouvera dans [11] une étude de ce type de polynômes ; par exemple, le
polynôme

T (x, y) = x2y−2xy2+2x−y où Ω = {(−i, j i), (i,−ji), (−i, j2i), (i,−j2i)}
(cf. [11], page 132), est donc un polynôme possédant les propriétés utilisées dans les
lignes qui précèdent.
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Let n be a positive integer, K a number field, αi ∈ K (1 � i � k), β ∈ K . A simple
necessary and sufficient condition was given in [7] in order that, for almost all prime
ideals p of K , solubility of the k congruences xni ≡ αi (mod p) should imply solubility
of the congruence xn ≡ β (mod p), where ni |n. The aim of this paper is to extend that
result to the case where the congruence xn ≡ β (mod p) is replaced by the alternative of l
congruences xn ≡ βj (mod p). The general result is quite complicated, but it simplifies
if n or K satisfy some restrictions. Here are precise statements, in which ζn denotes a
primitive nth root of unity, |A| is the cardinality of a set A, Kn = {xn : x ∈ K} and F is
the family of all subsets of {1, . . . , l}.
Theorem 1. Let n and ni be positive integers, ni |n (1 � i � k),K be a number field and
αi, βj ∈ K∗ (1 � i � k, 1 � j � l). Consider the implication

(i) solubility in K of the k congruences xni ≡ αi (mod p) implies solubility in K of at
least one of the l congruences xn ≡ βj (mod p).

Then (i) holds for almost all prime ideals p of K if and only if

(ii) for every unitary divisor m > 1 of n and, if n ≡ 0 (mod 4), for every m = 2m∗,
wherem∗ is a unitary divisor of the odd part of n, there exists an involution σm of F
such that for all A ⊂ {1, . . . , l}

|σm(A)| ≡ |A| + 1 (mod 2),(1) ∏
j∈σm(A)

βj =
∏
j∈A
βj

k∏
i=1

α
aim/(m,ni )
i Γ m,(2)

where ai ∈ Z, Γ ∈ K(ζm)∗.
Corollary 1. Let wn(K) be the number of n-th roots of unity contained in K and assume
that

(3) (wn(K), lcm[K(ζq) : K]) = 1,

where the least common multiple is over all prime divisors q of n and additionally q = 4 if
4 |n. The implication (i) holds for almost all prime ideals p ofK if and only if there exists
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an involution σ of F such that for all A ⊂ {1, . . . , l}
(4) |σ(A)| ≡ |A| + 1 (mod 2)

and

(5)
∏
j∈σ(A)

βj =
∏
j∈A
βj

k∏
i=1

α
ain/ni
i γ n,

where ai ∈ Z, γ ∈ K∗.

The condition (3) holds for every K if n = 2 or n = le, where l is an odd prime, and
for K = Q if n is odd.

Corollary 2. For n = ni = 2 (1 � i � k), (i) holds for almost all prime ideals p of K if
and only if

(iii) there exists a subset A0 of {1, . . . , l} such that

(6) |A0| ≡ 1 (mod 2)

and

(7)
∏
j∈A0

βj =
k∏
i=1

α
ai
i γ

2
0 ,

where ai ∈ Z, γ0 ∈ K∗.

Corollary 2 contains as a special case (K = Q, k = 0) a theorem of Fried [3],
rediscovered by Filaseta and Richman [2].

The case n = 2e (e � 2) is covered by the following corollary, in which τ denotes
the greatest integer such that ζ2τ + ζ−1

2τ ∈ K . This corollary is of interest only if ζ4 /∈ K ,
otherwise (3) holds.

Corollary 3. For n = 2e (e � 2) and ni > 1 (1 � i � k), (i) holds for almost all prime
ideals p of K if and only if simultaneously (iii) holds and

(iv) there exists an involution σ of F such that for all A ⊂ {1, . . . , l} we have (4) and

(8)
∏
j∈σ(A)

βj = ε
∏
j∈A
βj ·

k∏
i=1

α
ain/ni
i γ n,

where ai ∈ Z, γ ∈ K∗ and

(9) ε ∈
{
{1,−1} if e < τ,

{1, (−1)n/2
τ
(ζ2τ + ζ−1

2τ + 2)n/2} if e � τ .

The caseK = Q, n odd is covered by Corollary 1. The caseK = Q, n even is covered
by the following
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Theorem 2. Let n = 2νn∗, ν > 0, n∗ odd, ni |n (1 � i � k), K = Q.
The implication (i) holds for almost all prime ideals p of K if and only if

(v) for everym = 2νm∗ and, if ν = 2, for everym = 2m∗, wherem∗ is a unitary divisor
of n∗, there exists an involution σm of F such that for all A ⊂ {1, . . . , l} we have (1)
and ∏

j∈σm(A)
βj = ε

∏
j∈A
βj

k∏
i=1

α
aim/(m,ni )
i δm/2γm,

where ai ∈ Z, γ ∈ Q∗, δ is a fundamental discriminant dividing m and

ε ∈
{
{1,−2m/2} if m ≡ 4 (mod 8),

{1} otherwise.

Corollary 4. Let n = 2νn∗, ν � 0, n∗ odd, β1, β2 ∈ Q∗. The alternative of congruences

xn ≡ βj (mod p) (1 � j � 2)

is soluble for almost all primes p, if and only if either

(10) βi ∈ Qn

for some i � 2, or there is a j � 2, a prime q |n∗ with qe ‖n∗ and some γ1, γ2 ∈ Q such
that one of the following holds:

• ν = 1 and

(11) βj =
(
(−1)(q−1)/2q

)n/2
γ n1 , β3−j = γ n/q

e

2 ,

• ν = 2 and either

(12) βj = −2n/2γ n1 , β3−j = γ n/22

or

(13) βj = qn/2γ n1 , β3−j ∈ {γ n/q
e

2 ,−2n/2q
e

γ
n/qe

2 },
• ν � 3 and either

(14) βj = 2n/2γ n1

or

(15) βj ∈ {qn/2γ n1 , 2n/2qn/2γ n1 }, β3−j ∈ {γ n/q
e

2 , 2n/2q
e

γ
n/qe

2 }.
The proofs are based on eight lemmas and use the n-th power residue symbol, which

is defined as follows. If a number field K contains ζn, then for every prime ideal p of K
prime to n and every p-adic unit α of K , (α|p)n is a unique number ζ jn that satisfies the
congruence

α(Np−1)/n ≡ ζ jn (mod p),

where Np is the absolute norm of p. Moreover, ind α is the index of α with respect to a
fixed primitive root modulo the relevant prime ideal.
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We give two proofs of Corollary 2, one short using Theorem 1 and the other longer,
but using neither Theorem 1 nor the lemmas below, except the classical Lemma 3.

At the end of the paper we give a deduction of the more difficult necessity part of
Theorem 1 of [7] from Theorem 1 above.

We thank Professor J. Browkin for some helpful suggestions.

Lemma 1. Let G be a finite abelian group, Ĝ its group of characters and gj ∈ G
(1 � j � l). If

(16)
l∏
j=1

(χ(gj )− 1) = 0

for every χ ∈ Ĝ then there exists an involution σ of F such that for all A ⊂ {1, . . . , l} we
have (4) and ∏

j∈σ(A)
gj =

∏
j∈A
gj .

Proof. For g ∈ G let

c(g) =
∑

A⊂{1,...,l}∏
j∈A gj=g

(−1)|A|.

The equality (16) can be written in the form∑
g∈G

c(g)χ(g) = 0

or, if h is any fixed element of G,∑
g∈G

c(g)χ(gh−1) = 0.

Summing over all characters χ gives |G|c(h) = 0, hence c(h) = 0, and h being arbitrary,
c(g) = 0 for all g ∈ G. It follows that for all g ∈ G the number of subsets A of {1, . . . , l}
with

∏
j∈A
gj = g and |A| odd equals the corresponding number with |A| even, hence there

is an involution σg of the family of subsets A of {1, . . . , l} with
∏
j∈A
gj = g such that

|σg(A)| ≡ |A| + 1 (mod 2).

The involution σ is obtained by putting together all involutions σg , i.e., σ(A) = σg(A) for
g = ∏

j∈A
gj . 	


Lemma 2. Let n be a positive integer, K and L be number fields, K(ζn) ⊂ L, βj ∈ K∗
(1 � j � l). Let H be the multiplicative group generated by β1, . . . , βl , and H1 the
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intersection of H with Ln. For every χ ∈ Ĥ/H1 there exists a set P , with positive
Dirichlet density, of prime ideals P of L such that

(17) χ([x]) = (x|P)n.
where [x] is the coset of H1 in H containing x.

Proof. By a theorem of Skolem [9] the field L has a multiplicative basis ζw, π1, π2, . . . ,
where ζw is a root of unity and π1, π2, . . . are generators of infinite order. Let πs be the
last generator that occurs in the representation of β1, . . . , βl . We havec

H/H1 < J/J
n,

whereJ is the group generated by ζw, π1, . . . , πs . Indeed,H < J and the relationsh1 ∈ H ,
h2 ∈ H and h1h

−1
2 ∈ J n together imply h1h

−1
2 ∈ H1. Hence for every χ ∈ Ĥ/H1 there

exists χ1 ∈ Ĵ /J n such that

(18) χ(y) = χ1(y) for y ∈ H/H1.

Clearly χ1(y)
n = 1 for all y ∈ J/J n. On the other hand, by Theorem 4 of [8] with σ = 1,

for any integers c0, . . . , cs there exist infinitely many prime ideals P of L such that

(ζw|P)n = ζ c0n , (πr |P)n = ζ crn (1 � r � s).

Since the proof is via the Chebotarev density theorem (see [8], p. 263), the infinite set of
prime ideals in question has a positive Dirichlet density. Hence for every χ1 ∈ Ĵ /J n there
exists a set P of positive Dirichlet density such that for P ∈ P ,

(19) χ1(x) = (x|P)n for x ∈ J,
where x is the coset of J n in J containing x. Since by (18),

χ([x]) = χ1(x) for x ∈ H,
(17) follows from (19). 	


Lemma 3. Let n ∈ N,K be a number field, ζn ∈ K , and α1, . . . , αk, β elements ofK∗. If

n
√
β ∈ K( n√α1, . . . ,

n
√
αk
)
,

then

β =
k∏
i=1

α
ai
i γ

n,

where ai ∈ Z, γ ∈ K∗.

Proof. See [5], p. 222, formula (2). 	
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Lemma 4. The condition (i) for almost all prime ideals p ofK implies the existence of an
involution σ of F such that, for all A ⊂ {1, . . . , l}, (4) holds and

(20)
∏
j∈σ(A)

βj =
∏
j∈A
βj ·

k∏
i=1

α
ain/ni
i Γ n for some ai ∈ Z, Γ ∈ K(ζn)∗.

Proof. Let χ be a character of the group H/H1 described in Lemma 2 with
L = K(ζn, ξ1, . . . , ξk), where ξnii = αi (1 � i � k). By Lemma 2 there exists a set P ,
with positive Dirichlet density, of prime ideals P of L such that

(21) (x|P)n = χ([x]) for x ∈ H,
where [x] is the coset ofH1 inH containing x. Since prime ideals of degree greater than 1
have Dirichlet density 0 and relative norms of prime ideals from P have positive Dirichlet
density, there is P ∈ P such that p = NL/KP has the property that solubility in K of
the k congruences xni ≡ αi (mod p) implies solubility of at least one of the l congruences
xn ≡ βj (mod p). Moreover, the congruence xni ≡ αi (mod P) has the solution x = ξi
in L, hence, P being of relative degree 1, the congruence xni ≡ αi (mod p) has a solution
in K and, by (i),

l∏
j=1

(
(βj |P)n − 1

) = 0.

By (21) we have

l∏
j=1

(
χ([βj ])− 1

) = 0

and, χ being arbitrary, it follows by Lemma 1 that there exists an involution σ of F such
that (4) holds and ∏

j∈σ(A)
[βj ] =

∏
j∈A
[βj ].

The last formula means that

(22)
∏
j∈σ(A)

βj
∏
j∈A
β−1
j = Γ n1 for some Γ1 ∈ L.

Since Γ n1 ∈ K(ζn), by Lemma 3 we have

Γ n1 =
k∏
i=1

α
ain/ni
i Γ n for some ai ∈ Z, Γ ∈ K(ζn),

which together with (22) gives (20). 	
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Lemma 5. If there exists an involution σ of F such that, for all A ⊂ {1, . . . , l}, (4) holds
and

(23)
∏

j∈σ(A)
βj =

∏
j∈A
βj ·

k∏
i=1

α
aim/(m,ni )
i Γ m

for some ai ∈ Z and Γ ∈ K(ζm), then the implication (i) holds for all prime ideals p ofK
such that all αi, βj are p-adic units and (Np− 1, n) = m.

Proof. Let p satisfy the assumptions of the lemma and assume that the k congruences
xni ≡ αi (mod p), hence also x(m,ni ) ≡ αi (mod p), are soluble in K . Let g be a primitive
root mod p and Φm the m-th cyclotomic polynomial. We have

Φm(x) ≡
∏

(k,m)=1

(x − g(Np−1)k/m) (mod p),

hence, by Dedekind’s theorem, p has a prime ideal factor P inK(ζm) of relative degree 1.
Solubility in K of the congruences in question implies(

α
aim/(m,ni )
i |P)

m
= 1 (1 � i � k)

and, since (Γ m|P)m = 1, by (23) we have( ∏
j∈σ(A)

βj

∣∣∣P)
m
=
(∏
j∈A
βj

∣∣∣P)
m
,

hence

2
l∏
j=1

(
1− (βj |P)m

)
=

∑
A⊂{1,...,l}

(
(−1)|A|

(∏
j∈A
βj

∣∣∣P)
m
+ (−1)|σ(A)|

( ∏
j∈σ(A)

βj

∣∣∣P)
m

)
=

∑
A⊂{1,...,l}

(
(−1)|A| + (−1)|σ(A)|

)(∏
j∈A
βj

∣∣∣P)
m
= 0.

Thus (βj |P)m = 1 for at least one j � l. Since P is of relative degree 1, this means that
the congruence

xm ≡ βj (mod p)

is soluble inK . Choosing an integer t such that (Np−1)t ≡ m (mod n)we have for every
p-adic unit x of K ,

x(Np−1)t ≡ 1 (mod p),

hence the congruence xn ≡ βj (mod p) is soluble in K . 	
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Lemma 6. Letm, ni ∈ N (1 � i � k) andni = n′in′′i , where (n′′i , m) = 1. Letαi, βj ∈ K∗
(1 � i � k, 1 � j � l). If there exists a prime ideal p0 of K such that m, ni, αi, βj are
p0-adic units, the congruences

(24) xn
′
i ≡ αi (mod p0) (1 � i � k)

are soluble in K and the congruences

(25) xm ≡ βj (mod p0) (1 � j � l)

are insoluble inK , then there exists a set P , with positive Dirichlet density, of prime ideals
of K such that for p ∈ P the congruences

(26) xni ≡ αi (mod p) (1 � i � k)

are soluble in K and the congruences

(27) xm ≡ βj (mod p) (1 � j � l)

are insoluble in K .

Proof. Assume first that all ni are prime powers, ni = lνii , where li are primes and let

I0 = {1 � i � k : li |m},
I1 = {1 � i � k : li |Np0 − 1} \ I0,
I2 = {1 � i � k} \ I0 \ I1.

Let further (Np0 − 1,m) = m′. We set

L = K(ζni , ni√αi (1 � i � k), ζm′ , m
′√
βj (1 � j � l)

)
,

take P0 to be a prime ideal factor of p0 in L, and let S be the element of the Galois group
of L/K such that

ϑS ≡ ϑNp0 (mod P0)

for all P0-adic units ϑ of L.
By the assumption about congruences (24) the congruence

xni ≡ αi (mod p0)

has a solution xi ∈ K for i ∈ I0, hence there exists a zeroAi of xni −αi such thatAi ≡ xi
(mod P0) and then

(28) ASi = Ai.
For i ∈ I1 ∪ I2 and 1 � j � l, we choose Ai and Bj to be arbitrary zeros of xni − αi and
xm

′ − βj , respectively.
By the assumption about congruences (25) also the congruences

(29) xm
′ ≡ βj (mod p0) (1 � j � l)
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are insoluble in K . We have

(30)
ζ Sm′ = ζNp0

m′ = ζm′ , ζ Sni = ζNp0
ni

(1 � i � k),

ASi = ζ aini Ai (i ∈ I1 ∪ I2), BSj = ζ bjm′Bj (1 � j � l),

where ai, bj ∈ Z. Since the congruences (25) are insoluble in K we have

(31) bj �≡ 0 (modm′) (1 � j � l).

Put now

n0 = lcm{ni : i ∈ I1}.
We have

1+Np0 + . . .+Np
n0−1
0 = (Np

n0
0 − 1)/(Np0 − 1) ≡ 0 (mod ni) (i ∈ I1),

1+Np0 + . . .+Np
n0−1
0 ≡ n0 (modm′).

It follows from (28) that

(32) AS
n0
i = Ai (i ∈ I0)

and from (30) and (31) that

AS
n0
i = ζ ai(1+Np0+...+Np

n0−1
0 )

ni Ai = Ai (i ∈ I1 ∪ I2),(33)

BS
n0
j = ζ bj (1+Np0+...+Np

n0−1
0 )

m′ Bj = ζ bj n0

m′ Bj �= Bj (1 � j � l),(34)

ζ S
n0
m′ = ζm′ .(35)

If now P is a prime ideal of L such that the Frobenius symbol[
L/K

P

]
= Sn0

and p is the prime ideal ofK divisible by P we infer from (32)–(35) that the congruences
(26) are soluble in K and the congruences

xm
′ ≡ βj (mod p) (1 � j � l),

hence also the congruences (27), are insoluble in K . However, by Chebotarev’s density
theorem the set of relevant prime ideals p has a positive Dirichlet density.

Consider now the general case. Let

(36) ni =
hi∏
j=1

qij

where for each i, qij (1 � j � hi) are powers of distinct primes. Since the congruences
(24) are soluble in K , for each i � k and each j such that (qij ,m) �= 1 the congruence

xqij ≡ αi (mod p0)
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is soluble in K . Now, by the already proved case of the lemma, there exists a set P , with
positive Dirichlet density, of prime ideals of K such that for each p ∈ P the congruences

xqij ≡ αi (mod p) (1 � i � k, 1 � j � hi)
are soluble, but the congruences (27) insoluble. Thus for all i, j we have

ind αi ≡ 0 (mod (Np− 1, qij )).

It now follows from (36) that for all i,

ind αi ≡ 0 (mod (Np− 1, ni)),

hence the congruences (26) are soluble. 	


Lemma 7. Suppose that (i) holds for almost all prime ideals p of K .

(vi) If m is a unitary divisor of n, then for almost all prime ideals p of K , solubility inK
of the k congruences

(37) x(m,ni ) ≡ αi (mod p)

implies solubility in K of at least one congruence

(38) xm ≡ βj (mod p) (1 � j � l).

(vii) If n ≡ 0 (mod 4) and m = 2m∗, where m∗ is a unitary divisor of the odd part of n,
then for almost all prime ideals p of K , solubility in K of the k congruences

x(m,ni ) ≡ αi (mod p)

implies solubility in K of at least one congruence

xm ≡ −1 (mod p), xm ≡ βj (mod p) (1 � j � l).

Proof. In order to prove statement (vi) assume to the contrary that there exists a prime ideal
p0 of K such that m, ni, αi and βj are p0-adic units, the congruences (37) are soluble and
the congruences (38) are insoluble. We apply Lemma 6 with

n′i = (m, ni), n′′i =
ni

(m, ni)
.

The assumptions of the lemma are satisfied, since with our choice of m

(m, n′′i ) =
(m2, ni)

(m, ni)
= 1

and the assertion of the lemma contradicts the assumptions of Lemma 7.
A similar argument shows that if statement (vii) were false, there would exist a set P ,

with positive Dirichlet density, of prime ideals of K such that for p ∈ P the congruences

(39) xn
∗
i ≡ αi (mod p) (1 � i � k)

would be soluble and the congruences

(40) xm ≡ −1 (mod p), xm ≡ βj (mod p) (1 � j � l)
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insoluble, where n∗i is the greatest divisor of ni not divisible by 4. However, insolubility
of xm ≡ −1 (mod p) implies

Np− 1

2
= ind(−1) �≡ 0 (mod (Np− 1, m)),

hence for m ≡ 2 (mod 4), Np ≡ 3 (mod 4) and then solubility of (39) implies solubility
of (26), while (40) is insoluble, contrary to the assumption of the lemma. 	


Proof of Theorem 1. Necessity. The existence of an involution σm satisfying (1) and (2) for
m being a unitary divisor of n follows at once from Lemma 4 and (vi). In order to prove
the same form of the form 2m∗, wherem∗ is a unitary divisor of the odd part of n, denote
bym the least unitary divisor of n divisible by m. LetGm, resp.Gm, be the multiplicative
subgroup of K∗ generated by αm/(m,ni )i (1 � i � k) and K(ζm)∗m, resp. by αm/(m,ni )i

(1 � i � k) and K(ζm)∗m.
If Gm ⊂ Gm, then it suffices to take σm = σm.
If Gm �⊂ Gm, let δ ∈ Gm \Gm. We have

(41) δ =
k∏
i=1

α
aim/(m,ni )
i Γ m,

where ai ∈ Z, Γ ∈ K(ζm)∗. By Theorem 3 of [8] we have Γ m = Γ m0 for some
Γ0 ∈ K(ζ4m∗). Taking norms of both sides of (41) with respect toK(ζm) and denoting the
norm of Γ0 by Γ1 we obtain

δ2 =
k∏
i=1

α
2aim/(m,ni )
i Γ m1 ,

hence

δ = ±
k∏
i=1

α
aim/(m,ni )
i Γ

m/2
1 ,

and, since

m

(m, ni)

∣∣∣ m

(m, ni)
, m

∣∣∣ m
2
, Γ1 ∈ K(ζm), δ /∈ Gm,

the plus sign is excluded and we have

−1 /∈ Gm and δ ≡ −1 (mod ×Gm).

Since δ ≡ 1 (mod ×Gm) it follows that[
Gm : Gm ∩Gm

] = 2, Gm = (Gm ∩Gm) ∪ δ(Gm ∩Gm).
From the existence of σm satisfying (1) and (2) it follows that for each B ∈ K∗,
(42)

∑
A∈V (B)

(−1)|A| +
∑

A∈V (δB)
(−1)|A| = 0,



H11. On power residues 1023

where

V (B) =
{
A ∈ F :

∏
j∈A
βj ≡ B (mod ×Gm ∩Gm)

}
.

Let S = { ∏
j∈A
βj : A ∈ F

}
and let {B1, . . . , Br} be a subset of S maximal with respect to

the property that

Bi ≡ B (mod ×Gm), Bj �≡ Bi (mod ×Gm ∩Gm) for j �= i.
Set

U(B) =
{
A ∈ F :

∏
j∈A
βj ≡ B (mod ×Gm)

}
.

Replacing B by Bi in (42) and summing with respect to i we obtain∑
A∈U(B)

(−1)|A| +
∑

A∈U(−B)
(−1)|A| = 0.

However, from (vii) and Lemma 4 it follows that∑
A∈U(B)

(−1)|A| +
∑

A∈U(−B)
(−1)|A|+1 = 0.

Adding the last two inequalities we obtain

2
∑

A∈U(B)
(−1)|A| = 0,

hence there exists an involution �B of the family of all subsets A of {1, . . . , l} with∏
j∈A
βj = B, such that

|�B(A)| ≡ |A| + 1 (mod 2).

The involution σm is obtained by combining all involutions �B .

Sufficiency. Consider a prime ideal p of K such that αi, βj are all p-adic units and let

(43) (Np− 1, n) = m1.

If m1 = 1 the implication (i) is obvious.
If m1 > 1, m1 �≡ 0 (mod 2) or m1 ≡ 0 (mod 4), let m be the least unitary divisor of

n divisible by m1. By condition (ii) we have (1) and (2) where Γ ∈ K(ζm). However,
Γ m ∈ K , hence also

Γ m ∈ K(ζq : q |m, q prime or q = 4) =: K0.

It follows now from Theorem 3 of [8] that Γ m = Γ m0 , where Γ0 ∈ K0. However, by the
definition of m, we have K0 ⊂ K(ζm1) and also

m1

(m1, ni)

∣∣∣ m

(m, ni)
.

The implication (i) follows now from Lemma 5.
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If m1 ≡ 2 (mod 4), we take m = 2m∗, where m∗ is the least unitary divisor of n
divisible by m1/2, and argue as before. 	


Proof of Corollary 1. Under the assumption (3) the conditions Γ n ∈ K , Γ ∈ K(ζn) imply,
by Theorem 3 of [8], that Γ n = γ n, γ ∈ K , hence for σ = σn, (1) implies (4) and (2)
implies (5). 	


First proof of Corollary 2. The necessity of condition (iii) follows from Corollary 1 on
takingA0 = σ(∅). Conversely, if (iii) holds, then we define the involution σ in Corollary 1
by σ(A) = A÷ A0 (÷ denotes the symmetric difference) and notice that

∏
j∈σ(A)

βj =
∏
j∈A
βj

k∏
i=1

α
ai
i

(
γ0

∏
j∈A∩A0

βj

)2
,

hence (4) and (5) are satisfied and, by Corollary 1, (i) holds for almost all prime ideals p

of K . 	


Second (direct) proof of Corollary 2. In order to prove the necessity of the condition,
choose a maximal subset {i1, . . . , is} of {1, . . . , l} such that

s∏
r=1

β
er
ir
∈ L2, where L = K(√α1, . . . ,

√
αk),

implies er ≡ 0 (mod 2) (1 � r � s).
By the theorem of Chebotarev [1] there exists a set P , with positive Dirichlet density,

of prime ideals P of L of degree 1 such that

(44) (βir |P)2 = −1 (1 � r � s).

Let p be the prime ideal ofK divisible by P. Since P is of degree 1 and the k congruences
x2 ≡ αi (mod P) are soluble in L, they are soluble in K and, by the implication,

(45) (βj |p)2 = 1 for at least one j � k.

On the other hand, for each j � l, by the maximality of {i1, . . . , is} we have

(46) βj =
s∏
r=1

β
ejr
ir
γ 2
j , ejr ∈ {0, 1}, γj ∈ L.

If for each j we have
s∑
r=1

ejr ≡ 1 (mod 2),

then the formulae (44) and (46) imply (βj |P)2 = −1, contrary to (45). If for a certain j0
we have

s∑
r=1

ej0r ≡ 0 (mod 2),
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then taking A0 = {ir : ej0r = 1} ÷ {j0} we get (6) and

(47)
∏
j∈A0

βj =
{
β2
j0
γ−2
j0

if j0 ∈ A0,

γ−2
j0

if j0 �∈ A0.

However, since γ−2
j0
∈ K , it follows by Lemma 3 that

γ−2
j0
=

k∏
i=1

α
ai
i γ

2, for some ai ∈ Z, γ ∈ K,

which together with (47) implies (7).
In order to prove the sufficiency of the condition, let p be a prime ideal of K such that

αi and βj are p-adic units and the k congruences x2 ≡ αi (mod p) are soluble in K . Then
(7) gives ∏

j∈A0

(βj |p)2 = 1 �= (−1)|A0|,

hence (βj |p)2 = 1 for at least one j ∈ A0. 	


Proof of Corollary 3. Necessity. For n = 2e, by a theorem of Hasse [4] (see also Lemma 6
in [8]), Γ n ∈ K with Γ ∈ K(ζn) implies Γ n = εγ n, where ε is given by (9) and γ ∈ K ,
hence (iv) follows from (ii) for σ = σn. Also (iii) follows from (ii), on taking m = 2 and
A0 = σ2(∅).
Sufficiency. There is only one unitary divisor m > 1 of n = 2e, namely m = n, and for
this m, (ii) follows from (iv) by the theorem of Hasse quoted above, used in the opposite
direction. For m = 2, (ii) follows from (iii) on taking σ2(A) = A÷ A0. 	


Lemma 8. Let m be even and α ∈ Q∗. Then α ∈ Q(ζm)
m if and only if

α = εδm/2γm,
where γ ∈ Q∗, δ is a fundamental discriminant dividing m and

ε ∈
{
{1,−2m/2} if m ≡ 4 (mod 8),

{1} otherwise.

Proof. This is a reformulation of a lemma of Mills [6]. 	


Proof of Theorem 2. The necessity of the conditions follows at once from Theorem 1
and Lemma 8. In order to prove the sufficiency we consider the cases ν � 2 and ν � 3
separately. If ν � 2, then (ii) follows from (v) and Lemma 8 for every even unitary divisor
m of n. For an odd unitary divisor m of n it suffices to take σm = σ2m.

For ν � 3 and m �≡ 2 (mod 4), (ii) follows as before, while for m ≡ 2 (mod 4) it
suffices to take σm = σn. Indeed, for ν � 3 we have ε = 1 and for every number of the
form εδn/2γ n with δ, γ ∈ Q belongs to Qm. 	
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Proof of Corollary 4. Necessity. In the case ν = 0 the assertion follows at once from
Corollary 1. We shall consider in detail only the case ν = 1; the proof in other cases is
similar and will be only indicated briefly.

Applying Theorem 2 for ν = 1 and m = n we infer that for {j} = σn(∅),
(48) βj = δn/2n γ nn for some γn ∈ Q,

where δn is a fundamental discriminant dividing n. If δn = 1 we have βj ∈ Qn, hence (10)
with i = j .

If δn = (−1)(q−1)/2q, where q is an odd prime, we have βj as in (11). Now we apply
Theorem 2 for m0 = 2 and m1 = n/qe. If σmi (∅) = {j} then

(49) βj = δmi/2mi γ
mi
i for some γi ∈ Q (i = 0, 1),

where δmi is a fundamental discriminant dividingmi . Now the equations (48) and (49) are
incompatible, since denoting by k(x) the square-free kernel of an integer x, we have

k(δ
mi/2
mi γ

mi
i ) = δmi �= δn = k(δn/2n γ nn ).

Therefore, σmi (∅) = {3− j} (i = 0, 1) and we obtain

β3−j = δmi/2mi γ
mi
i (i = 0, 1).

We have δm0 = 1, hence β3−j ∈ Q[2,n/2qe] = Qn/q
e
, which proves (11).

Suppose now that δn has at least two distinct prime factors q1 and q2 and qeii ‖n.
Applying Theorem 2 for m0 = 2, mi = n/qeii (i = 1, 2) we obtain, as before, σmi (∅) =
{3− j} (i = 0, 1, 2). Then

β3−j ∈ Q2 ∩
2⋂
i=1

Qn/2q
ei
i ,

hence β3−j ∈ Qn, which gives (10) with i = 3− j .
For ν = 2, let σn(∅) = {j}.
If ε = 1 and δn = 1 or −4 we obtain (10) with i = j .
If ε = −2n/2 and δn = 1 or −4 we consider m0 = 2, m1 = n/2 and obtain (12).
If ε = −2n/2 and δn �= 1,−4 we consider m0 = 4, m1 = n/2 and obtain (10) with

i = 3− j .
If ε = 1 and δn has one odd prime factor q we considerm0 = 4,m1 = n/qe and obtain

(13).
If ε = 1 and δn has at least two odd prime factors q1, q2 we consider m0 = 4,

mi = n/qeii (i = 1, 2) and obtain (12) with j and 3− j interchanged.
For ν � 3 let σn(∅) = {j} and

βj = δn/2n γ nn .

If δn = 1 or −4 we obtain the case (10) with i = j .
If δn = ±8 we obtain the case (14). If δn has one odd prime factor q we consider

m0 = 2ν , m1 = n/qe and obtain (15). If δn has at least two odd prime factors q1 and q2
we consider m0 = 2ν , mi = n/qeii (i = 1, 2) and obtain (10) with i = 3− j or (14) with
3− j in place of j .
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Sufficiency. If (10) holds then for each relevant divisor m of n we take σm = cidi , where
ci, di are the cycles (∅ → {i}) and ({3− i} → {1, 2}), respectively.

If (11) holds, we take

σm =
{
cj dj if q |m,
c3−j d3−j if q /| m.

If (12) holds, we take

σm =
{
cj dj if 4 |m,
c3−j d3−j if 4 /| m.

If (13) holds, we take

σm =
{
cj dj if q |m, or 4 /| m,
c3−j d3−j if q /| m and 4 |m.

If (14) holds, we take

σm = cj dj .
If (15) holds, we take

σm =
{
cj dj if q |m,
c3−j d3−j if q /| m. 	


Deduction of Theorem 1 of [7] (necessity part) from Theorem 1 (above). Let n =
l∏
j=0
p
ej
j ,

where p0 = 2, pj are distinct odd primes and ej > 0 for j > 0. Applying Theorem 1
above with m = pejj we infer that

(50) β =
k∏
i=1

α
aij p

ej
j /(ni ,p

ej
j )

i Γ
p
ej
j

j

for some aij ∈ Z and Γj ∈ K(ζpejj ) (for m = 1 the conclusion is trivial). By the theorem

of Hasse [4] (see [8], Lemma 6)

(51) Γ
p
ej
j

j = εγ p
ej
j

j for some γj ∈ K, εj = 1 for j > 0

and

(52)

ε0 ∈ {1} if e0 � 1,

ε0 ∈ {1,−1} if 1 < e0 < τ,

ε0 ∈
{
1, (−1)2

ε0−τ
(ζ2τ + ζ−1

2τ + 2)2
ε0−1}

if e0 � τ.
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We take integers u0, . . . , ul satisfying the linear equation

l∑
j=0

n

p
ej
j

uj = 1

and set

γ =
l∏
j=0

γ
uj
j .

By (50) and (51) we have

γ n =
n∏
j=0

(
γ
p
ej
j

j

)nuj /pejj = βε−nu0/2ε0
0

l∏
j=0

k∏
i=1

α
−aij nuj /(ni ,pejj )
i ,

hence

(53) β

k∏
i=1

α
min/ni
i = εnu0/2ε0 γ n

for some mi ∈ Z, γ ∈ K∗.
If e0 � 1, or e0 > τ , or ε0 = 1, or u0 is even, we obtain, by (51), condition (i) or (iv)

of Theorem 1 of [7]. If 1 < e0 � τ , ε �= 1 and u0 is odd we apply Theorem 1 above with
m = 2. We obtain

β =
∏
2|ni
α
ai
i γ

2,

which combined with (53) gives, by (52),∏
2|ni
α
li
i = −δ2

and

β

k∏
i=1

α
min/ni
i =

{
−γ n if 1 < e0 < τ,

−(ζ2τ + ζ−1
2τ + 2

)n/2
γ n1 if e0 = τ,

for some δ, γ1 ∈ K∗. These are just conditions (ii) and (iii) of Theorem 1 of [7]. The proof
that conditions (i)–(iv) are sufficient is easy. 	
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Primitive divisors
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Commentary on I: Primitive divisors

by C. L. Stewart

Let a and b be coprime integers with |a| > |b| > 0 and let n be a positive integer.
A prime p is said to be a primitive divisor of an − bn if p divides an − bn but does
not divide am − bm for any positive integer m which is smaller than n. The study of
primitive divisors had its origins in the work of Bang [1], Zsigmondy [18] and Birkhoff
and Vandiver [3] from 1886, 1892 and 1904 respectively. It follows from their analysis that
the primitive divisors of an − bn are the prime factors of the n-th cyclotomic polynomial
evaluated at a and b, Φn(a, b), with at most one exception. The exception, if it exists, is
a prime factor of n. Gauss [7] and Dirichlet [6] factorized the polynomial Φn(x, 1) over
a suitable quadratic number field. Aurifeuille and Le Lasseur (see [1]) deduced from it
explicit non-trivial factorizations of the number Φn(x, y) for certain integers n, x and y.
Factorizations of the type they considered are now known as Aurifeuillian factorizations.
In a paper I1 written during a stay at Trinity College in Cambridge in 1961, Schinzel gave
some new Aurifeuillian factorizations. In addition, he used Aurifeuillian factorizations to
give conditions under which an− bn has at least two primitive divisors. Stevenhagen [15]
and Brent [4] have shown how to efficiently compute the factorizations given by Schinzel
in I1. In [8], Granville and Pleasants show that Schinzel determined all possible such
Aurifeuillian factorizations.

One may extend the notion of a primitive divisor to sequences of Lucas numbers and
sequences of Lehmer numbers. In 1913 Carmichael [5] proved that if un is the n-th term,
for n > 12, of a Lucas sequence whose associated characteristic polynomial has real roots
and coprime coefficients then un possesses a primitive divisor. Rotkiewicz [13], in 1962,
generalized Schinzel’s argument of I1 to give conditions under which un has at least two
primitive divisors.

In 1930 Lehmer [10] introduced sequences which are more general than Lucas se-
quences but retain their striking divisibility properties and these sequences are now re-
ferred to as Lehmer sequences. Twenty-five years later Ward [17] established the analogue
of Carmichael’s result for Lehmer sequences. In a sequence of three papers I2, I3 and I4
Schinzel used the Aurifeuillian factorizations from I1 to establish conditions under which
Lucas or Lehmer numbers have at least k primitive prime factors with k equal to 2, 3, 4, 6
or 8.

LetA andB be non-zero integers in an algebraic number fieldK and let n be a positive
integer. A prime ideal of the ring of algebraic integers ofK is said to be a primitive divisor
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of An − Bn if it divides the ideal generated by An − Bn but does not divide the ideal
generated by Am − Bm for any positive integer m with m < n. In I5 Schinzel proves
that if A and B are non-zero coprime algebraic integers whose quotient is not a root of
unity thenAn−Bn has a primitive divisor provided that n exceedsN(d), a number which
is effectively computable in terms of d where d is the degree of A/B over Q. In 1968
Postnikova and Schinzel [12] proved a weaker version of this result where N(d) was
replaced by N(A,B), a number which is effectively computable in terms of A and B.
The case d = 2 is of considerable interest since it gives information on non-degenerate
Lucas and Lehmer sequences whose associated characteristic polynomial has coprime
coefficients. In particular, if un is the n-th term of such a sequence and n exceeds N(2)
then un has a primitive divisor. Schinzel [14] had earlier established that un has a primitive
divisor if n exceeds a number which is effectively computable in terms of the coefficients
of the associated characteristic polynomial of the sequence. Stewart [16] proved that one
may take N(d) = max{2(2d − 1), e452d67} and that there are only finitely many such
Lehmer sequences whose n-th term, n > 6, n �= 8, 10 or 12, does not possess a primitive
divisor; for Lucas sequences the appropriate requirement is n > 4, n �= 6. Further these
sequences may be determined by solving certain Thue equations. Bilu, Hanrot and Voutier
[2] used a theorem of Laurent, Mignotte and Nesterenko [9] concerning lower bounds for
linear forms in the logarithms of two algebraic numbers, as elaborated by Mignotte [2], to
help explicitly determine all such exceptional Lucas and Lehmer sequences. In particular,
they proved that if n exceeds 30 and un is a Lucas or Lehmer number, from a sequence as
above, then un has a primitive prime factor.

Let A, B and d be as above and let k be a positive integer, ζk be a primitive k-th root
of unity andK be an algebraic number field containingA, B and ζk . In I6 Schinzel proves
that for each positive real number ε there exists a positive number c which depends on
d and ε such that if n exceed c(1 + log k)1+ε then there is a prime ideal of the ring of
algebraic integers ofK that dividesAn− ζkBn but does not divideAm− ζ jk Bm form < n
and any integer j . The case when k = 1 is the main result of I5.
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On primitive prime factors of an − bn

1.

Let a, b be relatively prime integers with |a| > |b| > 0. For any integer n > 0, let
φn(a, b) denote the n-th cyclotomic polynomial, defined by

φn(a, b) =
n∏
r=1
(r,n)=1

(a − ζ rnb),

where ζn is a primitive n-th root of unity.
A prime is called a primitive prime factor of an− bn if it divides this number but does

not divide aν − bν for 0 < ν < n. Zsigmondy [14] proved, and Birkhoff and Vandiver [4]
and Kanold [8] rediscovered, the following theorem (see [6], p. 195): the primitive prime
factors of an− bn coincide with the prime factors of φn(a, b), except for a possible prime
q1 which may divide φn(a, b) (to the first power only) and also divide n, and may be a
primitive prime factor of aσ − bσ , where σ = n/qκ1 and (q1, σ ) = 1. If there is such a
prime q1, then q1 = q(n), the greatest prime factor of n, since σ | (q1−1), whence σ < q1.

There is at least one primitive prime factor of an − bn except in the following cases:

n = 1, a − b = 1; n = 2, a + b = ±2μ (μ � 1);
n = 3, a = ±2, b = ∓1; n = 6, a = ±2, b = ±1.

If φn(a, b) is a prime, it is of course for n > 6 the only primitive prime factor of
an − bn. It is not obvious even that for every pair a, b there exists some n such that an−bn
has two primitive prime factors. In the present paper we give conditions which will ensure
that an−bn has at least two primitive prime factors, and in particular we prove that there are
infinitely many n for which this happens. The last assertion is an immediate consequence
of our main result, which follows. We use k(n) to denote the square-free kernel of n, that
is, n divided by its greatest square factor.

Theorem 2. Let

η =
{

1 if k(ab) ≡ 1 (mod 4),

2 if k(ab) ≡ 2 or 3 (mod 4).

Communicated by H. Davenport
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If n/ηk(ab) is an odd integer, then an− bn has at least two primitive prime factors except
in the following cases:

n = 1; a = ±(2α + 1)2, b = ±(2α − 1)2 or 4a = ±(pα + 1)2, 4b = ±(pα − 1)2;
n = 2; same but with ∓ for b instead of ±;
n = 3; |a| = ±3, b = ∓1 or a = ±4, b = ±1 or a = ±4, b = ∓3;
n = 4; |a| = 2, |b| = 1;
n = 6; a = ±3, b = ±1 or a = ±4, b = ∓1 or a = ±4, b = ±3;
n = 12; |a| = 2, |b| = 1 or |a| = 3, |b| = 2;
n = 20; |a| = 2, |b| = 1.

This theorem represents a continuation of the line of arithmetical investigations pur-
sued by Aurifeuille and Le Lasseur [1], Lucas [11], Bickmore [3], Cunningham [5],
Kraı̆tchik ([9], [10], pp. 87–91), Rotkiewicz [13].

2.

The proof of Theorem 2 is based on the following properties of the cyclotomic poly-
nomials. We write φn(x) for φn(x, 1), and similarly for other polynomials later.

Theorem 1. Let n > 1 be square-free and let m be a divisor of n such that n/m is odd.
Then there exist polynomials Pn,m(x),Qn,m(x) with integral coefficients such that(1)

φn(x) = P 2
n,m(x)− (−1|m)mxQ2

n,m(x) (m odd),(1)

φ2n(x) = P 2
n,m(−x)+ (−1|m)mxQ2

n,m(−x) (m odd),(2)

φ2n(x) = P 2
n,m(x)−mxQ2

n,m(x) (m even).(3)

Further, these polynomials can be found from the following formulae (where
√
c � 0 if

c � 0 and
√
c = i√|c| if c < 0):

(4) Pn,m(x
2)− {(−1|m)m}1/2

xQn,m(x
2)

=
∏
s

(x − ζ sn)
∏
t

(x + ζ tn) = ψn,m(x) (m odd),

(5) Pn,m(−x2)− i{(−1|m)m}1/2
xQn,m(−x2)

=
∏
s

(x + iζ sn)
∏
t

(x − iζ tn) = ψ2n,m(x) (m odd),

where the products are over(2)

(6) 0 < s < n, 0 < t < n, (st, n) = 1, (s|m) = 1, (t |m) = −1;

(1) (−1|m) is Jacobi’s symbol of quadratic character.
(2) If m = 1, the product over t is empty, and in (4) we get ψn,1(x) = φn(x).
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and

(7) Pn,m(x
2)−m1/2xQn,m(x

2) =
∏
s

(x − ζ s4n) = ψ2n,m(x) (m even),

where the product is over

(8) 0 < s < 4n, (s, 4n) = 1, (m|s) = 1.

The first part of this theorem whenn = mwas proved by Lucas [12], and was enunciated
for all odd n,m by Cunningham ([5], p. 53), who also stated that the polynomialsP,Q can
be found by ‘conformal division’. A proof for the case n = 3m, m even (in our notation)
was given recently by Beeger [2]. The second part of Theorem 1 seems to be new, as does
the following lemma, on which the proof is based.

Lemma 1. Let n > 1 be square-free and let m > 1 be an odd divisor of n. For ε = ±1,
let

(9) A(ε)n,m = 1
2

{
Yn,m(x)− ε{(−1|m)m}1/2Zn,m(x)

} =∏
s

(x − ζ sn),

the product being over

(10) 0 < s < n, (s, n) = 1, (s|m) = ε.
Then Yn,m, Zn,m have rational integral coefficients, and

(11) φn(x) = A(1)n,m(x)A(−1)
n,m (x) = 1

4 {Y 2
n,m − (−1|m)mZ2

n,m}.
Proof. It follows from Dirichlet’s generalization ([7], supplement VII) of a well-known
theorem of Gauss that the desired polynomials exist when m = n. The coefficients of
A
(1)
m,m(x) and A(−1)

m,m (x) are integers of the field generated by {(−1|m)m}1/2, and corre-
sponding coefficients are algebraically conjugate.

Put n = mk. In the product (9), but without the condition (s, n) = 1 in (10), put
s = s′ + um, where

0 < s′ < m, 0 � u < k.
We find that ∏

s

(x − ζ sn) =
∏
s′

∏
u

(x − ζ s′n ζ uk ) = A(ε)m,m(xk).

Hence

A(ε)n,m(x) = (A(ε)m,m(xk), φn(x)).
It follows that the coefficients of A(ε)n,m(x) are also integers of the field generated by

{(−1|m)m}1/2 and that corresponding coefficients are algebraically conjugate. Since the
integers of the field are expressible as

1
2

(
y − {(−1|m)m}1/2z),

where y, z are rational integers, the polynomials Yn,m, Zn,m in (9) have rational integral
coefficients.
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(11) follows immediately from (9), on dividing the values of r in

φn(x) =
∏
r

(x − ζ rn )

into two classes according as (r|m) = 1 or −1. 	


Proof of Theorem 1. Suppose first that n is odd and m = 1. We have

(12) φn(x
2) =

∏
(t,n)=1

(x2 − ζ 2t
n ) =

∏
(t,n)=1

(x − ζ tn)(x + ζ tn) = φn(x)φn(−x).

Define polynomials Pn,1,Qn,1 by

φn(x) = Pn,1(x2)− xQn,1(x2).

Then (4) holds form = 1, sinceψn,1(x) = φn(x) as noted earlier. The identity (12) implies
that

φn(x
2) = P 2

n,1(x
2)− x2Qn,1(x

2),

and this gives (1) for m = 1 on replacing x2 by x.
Suppose, secondly, that n is odd and m > 1. By (12) and Lemma 1,

(13) φn(x
2) = A(1)n,m(x)A(−1)

n,m (x)A
(1)
n,m(−x)A(−1)

n,m (−x).
Put

(14) ψn,m(x) = A(1)n,m(x)A(−1)
n,m (−x) =

∏
s

(x − ζ sn)
∏
t

(x + ζ tn),

with s, t as in (6). Express the polynomials Yn,m, Zn,m of Lemma 1 in the form

Y (x) = T (x2)+ xU(x2), Z(x) = V (x2)+ xW(x2).

Then we find that

(15) ψn,m(x) = Pn,m(x2)− {(−1|m)m}1/2xQn,m(x2),

where

Pn,m(x
2) = 1

4

{
T 2 − x2U2 − (−1|m)m(V 2 − x2W 2)

}
,

Qn,m(x
2) = 1

2 (TW − UV ),
where T = T (x2), etc. Since Y ≡ Z (mod 2) by (9), the polynomials Pn,m, Qn,m have
integral coefficients. Now (15) gives (4), and (13), (14), (15) give (1) on replacing x2 by x.
Also (2) is a consequence of (1), in view of the identity

(16) φ2n(x) = φn(−x) (n odd),

and (5) is a consequence of (4).
We can now suppose that n,m are both even, say n = 2n1, m = 2m1, where n1,m1

are necessarily odd. We suppose first that n1 > 1. By (12) and (16),

φ2n(x) = φn(x2) = φn1(−x2) = φn1(ix)φn1(−ix).
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Hence

(17) φ2n(x
2) = φn1(ζ

2
8 x

2)φn1(ζ
−2
8 x2) = φn1(ζ8x)φn1(−ζ8x)φn1(ζ

−1
8 x)φn1(−ζ−1

8 x).

It can be verified that the product on the right is the same as

ψ2n,m(x)ψ2n,m(−x),
where ψ2n,m(x) = ψ4n1,2m1(x) is defined by the product in (7) with the conditions in (8).
To do this, put s ≡ 8u+ n1v (mod 8n1), where v = 1, 3, 5, 7 and

0 < u < n1, (u, n1) = 1.

The condition of quadratic character in (8) limits u to one of the two classes (modm1) for
each v. Considering cases according to the residues of m1 and n1 (mod 4), we find that

ψ2n,m(x) = ψn1,m1(αζ8x)ψn1,m1(βζ
−1
8 x),

where α = ±1, β = ±1 and α = (−1|m1)β. Using the definition of ψn1,m1 as a product
in (4), we deduce from (17) that

(18) φ2n(x
2) = ψ2n,m(x)ψ2n,m(−x).

Using the polynomial expression for ψn1,m1 in (4) and putting

Pn1,m1(x) = K(x2)+ xL(x2), Qn1,m1(x) = M(x2)+ xN(x2),

we find that

(19) ψ2n,m(x) = Pn,m(x2)−m1/2xQn,m(x
2),

where

Pn,m(x) = K2 + x2L2 +m1x(M
2 + x2N2),

Qn,m(x) = ±(KM + x2LN)± x(KN −ML),
in which K stands for K(−x2), etc., and the ± sign depends on the residue classes of n1
and m1 (mod 8). We now have (7), and (3) follows from (18) and (19) on replacing x2

by x. This completes the proof if n1 > 1. If n1 = 1, then n = m = 2, and

φ2n(x) = x2 + 1,

and we can take P2,2(x) = x + 1,Q2,2(x) = 1. 	


The preceding proof is analogous to Lucas’s proof of the case m = n.
We note that in view of the identity

(20) φn(x) = φn∗(xn/n∗),
where n∗ denotes the greatest square-free divisor of n, the assumption that n is square-free
can be replaced, both in Lemma 1 and Theorem 1, by the weaker assumption that m is
square-free.
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3.

Proof of Theorem 2. Since the primitive prime factors of an − bn coincide with those of
|a|n − |b|n if ab > 0 or n ≡ 0 (mod 4), and those of |a|n/2 − |b|n/2 if ab < 0 and n ≡ 2
(mod 4), and those of |a|2n − |b|2n if ab < 0 and n ≡ 1 mod 2, it suffices to prove the
theorem when a > b > 0.

Put n = kl, where l is the product of those prime factors of n which do not divide
ηk(ab), and write ν = ηk(ab)l. Since every prime factor of n is a prime factor of ν, we
have

(21) φn(a, b) = φν(A,B), where A = an/ν, B = bn/ν.
The polynomialsψn,m(x),ψ2n,m(x)were defined in Theorem 1 when n > 1 is square-

free and n/m is an odd integer. We add the definition ψ1,1(x) = x − 1. The hypotheses of
Theorem 2 ensure that ψν,k(ab) is defined. Using the corresponding homogeneous forms,
we put

(22) φ(ε)n (a, b) = ψν,k(ab)(A1/2, εB1/2) for ε = 1,−1.

Each of these is a rational integer; the quadratic irrationality on the left of (4), (5) or (7)
disappears for the value of x in question, because of the definition of η. We have

(23) φn(a, b) = φ(1)n (a, b)φ(−1)
n (a, b).

Since

ψν,k(ab)(x)ψν,k(ab)(−x) = ±φν(x2),

the resultant R of the two polynomials on the left divides the discriminant of φν(x2),
and therefore also the discriminant of x2ν − 1, which is (2ν)2ν . There exist polynomials
χ(1)(x), χ(−1)(x) such that

χ(1)(x)ψν,k(ab)(x)+ χ(−1)(x)ψν,k(ab)(−x) = R
identically in x. The coefficients of χ(1), χ(−1) are expressible integrally in terms of the
coefficients of ψν,k(ab)(x), and therefore involve only the quadratic irrational in (4), (5)
or (7). On making the above relation homogeneous in x, y and putting x = A1/2, y = B1/2,
we find that the irrationality disappears, and from the resulting relation between integers
we deduce that any common prime factor of φ(1)n (a, b) and φ(−1)

n (a, b) must divide 2νB.
By (23) and Zsigmondy’s theorem, quoted in §1, each prime factor of either φ(1)n (a, b)

or φ(−1)
n (a, b) is a primitive prime factor of an−bn, except possibly for q(n), if this occurs

to the first power only. Since this prime does not divide k(ab), it must equal q(l).
If either φ(1) or φ(−1) is even, then 2 is a primitive prime factor of an − bn, and this

can happen only if n = 1. Apart from this case, no prime factor of 2k(ab)lB can be ac

primitive prime factor of an − bn, and consequently φ(1), φ(−1) are relatively prime. In
order to ensure the existence of two primitive prime factors of an−bn, it is enough to have

(24) |φ(ε)n (a, b)| >
{

1 if q(l) < q(n),

q(l) if q(l) = q(n),
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for ε = 1,−1, since then φ(1), φ(−1) will have two distinct prime factors other than q(l).

If n = 1 then k(ab) = 1 and an − bn has two prime factors except when

a = (2α + 1)2, b = (2α − 1)2 or 4a = (pα + 1)2, 4b = (pα − 1)2,

in accordance with the theorem.

If n > 1, suppose first that l = 1 or 3. It follows from (4), (5) or (7) and (22) that

(25) |φ(ε)n (a, b)| < (A1/2 + B1/2)φ(ν) � (2A+ 2B)φ(ν)/2.c

On the other hand, we have two lower bounds for φn(a, b). First,

φn(a, b) = φν(A,B) > (A− B)φ(ν).
Secondly,

φν(A,B)

φν(1, 1)
=

ν∏
r=1
(r,ν)=1

A− ζ rν B
1− ζ rν

,

and since

4

∣∣∣∣A− ζ rν B1− ζ rν

∣∣∣∣2 = (A+ B)2 + (A− B)2 cot2 πr/ν

we obtain

φν(A,B) >
( 1

2A+ 1
2B
)φ(ν)

.

It follows from (23) and (25) that

|φ(ε)n (a, b)| >
{

max
(
A1/2 − B1/2,

( 1
8A+ 1

8B
)1/2)}φ(ν)

.

This implies that (24) holds when l = 1 or 3 except possibly if A1/2 − B1/2 < 1 and
A+B < 8, or if n = l = 3 and A1/2−B1/2 < 31/2 and A+B < 24, or if n > l = 3 and
A1/2 − B1/2 < 31/4 and A+ B < 1921/2. Direct examination of these cases leads to all
the exceptions given in the theorem for 2 < n < 20.

Suppose now that l � 5 and put l = q(l)r . Put ν′ = ηk(ab)r = ν/q(l). It follows
from (4), (5) or (7) and (22) that

φ(ε) = φ(δ)
ν′
(
Aq(l), Bq(l)

)
/φ
(δ)

ν′ (A,B),

where δ = ±1 depends on ε and on the residue classes of k(ab) and of q(l) (mod 4). Using
the inequalities

(x1/2 − 1)φ(ν
′) � φ(δ)

ν′ (x) � (x1/2 + 1)φ(ν
′) (x > 1),
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we get for q(l) � 3

|φ(ε)| >
(
Aq(l)/2 − Bq(l)/2
A1/2 + B1/2

)φ(ν′)
�
(
A+ B + (AB)1/2
A+ B + 2(AB)1/2

(A− B)Aq(l)/2−3/2
)φ(ν′)

>
(
2−1/2(A− B)Aq(l)/2−3/2)φ(ν′).c

Since l is odd and square-free, we have q(l) � 5, so 2−1/2Aq(l)/2−3/2 > q(l) except when
either l = 5 or 15 and A � 7 or l = 7, 21, 35 or 105 and A = 2 or 3. Direct examinationc

of these cases leads to the last exception stated in the theorem. This completes the proof.
	


4.

It follows from the identity

φn(c
h) =

∏
d |h
φnd(c) when (h, n) = 1

and from (16) and Theorem 2 that if ab = ±ch, where c, h are integers and h � 3 or k(c)
is odd and h = 2, then for infinitely many n, an − bn has three primitive prime factors.
This suggests the following problems.

Problem 1. For every pair a, b, does there exist n such that an − bn has three primitive
prime factors?

Problem 2. Does there exist a pair a, b with ab �= ±ch (h � 2) such that an − bn has
three primitive prime factors for infinitely many n ?

5.

In conclusion, we apply Theorem 2 to obtain lower bounds for q(an−bn), the greatest
prime factor of an − bn. We note first:

Lemma 2.
(i) If n > 2, and we exclude the case n = 3, a = ±2, b = ∓1, then q(an− bn) � n+ 1.
(ii) If n > 2, n �≡ 0 (mod 4), and we exclude the cases n = 3, |a| = 2, |b| = 1 and

n = 6, |a| = 2, |b| = 1, then q(an − bn) � 2n+ 1.

Proof. Apart from the excluded cases, an− bn has at least one primitive prime factor q, by
Zsigmondy’s theorem. This is of the form nk+1, and of the form 2nk+1 if n is odd. Thus
it remains only to prove (ii) when n ≡ 2 (mod 4). For this we observe that an/2 − bn/2
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has a primitive prime factor q1 of the form nk + 1. Since q �= q1, one at least of q, q1 is
� 2n+ 1. 	


Using Theorem 2 we shall prove

Lemma 3. If n > 2 and k(ab) |n, and we exclude the cases n = 4, 6, 12, |a| = 2, |b| = 1,
then q(an − bn) � 2n+ 1.

Proof. By Lemma 2 we can suppose n ≡ 0 (mod 4). If k(ab) is odd, an − bn has at least
one primitive prime factor q by Zsigmondy’s theorem. This is of the form nk + 1, and
so q ≡ 1 (mod 4k(ab)). Hence k(ab) is a quadratic residue (mod q), which implies that
a(q−1)/2 − b(q−1)/2 is divisible by q. Since q is a primitive prime factor of an − bn, it is
impossible that q − 1 = n, hence q � 2n+ 1.

The same argument applies if k(ab) is even and n/2k(ab) is even. If k(ab) is even and
n/2k(ab) is odd, then apart from the exception of Theorem 2, which can be tested directly,
an − bn has at least two primitive prime factors. One at least of these is � 2n+ 1. 	


If k(ab) = ±2, we can combine Lemmas 2 and 3 to give

Theorem 3. If k(ab) = ±2 and n > 2 and we exclude the cases n = 4, 6, 12, |a| = 2,
|b| = 1, then q(an − bn) � 2n+ 1.

The same result holds if k(ab) = ±1 or more generally ab = ±ch (h � 2). It suggests

Problem 3. Does there exist any pair a, b with ab �= ±2c2, ±ch (h � 2) such that
q(an − bn) > 2n for all sufficiently large n ?

I conclude by expressing my thanks to Dr. B. J. Birch and Prof. H. Davenport for their
kind assistance in the preparation of this paper, to Prof. T. Nagell and Mr. A. Rotkiewicz
for their valuable suggestions, and to the Rockefeller Foundation whose fellowship I held
when writing the paper.
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On primitive prime factors of Lehmer numbers I

Lehmer numbers are called terms of the sequences

Pn(α, β) =
{
(αn − βn)/(α − β), n odd,

(αn − βn)/(α2 − β2), n even,

where α and β are roots of the trinomial z2−L1/2z+M , andL andM are rational integers
(cf. [4]). Without any essential loss of generality (cf. [9]) we can assume that

(1) L > 0, M �= 0, K = L− 4M �= 0.

Lehmer numbers constitute a generalization of the numbers an − bn (a, b—rational
integers). A prime p is called a primitive prime factor of a number an − bn if

p |an − bn but p /| ak − bk for k < n.

A proper (not merely automatical) generalization of this notion for Lehmer numbers is the
notion of a prime factor p such that

p |Pn but p /| KLP3 · · ·Pn−1

or, which is easily proved to be equivalent,

p |Pn but p /| nP3 · · ·Pn−1.

D. H. Lehmer [4] calls such primesp primitive extrinsic prime factors ofPn. In a postscript
to my paper [7] I stated erroneously that Lehmer calls them intrinsic divisors, the term
which has been used in a different sense by M. Ward [9]. To simplify the terminology,
I adopt in the present paper the following definition.

Definition. A prime p is called a primitive prime factor of the number Pn if p |Pn but
p /| KLP3 · · ·Pn−1.

Assume that, besides the restrictions on L,M stated in (1),

(2) (L,M) = 1, 〈L,M〉 �= 〈1, 1〉, 〈2, 1〉, 〈3, 1〉
(i.e. β/α is not a root of unity).
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Then it follows from the results of papers [2], [7], [9] that for n �= 1, 2, 3, 4, 6, Pn has
a primitive prime factor except

for K > 0 if n = 5, 〈L,M〉 = 〈1,−1〉, n = 10, 〈L,M〉 = 〈5, 1〉,
n = 12, 〈L,M〉 = 〈1,−1〉, 〈5, 1〉

for K < 0 if n � n0(L,M)

where n0 can be computed effectively.
I proved in [6] a theorem about numbers an − bn with two primitive prime factors.

A. Rotkiewicz [5] generalized this theorem to so-called Lucas numbers (which correspond
to Lehmer numbers for L1/2 being a rational integer) under the assumptions M > 0,
K > 0.

The main aim of the present paper is to generalize the above theorem to Lehmer
numbers. To state the generalization in a possibly concise manner I introduce the following
two sets M, N:

M = {〈L,M〉 : (L,M) = 1; 〈L,M〉 = 〈12,−25〉, 〈112, 25〉 or

1 � |M| � 15, 2M + 2|M| + 1 � L
< min(64+ 2M − 2|M|, 2M + 2|M| + 4|M|1/2 + 1)

}
,

N = {〈L,M〉 : (L,M) = 1, 〈L,M〉 = 〈4,−1〉, 〈8, 1〉 or

1 � |M| � 15, L = 2M + 2|M| + 1
}
.

As can easily be verified, set M consists of 184 and set N of 32 pairs 〈L,M〉.
For an integer n �= 0, let k(n) denote the square-free kernel of n, that is, n divided by

its greatest square factor. The following theorem holds.

Theorem 1. For L,M satisfying (1), (2), put κ = k(M max(K,L)
)

and

η =
{

1 if κ ≡ 1 (mod 4),

2 if κ ≡ 2, 3 (mod 4).

If n �= 1, 2, 3, 4, 6 and n/ηκ is an odd integer, then Pn has at least two primitive prime
factors except

1. for K > 0, if n = η|κ|, 〈L,M〉 ∈M0 ⊂M or n = 3η|κ|,
〈L,M〉 ∈ N0 ⊂ N or n = 5, 〈L,M〉 = 〈9, 1〉 or

n = 10, 〈L,M〉 = 〈5,−1〉 or

n = 20, 〈L,M〉 = 〈1,−2〉, 〈9, 2〉;
2. for K < 0, if n � n1(L,M).

Finite sets M0,N0 and function n1(L,M) can be effectively computed.

Let us observe that the sequences Pn and Pn corresponding to 〈L,M〉 and
〈max(K,L), |M|〉, respectively, are connected by the relation

Pn =
{
Pn ifM > 0 or n even,

P 2n/P n ifM < 0 and n odd.
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Therefore the primitive prime factors of Pn coincide with those of Pn ifM > 0 or n ≡ 0
(mod 4), with those of Pn/2 ifM < 0 and n ≡ 2 (mod 4) and with those of P 2n ifM < 0
and n ≡ 1 (mod 2). The remarks that

1. 〈L,M〉 ∈M or N if and only if 〈max(K,L), |M|〉 ∈M or N, respectively,
2. sgn κ = sgnM ,
3. if κ is even, η’s corresponding to κ and−κ are equal; if κ is odd, the product of these

η’s is 2,

show that it suffices to prove the theorem forM > 0, κ = k(M max(K,L)
) = k(LM).

Before proceeding further, we introduce some notation and recall some useful results
from paper [6]. For any integer n > 0 let

Qn(x, y) =
n∏
r=1
(r,n)=1

(x − ζ rny),

where ζn is a primitive n-th root of unity. Put Qn(x) = Qn(x, 1) and similarly for other
polynomials later. Denote by q(n) the greatest prime factor of n. Further, for n satisfying
the assumptions of Theorem 1, let l be the product of those prime factors of n which do
not divide ηκ , and write ν = ηκl, A = αn/ν , B = βn/ν . To obtain conformity of notation
with paper [6] one should make in the latter the following permutation of letters:Φ → Q,
P → R,Q→ S.

Then by Theorem 1 of [6] and remark that ν > 2,

(3) Qν(x
2) = ψν,κ(x)ψν,κ (−x),

where(1)

ψν,κ (x) = Rκl,κ (x2)− κ1/2xSκl,κ (x
2) (κ1/2 > 0),(4)

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∏
(r,κl)=1

(
x − (r|κ)ζ rκl

)
if κ ≡ 1 (mod 4),∏

(r,κl)=1

(
x + i(r|κ)ζ rκl

)
if κ ≡ 3 (mod 4),∏

(r,4κl)=1
(κ|r)=1

(x − ζ r4κl) if κ ≡ 2 (mod 4)

(5)

and R = Rκl,κ , S = Sκl,κ are polynomials with rational integral coefficients.c

Let us put, similarly as in [6], for ε = ±1,

(6) Q(ε)n (α, β) = ψν,κ(A1/2, εB1/2),

where argA1/2 = 1
2 argA, argB1/2 = 1

2 argB. Then, if α, β are real, α > β > 0, we have
for ε = ±1

|Q(ε)n (α, β)| >
(
max

(
A1/2 − B1/2, ( 1

8A+ 1
8B)

1/2))ϕ(ν),(7)

|Q(ε)n (α, β)| >
(
2−1/2(A− B)Aq(l)/2−3/2)ϕ(ν′) (l � 3, ν′ = ν/q(l)).(8)

(1) (r|κ) is Jacobi’s symbol of quadratic character.
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These inequalities were proved in [6] under the assumption that α, β are rational integers;
however, the proof does not change if α, β are arbitrary real numbers, α > β > 0.c

Now we shall prove three lemmas.

Lemma 1. If n satisfies the assumptions of Theorem 1,M > 0, p |Qn(α, β) and p is not
a primitive prime factor of Pn(α, β), then p2 /|Qn(α, β), and if n �= 2rα (r prime), then
p = q(n) = q(l). If n = 2rα (r prime), r |Qn(α, β) if and only if r |L.

Proof. It follows from Theorems 3.3 and 3.4 of [4] that if the assumptions of the lemma
are satisfied and n �= 12, then p2 /|Qn(α, β) and p = q(n). On the other hand, as can
easily be verified,

Qn(α, β) =
ϕ(n)/2∑
i=0

aiL
ϕ(n)/2−iMi

where a0 = 1 and aϕ(n)/2 = ±1, unless n = 2rα (r prime). For n = 2rα , aϕ(n)/2 = ±r ,
so that r |Qn(α, β) if and only if r |L. For n �= 2rα we have, in view of (L,M) = 1,
(p, LM) = 1 so (p, κ) = 1. Since all prime factors of n divide ηκl, the lemma is thus
proved for all n �= 12.

If n = 12, then Qn(α, β) = L2 − 4LM +M2; if p is an imprimitive prime factor of
Pn(α, β), then L ≡ kM (mod p) for some k � 4. Hence, if p |Qn(α, β), then in view of
(L,M) = 1, p = 2 or 3. On the other hand, it follows from 12 = ηκl that κ is even, LM
is even and p �= 2. Thus p = 3 = l and p2 /|Qn(α, β), which completes the proof. 	


Lemma 2. If n satisfies the assumptions of Theorem 1, δ = k(L)−{ϕ(n)/4} and M > 0,
then the numbers δQ(1)n (α, β) and δQ(−1)

n (α, β) are coprime rational integers(2).

Proof. We show first that ψν,κ(x) (ν > 1) are reciprocal polynomials. For instance, let
κ ≡ 3 (mod 4). We have by (5)

ψν,κ(x
−1) =

∏
(r,κl)=1

(
x−1 + i(r|κ)ζ rκl

) = x−ϕ(ν) ∏
(r,κl)=1

(
i(r|κ)ζ rκl

) ∏
(r,κl)=1

(
x − i(r|κ)ζ−rκl

)
= x−ϕ(ν)iϕ(ν)(−1)ϕ(ν)/2

∏
(r,κl)=1

(
x + i(−r|κ)ζ−rκl

) = x−ϕ(ν)ψν,κ (x).
Since in view of (4)

Rκl,κ (x) = 1

2

(
ψν,κ(x

1/2)+ ψν,κ(−x−1/2)
)
,

Sκl,κ (x) = 1

2(κx)1/2
(
ψν,κ(x

1/2)− ψν,κ(−x−1/2)
)
,

it follows that the polynomials R, S are reciprocal. We now prove that these polynomials
are of degrees 1

2ϕ(ν) and 1
2ϕ(ν)− 1, respectively. In fact

(9) Qν(x) = R2(x)− κxS2(x),

(2) [x] and {x} denote the integral and the fractional part of x, respectively.
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whence degree S < degreeR = 1
2 degreeQν = 1

2ϕ(ν). On the other hand, supposing that
degree S < 1

2ϕ(ν)− 1,

R(x) = xϕ(ν)/2 + axϕ(ν)/2−1 + bxϕ(ν)/2−2 + . . .
we should find by comparing both sides of (9) that

xϕ(ν) − μ(ν)xϕ(ν)−1 + . . . = xϕ(ν) + 2axϕ(ν)−1 + . . . ,
whence μ(ν) = −2a = 0 and, in view of the definition of ν, κ ≡ 2 (mod 4). Since
Qν(x) = Qν/2(x2), identity (9) gives again

xϕ(ν) − μ( 1
2ν
)
xϕ(ν)−2 + . . . = xϕ(ν) + 2bxϕ(ν)−2 + . . . ,

μ( 1
2ν) = −2b = 0, which is impossible, because 1

2ν is square-free.
It follows from the above that (x+y)−ϕ(ν)/2R(x, y), (x+y)1−ϕ(ν)/2S(x, y) are homo-

geneous symmetric functions of x, y of dimension 0; so they are rationally expressible in
terms of (x+y)2 and xy, and thus (A+B)−ϕ(ν)/2R(A,B), (A+B)−1−ϕ(ν)/2S(A,B) are
rationally expressible by (A+B)2 andAB. In their turn (A+B)2,AB and (A+B)/(α+β)
are rationally expressible by (α + β)2 and αβ. Therefore the numbers

δR(A,B) =
( L

k(L)

){ 1
4ϕ(ν)}

(α + β)2[ 1
4ϕ(ν)]

(A+ B
α + β

)1
2ϕ(ν)

(A+ B)− 1
2ϕ(ν)R(A,B),

δ
S(A,B)

A+ B =
( L

k(L)

){ 1
4ϕ(ν)}

(α + β)2[ 1
4ϕ(ν)]

(A+ B
α + β

)1
2ϕ(ν)

(A+ B)−1− 1
2ϕ(ν)S(A,B),

c

are rationally expressible by (α + β)2 = L and αβ = M and as such are rational.
Since for ε = ±1

δQ(ε)n (α, β) = δR(A,B)±
A+ B
α + β

(AB
αβ

)1/2(
κ(α + β)2αβ)1/2δ S(A,B)

A+ B
and the numbers

A+ B
α + β ,

(AB
αβ

)1/2 = ±(αβ)(n−ν)/2ν, (
κ(α + β)2αβ)1/2 = κ( LM

k(LM)

)1/2

are rational, the numbers δQ(ε)n (α, β) are also rational. If ϕ(n) ≡ 0 (mod 4) or k(L) = 1
then δ = 1, and it is immediately evident from (4) and (6) that these numbers are algebraic
integers, consequently they are then rational integers.

Let ϕ(n) �≡ 0 (mod 4) and k(L) �= 1. Since n �= 1, 2, 4, we have

n = rα or n = 2rα, r prime ≡ 3 (mod 4).

Since k(L) | κ |n, k(L) is odd, we get k(L) = κ = r , n = 2rα . We have to prove that
the numbers r−1/2Q

(ε)
n (α, β) are algebraic integers. First, since κ = r1/2, it is clear from

formula (4) that their difference is integral. Now in view of formulae (3) and (6)

(10) Qn(α, β) = Q(1)n (α, β)Q(−1)
n (α, β);

their product equals therefore r−1Qn(α, β) and is integral by Lemma 1. Thus the numbers
r−1/2Q

(ε)
n (α, β) are themselves integral. So we have proved that the numbers δQ(ε)n (α, β)

(ε = ±1) are rational integers. It remains to prove that they are coprime.
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By identity (3) the resultant R of polynomials ψν,κ(x), ψν,κ(−x) divides the discrimi-
nant ofQν(x2) and therefore also the discriminant of x2ν−1, which is (2ν)2ν . There exist
polynomials χ(1)(x), χ(−1)(x) such that

χ(1)(x)ψν,κ (x)+ χ(−1)(x)ψν,κ (−x) = R
identically in x. The coefficients of χ(1), χ(−1) are expressible integrally in terms of the
coefficients of ψν,κ(x) and therefore are algebraic integers. On making the above relation
homogeneous in x, y and putting x = A1/2, y = B1/2, we deduce that any common prime
factor of δQ(1)n (α, β) and δQ(−1)

n (α, β) must divide 2νM . By Lemma 1 and (10) each
prime factor of δQ(ε)n (α, β) (ε = ±1) is a primitive prime factor of Pn except possibly
for q(n), which then occurs to the first power only. Since no prime factor of 2νM can be
a primitive prime factor of Pn, numbers δQ(1)n (α, β), δQ

(−1)
n (α, β) are relatively prime.

The proof of the lemma is thus complete. 	


Lemma 3. If χ(r) is an arbitrary character modm, m > 1 and |x| = 1, then

Π =
∏

χ(r)=const �=0

|x − ζ rm| < exp(2m1/2 log2m).

Proof (1). We can assume without loss of generality that arg ζm = 2π/m. Let e be the
least positive exponent such that χe+1 = χ . If e = 1 much stronger estimation for Π
is known (cf. [1]), if e = ϕ(m) the lemma is satisfied trivially, and thus we can assume
ϕ(m) > e > 1. Let the product Π be taken over r such that χ(r) = ζ j0e . Order these

integers r according to the magnitude of
{ r
m
− 1

2π
arg x

}
so that{ r1

m
− 1

2π
arg x

}
< . . . <

{ rk
m
− 1

2π
arg x

} (
k = ϕ(m)

e

)
.

Denote by Ni and Ni,j (1 � i � k, 0 � j < e) the number of all non-negative integers

r < m such that
{ r
m
− 1

2π
arg x

}
�
{ ri
m
− 1

2π
arg x

}
and χ(r) = 0 or χ(r) = ζ je ,

respectively. We have

(11)

∣∣∣∣(m− ϕ(m)){ rim − 1

2π
arg x

}
−Ni

∣∣∣∣ < 2ν(m)−1 � m1/2 (1 � i � k),
c

(12)

∣∣∣∣e−1∑
j=0

Ni,j −m
{ ri
m
− 1

2π
arg x

}
+Ni

∣∣∣∣ < 1 (1 � i � k).

On the other hand, from a well-known theorem of Schur [8] (for imprimitivite
character see [3] and the Addendum(2)), which we apply successively to charactersc

(1) The idea of this proof is due to P. Erdős. An earlier proof of the writer led to a weaker estimation
for Π .

(2) p. 1055
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χ(r), χ2(r), . . . , χe−1(r), we get

(13)

∣∣∣∣ζ−hj0e

e−1∑
j=0

Ni,j ζ
hj
e

∣∣∣∣ < m1/2 logm (1 � h < e, 1 � i � k).

Adding inequalities (11), (12), (13), we find∣∣∣∣eNi,j0 − ϕ(m){ rim − 1

2π
arg x

}∣∣∣∣ < em1/2 logm (1 � i � k).

Since Ni,j0 = i, putting for brevity π
{ ri
m
− 1

2π
arg x

}
− π i

k
= �i we get for each i � k

|�i | � πk−1m1/2 logm.

Now, if arg ζk = 2π/k, we find

k−1∏
i=1

|x − ζ rim | |1− ζ ik |−1 =
k−1∏
i=1

∣∣∣sin
(1

2
arg x − π ri

m

)∣∣∣ ∣∣∣sin π
i

k

∣∣∣−1

=
k−1∏
i=1

∣∣∣sin
(
π
i

k
+ �i

)∣∣∣ ∣∣∣sin π
i

k

∣∣∣−1 =
k−1∏
i=1

(
|cos �i | + |sin �i |

∣∣∣cot π
i

k

∣∣∣)

�
[k/2]∏
i=1

(
1+ (πk−1m1/2 logm)

k

πi

)2
� exp

(
2m1/2 logm

[k/2]∑
i=1

1

i

)
< exp

(
2m1/2 logm

(
1+ log

k

2

))
.

Since, on the other hand,
k−1∏
i=1
|1− ζ ik | = k and k = ϕ(m)/e < m/2, we get

Π � 2
k−1∏
i=1

(|x − ζ rim | |1− ζ ik |−1) k−1∏
i=1

|1− ζ ik |

< m exp
(

2m1/2 logm
(

1+ log
m

4

))
� exp(2m1/2 log2m).

c

This proves the lemma. 	


Proof of Theorem 1. As we already know, we can assume that M > 0. Then, in view of
formula (8) and Lemmas 1 and 2, in order to prove Theorem 1 for a given index n, it is
enough to establish that

(14) |Q(ε)n (α, β)| >

⎧⎪⎨⎪⎩
1, if q(l) < q(n) and n �= 2rα, r as below,

r1/2, if n = 2rα, r = k(L) prime ≡ 3 (mod 4),

q(l), if q(l) = q(n) and n �= 2rα, r as above.

The proof of this inequality is different if α, β are real (K > 0) and if they are complex
(K < 0); consequently the proof is divided into two parts.



I2. On primitive prime factors of Lehmer numbers I 1053

1. K > 0. If n > ν = ηκl, thus n � 3ν, we apply (7) and find

|Q(ε)n (α, β)| > (A1/2 − B1/2)ϕ(ν) � (α3/2 − β3/2)ϕ(ν)

= (KL1/2 +M(L1/2 − 2M1/2)
)ϕ(ηκ)ϕ(l)/2

> (KL1/2)ϕ(ηκ)ϕ(l)/2.

Now, as can easily be verified, (KL1/2)ϕ(ηκ)/2 > 2 for all L,M , so that

|Q(ε)n (α, β)| > 2ϕ(l) � 2q(l)−1 � q(l)

and inequality (14) holds. Thus we can assume that n = ν, A = α, B = β. We shall
consider successively l = 1, l = 3 and l � 5.

If l = 1, we have to prove

|Q(ε)n (α, β)| > 1 if n �= 2r, r as below,(15)

|Q(ε)n (α, β)| > r1/2 if n = 2r, r = k(L) prime ≡ 3 (mod 4).

Now, if |Q(ε)n (α, β)| � 1, we have by inequality (7)

1 > α1/2 − β1/2 = (L1/2 − 2M1/2)1/2, 1 > 1
8α + 1

8β = 1
8L

1/2,

so thatL < 4M+4M1/2+1,L < 64. Since 4M < L, we getM � 15 and 〈L,M〉 ∈M. It
remains to consider the case n = 2r , r prime≡ 3 (mod 4), r � 7 (since n �= 6), k(L) = r ,
k(M) = 1. By (7) we have

|Q(ε)n (α, β)| >
(
max(L1/2 − 2M1/2, 1

8L
1/2)
)ϕ(ν)/2

.

Since ϕ(ν) = r − 1, it suffices to establish the inequality

(16) max(L1/2 − 2M1/2, 1
8L

1/2) > r1/(r−1).

Since r � 7, r1/(r−1) � 71/6 < 21/2, inequality (16) holds certainly if L > 128. By an
easy enumeration of cases we verify that it holds for each pair 〈L,M〉, with k(L) = r ,
k(M) = 1, unless 〈L,M〉 ∈M.c

Suppose now that l = 3. If q(n) > 3 it is again sufficient to prove (15). By (8) we have

|Q(ε)n (α, β)| > 2−1/2(α − β) � 1

unless 1 > 2−1/2(α − β) = 2−1/2K1/2, i.e. K = 1. Since, as we already know,
|Q(ε)n (α, β)| > 1 unless 〈L,M〉 ∈ M, we find that, if q(n) > 3, inequality (14) holds
unless

〈L,M〉 ∈ N.

We have yet to consider the case q(n) = l = 3, i.e. n = 12, k(LM) = 2. We find
directly

Q
(ε)
12 (α, β) = L− ε21/2L1/2M1/2 −M

and sinceM < 1
4L,

|Q(ε)n (α, β)| > ( 3
4 − 2−1/2)L.
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Thus |Q(ε)n (α, β)| > 3 unless L � 12(3− 23/2)−1 < 75. By an enumeration of cases we
find that |Q(ε)n (α, β)| > 3 unless 〈L,M〉 ∈ N.c

It remains to consider l � 5. Here we notice first that for all 〈L,M〉 in question

2−1/2K1/2α � 5 or κ � 2 or 〈L,M〉 = 〈9, 1〉,
2−1/2K1/2α � 51/2 or κ � 5 or 〈L,M〉 = 〈9, 2〉,
2−1/2K1/2α � 51/4 or 〈L,M〉 = 〈5, 1〉, 〈9, 2〉.

It follows that, if 〈L,M〉 �= 〈5, 1〉, 〈9, 1〉, 〈9, 2〉,
(2−1/2K1/2α)ϕ(ηκ) > 5;

hence also for all l � 5

(17) (2−1/2K1/2α(q(l)−3)/2)ϕ(ηκ) > q(l),

and inequality (14) follows by (8).
If 〈L,M〉 = 〈5, 1〉, 〈9, 1〉, 〈9, 2〉, we find directly

(2−1/2K1/2α2)ϕ(ηκ) > 7;
hence (17) holds if q(l) � 7. It remains to consider the cases 〈L,M〉 = 〈5, 1〉, 〈9, 1〉,
〈9, 2〉, l = 5 or 15. Their direct examination leads to the exceptions stated in the theorem.
The proof for K > 0 is complete.

2. K < 0. By the fundamental lemma of [7]

(18) |Qn(α, β)| > |α|ϕ(n)−2ν(n) log2 n for n > N(α, β).

On the other hand, by (5) and (6),Q(ε)n (α, β) can easily be represented as the products
of Bϕ(ν)/2 and 2 or 1 expressions of the form∏

χ(r)=const �=0

|x − ζ rm|, where x = −A1/2B−1/2, ±iA1/2B−1/2,

and χ(r) is a real character modm = κ or 4κ , respectively. Since |A1/2B−1/2| = 1,
m � 2n, we get by Lemma 3

(19) |Q(ε)n (α, β)| < |α|ϕ(n)/2 exp
(
4(2n)1/2(log 2n)2

)
.

It follows from (10), (18) and (19) that for n > N(α, β)

|Q(ε)n (α, β)| > |α|ϕ(n)/2−2ν(n) log3 n exp
(−4(2n)1/2(log 2n)2

)
.

Since, however, if K < 0, |α| � 21/2 and for n > 1040

log 2

2

( 1
2ϕ(n)− 2ν(n) log3 n

)− 4(2n)1/2(log 2n)2 > log n,

we find for n > max
(
N(α, β), 1040

)
|Q(ε)n (α, β)| > n,

which completes the proof. 	




I2. On primitive prime factors of Lehmer numbers I 1055

Let us remark that Theorem 1 implies the following

Corollary. If k(LM) = 1, K > 0, n is odd > 3, then Pn has at least two primitive prime
factors, except for n = 5, 〈L,M〉 = 〈9, 1〉.

It follows that all terms from the fifth onwards of the above sequencesPn are composite.

Theorem 2. If k
(
M max(K,L)

) = ±1, ±2, then q(Pn) � n+ 1 for n � n0(L,M).c

The theorem follows at once from two lemmas.

Lemma 4. If Pn is an arbitrary Lehmer sequence and n runs through all numbers �≡ 0
(mod 4), then q(Pn) � n+ 1 for n � n0(L,M).c

The proof is analogous to the proof of Lemma 2 of [6].

Lemma 5. If Pn is an arbitrary Lehmer sequence and n runs through all numbers ≡ 0
(mod κ), κ = k(M max(K,L)

)
, then q(Pn) � n+ 1 for n � n0(L,M).c

Proof. By Lemma 4 we can suppose n ≡ 0 (mod 4). If κ is odd, then Pn has at least one
primitive prime factor q for n large enough, by the theorem quoted in the introduction.
q is of the form nk + (KL|q) and so q ≡ (KL|q) (mod 4κ). Hence (LM|q) = 1, which
in view of the formula

(20) (α/β)(q−(KL|q))/2 ≡ (LM|q) (mod q)

implies that P(q−(KL|q))/2 is divisible by q. Since q is a primitive prime factor of Pn, we
cannot have q − (KL|q) = n, whence q � 2n− 1.

The same argument applies if κ is even and n/2κ is even. If the latter ratio is odd, then
by Theorem 1 for n large enough Pn has at least two primitive prime factors. One at least
of these is � n+ 1, which completes the proof. 	
c

Addendum*

Since the exact analogue of Schur’s inequality for imprimitive characters is not explic-
itly proved in [3] nor apparently anywhere else we shall show

Theorem A1. For every non-principal character χ modm and all integers a, b∣∣∣∣ b∑
n=a
χ(n)

∣∣∣∣ < m1/2 logm.

Let S(χ) = max
a,b

∣∣∣ b∑
n=a
χ(n)

∣∣∣. We shall need the following lemmas.

∗ Added in 2005
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Lemma A1. For a primitive character χ1 mod k > 1

S(χ1) <
2

3
k1/2 log k + 1

3
k1/2 log 3.

Proof. Following Davenport ([1a], p. 136) we have

S(χ1) � 2k1/2
∫ 1/2

1/2k
(sin πβ)−1 dβ.

Now sin πβ > 2β and sin πβ > 3β for 0 < β < 1
2 and 0 < β < 1

6 , respectively, hence
the right hand side is less than

2

3
k1/2

∫ 1/6

1/2k

dβ

β
+ k1/2

∫ 1/2

1/6

dβ

β

= 2

3
k1/2 log

k

3
+ k1/2 log 3 = 2

3
k1/2 log k + 1

3
k1/2 log 3. 	


Lemma A2. For a primitive character χ1 mod k > 1

S(χ1) < 1+ 2

π
k1/2

(1

2
log k + log log k + 1

)
+ 2

π

k log k

k1/2 log k − 1
.

Proof. See [3], p. 83. 	


Lemma A3. If χ is a character modm induced by a primitive character χ1 mod k, then

S(χ) � S(χ1)
∑
d |m/k

|μ(d)χ1(d)|.

Proof. See [3], p. 86. 	


Lemma A4. If either m �= 6k or (k, 6) �= 1, then in the notation of Lemma A3

(A1)
∑
d |m/k

|μ(d)χ1(d)| < 3

2

(m
k

)1/2
.

Proof. Assume first that m �= 6k and let
m

k
= 2α3β

l∏
i=1
p
γi
i , where α � 0, β � 0, γi > 0

and pi > 3 are distinct primes. We have

(A2)
∑
d |m/k

|μ(d)χ1(d)| �
∑
d |m/k

|μ(d)| = 2l0+l ,

where

l0 =

⎧⎪⎨⎪⎩
0 if α = β = 0,

1 if α + β > 0, αβ = 0,

2 if αβ > 0.
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Now

1 <
3

2
, 2 <

3

2
· 21/2, 22 <

3

2
· 121/2, 2 < p1/2

i ,

hence, unless α = β = 1,

2l0 <
3

2
(2α3β)1/2, 2l <

( l∏
i=1

p
γi
i

)1/2

and (A1) follows from (A2). 	


Assume now that m = 6k and (k, 6) �= 1. Then∑
d |m/k

|μ(d)χ1(d)| � 2 <
3

2
· 61/2.

Proof of Theorem A1. Let χ1 and χ have the meaning of Lemma A3. Since χ is non-
principal, we have m � k � 3, hence if m = k we obtain from Lemma A1

S(χ) <
2

3
m1/2 logm+ 1

3
m1/2 log 3 � m1/2 logm.

If m > k, but either m �= 6k or (k, 6) �= 1 we have by Lemmas A3, A1 and A4,

S(χ) �
(2

3
k1/2 log k + 1

3
k1/2 log 3

)
· 3

2

(m
k

)1/2

= m1/2 log k + 1

2
m1/2 log 3 � m1/2 logm−m1/2 log 2+ 1

2
m1/2 log 3

< m1/2 logm.

It remains to consider the case m = 6k, (k, 6) = 1. Then, by Lemma A3,

(A3) S(χ) � 4S(χ1).

Clearly, S(χ1) �
[k

2

]
= k − 1

2
, hence

S(χ) � 2(k − 1)

and, since 2(k − 1) < (6k)1/2 log 6k for k � 49, we may assume that k � 53. Then, by
Lemma A2,

(6k)1/2 log 6k − 4S(χ1)

k1/2 log k
�
√

6− 4

π
− 8 log log k

π log k
− 16/π −√6 log 6

log k

− 4

k1/2 log k
− 8

π(k1/2 log2 k − log k)
=: f (k).

For k � 53 the functions
log log k

log k
,

1

log k
,

1

k1/2 log k
and

1

k1/2 log2 k − log k
are all de-
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creasing, thus

f (k) � f (53) > 0.21,

(6k)1/2 log 6k − 4S(χ1) > 0,

and the theorem follows from (A3). 	
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On primitive prime factors of Lehmer numbers II

The present paper is devoted to the investigation of Lehmer numbers with more than
two primitive prime factors. We retain the notation of [3] with small changes that will be
clear from the sequel.

In particular,

Pn(α, β) =
{
(αn − βn)/(α − β), n odd,

(αn − βn)/(α2 − β2), n even,

where α and β are roots of the trinomial z2−L1/2z+M , andL andM are rational integers,
K = L − 4M �= 0. Further, z denotes the complex conjugate of any given z and ke(n)
denotes a positive integer n divided by the greatest e-th power dividing it. The main result
of the paper runs as follows.

Theorem. Let (L,M) = 1, e = 3, 4 or 6. If L1/2 is rational,K1/2 is an irrational integer
of the field Q(ζe), K is divisible by the cube of the discriminant of this field, κe = ke(M)
is square-free,

ηe =
{

2 if e = 6, M ≡ 3 (mod 4),

1 otherwise,

and n/ηeκe is an integer relatively prime to e, then for n > ne(L,M), Pn has at least
e primitive prime factors, and ne(L,M) can be effectively computed.

Lemma 1. Let e,m, n be positive integers, m |n, and let χ be a character modm such
that χe+1 = χ and that for all i �≡ 0 (mod e) characters χi have conductor m. Further,c

let

ζm = exp(2πi/m), τi = 1 for i ≡ 0 (mod e),

τi = τ(χi |ζm) =
m∑
r=1

(r,m)=1

χi(r)ζ rm, otherwise,

c

let χn be a character mod n induced by χ , and let χ(−1)1/e be any fixed e-th root of
χ(−1).
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Then, there exist polynomials Ai(x, y) (0 � i < e) with coefficients from the field
Q(ζe) such that

ψ(χn; x, y) =
n∏
r=1
(r,n)=1

(
x − χ(−1)1/eχ(r)ζ rny

)

= A0(x
e, ye)+

e−1∑
i=1

χ(−1)i/eτix
e−iyiAi(xe, ye),

A0(x, y) = A0(y, x),(1)

Ai(x, y) = Ae−i (y, x)χi−1(−1) (0 < i < e).(2)

Proof. In the course of this proof we shall denote by a1, a2, . . . , b1, b2, . . . , c1, c2, . . . ,
d1, d2, . . . , the numbers of the field Q(ζe), bypi(ξ, η, . . . ) and si(ξ, η, . . . ) the i-th funda-c

mental symmetric function and the sum of the i-th powers of the indeterminates ξ, η, . . . ,
respectively. The assumptions imply that n � m � 5. We havec

(3) ψ(χn; x, y) =
ϕ(n)∑
j=0

(−1)jχ(−1)j/exϕ(n)−j yjpj
(
χn(1)ζn, . . . , χn(−1)ζ−1

n

)
c

and by the Newton formulae

pj =
∑

α1+2α2+...+kαk=j
aα1,α2,...,αk s

α1
1 s

α2
2 · · · sαkk .

On the other hand,

si
(
χn(1)ζn, . . . , χn(−1)ζ−1

n

) = n∑
r=1
(r,n)=1

χin(r)ζ
ri
n = τ(χin|ζ in).

Now, it follows from well known results ([1], §20, Theorem IV) that under the con-
ditions assumed with regard to character χ , τ(χin|ζ in) can be different from zero only
if

i ≡ 0 (mod e) or m

∣∣∣ n

(n, i)

and in this casec

τ(χin|ζ in) = τi ×

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

±μ
(
n

(n, i)

)
· ϕ(n)

ϕ(n/(n, i))
, if i ≡ 0 (mod e),

μ

(
n

(n, i)m

)
χi
(

n

(n, i)m

)
χ−i

(
i

(n, i)

)
ϕ(n)

ϕ(n/(n, i))
,

if m
∣∣∣ n

(n, i)
, i �≡ 0 (mod e).

c
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This implies that

(4) pj
(
χn(1)ζn, . . . , χn(−1)ζ−1

n

) = ∑
α1+2α2+...+kak=j

bα1,α2,...,αk τ
α1
1 τ

α2
2 · · · ταkk .

Now, it follows from other well known results ([1], §20, Theorem VIII) that for suitable
cj �= 0, τj = cj τ j1 ; thus ifc

α1 + 2α2 + . . .+ kak = j ≡ i (mod e),

we have

(5) τ
α1
1 τ

α2
2 · · · ταkk = dα1,α2,...,αk τi .c

Formulae (3), (4), (5) give

(6) ψ(χn; x, y) = A0(x
e, ye)+

e−1∑
i=1

χ(−1)i/eτix
e−iyiAi(xe, ye),

where

A0(x, y) =
∑

0�j�ϕ(n)
α1+2α2+...+kαk=j≡0 (mod e)

(−1)jχ(−1)j/ebα1,...,αk dα1,...,αk x
(ϕ(n)−j)/eyj/e,

Ai(x, y) =∑
0<j�ϕ(n)

α1+2α2+...+kαk=j≡i (mod e)

(−1)jχ(−1)(j−i)/ebα1,...,αk dα1,...,αk x
(ϕ(n)−e+i−j)/ey(j−i)/e,

(0 < i < e)c

are polynomials with coefficients from the field Q(ζe).
To prove formulae (1) and (2), notice that

n∏
r=1
(r,n)=1

χ(r) = χ
( n∏

r=1
(r,n)=1

r

)
= χ(−1)ϕ(n)/e.

It follows that

ψ(χn; x, y) =
n∏
r=1
(r,n)=1

(
x − χ(−1)−1/eχ(r)ζ rny

)

=
n∏
r=1
(r,n)=1

(−χ(−1)−1/eχ(r)ζ rn
) n∏
r=1
(r,n)=1

(
y − χ(−1)1/eχ(r)ζ rnx

)

= χ(−1)−ϕ(n)/e
n∏
r=1
(r,n)=1

χ(r)ψ(χn; y, x) = ψ(χn; y, x).

Applying formula (6) successively toψ(χn; x, y) andψ(χn; y, x) and taking into account
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the well known equality

(7) τ i = χ(−1)iτe−i
we find (1) and (2). 	


Lemma 2. If e = 3, 4 or 6 and ω is a product of normalized irrational primes of the field
Q(ζe) (

1) such that m = ωω is square-free and (m, e) = 1, then there exists a characterc

χ satisfying the condition of Lemma 1 and such that

τ(χi |ζm) = ζ δie χ(−1)ie/(4,e
2)ω(e−i)/eωi/e (0 < i < e).

Here argω1/e = 1

e
argω, argω1/e = 1

e
argω (−π < arg z � π), χ(−1)1/(4,e

2) is any
c

fixed (4, e2)-th root of χ(−1) and

(8) ζ δie = ζ δe−ie χ(−1)[e2+i(4,e2)]/(4,e2).

Proof. Let ω = π1π2 · · ·πk be the factorization of ω in the field Q(ζe) into normalized
irrational primes. Since ωω is square-free, numbers pj = πjπj (j � k) are distinct
rational primes, and since (ωω, e) = 1, pj /| e. Now, for e = 3, 4, 6 there exist two
characters χ mod pj such that χe+1 = χ and all χi (0 < i < e) are primitive. It follows
from the formulae, given in [1], §20.4 that for one of these characters, which we denote
by χj ,

(9) τ(χj |ζpj )e = χj (−1)e
2/(4,e2)πe−1

j πj ,

whence by (7)

(10) τ(χe−1
j |ζpj )e = χj (−1)e

2/(4,e2)πjπ
e−1
j .

Further, it follows from the connection between τ(χj |ζpj ) and τ(χij |ζpj ) (cf. [1], §20,
Theorem IX) that

τ(χ2
j |ζpj )e = πe−2

j π2
j ,(11)

τ(χe−2
j |ζpj )e = π2

jπ
e−2
j .(12)

Finally, formula (7) implies that for e = 6

(13) τ(χ3
j |ζpj )6 = χj (−1)π3

jπ
3
j .

Formulae (9)–(13) can be written together as follows:

(14) τ(χij |ζpj )e = χj (−1)ie
2/(4,e2)πe−ij πij (e = 3, 4, or 6).

Put

ζm =
k∏
j=1

ζpj , χ =
k∏
j=1

χj .

(1) An irrational prime π of the field Q(ζe) is normalized if π = A + Bζ3, A ≡ −1 (mod 3),
B ≡ 0 (mod 3) for e = 3 or 6, and π = A+ Bζ4, A ≡ 1 (mod 4), B ≡ 0 (mod 2) for e = 4.c
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It follows from the properties of characters χj that χi have conductor m for all i �≡ 0c

(mod e). Besides, we find from (14) and a well known theorem ([1], §20, Theorem VI)
that

τ(χi |ζm)e = χ(−1)ie
2/(4,e2)ωe−iωi .

It follows hence that

τ(χi |ζm) = ζ δie χ(−1)ie/(4,e
2)ω(e−i)/eωi/e,

and by (7)

ζ δie = χ(−1)[e2+i(4,e2)]/(4,e2)ζ δe−i ,

which completes the proof. 	


Proof of the Theorem. Since ke(αα) = κe, there exist two integers α1 and ω of the field
Q(ζe) such that α = αe1ω and ωω = κe.

On the other hand, by the assumption about K we have

K ≡ 0 (mod 27) (e = 3 or 6), K ≡ 0 (mod 64) (e = 4).

Therefore, since K = L− 4M , (L,M) = 1,

(M, e) = (αα, e) = 1

and a fortiori (κe, e) = 1, (α1, e) = 1.
It follows from the latter equality that Im αe1 ≡ 0 (mod (1−ζ 2

e )
2). Since also Im α ≡ 0

(mod (1 − ζ 2
e )

2), we get Imω ≡ 0 (mod (1 − ζ 2
e )

2). Since ωω is square-free, ω is not
divisible by any rational prime and thus ω or −ω is a product of normalized irrational
primes. But Pn(−αe1ω,−αe1ω) = ±Pn(α, β), therefore we can assume that ω itself has
the said property. Applying Lemma 2 to ω we find a character χ satisfying the conditions
of Lemma 1 and such that formulae (1), (2) hold. Let χn/ηe be the induced character
mod n/ηe (by the assumption κe |n/ηe), and let χ(−1)1/e be any fixed e-th root of χ(−1).

Now, for j = 0, 1, . . . , e − 1, putc

Q
(j)
n (α, β) = ψ(χn/ηe ;α1/e, ζ

j
e β

1/e),c

where

α1/e = α1ω
1/e, β1/e = α1/e.

Since β = α, we find from Lemma 1 and Lemma 2

(15)

Q
(j)
n (α, β) = A0(α, α)

+
e−1∑
i=1

ζ
δi+ij
e χ(−1)i/eχ(−1)ie/(4,e

2)ω(e−i)/eωi/e(αe1ω)(e−i)/e
(
αe1ω

)i/e
Ai(α, α)

= A0(α, α)+ 1
2ωω

e−1∑
i=1

(
ζ
δi+ij
e χ(−1)i/eχ(−1)ie/(4,e

2)αe−i1 αi1Ai(α, α)

+ ζ δe−i−ije χ(−1)(e−i)/eχ(−1)(e−i)e/(4,e2)αi1α
e−i
1 Ae−i (α, α)

)
.c
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Now, by formula (1)

A0(α, α) = A0(α, α) = A0(α, α),

and by formulae (2) and (8)

ζ
δi+ij
e χ(−1)i/eχ(−1)ie/(4,e2)αe−i1 αi1Ai(α, α)

= ζ δe−i−ije χ(−1)(e
2+i(4,e2))/(4,e2)χ(−1)−i/eχ(−1)−ie/(4,e2)αe−i1 αi1Ai(α, α)

= ζ δe−i−ije χ(−1)(e−i)/eχ(−1)(e−i)e/(4,e2)αi1α
e−i
1 Ae−i (α, α)c

are real. Therefore, the numbersQ(j)n (α, β) are real. On the other hand, they are of course al-
gebraic integers and by (15) they belong to the field Q

(
ζe, χ(−1)1/e

)
. Thus, if χ(−1) = 1,

they must be rational integers. If χ(−1) = −1, e = 4 or 6 and (m − 1)/e is odd. Since
M ≡ m (mod 2e), (M − 1)/e must be odd. This gives, for e = 4,M ≡ 5 (mod 8), which
is incompatible with the condition that L1/2 is rational, K ≡ 0 (mod 64). Thus e = 6,
and we conclude that in this case numbersQ(j)n (α, β) are real integers of the field Q(ζ12).
Taking the relative conjugates of the numbers Q(j)n (α, β) with respect to the field Q(ζ4),
we find as in the case of complex conjugates that they are equal. This proves thatQ(j)n (α, b)
(0 � j < e) are rational integers in every case.

On the other hand, since (n/ηe, e) = 1, we have

(16)

e−1∏
i=0

ψ(χn/ηe ; x, ζ iey) =
n/ηe∏
r=1

(r,n/ηe)=1

(
xe − χ(−1)ζ ren/ηey

e
)

= Qn/ηe
(
xe, χ(−1)ye

)
.c

It follows from the definition of ηe that ηe = 1 unless χ(−1) = −1, and in this case
ηe = 2. Therefore, we get from formula (16)

(17)
e−1∏
j=0

Q
(j)
n (α, β) = Qn/ηe

(
α, χ(−1)β

) = Qn(α, β).
Further, it follows from (16), as in the analogous situation in [3], that the common prime
factors of any two numbers Q(i)n ,Q

(j)
n (0 � i < j < e) must divide the discriminant of

xen − 1, equal to (en)en. However, by Lemma 1 of [3], no prime factor of en can dividec

Qn(α, β) with an exponent > 1. Thus the numbers Q(i)n (α, β) (0 � i < e) are relatively
prime in pairs, and in order to prove the theorem it suffices, again by Lemma 1 of [3], to
establish the inequality

(18) |Q(i)n (α, β)| > n (0 � i < e).

To this end, notice that by Lemma 3 of [3]

(19) log |Q(i)n (α, β)| <
ϕ(n)

e
log |α| + 2en1/2 log2 n.
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On the other hand, by the fundamental lemma of [2], we have for n > N(α, β)

(20) log |Qn(α, β)| >
(
ϕ(n)− 2ν(n) log3 n

)
log |α|.

It follows from (17), (19) and (20) that for n > N(α, β)

log |Q(i)n (α, β)| >
(ϕ(n)
e
− 2ν(n) log3 n

)
log |α| − 2e(e − 1)n1/2 log2 n.

Since |α| � 21/2 and for n > 1060(ϕ(n)
e
− 2ν(n) log3 n

) log 2

2
− 2e(e − 1)n1/2 log2 n > log n (e � 6)

inequality (18) certainly holds for

n > max
(
1060, N(α, β)

)
and the theorem is proved. 	
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On primitive prime factors of Lehmer numbers III

1.

The main aim of this paper is to complete the results of [5], [7] and [8] concerning
Lehmer numbers with a negative discriminant. About the case of a positive discriminant
I have nothing new to say except that J. Brillhart and J. L. Selfridge have found explicitly
the sets M0 and N0 occurring in Theorem 1 of [7]. The notation of [7] is retained. In
particular ζn = exp(2πi/n),

Pn(α, β) =
{
(αn − βn)/(α − β), n odd,

(αn − βn)/(α2 − β2), n even,

where α and β are roots of the trinomial z2−L1/2z+M andL andM are rational integers.
ke(n) is the e-th powers-free kernel of n, n∗ is the product of all distinct prime factors of n,
z is the complex conjugate of z. We assume

L > 0 > K = L− 4M,(1)

(L,M) = 1, 〈L,M〉 �= 〈1, 1〉, 〈2, 1〉, 〈3, 1〉,(2)

set

A = max
{
12, log(M min{k(−K), k(L))}}, B = max{12, logM}

and prove

Theorem 1. If n > 3 · 1014A3 then Pn(α, β) has at least one primitive prime factor.

Theorem 2. For L,M satisfying (1), (2) set

η =
{

1 if k(LM) ≡ 1 mod 4,

2 if k(LM) ≡ 2 or 3 mod 4,

η1 =
{

1 if k(KM) ≡ 1 mod 4,

2 if k(KM) ≡ 2 or 3 mod 4,

Corrigendum, Acta Arith. 16 (1969), 101
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η2 =
{

1 if k(KL) ≡ 1 mod 4,

4 if k(KL) ≡ 2 or 3 mod 4.

If n > 3 · 1014A3 and n ≡ ηk(LM)mod 2ηk(LM) or n ≡ η1k(KM)mod 2η1k(KM) or
n ≡ 0 mod η2k(KL), then Pn(α, β) has two primitive prime factors; if all three congru-
ences hold then Pn(α, β) has four primitive prime factors.

Theorem 3. Let e = 3, 4 or 6 and ζe belong to the field Q
(√
KL
)
. Set

η3 =
{

1 if KL ≡ 0 mod 27,

3 if KL �≡ 0 mod 27; η4 =

⎧⎪⎨⎪⎩
1 if K ≡ 0 mod 8,

2 if L ≡ 0 mod 8,

4 if KL �≡ 0 mod 8;

η6 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if K ≡ 0 mod 27, M ≡ 1 mod 4 or L ≡ 0 mod 27, M ≡ 3 mod 4,

2 if K ≡ 0 mod 27, M ≡ 3 mod 4 or L ≡ 0 mod 27, M ≡ 1 mod 4,

3 if K ≡ 6 mod 9, M ≡ 1 mod 4 or L ≡ 3 mod 9, M ≡ 3 mod 4,

6 if K ≡ 6 mod 9, M ≡ 3 mod 4 or L ≡ 3 mod 9, M ≡ 1 mod 4.

If n/ηeke(M)∗ is an integer relatively prime to e,

n > 3 · 1014ηeB
3 and n

(2n, 8)

(n3, 8)
> 3 · 1014η3B

3 for e = 3, L ≡ 0 mod 3,

then Pn(α, β) has e + (e, 2)
[ηe + 1

4

]
primitive prime factors.

Proofs of these theorems given in §§2, 3, 4 respectively require some facts already
established in [6], [7], [8] and also an improved version of Lemma 1 of [8] stated below
as Lemma 3. An application to the estimation of the greatest prime factor of a linear
recurrence of the second order is given in §5. The result obtained completes Theorem 8
of [9]. Unfortunately, the proof of a related result of [7] concerning the greatest prime
factor of certain special Lehmer numbers contains a gap, which I am unable to fill in (in
the present edition a weaker result has been proved).c

2.

Lemma 1. For n �= 1, 2, 3, 4, 6 primitive prime factors of Pn(α, β) coincide with prime
factors ofQn(α, β)/

(
n∗,Qn(α, β)

)
and are of the form nt ± 1.

Proof. This follows from Theorems 3.2, 3.3 and 3.4 of [2]. 	

Lemma 2. For n > 3 · 1014A3, (1) and (2) imply the inequality

(3) |Qn(α, β)| > n|α|11ϕ(n)/13.

Proof. We have

(4) |Qn(α, β)| = |α|ϕ(n)
∏
d |n

∣∣∣∣(βα )d − 1

∣∣∣∣μ(n/d).
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In order to estimate |(β/α)d − 1| we apply Theorem 2 of [9]. We set there

〈α′, α′′〉

=
{〈 1

2

√
Lk(K)+ 1

2

√
Kk(K), 1

2

√
Lk(K)− 1

2

√
Kk(K)

〉
if k(−K) � k(L),〈 1

2

√
Lk(L)+ 1

2

√
Kk(L), 1

2

√
Lk(L)− 1

2

√
Kk(L)

〉
if k(−K) > k(L);

β ′ = β ′′ = 1,

α′, α′′, β ′, β ′′ are integers of the field Q
(√
KL
)
, and we obtain

(5) log 2 � log

∣∣∣∣(βα )d − 1

∣∣∣∣ � −25 · 105a3
1(log n+ 2)2,

where

a1 = max
{
π, log max{|eD|1/4, |α′β ′|, |α′β ′′|, |α′′β ′|, |α′′β ′′|}}c

= max
{
π, 1

2 log max
{|eD|1/2,M min{k(−K), k(L)}}}

and D is the discriminant of the field Q
(√
KL
)
. Clearly

D � 4k(−K)k(L)
and an easy computation shows that

1
4 log 4ek(−K)k(L) � max

{
π, 1

2 log
(
M min{k(−K), k(L)})},

thus

a1 = max
{
π, 1

2 log
(
M min{k(−K), k(L)})}.

Since by (1) log |α| = 1
2 logM we get from (4) and (5)

log |Qn(α, β)| − log n|α|11ϕ(n)/13

� 2
13 ϕ(n) log |α| − 3.2 · 106 · 2ν(n)−1a3

1(log n+ 2)2 − 2ν(n)−1 log 2− log n

� 1
13 ϕ(n) logM − 3.3 · 106 · 2ν(n)−1a3

1(log n+ 2)2.

For n > 3 · 1014A3 > 5 · 1017 we have in virtue of Theorem 15 of [4]

(6) ϕ(n) >
n

eγ log log n+ 5/(2 log log n)
>

n

eγ log log n+ 0.675
.

c

On the other hand, for every n

2ν(n) < 39 6
√
n

(this can be proved elementarily). The functions

fr(n) = nr/6

(eγ log log n+ 0.675)(log n+ 2)2
(r = 1 or 5)

are increasing for n > e13.
If a1 = π we find

1
13 ϕ(n) logM

2ν(n)−1a3
1(log n+ 2)2

>
log 2

254π3 f5(n) � log 2

254π3 f5(5 · 1017) > 106.56 > 3.3 · 106.
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If a1 = 1
2 log(M min{k(−K), k(L))} � π we find n > 24 · 1014a3

1 ,

logM =
(

1

2
− log(M−1 min{−K,L})

2 log(M min{−K,L})
)

log(M min{−K,L})
c

� 2π − log 2

4π
log(M min{−K,L}) � 2π − log 2

2π
a1,

hence
1
13 ϕ(n) logM

2ν(n)−1a3
1(log n+ 2)2

>
2π − log 2

507πa2
1

f5(n) � 2π − log 2

507πa2
1

f5(24 · 1014a3
1)

= 2π − log 2

507π
(24 · 1014)2/3f1(24 · 1014a3

1)c

� 2π − log 2

507π
(24 · 1014)2/3f1(24 · 1014π3) > 106.53 > 3.3 · 106.

This completes the proof. 	


Proof of Theorem 1 follows at once from Lemmata 1 and 2. 	


3.

Lemma 3. Let e, n be positive integers, n > 2, (e, 2n) = 1 or 2. Let χ be a character

mod n(e, n) of order e with conductor f , where
(n(e, n)

f
, e
)
= 1. Set

ψn(χ; x, y) =
n∏
r=1
(r,n)=1

(
x − χ(r)ζ rn(e,n)y

)
.

Then

Qn(x
e, ye) =

∏
εe=1

ψn(χ; x, εy),(7)

ψn(χ; x, y) = χ(−1)ϕ(n)/eψn(χ; y, x),(8)

ψ(χ; x, y) = R0(x
e, ye)+

e−1∑
i=1

τ(χi)xe−iyiRi(xe, ye),(9)

where Ri are polynomials over Q(ζe) and τ(χi) are normalized primitive Gaussian sums
belonging to characters χi .

Proof. Formula (7) follows at once, since∏
εe=1

ψn(χ; x, εy) =
n∏
r=1
(r,n)=1

∏
εe=1

(
x − χ(r)ζ rn(e,n)εy

) = n∏
r=1
(r,n)=1

(
xe − ζ ren(e,n)ye

)
.

To prove formula (8) we notice that the assumptions on e and f imply

n(e, n) = (e3, n2)n/(e2, n),
(
(e3, n2), n/(e2, n)

) = 1,
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hencec

(10) χ = χ(e3,n2)χn/(e2,n),

where χ(e3,n2) and χn/(e2,n) are characters mod (e3, n2) and mod n/(e2, n), respectively,
the former primitive;

n∏
r=1
(r,n)=1

r ≡
{

3 mod 8 if n = 4, e = 2,
1 mod (e3, n2) otherwise;

n∏
r=1
(r,n)=1

r ≡
{
−1 mod n if n has a primitive root,
1 mod n otherwise.

Besides
n∏
r=1
(r,n)=1

ζ−rn(e,n) = (−1)ϕ(n)/(e,n);

ϕ(n)

e
≡

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 mod 2 if n = 4, e = 2,
p − 1

e
mod 2 if n = pμ, p odd,

p − 1

2
mod 2 if n = 2pμ, p odd, e even,

0 mod 2 otherwise.

It follows hence
n∏
r=1
(r,n)=1

χ(r)ζ−rn(e,n)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−χ(3) = χ(−1)ϕ(n)/e if n = 4, e = 2,
χ(−1) = (−1)(p−1)/e = (−1)((p−1)/e)2

= χ(−1)ϕ(n)/e if n = pμ, p odd,
χn/2(−1)(−1)(p−1)/2 = (−1)(p−1)/2(−1)(p−1)/2

= 1 = χ(−1)ϕ(n)/e if n = 2pμ, p odd, e even,

χ(−1) = 1 = χ(−1)ϕ(n)/e if n = 2pμ, p, e odd,
χ(1) = 1 = χ(−1)ϕ(n)/e otherwise

and we get

ψn(χ; x, y) =
n∏
r=1
(r,n)=1

(
x − χ(r)ζ−rn(e,n)y

)
= (−1)ϕ(n)

n∏
r=1
(r,n)=1

χ(r)ζ−rn(e,n)
n∏
r=1
(r,n)=1

(
y − χ(r)ζ rn(e,n)x

)
= (−1)ϕ(n)/eψn(χ; y, x).
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In the proof of (9) we shall denote by a1, a2, . . . , b1, b2, . . . , c1, c2, . . . , d1, d2, . . . num-c

bers of the field Q(ζe), by pi(ξ, η, . . . ) and si(ξ, η, . . . ) the i-th fundamental symmetric
function and the sum of i-th powers of the indeterminates ξ, η, . . . , respectively. We have

(11) ψn(χ; x, y) =
ϕ(n)∑
j=0

(−1)j xϕ(n)−j yjpj
(
χ(1)ζn(e,n), . . . , χ(n− 1)ζ n−1

n(e,n)

)
c

and by Newton’s formulae

(12) pj =
∑

α1+2α2+...+kak=j
aα1α2...αk s

α1
1 s

α2
2 · · · sαkk .

On the other hand, in the notation of [1], §20,

(13) si
(
χ(1)ζn(e,n), . . . , χ(n− 1)ζ n−1

n(e,n)

) = 1

(n, e)
τ
(
χi |ζ in(e,n)

)
.

c

This is obvious if (n, e) = 1; if (n, e) = 2 we have by (10)

χ(r + n) = χ(8,n2)(r + n)χn/(n,4)(r + n) = −χ(8,n2)(r)χn/(n,4)(r) = −χ(r);(14)

2
n∑
r=1
(r,n)=1

χi(r)ζ ri2n =
n∑
r=1
(r,n)=1

χi(r)ζ ri2n +
n∑
r=1
(r,n)=1

χi(r + n)ζ (r+n)i2n = τ(χi |ζ i2n).

Now, by the reduction theory for Gaussian sums, we have

τ(χi |ζ in(e,n)) = biτ (χi),c

on the other hand, by the theory of Jacobi sums

τ(χi) = ciτ (χ)i with ci �= 0.

It follows by (13)

(15) s
α1
1 s

α2
2 · · · sαkk = dα1α2...αk τ

(
χα1+2α2+...+kαk ).c

Formulae (11), (12) and (15) give (9) with

Ri(x, y) =
∑

0�j�ϕ(n)
α1+2α2+...+kαk=j≡i mod e

(−1)j aα1α2...αk dα1α2...αk x

ϕ(n)+i−j
e

− [ i+e−1
e

]
y

j−i
e
. 	


c

Corollary 1. Let n > 2, χ be a quadratic character mod n(n, 2)with conductor f , where
n(n, 2)/f is odd, and let ψn have the meaning of Lemma 3. Then

Qn(x
2, y2) = ψn(χ; x, y)ψn(χ; x,−y),(16)

ψn(χ; x, y) = R(x2, y2)−√χ(−1)f xyS(x2, y2),(17)

where R and S are polynomials with rational coefficients and

(18) R(x, y) = χ(−1)ϕ(n)/2R(y, x), S(x, y) = χ(−1)ϕ(n)/2+1S(y, x).
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Besides, for n even, ε = ±1,

(19) ψn(χ; x, εy) =
2n∏
r=1
χ(r)=ε

(x − ζ r2ny).

Proof. Formulae (16), (17) and (18) follow from (7), (9) and (8), respectively, on taking
into account that τ(χ) = √χ(−1)f is irrational. Besides for n even, ε = ±1,

εχ(r)ζ r2n = ζ r+(1−εχ(r))n/22n

and in virtue of (14) the sequence

r + 1− εχ(r)
2

n (1 � r < n, (r, n) = 1)

is a permutation of the sequence r (1 � r < 2n, χ(r) = ε), which implies (19). 	


Lemma 4. Let χ be a quadratic character mod n with conductor f and

Φ(ε)n (χ; x, y) = ωεn(χ)
n∏
r=1
χ(r)=ε

(x − ζ rny),

where ε = ±1 and

ωn(χ) =

⎧⎪⎪⎨⎪⎪⎩
n∏
r=1
χ(r)=1

ζ rn if f = 3,

1 otherwise.

Then

Qn(x, y) = Φ(1)n (χ; x, y)Φ(−1)
n (χ; x, y),(20)

Φ(ε)n (χ; x, y) = T (x, y)− ε
√
χ(−1)f U(x, y),(21)

where T ,U are polynomials with rational coefficients and

(22)

T (x, y) = x2ν−2
, U(x, y) = y2ν−2

if f = 4, n = 2ν,

T (x, y) = −T (y, x), U(x, y) = U(y, x) if f = 8, n = 2ν, χ(−1) = −1

or f = 4, n = 2μ+2qν

or f = q, n = qν, q prime ≡ 3 mod 4,

T (x, y) = T (y, x), U(x, y) = χ(−1)U(y, x) otherwise.c

Besides we have

(23) Φ(ε)n (χ; x2, y2) =
{
Φ
(εχ(2))
n (χ; x, y)Φ(εχ(2))n (χ; x,−y) (n odd),

ωn(χ)
−εΦ(ε)2n (χ; x, y) (n even).c
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Proof. Let n = 2μm, where m/f is odd. If f is odd, there exists an integer s such that
χ(s) = 1,

(s − 1,m) = σ =
{

3 if f = 3,

1 otherwise.

Hence

(s − 1)
m(n,2)∑
r=1
χ(r)=ε

r =
m(n,2)∑
r=1
χ(r)=ε

sr −
m(n,2)∑
r=1
χ(r)=ε

r ≡ 0 modm(n, 2)

and

σ

n∑
r=1
χ(r)=ε

r ≡ 0 mod n if n is odd,

σ

2m∑
r=1
χ(r)=ε

r ≡ 1
2ϕ(m)mmod 2m if n is even.

c

In the latter case

σ

n∑
r=1
χ(r)=ε

r = σ
2m∑
r=1
χ(r)=ε

2μ−1−1∑
k=0

(r + 2km) = σ2μ−1
2m∑
r=1
χ(r)=ε

r + σϕ(m)m
2μ−1−1∑
k=0

k

≡ 2μ−2ϕ(m)m+ 2μ−2ϕ(m)m(2μ−1 − 1) ≡ 22μ−3ϕ(m)m ≡ ϕ(n)n
4

mod n.

It follows that for f odd

(24)
n∏
r=1
χ(r)=ε

ζ rσn = (−1)(n−1)ϕ(n)/2.

In particular, ωn(χ)6 = 1 and ωn(χ) belongs to Q
(√
χ(−1)f

)
. Moreover, for n odd

ωn(χ) = ωn(χ)2χ(2), thus

Φ(ε)n (χ; x2, y2)

= ωεn(χ)
n∏
r=1

χ(r)=εχ(2)

(x2 − ζ 2r
n y

2) = ω2εχ(2)
n

n∏
r=1

χ(r)=εχ(2)

(x − ζ rny)
n∏
r=1

χ(r)=εχ(2)

(x + ζ rny)

= Φ(εχ(2))n (χ; x, y)Φ(εχ(2))n (χ; x,−y),
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which proves (23) for n odd. For n even we havec

Φ(ε)n (χ; x2, y2) = ωn(χ)ε
n∏
r=1
χ(r)=ε

(x2 − ζ rny2) = ωn(χ)ε
n∏
r=1
χ(r)=ε

(x − ζ r2ny)(x − ζ r+n2n y)

= ωn(χ)ε
2n∏
r=1
χ(r)=ε

(x − ζ r2ny) = ωn(χ)−εΦ(ε)2n (χ; x, y).
c

Since (20) is obvious, it remains to prove (21) and (22). For f odd χ is induced by (r|f ),
thus (21) follows from Lemma 1 of [6] and the remark after formula (20) there. Further,
by (24),

Φ
(ε)

n (χ; x, y) = ωn(χ)−ε(−1)ϕ(n)/2
n∏
r=1
χ(r)=ε

ζ−rn
n∏
r=1
χ(r)=ε

(y − ζ rnx)

= (−1)ϕ(n)/2
n∏
r=1
χ(r)=ε

ζ−rσn Φ(ε)n (χ; y, x) = (−1)nϕ(n)/2Φ(ε)n (χ; y, x),

which implies (22) since 1
2nϕ(n) is odd only for n = qν , q prime ≡ 3 mod 4.

For f even χ(m/2+ r) = −χ(r), hence by (23) and (19)c

Φ(ε)n (χ; x, y) = Φ(ε)m (χ; x2μ, y2μ) =
{
x2μ − εζ4y2μ if m = 4,

ψm/2(χ; x2μ, εy2μ) if m > 4

and the lemma follows from Corollary 1 since for m > 4c

χ(−1)ϕ(m/2)/2 =

⎧⎪⎨⎪⎩
−1 if f = 8, n = 2ν, χ(−1) = −1

or f = 4, n = 2μ+2qν, q prime ≡ 3 mod 4,

1 otherwise.

	

c

Remark. Lemma 4 can also be deduced from the results of [3]. One has only to rectify the
formulae for λ3N and λ4N given on p. 192 there.

Lemma 5. If n ≡ ηk(LM)mod 2ηk(LM), χ is the character mod ηn induced by(
k(LM)|r),

(25) Q(ε)n (α, β) = ψn
(
χ;√α, ε√β) (ε = ±1)

and δ = k(L){ϕ(n)/4}, then δ−1Q
(1)
n (α, β)and δ−1Q

(−1)
n (α, β)are relatively prime rational

integers dividingQn(α, β).

Proof. The assertion is proved as Lemma 1 in [7]. One has only to verify that Q(ε)n (α, β)
defined by formula (6) there coincide withQ(ε)n (α, β) defined here. Alternatively one can
proceed as below in the proof of Lemma 6. 	
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Lemma 6. If n ≡ η1k(KM)mod 2η1k(KM), χ1 is the character mod η1n induced by(
k(KM)|r),

(26) Q′(ε)n (α, β) = ψn
(
χ1;√α, ε

√
β
)
(ε = ±1)

and

δ1 = k(K){ϕ(n)/4},
then δ−1

1 Q
′(1)
n (α, β) and δ−1

1 Q
′(−1)
n (α, β) are relatively prime rational integers dividing

Qn(α, β).

Proof. Since χ1(−1) = −1, it follows from (17) and (18) that the functions
R(x, y)(x − y)ϕ(n)/2 and S(x, y)(x − y)ϕ(n)/2−1 are symmetric of even degree thus
are expressible rationally by (x + y)2 and xy. Hence the numbers R(α, β)Kϕ(n)/4 and
S(α, β)Kϕ(n)/4−1/2 are rational. Since√

χ1(−1)f (χ1)αβK = η1k(KM)

√
KM

k(KM)

is rational, it follows from (17) and (26) that the numbers Kϕ(n)/4ψn
(
χ1;√α, ε√β

)
and

also δ1Q
′(ε)
n (α, β) are rational.

They are also obviously algebraic integers, thus they are rational integers. δ2
1Q

′(ε)
n (α, β)2

are perfect squares and since they are divisible by a square-free number δ2
1 they are di-

visible by its square δ4
1. Thus δ−1

1 Q
′(ε)
n (α, β) are rational integers (ε = ±1). Finally, they

are relatively prime. Indeed, the resultant of ψn(χ1; x, y) and ψn(χ1; x,−y) by (16) di-
vides the discriminant of Qn(x2, y2) and a fortiori (2n)2n. Since by (2) (α, β) = 1, it
follows from (26) that any common prime factor of δ−1

1 Q
′(1)
n (α, β) and δ−1

1 Q
′(−1)
n (α, β)

divides 2n. On the other hand, by Lemma 1 any prime factor of 2n divides Qn(α, β) at
most in the first power. Since by (16) and (26)

Qn(α, β) = Q′(1)n (α, β)Q′(−1)
n (α, β),

we reach the desired conclusion. 	


Lemma 7. If n > 4, n ≡ 0 mod η2k(KL), χ2 is the character mod n induced by(
k(KL)|r), ε = ±1, q denotes a prime ≡ 3 mod 4,c

(27) Q′′(ε)n (α, β) =

⎧⎪⎨⎪⎩
ζ ε8Φ

(ε)
n (χ2;α, β) if n = 2ν, k(KL) = −1,

Φ
(−ε)
n (χ2;α, β) if k(KL) ≡ 5 mod 8, n odd,

Φ
(ε)
n (χ2;α, β) otherwise;c

δ2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
2 if n = 2ν, k(KL) = −1,√−2 if n = 2ν, k(KL) = −2,√−1 if n = 2μqν, k(KL) = −1,√
k(K) if n = qν, k(KL) = −q,√
k(L) if n = 2qν, k(KL) = −q,

1 otherwise,c
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then δ−1
2 Q

′′(1)
n (α, β) and δ−1

2 Q
′′(−1)
n (α, β) are relatively prime rational integers dividing

Qn(α, β).

Proof. It is enough to prove that δ2Q
′′(ε)
n (α, β) is rational for ε = ±1; the remainder can

be proved like the corresponding part of Lemma 6.
If n = 2ν (ν � 3), k(KL) = −1 we have by (22)

δ2Q
′′(ε)
n (α, β) = √2 ζ ε8 (α

2ν−2 − εζ4β2ν−2
)c

= α2ν−2 + β2ν−2 + ε√−KL α
2ν−2 − β2ν−2

α2 − β2 ,

thus δ2Q
′′(ε)
n (α, β) can be expressed rationally in terms of (α + β)2 = L and αβ = M

and is rational.
If n = 2ν , k(KL) = −2 or n = 2μqν , k(KL) = −1 it follows from (22) that

T (x, y)(x2−y2) andU(x, y) are symmetric functions of even degree, henceT (α, β)
√
KL

and U(α, β) are rational. Since

(28)
√
χ2(−1)f (χ2)KL = k(KL)

√
η2KL

k(KL)

and δ2 = √
k(KL), it follows from (21) and (27) that

√
KLΦ

(ε)
n (χ2;α, β) and

δ2Q
′′(ε)
n (α, β) are rational.

If n = qν , k(KL) = −q, it follows from (22) that

T (x, y)(x − y) and U(x, y)(x + y)−1

are symmetric functions of even degree, hence√
k(K) T (α, β) and

√
k(K)U(α, β)/

√
KL

are rational. In the remaining cases by (22)

T (x, y)(x + y)ϕ(n)/2 and U(x, y)(x + y)ϕ(n)/2(x2 − y2)−1

are symmetric functions of even degree, thus

k(L){ϕ(n)/4}T (α, β) and k(L){ϕ(n)/4}U(α, β)/
√
KL

are rational. The desired conclusion follows from (21), (27) and (28). 	


Proof of Theorem 2. In order to prove the first part of the theorem it is enough to show in
view of Lemmata 1, 5, 6 and 7 that for n > 3 · 1014A3

(29) min
{|Q(ε)n (α, β)|, |Q′(ε)n (α, β)|, |Q′′(ε)n (α, β)|} > n (ε = ±1).

Now by (25)–(27), (19), Lemma 3 of [7] and Lemma in the Addendum (page 1085) wec

have

(30) max
{|Q(−ε)n (α, β)|, |Q′(−ε)n (α, β)|, |Q′′(−ε)n (α, β)|} < |α|ϕ(n)/2 exp(4n1/2 log2 n).
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Since |α| = √M �
√

2 we get by (3) and (6) for n > 3 · 1014A3

log min
{|Q(ε)n (α, β)|, |Q′(ε)n (α, β)|, |Q′′(ε)n (α, β)|}− log n

= log |Qn(α, β)| − log max
{|Q(−ε)n (α, β)|, |Q′(−ε)n (α, β)|, |Q′′(−ε)n (α, β)|}− log n

> 11
13 ϕ(n) log |α| − 1

2 ϕ(n) log |α| − 4n1/2 log2 n

>
9 log 2

52
n1/2 log2 n

(
g(n)− 208

9 log 2

)
,

where

(30) g(n) = n1/2

(eγ log log n+ 0.675) log2 n
.

g(n) is an increasing function for n > e5 and

(31) g(3 · 1014A3) > g(5 · 1017) > 5 · 104 >
208

9 log 2
,

thus (29) follows.

To prove the second part of the theorem we show that if n satisfies all three congruences
n ≡ ηk(LM)mod 2ηk(LM), n ≡ η1k(KM)mod 2η1k(KM) and n ≡ 0 mod η2k(KL)c

then

(32) Q2
n(α, β) =

∏
ε=±1
θ=±1

Q(ε,θ)n (α, β),

where

(33) Q(ε,θ)n (α, β) = δ0Q
2
n(α, β)

Q
(−ε)
n (α, β)Q

′(−θ)
n (α, β)Q

′′(−εθ)
n (α, β)

,
c

δ0 =
{√−1 if n = 4qν, q prime ≡ 3 mod 4, k(KL) = −1,

1 otherwise;c

Q
(ε,θ)
n (α, β) are rational integers relatively prime in pairs except for n = qν or 2qν , when

two of them have the greatest common factor q.

It follows from Lemmata 5, 6 and 7 that for ε = ±1, θ = ±1

(δδ1δ2)
−1Q(−ε)n (α, β)Q′(−θ)n (α, β)Q′′(−εθ)n (α, β)

is rational. On the other hand

δδ1δ2 =
{
(−1)nq if n = qν or 2qν,

δ0 otherwise.

This implies that Q(ε,θ)n (α, β) is rational. Moreover, since χ2 = χχ1, we have by



1078 I. Primitive divisors

(25)–(27), (19) and (23) for n odd

Q(ε,θ)n (α, β) = δ0Q
(ε)
n (α, β)Q

′(θ)
n (α, β)

Q
′′(−εθ)
n (α, β)

= δ0ψn(χ;√α, ε√β)ψn(χ1;√α, θ√β)
Φ
(−εθ)
n (χχ1;√α,√β)Φ(−εθ)n (χχ1,

√
α,−√β)

= δ0ωεθn (χχ1)

n∏
r=1
χ(r)=ε
χ1(r)=θ

(√
α − ζ rn

√
β
)2 n∏

r=1
χ(r)=−ε
χ1(r)=−θ

(√
α + ζ rn

√
β
)2
,

c

for n even

Q(ε,θ)n (α, β) = δ0Q
(ε)
n (α, β)Q

′(θ)
n (α, β)

Q
′′(−εθ)
n (α, β)

= δ0Φ
(ε)
2n (χ;

√
α,
√
β)Φ

(θ)
2n (χ1;√α,√β)

Φ
(−εθ)
2n (χχ1;√α,√β)

= δ0
2n∏
r=1
χ(r)=ε
χ1(r)=θ

(√
α − ζ rn

√
β
)
.

ThereforeQ(ε,θ)n (α, β) is an algebraic integer and hence a rational integer. Since

(34)

Q(ε,θ)n (α, β)Q(ε,−θ)n (α, β) = Q(ε)n (α, β)2δ2
0,

Q(ε,θ)n (α, β)Q(−ε,θ)n (α, β) = Q′(θ)n (α, β)2δ2
0,

Q(ε,θ)n (α, β)Q(−ε,−θ)n (α, β) = Q′′(εθ)n (α, β)2δ2
0,

the greatest common factor of Q(ε1,θ1)
n (α, β) and Q(ε2,θ2))

n (α, β) for 〈ε1, θ1〉 �= 〈ε2, θ2〉
divides at least two of the numbersc (
Q(1)n (α, β)

2,Q(−1)
n (α, β)2

)
,
(
Q′(1)n (α, β)2,Q′(−1)

n (α, β)2
)
,(

Q′′(1)n (α, β)2,Q′′(−1)
n (α, β)2

)
,

equal to |δ2|, |δ2
1 |, |δ2

2 |, respectively. However these numbers are {1, q, q}, {q, 1, q} or

{1, 1, 1} according to whether n = qν, 2qν or otherwise. It follows that Q(ε,θ)n (α, β) are
relatively prime in pairs except for n = qν or 2qν , when (35) shows that two of them have
the greatest common factor q.

Now, by (3), (6), (30)–(32) and (34) we have for n > 3 · 1014A3

log
∣∣Q(ε,θ)n (α, β)

∣∣− log n2 >
22

13
ϕ(n) log |α| − 3

2
ϕ(n) log |α| − 12n1/2 log2 n

� 5

52
ϕ(n) log 2− 12n1/2 log2 n

>
5 log 2

52
n1/2 log2 n

(
g(n)− 624

5 log 2

)
> 0.

In virtue of (33) and Lemma 1 the theorem follows. 	
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Corollary 2. If e = 1, 2, 3, 4 or 6, ζe belongs to the field Q
(√
KL
)

and n > 3 · 1014A3

then αn − ζ ieβn has a rational prime factor of the form
e

(i, e)
nt ± 1, relatively prime to

αe − βe.

Proof. For e=1 or 2 the corollary follows at once from the divisibilityQne(α, β)|αn−ζeβn,
Lemma 1 and Lemma 2.

For e > 2 since

ζ ie = ζ i/(i,e)e/(i,e) ,

it is enough to consider the case i = ±1. Then

Q′′(i)ne (α, β) |αn − ζ ieβn, Q′′(i)ne (α, β) |Qne(α, β)
and the corollary follows from Lemma 1 and (29). 	


4.

In this and in the next section we call an integer a + bζe of the field Q(ζe) normalized
if e = 3 or 6, a ≡ −1 mod 3, b ≡ 0 mod 3 or e = 4, a ≡ 1 mod 4, b ≡ 0 mod 2,c

semi-normalized if either a + bζe or −(a + bζe) is normalized. Two normalized integers
of Q(ζe) which divide each other are equal.

Lemma 8. Let e = 3, 4 or 6 and ω be a semi-normalized integer of Q(ζe) such that
(ω, ω) = 1. Then there exists a character χ of order e, even for e = 6, such that

f (χ) =
{

4ke(ωω)∗ if e = 6, ωω ≡ 3 mod 4,

ke(ωω)
∗ otherwise,

τ(χi) = cei ωe−iωi, where ci ∈ Q(ζe).

Proof. Let ω = ±ωe0
e−1∏
k=1
ωkk , where each ωk is a product of distinct normalized irrational

primes of Q(ζe) and ωk’s are relatively prime in pairs. In virtue of Lemma 2 of [8] there
exists for each ωk a character χk of order e such that

f (χik) = ωkωk, τ (χik) = χk(−1)ei/(2,e)ωe−ik ωik (0 < i < e).

Consider the character χ0 =
e−1∏
k=1
χkk . In virtue of well known theorems we have

f (χ0) =
e−1∏
k=1

ωkωk = ke(ωω)∗,
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τ(χi0) =
e−1∏
k=1

τ(χkik )
e =

e−1∏
k=1

ki �≡0 mod e

χk(−1)eki/(2,e)ωe−e{ki/e}k ω
e{ki/e}
k

= χ0(−1)ei/(2,e)
e−1∏
k=1

ωke−kik ωkik

e−1∏
k=1

ki �≡0 mod e

ω
−ke+e+e[ki/e]
k ω

−e[ki/e]
k

×
e−1∏
k=1

ki≡0 mod e

ω−ke+kik ωkik

= χ0(−1)ei/(2,e)cei ω
e−iωi,

where

ci = ±ω−1
0

e−1∏
k=1

ω
−k−[−ki/e]
k ω

−[ki/e]
k .

For e = 3 or 4 we have χ0(−1)e/(2,e) = 1. For e = 6

χ0(−1) =
5∏
k=1

χk(−1)k = (−1)(f (χ1χ3χ5)−1)/6,

thus χ0(−1) = −1 only if f (χ1χ3χ5) = k(ωω) ≡ ωω ≡ 3 mod 4.
Set now

χ =
{
χ4χ0 if e = 6, ωω ≡ 3 mod 4,

χ0 otherwise,

where χ4 is the primitive character mod 4. For e = 6, ωω ≡ 3 mod 4 we have

χ(−1) = 1, f (χ) = 4ke(ωω)
∗,

τ (χi)e = τ(χi4)eτ (χi0)e = (−1)iχ0(−1)icei ω
e−iωi = cei ωe−iωi .

Thus the character χ satisfies the conditions of the lemma. 	


Lemma 9. Let e, ω and χ have the meaning of Lemma 8 and ε run through e-th roots of
unity. Ifm(m, e)/f (χ) is an integer relatively prime to e, χ(−1)ϕ(m)/2e is any square root
of χ(−1)ϕ(m)/e,c

(35) Q(ε)m (ω, ω) = χ(−1)ϕ(m)/2eψm(χ;ω1/e, εω1/e),

χ is considered as a character modm(m, e) and m > 3 · 1014 max3{12, logωω}, then
Q
(ε)
m (ω, ω) are rational integers, relatively prime in pairs and |Q(ε)m (ω, ω)|>m.

Proof. We have χ(−1)ϕ(m)/2 = 1 and by Lemma 8(
τ(χi)(ω1/e)e−i (εω1/e)i

)e = cei (ωω)e,
thus

χ(−1)ϕ(m)/2e ∈ Q(ζe) and τ(χi)(ω1/e)e−i (εω1/e)i ∈ Q(ζe).
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It follows hence that

χ(−1)ϕ(m)/2eR0(ω, ω) ∈ Q(ζe)

and

χ(−1)ϕ(m)/2eτ (χi)(ω1/e)e−i (εω1/e)iRi(ω, ω) ∈ Q(ζe) (0 < i < e),

thus by (9) and (36)

Q(ε)m (ω, ω) ∈ Q(ζe).

On the other hand,Q(ε)m (ω, ω) is real because by (8)

χ(−1)ϕ(m)/2eψm(χ;ω1/e, εω1/e) = χ(−1)−ϕ(m)/2eψm(χ;ω1/e, ε−1ω1/e)

= χ(−1)ϕ(m)/2eψm(χ; ε−1ω1/e, ω1/e)

= χ(−1)ϕ(m)/2eψm(χ;ω1/e, εω1/e).

Since Q(ε)m (ω, ω) is obviously an algebraic integer it is a rational integer. To prove that
Q
(ε)
m (ω, ω) andQ(θ)m (ω, ω) are relatively prime for ε �= θ we notice that by (7) the resultant

of ψm(χ; x, εy) and ψm(χ; x, θy) divides the discriminant of Qm(xe, ye) and a fortiori
(em)em. Since (ω, ω) = 1 it follows by (36) that any common prime factor ofQ(ε)m (ω, ω)
andQ(θ)m (ω, ω) divides em. On the other hand, by Lemma 1, any prime factor of 6m divides
Qm(ω,ω) at most in first power. Since

(36) Qm(ω,ω) =
∏
ε

Q(ε)m (ω, ω)

we reach the desired conclusion.

Now, if (m, e) = 1

χ(−1)−ϕ(m)/2eQ(ε)m (ω, ω) = ωϕ(m)/e
∏
θe=1

m∏
r=1
χ(r)=θ

(
ω1/e

εθω1/e − ζ rm
)
.

c

Therefore, by Lemma 3 of [7]c

|Q(ε)m (ω, ω)| � |ω|ϕ(m)/e exp(2em1/2 log2m).

If (m, e) = 2 the same conclusion follows from the lemma in the Addendum.c

On the other hand, since k
(
(ω + ω)2

) = 1 we have by Lemma 3 for
m > 3 · 1014 max3{12, logωω} > 5 · 1017

|Qm(ω,ω)| > m|ω|11ϕ(m)/13.c



1082 I. Primitive divisors

It follows by (6), (31), (32) and (37) that for m in question

log |Q(ε)m (ω, ω)| − logm

>
11

13
ϕ(m) log |ω| − e − 1

e
ϕ(m) log |ω| − 2e(e − 1)m1/2 log2m

� 1

78
ϕ(m) log |ω| − 60m1/2 log2m

� log 2

156
m1/2 log2m

(
g(m)− 9360

log 2

)
> 0.

This completes the proof. 	


Proof of Theorem 3. We set for e = 3 or 6

〈ω,m〉 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈α, n〉 if K ≡ 0 mod 27,〈
ζ4α, n

(2n, 8)

(n3, 8)

〉
if L ≡ 0 mod 27,〈

ζ s3α,
n

3

〉
if K ≡ 6 mod 9,〈

ζ s12α,
n

3
· (2n, 8)
(n3, 8)

〉
if L ≡ 6 mod 9;

for e = 4

〈ω,m〉 =

⎧⎪⎨⎪⎩
〈α, n〉 if K ≡ 0 mod 8,

〈ζ4α, n/2〉 if L ≡ 0 mod 8,

〈ζ4α2, n/4〉 if KL �≡ 0 mod 8.c

It can be verified that for a suitably chosen s = ±1,ω is a semi-normalized integer of Q(ζe)

and m > 3 · 1014B3. Moreover

(37) ±Qn(α, β) =
{
Qm(ω,ω) if KL ≡ 0 mod e3/(8, e3),

Qm(ω, ω)Qm(ζ
s
e ω, ζ

−s
e ω) otherwise.c

Since ωω = M and
(
n/ηeke(M)

∗, e
) = 1, ω and m satisfy the assumptions of

Lemma 9. Therefore by (37) Qm(ω,ω) has e pairwise relatively prime factors > m and
by Lemma 1 Qm(ω,ω) has e distinct prime factor ≡ ±1 modm. These primes clearly
do not divide n and again by Lemma 1 they are primitive prime factors of Pn(α, β). If
KL ≡ 0 mod e3/(8, e3) we have e = e + (e, 2)[(ηe + 1)/4] and the theorem is proved.
Otherwise the resultant ofQm(x, y) andQm(ζ se x, ζ

−s
e y) divides the discriminant of their

product Qn(x, y) and a fortiori nn. The same applies to the greatest common divisor of
Qm(ω,ω) andQm(ζ se ω, ζ

−s
e ω). Therefore, the primitive prime factors mentioned before-

hand do not divideQm(ζ se ω, ζ
−s
e ω). By Lemma 2 we have for m > 3 · 1014B3∣∣Qm(ζ se ω, ζ−se ω)∣∣ > m,

thus for e = 3 we get from Lemma 1 and (38)

4 = e + (e, 2)
[ηe + 1

4

]
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primitive prime factors of Pn(α, β).
Finally if e = 4 or 6 and KL �≡ 0 mod e3/8, Pm(ζ se ω, ζ

−s
e ω) has by Theorem 2 two

primitive prime factors. These factors by Lemma 1 divide Qm(ζ se ω, ζ
−s
e ω), thus we get

from (38)

e + 2 = e + (e, 2)
[ηe + 1

4

]
primitive prime factors of Pn(α, β). 	


5.

Theorem 4. Let un be a recurrence of the second order given by the formula un =
Ωωn + Ω ′ω′n, where ω and ω′ satisfy z2 − Pz + Q = 0, P,Q, u0, u1 are rational
integers,

(38) Δ = P 2 − 4Q < 0, P 2 �= Q, 2Q, 3Q

and ω/ω′, Ω/Ω ′ are multiplicatively dependent. If e is the number of roots of unity
contained in Q(

√
Δ), u and v are the least in absolute value integers satisfying

(39) (ω/ω′)eu/2 = (−Ω/Ω ′)ev/2, v > 0,

n > 0 and nv + u > 3 · 1014 max3
{
12, log 2Q2(P 2,Q)−1

}
, then

q(un) � nv + u− 1

(q denotes the greatest prime factor).

Proof. Let r and s be integers such that

ru− sv = σ = (u, v).
It follows from (40) that (ω/ω′)u/σ (−Ω/Ω ′)−v/σ is a root of unity, hence by the definition
of e ( ω

ω′
)eu/σ(−Ω

Ω ′
)−ev/σ = 1

and by the choice of u and v, σ � 2.
It follows further from (40) that( ω

ω′
)σe/2 = (−Ω

Ω ′
)−erv/2(ω′

ω

)esv/2
whence

(40)
ωe

ω′e
=
((Ω
Ω ′
)r(ω′

ω

)s)ev/σ
.

The number (Ω/Ω ′)r (ω′/ω)s is a quotient of two conjugates in Q(
√
Δ) and is different

from±1 since by (39)ω/ω′ is not a root of unity. Therefore, it can be represented in the form
(L1/2 +K1/2)/2

(L1/2 −K1/2)/2
, where L,K are rational integers, L > 0,K < 0, Q(

√
KL) = Q(

√
Δ)



1084 I. Primitive divisors

and (4L,L−K) = 4. Set

L−K = 4M, (L1/2 +K1/2)/2 = α, (L1/2 −K1/2)/2 = β.
αe and βe are relatively prime integers of Q(

√
Δ) semi-normalized if Q(

√
Δ) = Q(ζe).

Also ωe(P 2,Q)−e/2 and ω′e(P 2,Q)−e/2 are such integers and since by (41)

ωe(P 2,Q)−e/2

ω′e(P 2,Q)−e/2
= α

ev/σ

βev/σ
,

we get

ωe(P 2,Q)−e/2 = ±αev/σ , ω′e(P 2,Q)−e/2 = ±βev/σ ,
ω = ζ−μ2e (P

2,Q)1/2αv/σ , ω′ = ζμ2e(P 2,Q)1/2βv/σ .(41)

Since (Ω2Δ,Ω ′2Δ) = ((2u1 − Pu0)
2, u2

1 − Pu1u0 +Qu2
0

) = Δ1 is a rational integer
and by (40) (

Ω2Δ/Δ1

Ω ′2Δ/Δ1

)ev/2
=
(α
β

)euv/σ
,

it follows as before that

(42) 〈Ω(ω − ω′),Ω ′(ω′ − ω)〉 =
{〈
ζ−ν2e Δ

1/2
1 αu/σ , ζ ν2eΔ

1/2
1 βu/σ

〉
if u � 0,〈

ζ−ν2e Δ
1/2
1 β |u|/σ , ζ ν2eΔ

1/2
1 α|u|/σ

〉
if u < 0.

Thus we obtain

un = ζ−(n−1)μ−ν
2e Δ

1/2
1 (P 2,Q)(n−1)/2(αβ)(|u|−u)/2σ α

(nv+u)/σ − ζ nμ+νe β(nv+u)/σ

αv/σ − ζμe βv/σ .

Sinceω/ω′ is not a root of unity, by (41)α/β also is not such a root, hence 〈L,M〉 �= 〈1, 1〉,
〈2, 1〉, 〈3, 1〉. Further, it follows from (42) that

M = αβ � ωω′(P 2,Q)−1 = Q(P 2,Q)−1.

Since min{−K,L} � 2M , we get

A � max{12, log 2Q2(P 2,Q)−2}
and in virtue of Corollary 2 α(nv+u)/σ − ζ nμ+νe β(nv+u)/σ has a rational prime factor p of

the form
e

(nμ+ ν, e) ·
nv + u
σ

t ± 1 relatively prime to αe − βe.
Since

(
(nv + u)/σ, v/σ ) = 1, the highest common factor of

α(nv+u)/σ − ζ nμ+νe β(nv+u)/σ and αv/σ − ζμe βv/σ
divides αe − βe. Thus p is relatively prime to αv/σ − ζμe βv/σ , we have p |un and

q(un) � p � nv + u− 1

except possibly if

(43) σ = 2, nμ+ ν ≡ 0 mod e.c
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In that case we have by the choice of u, v( ω
ω′
)eu/4 �= (−Ω

Ω ′
)ev/4

,

hence by (42), (43)

νv/2 �≡ μu/2 mod 2

and by (38) (nv + u)/σ is odd. The prime p being of the form (nv + u)t/2 ± 1 must be
at least nv + u− 1, which completes the proof. 	


Addendum*

We shall prove the following lemma used in the proof of Theorem 2 instead of Lemma 3
of [7], if (e, n) = 2.

Lemma. Let χ be a character mod 2n of exponent e ≡ n ≡ 0 mod 2 and let |x| = 1.
Then ∣∣∣∣ n∏

r=1

(x − χ(r)ζ r2n)
∣∣∣∣ � exp(2en1/2 log2 n).

Proof. The left hand side does not exceed 2ϕ(n), hence we may assume that

2ϕ(n) > exp(2en1/2 log2 n),

which gives

ϕ(n)

e
>

2n1/2 log2 n

log 2
,(A1)

n1/2

log2 n1/2
>

16e

log 2
> 23e, n1/2 > 23e(log 23e)2,

n > 529e2(log 23e)4, log n > 12.(A2)

For a non-negative integer d < e let rd1 < rd2 < . . . < rdkd be all integers r such that
1 � r � n and χ(r) = ζ de . Let Ni and Nij be the number of r � rdi such that χ(r) = 0
and χ(r) = ζ ie , respectively. We have

Ni +
e−1∑
j=0

Nij − rdi = 0,(A3)

Ni = rdi −
∑
δ |2n
μ(δ)

[ rdi
δ

]
= rdi

(
1−

∑
δ |2n

μ(δ)

δ

)
+
∑
δ |2n
μ(δ)

{ rdi
δ

}
,

∗ Added in 2005
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hence

(A4)
∣∣∣ rdi
2n

(
2n− ϕ(2n))−Ni∣∣∣ � max

ε=±1

∑
δ |2n
μ(δ)=ε

1 = 2ν(2n)−1 < (2n)1/2.

On the other hand, by Theorem A1 from Addendum to paper I2 (p. 1055), which we apply
successively to characters χ, χ2, . . . , χe−1, we have

(A5)

∣∣∣∣ζ−hde

e−1∑
j=0

Nij ζ
hj
e

∣∣∣∣ < (2n)1/2 log 2n (1 � h < e, 1 � i � kd).

Adding the inequalities (A4) and (A5) to the equality (A3) we obtain∣∣∣eNid − ϕ(2n)
2n

rdi

∣∣∣ < e(2n)1/2 log 2n.

Since Nid = i, it follows that

(A6)
∣∣∣ rdi
2n
− i

ϕ(2n)/e

∣∣∣ < e(2n)1/2 log 2n

ϕ(2n)
.

Defining N0 and N0j as the number of r � n such that χ(r) = 0 and χ(r) = ζ
j
e ,

respectively, and arguing similarly we obtain∣∣∣ n
2n
− kd

ϕ(2n)/e

∣∣∣ < e(2n)1/2 log 2n

ϕ(2n)
,

hence

(A7)
ϕ(n)

e
+ (2n)1/2 log 2n > kd >

ϕ(n)

e
− (2n)1/2 log 2n.

Now, put

(A8) l =
⌈ϕ(n)
e
− (2n)1/2 log 2n

⌉
.

It follows from (A1) and (A2) that

(A9)
ϕ(n)

e
− e

2
> l >

ϕ(n)

2e
,

hence we may choose an integer m prime to e/2 such that

(A10)
ϕ(n)

e
� m > ϕ(n)

e
− e

2
> l > m− (2n)1/2 log 2n.

It follows from (A1), (A2) and (A10) that

(A11) m > π(m− l).
Let x0 =

[
m
π

arg x + 1
2 ]. For i � l we have

rdi

2n
− 1

2π
arg x = i − x0

2m
+ ρdi,
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where, by (A5), (A7)–(A9) and (A1)

(A12) |ρdi | � e(2n)1/2 log 2n

ϕ(2n)
+ i(ϕ(n)/e −m)

2ϕ(n)m/e
+ 1

4m

� e(2n)1/2 log 2n

2ϕ(n)
+ e/2

2ϕ(n)/e
+ e

2ϕ(n)
<
e(2n)1/2 log 3n

2ϕ(n)
.

Now, we have

n∏
r=1

∣∣x − χ(r)ζ r2n∣∣ = e−1∏
d=0

kd∏
i=1

∣∣x − ζ de ζ rdi2n

∣∣ � 2
e−1∏
d=0

2kd−l
∏

d

(
x − ζ de ζ rdi2n

)
,

where the product
∏
d and later the sum

∑
d are taken over all integers i such that 1 � i � l

and

(A13) i �≡ εm+ x0 mod 2m if d = ε e
2
(ε = 0 or 1).

Hence, by (A7) and (A8),

(A14)
n∏
r=1

∣∣x − χ(r)ζ r2n∣∣ � 22e(2n)1/2 log 2n+1
e−1∏
d=0

∏
d

∣∣x − ζ de ζ rdi2n

∣∣.
On the other hand,

P =
e−1∏
d=0

∏
d

∣∣x − ζ de ζ rdi2n

∣∣ ∣∣1− ζ de ζ i−x0
2m

∣∣−1

=
e−1∏
d=0

∏
d

∣∣∣sin
(
π
d

e
+ π rdi

2n
− 1

2
arg x

)∣∣∣ ∣∣∣sin
(πd
e
+ π

2m
(i − x0)

)∣∣∣−1

=
e−1∏
d=0

∏
d

∣∣∣sin
(
π
d

e
+ π

2m
(i − x0)+ πρdi

)∣∣∣ ∣∣∣sin
(πd
e
+ π

2m
(i − x0)

)∣∣∣−1

�
e−1∏
d=0

∏
d

(
|cosπρdi | + |sin πρdi |

∣∣∣cot
(
π
d

e
+ π

2m
(i − x0)

)∣∣∣).
However, if

∥∥ x
π

∥∥ �= 0 we have

|cot x| � 1

π
∥∥ x
π

∥∥
and for i occurring in

∏
d we have∥∥∥d

e
+ 1

2m
(i − x0)

∥∥∥ �= 0,

hence by (A12)

(A15) P �
e−1∏
d=0

∏
d

(
1+ |ρdi |∥∥ d

e
+ i−x0

2m

∥∥
)

� exp

(e−1∑
d=0

∑
d

e(2n)1/2 log 3n∥∥ d
e
+ i−x0

2m

∥∥
)
.
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Now, if

d1

e
+ i1 − x0

2m
≡ d2

e
+ i2 − x0

2m
mod 1, where 0 � dν < e, 1 � iν � l,

then

e

2
(i1 − x0) ≡ e

2
(i2 − x0)modm,

and, since (m, e2 ) = 1, i1 ≡ i2 modm. In view of 1 � iν � l < m, this gives i1 = i2,
hence d1 ≡ d2 mod e; d1 = d2.

Therefore,

(A16)
e−1∑
d=0

∑
d

e(2n)1/2 log 3n/2ϕ(n)∥∥ d
e
+ i−x0

2m

∥∥ �
em−1∑
j=1

e(2n)1/2 log 3n/2ϕ(n)

‖j/em‖

= e(2n)
1/2 log 3n

ϕ(n)

(
1+

em/2−1∑
j=1

em

j

)
� e(2n)1/2 log 3n

ϕ(n)
· ϕ(n) logϕ(n)

� e(2n)1/2
(
log2 n+ log 3

2 · log n
)
.

On the other hand,

(A17)
e−1∏
d=0

∏
d

∣∣1− ζ de ζ i−x0
2m

∣∣ = e−1∏
d=0

(∏′
d

∣∣1− ζ de ζ i−x0
2m

∣∣ ·∏′′
d

∣∣1− ζ de ζ i−x0
2m

∣∣)−1
,

where the products
∏′
d and

∏′′
d are taken over all integers i satisfying (A13) such that

1 � i � m and l < i � m, respectively. Denoting by ix the only positive integer i � m
such that i ≡ x0 modm we have further

(A18)
e−1∏
d=0

∏′
d

∣∣1− ζ de ζ i−x0
2m

∣∣ = m∏
i=1
i �=ix

e−1∏
d=0

∣∣1− ζ de ζ i−x0
2m

∣∣ e−1∏
d=0

d �≡ ix−x0
m
· e2 mod e

∣∣1− ζ de ζ ix−x0
2m

∣∣

=
m∏
i=1
i �=ix

∣∣1− ζ e(i−x0)/2
m

∣∣ · e−1∏
f=1

|1− ζ fe | = e
m−1∏
j=1

|1− ζ jm| = em,

(A19)
e−1∏
d=0

∏′′
d

∣∣1− ζ de ζ i−x0
2m

∣∣−1 =
m∏

i=l+1
i �=ix

e−1∏
d=0

∣∣1− ζ de ζ i−x0
2m

∣∣−1

=
m∏

i=l+1
i �=ix

∣∣1− ζ e(i−x0)/2
m

∣∣−1
.
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When i runs through integers from l + 1 to m except ix , e2 (i − x0) gives distinct non-zero
residues modm. Hence, by (A11),

m∏
i=l+1
i �=ix

∣∣1− ζ e(i−x0)/2
m

∣∣−1 �
m−l∏
j=1

min
{

1, 2 sin
πj

m

}−1
�
m−l∏
j=1

m

πj

� exp
(
(m− l) log

m

π(m− l) +m− l
)

� exp
(
(2n)1/2 log 2n · log

n1/2

2π
√

2 log 2n
+ (2n)1/2 log 2n

)
< exp

((n
2

)1/2
log2 n

)
.

It follows now from (A2) and (A14)–(A19) that∣∣∣∣ n∏
r=1

(
x − χ(r)ζ r2n

)∣∣∣∣
� 22e(2n)1/2 log 2n+1 exp

(
e(2n)1/2

(
log2 n+ log 3

2 log n
)) · em · exp

((
n
2

)1/2 log2 n
)

� exp
(
2 log 2 · e(2n)1/2 log 2n+ log 2

+ e(2n)1/2(log2 n+ log 3
2 · log n

)+ log n2 +
(
n
2

)1/2 log2 n
)

< exp
(
2en1/2 log2 n

)
. 	
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Primitive divisors of the expression An − Bn

in algebraic number fields

To Professor Helmut Hasse on his 75th birthday

Let A,B be non-zero integers of an algebraic number field K of degree l. A prime
ideal P ofK is called a primitive divisor of An−Bn if P |An−Bn but P /| Am−Bm for

m < n. It has been proved in [3] that if (A,B) = 1 and
A

B
is not a root of unity then the

primitive divisors exist for all n > n0(A,B) and the question has been raised whether the
same is true for n > n0(K). A certain step in this direction was made by E. H. Grossman
who proved in 1972 the following theorem (unpublished):

LetE(A,B) be the set of positive integers n such thatAn−Bn does not have a primitive
divisor. Then

Card{n ∈ E(A,B) : n � x} � logm x for x > x0(m, l),

where logm x denotes the m-fold iterated logarithm.

The aim of this paper is to give an affirmative answer to the question and in fact to
prove the following stronger

Theorem 1. If (A,B) = 1 and
A

B
is not a root of unity then An − Bn has a primitive

divisor for all n > n0(d), where d is the degree of
A

B
and n0(d) is effectively computable.

The theorem is best possible up to the order of the function n0(d); an absolute constant
cannot be expected since for A = d

√
2, B = 1, Ad − Bd = 1 has no primitive divisor.

The proof is based on four lemmata, the critical one being an easy consequence of
the recent deep theorem of Baker [1], which we quote below with some changes in the
notation:

Letα1, . . . , αk be non-zero algebraic numbers with degrees at most d and let the heights
of α1, . . . , αk−1 and αk be at most H ′ and H(� 2) respectively. For some effectively
computable number C > 0 depending only on k, d and H ′ the inequalities

0 < |m1 logα1 + . . .+mk logαk| < C− logH logM

have no solution in rational integers m1, . . . , mk with absolute values at most M(� 2)
(the logarithms have their principal values).
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Let Q

(A
B

)
= K0,

A

B
= α
β

, where α, β ∈ K0; α, β are integers and (α, β) = d.

Let S be a set of all isomorphic injections of K0 in the complex field and set

w
(α
β

)
= log

∏
σ∈S

max
{|ασ |, |βσ |}− logNd

where N denotes the absolute norm in K0. Clearly w
(α
β

)
is independent of the choice of

α, β in K0.

Lemma 1. If |α| = |β| but
α

β
is not a root of unity, then

log |αn − βn| = n log |β| +O
(
d + w

(α
β

))
log n,

where the constant in the symbol O depends only on d and is effectively computable.

Proof. We set in Baker’s theorem k = 2;α1 = −1,α2 = α
β

, thus logα1 = πi, logα2 = ϑi,
where −π < ϑ � π . It follows that for a suitable constant C depending only upon d the
inequality

0 < |πm+ ϑn| < C− logH logM

where H is the height of α, has no solution in rational integers m, n with absolute values

at most M . However πm + ϑn �= 0 since
α

β
is not a root of unity. On the other hand, if

|m| > n then

|πm+ ϑn| � π.
Hence we can takeM = n and we obtain

π

∥∥∥ϑ
π
n

∥∥∥ � C− logH logM

where ‖x‖ is the distance of x from the nearest integer. Since

2 � |enϑi − 1| = 2 sin
nϑ

2
� 2
∥∥∥nϑ
π

∥∥∥
we get

(1) log |αn − βn| = n log |β| + log |enϑi − 1| = n log |β| +O(logH log n).

The coefficients of the irreducible polynomial Nd−1 ∏
σ∈S
(βσ x − ασ ) are rational integers

and their absolute values do not exceed

Nd−1
∏
σ∈S
(|βσ | + |ασ |) � 2dew(α/β).
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It follows that

logH = O
(
d + w

(α
β

))
,

which together with (1) implies the lemma. 	


Lemma 2. If |α| �= |β| then

log |αn − βn| = n log max{|α|, |β|} +O
(
d2 + dw

(α
β

))
,

where the constant in the symbol O is absolute and effectively computable.

Proof. Suppose without loss of generality that |α| < |β|. We have for n � 2

(2) 2|β|n � |αn − βn| = |β|n
∣∣∣∣∣∣∣αβ
∣∣∣n − 1

∣∣∣∣ � |β|n(1−
∣∣∣α
β

∣∣∣2)
and it remains to estimate 1−

∣∣∣α
β

∣∣∣2. Let T be the set of all isomorphic injections ofK0K0,

where “bar” denotes the complex conjugation, and let xτ0 = x, xτ1 = x. We have

1−
∣∣∣α
β

∣∣∣2 = ∣∣NK0K̄0/Q
(αα − ββ)∣∣ |β|−2

∏
τ∈T
τ �=τ0

∣∣(αα)τ − (ββ)τ ∣∣−1

� Nd2|T |/|S|21−|T |∏
τ∈T

max
{|αταττ1 |, |βτβττ1 |}−1

> Nd2|T |/|S|2−|T |
∏
τ∈T

max
{|ατ |, |βτ |}−1 ∏

τ∈T
max{|αττ1 |, |βττ1 |}−1.

When τ runs over T , ατ and αττ1 run |T |/|S| � d − 1 times over ασ (σ ∈ S). Hence

1−
∣∣∣α
β

∣∣∣2 � 2−|T |e−2w(α/β)|T |/|S| � 2−d(d−1)e−2(d−1)w(α/β)

and by (2) the lemma follows. 	


Lemma 3. Let ξ be a number of the fieldK0 and let p be a prime ideal ofK0 which divides

the rational prime p to the power e (e = ordp p > 0). If ordp(ξ − 1) >
[ e

p − 1

]
then

ordp(ξ
n − 1) = ordp(ξ − 1)+ ordp n.

Proof. See [3], Lemma 1. 	


Lemma 4. Let Φn(x, y) be the n-th cyclotomic polynomial in homogeneous form. If P
is a prime ideal of K , n > 2(2d − 1), P |Φn(A,B), and P is not a primitive divisor of
An − Bn, then

ordPΦn(A,B) � ordP n.
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Proof. Let γ = A
B

, p be the prime ideal ofK0 divisible by P to the power e0 and let λi be

the least exponent λ for which

pi |γ λ − 1.

It is obvious that pi |γ λ − 1 is equivalent to λi |λ. We have

Φn(A,B) = Bϕ(n)Φn(γ, 1) = Bϕ(n)
∏
m|n
(γ m − 1)μ(n/m).

On the other hand, since P |Φn(A,B) and (A,B) = 1, P /| B. Hence

(3) ordPΦn(A,B) = e0 ordpΦn(γ, 1) = e0

∑
m|n
μ
( n
m

)
ordp(γ

m − 1).

We use the notation of Lemma 3 and set
[ e

p − 1

]
= k. If m is not a multiple of λ1 then

ordp(γ
m − 1) = 0. If m is a multiple of λi , but not a multiple of λi+1 then

ordp(γ
m − 1) = i (i � k).

Further, if m is a multiple of λk+1 then by Lemma 3

ordp(γ
m − 1) = ordp(γ

λk+1 − 1)+ ordp
m

λk+1
.

Hence

(4) ordpΦn(γ, 1) =
m∑
i=1

∑
m|n
λi |m

μ
( n
m

)
+
∑
m|n
λk+1 |m

μ
( n
m

)(
ordp(γ

λk+1 − 1)− k)
+
∑
m|n
λk+1 |m

μ
( n
m

)
ordp

m

λk+1
.

We note that λk+1 < n. In fact, if k = 0 then the conditions that P |An−Bn and P is not
a primitive divisor imply that there is a number m < n such that P |Am − Bm and then
p |γm − 1, i.e., λ1 < n.

If k > 0 we have by Euler’s theorem for the field K0

γ ϕ(p
k) ≡ 1 mod pk, γ ϕ(p

k)p =
p∑
j=0

(
p

j

)(
γ ϕ(p

k) − 1
)j
,

ordp

(
γ ϕ(p

k)p − 1
)

� min{k + e, pk} > k, thus λk+1 � ϕ(pk)p.

On the other hand, k > 0 implies p � e + 1 � d + 1 and since Np � pd/e we have

λk+1 � pϕ(pk) � p
(
N(pk)− 1

)
� p

(
pd/(p−1) − 1

)
� 2(2d − 1)
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(the last inequality requires some elementary, but tedious calculations). It follows that

λ1 � λ2 � . . . � λk+1 < n.

Hence
∑
m|n
λi |m

μ
( n
m

)
= 0 (i = 1, 2, . . . , k + 1) and by (4)

ordpΦn(γ, 1) =
∑
m|n
λk+1 |m

μ
( n
m

)
ordp

m

λk+1

=
∑
m|n
λk+1 |m

ordp(n/m)=0

μ
( n
m

)
ordp

m

λk+1
+

∑
m|n
λk+1 |m

ordp(n/m)=1

μ
( n
m

)
ordp

m

λk+1

=
∑
m|n
λk+1 |m

ordp(n/m)=1

(
μ
( n
mp

)
ordp

mp

λk+1
+ μ

( n
m

)
ordp

m

λk+1

)

=
∑
m|n
λk+1 |m

ordp(n/m)=1

μ
( n
mp

)
ordp p =

⎧⎨⎩e if
n

λk+1
is a power of p,

0 otherwise.

It follows by (3) that

ordPΦn(A,B) � e0e ordp
n

λk+1
� ordP n. 	


Remark. Lemma 4 is an improvement of Lemma 2 of [3] where 2l (2l − 1) occurs instead

of 2(2d − 1). The possibility of replacing 2l (2l − 1) by 2l(2l − 1) was first observed by

E. Grossman (unpublished).

Proof of Theorem 1. In order to apply Lemma 4 we estimate NK/QΦn(A,B). Clearly

Φn(A,B) = Bϕ(n)Φn
(A
B
, 1
)
= Bϕ(n)Φn

(α
β
, 1
)
=
(B
β

)ϕ(n)
Φn(α, β)

and since
(B
β

)
= d−1 we have

(
Φn(A,B)

) = d−ϕ(n)
(
Φn(α, β)

)
,
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(5)

d

l
log |NK/QΦn(A,B)| = log |NΦn(α, β)| − ϕ(n) logNd

=
∑
σ∈S

∑
m|n
μ
( n
m

)
log
∣∣(ασ )m − (βσ )m∣∣− ϕ(n) logNd

=
∑
σ∈S

∑
m|n
μ
( n
m

)(
m log max{|ασ |, |βσ |} +O

(
d + w

(α
β

))
logm

)
− ϕ(n) logNd

= ϕ(n)w
(α
β

)
+O

(
d + w

(α
β

))
2ν(n) log n,

c

where the constant in O depends only on d and is effectively computable. Now, by the

theorem of Blanksby and Montgomery [2] if
α

β
is an integer

w
(α
β

)
= log

∏
σ∈S

max

{∣∣∣ασ
βσ

∣∣∣, 1} � log
(

1+ 1

52d log 6d

)
>

1

52d log 6d + 1
.

If
α

β
is not an integer, then (β) �= d and

w
(α
β

)
� logNβ − logNd � log 2.

Thus in both cases

(6) w
(α
β

)
>

1

52d log 6d + 1
.

We have also (cf. [3])

(7)
ϕ(n)

2ν(n)
�
√
n

30
.

It follows from (5), (6) and (7) that for n > n0(d)

|NK/QΦn(A,B)| > nl
and this by Lemma 4 implies the theorem. We note for further use that for n > n1(d)

(8) |NK/QΦn(A,B)| > nle 11
13ϕ(n)w(

A
B
)( l
d
). 	


Corollary 1. If (A,B) = D and
A

B
is not a root of unity then An − Bn has a primitive

divisor for all n > max
(
n0(d), ϕ(d)

)
, where d is the degree of

A

B
and d is the maximal

ideal of Q

(A
B

)
divisible by D.

Proof. The ideal D is principal, equal say to (Δ) in a certain field K1. Set A1 = AΔ−1,
B1 = BΔ−1 and apply Theorem 1. It follows that An1 − Bn1 has a primitive divisor in K1
for all n > n0(d). On the other hand, ideals (A1) and (B1) are defined already in the field
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Q

(A
B

)
as the numerator and the denominator of

(A
B

)
in its reduced form. Set d = d1d2

where each prime factor of d1 divides A1B1 and (d2, A1B1) = 1. By Euler’s theorem

for the field K0, d2

∣∣∣ (A
B

)ϕ(d2) − 1 and a fortiori d2 |Aϕ(d2)
1 − Bϕ(d2)

1 |Aϕ(d)1 − Bϕ(d)1 . It

follows that for n > ϕ(d) a primitive divisor of An1 − Bn1 is prime to d2 and since it is
obviously prime to d1, it is a primitive divisor ofAn−Bn inK1. The corresponding prime
ideal of K is a primitive divisor of An − Bn in K . 	


Corollary 2. Let K,M be rational integers,

(9) L > 0 > K = L− 4M, (L,M) = 1, 〈L,M〉 �= 〈1, 1〉, 〈2, 1〉, 〈3, 1〉,
let α, β be the roots of the trinomial z2 − L1/2z+M and set

Pn(α, β) =

⎧⎪⎪⎨⎪⎪⎩
(αn − βn)
(α − β) if n is odd,

(αn − βn)
(α2 − β2)

if n is even.

There exists an effectively computable absolute constant c0 such that Pn(α, β) for n > c0

has a primitive prime factor (i.e. a prime factor not dividing KLP1 · · ·Pn−1).

Proof. By (9), (α, β) = 1 and
α

β
is not a root of unity. Since

α

β
is of degree 2 it is enough

to take c1 = n0(2) and to observe that a primitive divisor of Pn(α, β) in Q(α, β) divides
a rational prime which has the asserted property. 	


Corollary 2 is an improvement of Theorem 1 of [6], where the corresponding property of
Pn(α, β) was proved for n > n0(L,M) (given explicitly). Since for n > 2,Φn(α, β) ∈ Q

and w
(α
β

)
= 2 log |α| the inequality (8) takes the form

|Φn(α, β)| > n|α|11ϕ(n)/13 for n > c1

which replaces Lemma 2 of [6]. This allows to improve Theorems 2 and 3 of that paper.
Let ke(n) be the e-th powers-free kernel of n, k2(n) = k(n), n∗ be the product of all

distinct prime factors of n. We have

Theorem 2. For L,M satisfying (9) set

η =
{

1 if k(LM) ≡ 1 mod 4,

2 if k(LM) ≡ 2 or 3 mod 4,

η1 =
{

1 if k(KM) ≡ 1 mod 4,

2 if k(KM) ≡ 2 or 3 mod 4,

η2 =
{

1 if k(KL) ≡ 1 mod 4,

4 if k(KL) ≡ 2 or 3 mod 4.
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There exists an effectively computable constant c2 with the following property. If n > c2
and

n ≡ ηk(LM)mod 2ηk(LM) or n ≡ η1k(KM)mod 2η1k(KM)

or n ≡ 0 mod η2k(KL)

then Pn(α, β) has two primitive prime factors; if all three congruences hold then Pn(α, β)
has four primitive prime factors.

Theorem 3. Let e = 3, 4 or 6 and exp
2πi

e
belong to the field Q(

√
KL). Set

η3 =
{

1 if KL ≡ 0 mod 27,

3 if KL �≡ 0 mod 27; η4 =

⎧⎪⎨⎪⎩
1 if K ≡ 0 mod 8,

2 if L ≡ 0 mod 8,

4 if KL �≡ 0 mod 8;
η6 = ηη3.

There exists an effectively computable constant c3 with the following property. If
n

ηeke(M)∗

is an integer prime to e and n > c3 then Pn(α, β) has e+ (e, 2)
[ηe + 1

4

]
primitive prime

factors.

An inspection of the proofs given in [6] shows that it is enough to take

c2 = max(c1, 5 · 1017), c3 = max(c1, 3 · 1018).

I take this opportunity to mention papers of L. Rédei [4] and H. Sachs [5] dealing with
the problem considered in [3] and not quoted in that paper. They have been brought to my
attention by Dr. K. Szymiczek. Both papers contain results from which Lemma 4 above
could easily be deduced, but the corresponding proofs are longer than the proof of that
lemma.
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Abstract. The theorem about primitive divisors in algebraic number fields is generalized in the
following manner. Let A,B be algebraic integers, (A,B) = 1, AB �= 0, A/B not a root of unity,
and ζk a primitive root of unity of order k. For all sufficiently large n, the number An − ζkBn has a

prime ideal factor that does not divide Am − ζ j
k
Bm for arbitrary m < n and j < k.

The analogue of Zsigmondy’s theorem in algebraic number fields [3] asserts the fol-
lowing.

If A,B are algebraic integers, (A,B) = 1, AB �= 0, andA/B of degree d is not a root
of unity, there exists a constant n0(d) such that for n > n0(d), An −Bn has a prime ideal
factor that does not divide Am − Bm for m < n.

This theorem will be extended as follows:

Theorem. LetK be an algebraic number field,A,B integers of K , (A,B) = 1,AB �= 0,
A/B of degree d not a root of unity, and ζk a primitive k-th root of unity in K . For every
ε > 0 there exists a constant c(d, ε) such that if n > c(d, ε)(1+ log k)1+ε, there exists a
prime ideal of K that divides An − ζkBn, but does not divide Am − ζ jk Bm form < n and
arbitrary j .

The above theorem implies the finiteness of the number of solutions of generalized
cyclotomic equations considered by Browkin ([1], p. 236).

The proof will follow closely the proof given in [3]. Let Q(A/B) = K0, A/B = α/β,
whereα, β ∈ K0,α, β are integers, and (α, β) = d. LetS andS0 be the set of all isomorphic
injections of K0(ζk) and K0, respectively, in the complex field, and set

w(α/β) = log
∏
σ∈S0

max{|ασ |, |βσ |} − logNd,

where N denotes the absolute norm in K0. Here, w(α/β) is the logarithm of the Mahler
measure of α/β and so it is independent of the choice of α, β in K0.

Lemma 1. If |α| = |β|, but α/β is not a root of unity, then

log |αn − ζkβn| = n log |β| +O(d + w(α/β)) log kn,

where the constant in the O-symbol depends only on d and is effectively computable.
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Lemma 2. If |α| �= |β|, then

log |αn − ζkβn| = n log max{|α|, |β|} +O(d2 + dw(α/β)),
where the constant in the O-symbol is absolute and effectively computable.

The next lemma is just quoted from [3], where it occurs as Lemma 4.

Lemma 3. Let φn(x, y) be the n-th cyclotomic polynomial in homogeneous form. If P
is a prime ideal of K , n > 2(2d − 1), P |φn(A,B), and P is not a primitive divisor of
An − Bn, then ordP φn(A,B) � ordP n.

Finally, we prove

Lemma 4. Let

ψn(x, y; ζk) =
∏

(j,n)=1
j≡1 mod k

(x − ζ jkny).

We have

(1) ψn(x, y; ζk) =
∏
m|n

(m,k)=1

(xn/m − ζmk yn/m)μ(m),

where mm ≡ 1 mod k and degψn = ϕ(n) (k, n)

ϕ((k, n))
.

Proof. The right hand side of (1) can be written as∏
m|n

(m,k)=1

n/m−1∏
i=0

(x − ζ in/mζmkn/my)μ(m).

A factor x − ζ jkny occurs in this product with the exponent

E =
∑
m|n

(m,k)=1

μ(m)

n/m−1∑
i=0

m(ki+m)≡j mod kn

1.

Now,

n/m−1∑
i=0

m(ki+m)≡j mod kn

1 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
n/m−1∑
i=0

ki+m≡j/m mod kn/m

1 if m | j,

0 otherwise,

and if m | j ,

n/m−1∑
i=0

ki+m≡j/m mod kn/m

1 =
{

1 if j ≡ 1 mod k,

0 otherwise.
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Hence,

E =
⎧⎨⎩

∑
m|n,m|j

μ(m) if j ≡ 1 mod k,

0 otherwise,

and finally

E =
{

1 if (n, j) = 1, j ≡ 1 mod k,

0 otherwise,

which proves the first part of the lemma.

In order to prove the second part, we notice that there are exactlyϕ(n)
(k, n)

ϕ((k, n))
positive

integers j � kn such that (n, j) = 1, j ≡ 1 mod k. 	


Lemma 5. For every ε > 0 there exists c(d, ε) such that, if

n > c(d, ε)(1+ log k)1+ε,
then we have

(2)
∣∣NK/Qψn(A,B; ζk)∣∣ > (nk)[K:Q].

Proof. By Lemma 4,

ψn(A,B; ζk) =
(B
β

)ϕ(n)(k,n)/ϕ((k,n))
ψ(α, β; ζk),

c

and since (B/β) = d−1, we have(
ψn(A,B; ζk)

) = d−ϕ(n)(k,n)/ϕ((k,n))ψn(α, β; ζk),
1

[K : K0(ζk)] log |NK/Qψn(A,B; ζk)|

= log |NK0(ζk)/Qψn(α, β; ζk)| − [K0(ζk) : K0]ϕ(n) (k, n)

ϕ((k, n))
logNd

=
∑
σ∈S

∑
m|n

(m,k)=1

μ(m) log
∣∣(ασ )n/m − ζmk (βσ )n/m∣∣

− [K0(ζk) : K0]ϕ(n) (k, n)

ϕ((k, n))
logNd

=
∑
σ∈S

∑
m|n

(m,k)=1

μ(m)

(
n

m
log max{|ασ |, |βσ |} +O

(
d + w

(α
β

))
log kn

)

− [K0(ζk) : K0]ϕ(n) (k, n)

ϕ((k, n))
logNd

= [K0(ζk) : K0]
(
ϕ(n)

(k, n)

ϕ((k, n))
w
(α
β

)
+O

(
d + w

(α
β

))
2ν(n) log kn

)
,
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where the constant in O depends only on d and is effectively computable. Now, by
Dobrowolski’s theorem [2], if α/β is an integer, then

w
(α
β

)
= log

∏
σ∈S0

max
{∣∣∣ασ
βσ

∣∣∣, 1} � log

(
1+ c1

( log log ed

log d

)3
)

� c2

( log log ed

log d

)3
,

where c1 and c2 are absolute constants.
If α/β is not an integer, then (β) �= d and

w
(α
β

)
� logNβ − logNd � log 2.

Thus, in both cases,

w
(α
β

)
� c2

( log log ed

log d

)3
,

provided c2 � log 2.
Since for every ε > 0

ϕ(n)

2ν(n)
> c3(ε)n

1−ε,

it follows that for n > c(d, ε)(1+ log k)1+ε

log
∣∣NK/Qψn(A,B; ζk)∣∣ > [K : Q] log nk,

which proves the lemma. 	


Proof of the Theorem. By Lemma 5, for n > c(d, ε)(1+ log k)1+ε we have (2), and thusc

ψn(A,B; ζk) has a prime ideal factor P in K such that

ordP ψn(A,B; ζk) > ordP kn.

But P |ψn(A,B; ζk) |φkn(A,B), hence by Lemma 3 we have that P is a primitive prime
divisor of Akn −Bkn and thus does not divide Am − ζ jk Bm form < n and arbitrary j . On
the other hand,

P |ψn(A,B; ζk) |An − ζkBn,
thus P has the desired property. 	
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Commentary on J: Prime numbers

by Jerzy Kaczorowski

Papers J1, J2, J3 and J5 concern one of the most challenging open problems in the prime
number theory. Hypothesis H is the common generalization of a conjecture of Dickson
dated 1904 (the case of linear polynomials) and a conjecture of Buniakowski dated 1857
(the case of a single polynomial). Hypothesis H is sometimes formulated as a conjecture
about prime values taken by polynomials in many variables (compare [43], Chapter 6).
Lemma 4 in J5 shows that polynomials in one variable already represent the general case.

The only instance where Hypothesis H is proved is still the classical Dirichlet theorem
on primes in arithmetic progressions, which corresponds to the case of a single linear
polynomial. Close approximations to it can be achieved by sieve methods. As early as
1937, G. Ricci [65] proved that if polynomials f1(x), . . . , fs(x) satisfy conditions of the
Hypothesis H, there exists a positive integer k such that all numbers f1(m), . . . , fs(m) are
Pk-almost primes (i.e. products of at most k primes) for infinitely many positive integersm.
Value of k depends on degrees of the polynomials involved and can be made explicit. For
instance H.-E. Richert [66] proved that an irreducible polynomial of degree d � 1 with
integer coefficients, positive leading term and without fixed divisor attains infinitely many
values which arePd+1-almost primes (see also A. A. Bukhshtab [5]). The reader is referred
to the classical treatise by H. Halberstam and H.-E. Richert [32] for a variety of similar
results. For special polynomials dependence on d can be improved. For instance H. Iwaniec
[44] proved that there are infinitely many positive integersm such thatm2+1 is aP2-almost
prime.

Adopting terminology from G. H. Hardy and J. E. Littlewood [33], conjecture formu-
lated in J3 is conjugated to Hypothesis H. There is no single instance where it is verified
unconditionally except the “trivial” case k = 0, deg(g) = 1, when it reduces to the Dirich-
let prime number theorem. The closest approximations concern binary Goldbach problem.
H. L. Montgomery and R. C. Vaughan [55] proved that the number of even integers not
exceeding x which are not sums of two primes is O(xθ ) for certain θ < 1 (θ = 0.914 is
admissible (see [50]), J. Pintz [62] announced θ = 2/3). Generalized Riemann Hypothesis
implies θ = 1/2+ ε for every ε > 0 as shown by G. Hardy and J. E. Littlewood [34]. The
reader is referred to [62] for a very detailed survey on research done in connection with
the Goldbach problem.

Another result which should be mentioned here as a close approximation to a special
case of the Hypothesis H, is the famous theorem of J. R. Chen [6] saying that every
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sufficiently large even integer is a sum of a prime and a product of at most two primes (i.e.
a P2-number).

Sierpiński’s conjecture that for every k > 1 there exists a positive integer m for which
the equation ϕ(x) = m has exactly k solutions was proved for even k by K. Ford and
S. Konyagin [19] and by K. Ford [18] in the full generality. (Theorem C14 from J2 shows
that Sierpiński’s conjecture follows from Hypothesis H.)

A trivial consequence of Hypothesis H is that there are arbitrary long arithmetic pro-
gressions formed by primes. This was proved unconditionally by B. Green and T. Tao [30].

Hypothesis H implies that for every positive integer k, there exist infinitely many pairs
of primes (p, p′), such that p′ = p+ 2k. In particular, denoting by pn the n-th prime, we
have

lim inf
n→∞

pn+1 − pn
log n

= 0.

This was proved recently by D.A. Goldston, J. Pintz and C.Y.Yıldırım [26]. The method of
the proof seems to give more. It is observed in [27] that a suitably extended version of the
Bombieri–Vinogradov prime number theorem would imply that the difference pn+1−pn
is bounded for infinitely many n’s.

Artin’s conjecture on primitive roots, another consequence of Hypothesis H, is still
unproved at present (2005). Nevertheless, C. Hooley [41] proved that it follows from the
Extended Riemann hypothesis (for the Dedekind zeta functions). For a weaker sufficient
condition see [25]. Riemann Hypothesis for function fields is true, as proved by A. Weil
[74], consequently the function field analog of the Artin conjecture is true as well. Using
an idea of Gupta and Ram Murty [31], D. R. Heath-Brown [36] proved that for nonzero
integers q, r and s which are multiplicatively independent and such that none of q, r , s,
−3qr , −3qs, −3rs, qrs is a square, the Artin conjecture holds for at least one of them.
See also [56]. For Artin’s conjecture in algebraic number fields see W. Narkiewicz [58].

It is proved in J1 that Hypothesis H implies that every positive rational number can be
written in the form

(1)
p + 1

q + 1
,

where p and q are primes (Theorem C2.1). C. Badea [1] proved that for every positive
rational r there exists a number K = K(r) such that

r = a + 1

b + 1
,

for infinitely many a and b that are PK -almost primes. Moreover, every sufficiently large
integer n can be written in the form (1) with q prime and p a P3-number, p � n357/200.
It is also known that the set of positive integers of the form (1) with p and q prime has a
positive upper density, see P. D. T. A. Elliott [15], [14].

P. T. Bateman and R. A. Horn’s heuristic arguments for the asymptotic formula in Hy-
pothesis H are based on probabilistic arguments ([4]). Expected main term of the asymp-
totic formula agrees with what follows from the circle method disregarding estimates of
the minor arcs, see the great classic by G. H. Hardy and J. E. Littlewood Partitio Nu-
merorum, III [33]. Upper estimates of the proper size can be obtained by sieve methods,
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see mentioned above book by H. Halberstam and H.-E. Richert. Sieve techniques provide
lower estimates of the proper size for almost prime values of polynomials. Limitations to
the equi-distribution of prime values of polynomials was discovered by J. Friedlander and
A. Granville [21] by applying a method of H. Maier [52].

Suppose Hypothesis H is true for a polynomial f of degree d > 1. Then the sequence
of the prime values of f is sparse in the sense that the number of f (n) � x, f (n) prime,
is � xθ with θ < 1 (θ = 1/d works). Primes of the form x4 + y2 provide an example
of a sparse sequence of primes with θ = 3/4, as proved by H. Iwaniec and J. Friedlander
[22] and [23]. Similarly, primes of the form x3 + 2y3 provide an example of a sparse set
of primes with θ = 2/3, see D. R. Heath-Brown [37]. For an arbitrary binary cubic forms
see D. R. Heath-Brown, B. Z. Moroz [38].

One can also judge how far existing methods are apart from what is needed for a proof
of the Hypothesis H by considering Pyatetski-Shapiro prime number theorem. Let πc(x)
denote the number of primes p � x which are of the form [nc]. Pyatetski-Shapiro [64]
proved that

πc(x) ∼ x1/c

log x

as x → ∞ for 1 � c < 12/11. Observe that this provides a sparse sequence of primes
with exponent θ = 1/c, so one would expect that a method capable for treating the
simplest non-linear case of the Hypothesis H, that means the case of the polynomial x2+1,
should give the range 1 � c � 2 in Pyatetski-Shapiro’s prime number theorem. Initial
result from [64] was subject of a sequence of improvements by G. A. Kolesnik [46], [47],
D. R. Heath-Brown [35] and H. Liu and J. Rivat [51], who was able to get 1 � c < 15/13.
See also [11], [10], [49] and [67].

About the G. H. Hardy and J. E. Littlewood conjecture implicitly formulated in [33]
(compare C12.2 in J1) that π(x + y) � π(x) + π(y) for x, y � 2: P. Dusart [13] proved
that it holds for 2 � x � y � 7

5x log x log2 x. In general, Hardy–Littlewood’s conjecture
is not compatible with a special form of the Hypothesis H (k-tuples conjecture): inequality
π(x+ y) � aπ(x/a)+π(y) is not valid for 1 � a � 2, see [39] and [7]. For other results
see [72], [73], [28], [60], [61], [24] and [54].

The classical theorem of G. Rabinowitsch links prime values of the polynomial
x2 + x +A and divisibility theory in the quadratic number field Q(

√
1− 4A). For prime

values of quadratic polynomials see [29].
Let q(n) denote the greatest prime divisor of an integer n. The problem of estimating

q(f (x)) goes back to C. L. Siegel [69], who proved that q(f (x))→∞ as x → ∞ for
every irreducible f ∈ Z[x] of degree d > 1. In Section 5 of J4 the problem of estimating
q(f (x)), where f ∈ Z[x] is a fixed quadratic or cubic polynomial is addressed. As a
consequence of results on solvability of certain Diophantine equations, it is proved that
if deg(f ) = 2 and f is not a square of a linear polynomial or deg(f ) = 3 and f is a
binomial, then

(2) lim inf
x→∞

q(f (x))

log log x
� c(f ),
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where c(f ) > 0 is an effective constant which depends on f (see also [45]). The same
holds for arbitrary irreducible polynomial f ∈ Z[x] of degree d > 2 as shown by
S. V. Kotov [48].

Theorems 13, 14, 15 from Section 5 of J4 concern Ω-estimates for 1/q(f (x)). It is
proved for instance (Theorem 15) that for any polynomial f ∈ Z[x] of degree > 1 one
has

lim inf
x→∞

log q(f (x))

log |f (x)| � c1(f ),

with an explicit constant c1(f ). In cases whenf is a binomial, the estimate can be improved
(Theorems 13 and 14 in J4). For smooth values of polynomials with integer coefficients
see N. M. Timofeev [71], A. Hildebrand [40], A. Balog, I. Ruzsa [2], C. Dartyge [8],
G. Martin [53] and C. Dartyge, G. Martin, G. Tenenbaum [9]. Distribution of smooth shifted
primes is considered in É. Fouvry, G. Tenenbaum [20], C. Pomerance, I. E. Shparlinski
[63] and W. D. Bauka, A. Harcharras and I. E. Shparlinski [3].

There is a great difference between estimates for q(f (x)) holding for all sufficiently
large x and Ω-estimates for this quantity, the latter are much sharper. For example, as
a consequence of Richert’s theorem [66] for every irreducible polynomial f ∈ Z[x] of
degree d � 1 with positive leading term and no fixed prime divisors, we have q(f (x)) =
Ω(xd/(d+1)). If d = 2 the exponent can be improved from 2/3 to 1, as easily follows
from Iwaniec theorem from [44]. Hypothesis H gives exponent d for every f satisfying
our conditions.

Theorems of type (2) are probably very hard to improve. The famous abc-conjecture
by J. Oesterlé and D. Masser (see [59]) predicts that for every ε > 0 there is a constant
c(ε) > 0 such that for every non-zero relatively prime integers a, b, c satisfying a+b = c
one has

max(|a|, |b|, |c|) � c(ε)
( ∏
p |abc

p

)1+ε
.

Let f (x) = adxd + ad−1x
d−1 + . . .+ a0, ad > 0, be a polynomial from Z[x] of degree

d � 2 which is not of the form

a
(
x − b

da

)d
for certain a, b ∈ Z, a > 0. We have

(3) ddad−1
d f (x) = (dadx + ad−1)

d + h(x),
where h ∈ Z[x] is a non-zero polynomial of degree � d − 2. Taking sufficiently large
integer x, writing

D(x) = g.c.d.
(
ddad−1

d f (x), (dadx + ad−1)
d , |h(x)|)
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and applying abc-conjecture we obtain from (3)

xd

D(x)
� max

( f (x)
D(x)

,
(dadx + ad−1)

d

D(x)
,
|h(x)|
D(x)

)
� exp

(
(1+ ε)ϑ(q(f (x))))( ∏

p

∣∣ (dad x+ad−1)h(x)

D2(x)

p

)1+ε
,

where

ϑ(ξ) =
∑
p�ξ

logp

is the familiar theta function from the theory of prime numbers. By the Prime Number
Theorem we have ϑ(ξ) ∼ ξ as ξ →∞. Therefore the last expression is

� e(1+ε)q(f (x))
(
xd−1

D2(x)

)1+ε

and consequently

lim inf
x→∞

q(f (x))

log x
� 1.

Hence, even making so strong assumption as the abc-conjecture, one reduces just one log
in (2).

Sharper estimates can be obtained for the greatest prime divisor of the product∏
n�x

f (n).

Let us denote this quantity by P(x, f ). It was first considered in case of f0(x) = x2 + 1
by P. Chebyshev, who proved that P(x, f0)/x →∞ as x →∞. This was improved and
generalized by many authors, compare [57], [16], [42], [12], [17], [70]. The sharpest result
for general polynomial was achieved by G. Tenenbaum [70]:

P(x, f ) > x exp
(
(log x)α

)
for every α < 2− log 4 = 0.61370 . . . . For f (x) = f0(x) = x2+1 the best result belongs
to J. -M. Deshouillers and H. Iwaniec:

P(x, f0) > x
1.202.

See also [68] and [42].
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Sur certaines hypothèses
concernant les nombres premiers

with W. Sierpiński (Warszawa)

La répartition des nombres premiers parmi les nombres naturels n’est pas encore suffi-
samment étudiée : c’est pourquoi depuis les temps les plus anciens on a énoncé diverses
hypothèses concernant les nombres premiers. Plusieurs de ces hypothèses se sont montrées
fausses ; quelques unes d’elles ne sont pas encore mises en défaut, et il y en a qui sont
vérifiées pour tous les nombres ne dépassant pas un nombre très grand.

Une de plus anciennes hypothèses sur les nombres premiers, ayant au moins 25 siècles,
était celle des Chinois : un nombre naturel n > 1 est premier si et seulement si le nombre
2n−2 est divisible par n(1). La nécessité de cette condition a été démontrée il y a quelques
centaines d’années. En 1681 Leibniz a essayé de démontrer qu’elle est suffisante, mais sa
démonstration était basée sur un raisonnement faux, et en 1819 on a trouvé que l’hypo-
thèse des Chinois était fausse, puisque le nombre 2341−2 (qui a 103 chiffres) est divisible
par 341, bien que le nombre 341 = 11 · 31 ne soit pas premier. Ensuite on a démontré
(de nos temps) qu’il existe une infinité de nombres composés n pour lesquels le nombre
2n− 2 est divisible par n, impairs aussi bien que pairs. (Le plus petit de ces nombres pairs
est le nombre n = 161038 = 2 · 73 · 1103 trouvé en 1950 par D. H. Lehmer).

P. Fermat supposait premiers tous les nombres Fn = 22n + 1, où n = 0, 1, 2, . . . . Cela
est vrai pour n = 0, 1, 2, 3 et 4, mais, comme l’a trouvé L. Euler en 1772, le nombre F5
(qui a 10 chiffres) est composé, car il est divisible par 641. Maintenant nous connaissons
29 nombres Fn composés, pour n = 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 18, 23, 36, 38, 39, 55,
63, 73, 117, 125, 144, 150, 207, 226, 228, 268, 284, 316, 452.

On peut donc énoncer l’hypothèse qu’il existe une infinité de nombres Fn composés.
On a même énoncé l’hypothèse plus forte : les nombres Fn premiers sont en nombre fini.
Ce sont peut-être seulement ceux que connaissait Fermat, à savoir les nombres Fn pour
n � 4.

Le plus petit nombre Fn dont nous ne sachions pas s’il est premier ou non est F13. Le
plus grand nombre Fn composé connu est F452 dont le plus petit diviseur premier est le
nombre 27 · 2455 + 1 (voir [14]).

Erratum Acta Arith. 5 (1959), 259.
(1) Ancient Chinese mathematicians never made this conjecture, see [12a], p. 54, footnote d.
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Le fait que le nombre F16 est composé met en défaut l’hypothèse que tous les nombres
de la suite infinie

2+ 1, 22 + 1, 222 + 1, 222 + 1, 2222 + 1, 22222

+ 1, . . .

sont premiers, puisque F16 est le cinquième terme de cette suite.
Quant aux nombres de Mersenne Mn = 2n − 1 on a énoncé l’hypothèse que si le

nombreMn est premier, le nombreMMn est aussi premier. Or, d’après un calcul qui a été
fait en 1953 par D. J. Wheeler, le nombre MM13 = 28191 − 1 (qui a 2466 chiffres) est
composé, bien que le nombreM13 soit premier.

On a encore énoncé l’hypothèse que les nombres qn (n = 0, 1, 2, . . . ), où q0 = 2 et
qk+1 = 2qk − 1 pour k = 0, 1, 2, . . . , sont tous premiers. Cela est vrai pour 0 � n � 4.
Or, le nombre q5 a plus de 1037 chiffres et nous ne savons pas s’il est premier ou non.

En 1742 Ch. Goldbach a énoncé l’hypothèse que tout nombre pair > 4 est la somme
de deux nombres premiers impairs. On peut énoncer l’hypothèse G un peu plus forte : tout
nombre pair > 6 est la somme de deux nombres premiers distincts. On peut démontrer
que l’hypothèse G équivaut à l’hypothèse que tout nombre naturel > 17 est la somme
de trois nombres premiers distincts. Or, de l’hypothèse de Goldbach A. Schinzel a déduit
que tout nombre impair > 17 est la somme de trois nombres premiers distincts. En 1937
J. Vinogradoff a démontré que tout nombre impair suffisamment grand est la somme de
trois nombres premiers impairs. Quant à l’hypothèse G, S. Gołaszewski et B. Leszczyński
l’ont vérifiée pour tous les nombres pairs � 50000.

On a aussi énoncé l’hypothèse que le nombre des décompositions d’un nombre pair 2n
en une somme de deux nombres premiers tend vers l’infini avec n (cf. [10], Conjecture A).
Il est probable que les nombres pairs > 188 ont plus de 10 décompositions et que les
nombres pairs > 4574 donnent plus de 100 décompositions.

Nous déduirons de l’hypothèse G quelques conséquences.

P1. Tout nombre impair est de la forme n− ϕ(n) où n est un nombre naturel.

Démonstration de l’implication G → P1. On a 1 = 2−ϕ(2), 3 = 9−ϕ(9), 5 = 25− ϕ(25).
Sim est un nombre impair> 5 on am+1 > 6 et de G résulte l’existence des nombres pre-
miers distincts p et q tels quem+1 = p+q et on a pq−ϕ(pq) = pq−(p−1)(q−1) =
p + q − 1 = m, donc m = n− ϕ(n) pour n = pq. L’implication G → P1 se trouve ainsi
démontrée. 	


P2. Tout nombre impairm > 7 est de la forme σ(n)− n, où n est un nombre impair> m.

Démonstration de l’implication G → P2. Si m est un nombre impair > 7, il résulte de G
qu’il existe des nombres premiers distincts p et q < p tels que m − 1 = p + q, et on a
σ(pq) − pq = (p + 1)(q + 1) − pq = p + q + 1 = m. Comme m est impair > 7, les
nombres p et q sont impairs, q � 3, donc pq � 3p = 2p + p > p + q + 1 = m et en
posant n = pq on obtient un nombre impair n > m tel que m = σ(n)− n. L’implication
G → P2 est ainsi démontrée. 	


P. Erdős a posé la question s’il existe une infinité de nombres naturels qui ne sont pas
termes de la suite σ(n) − n. (Tels sont par exemple les nombres 2 et 5). Une question



J1. Sur certaines hypothèses concernant les nombres premiers 1115

analogue peut être posée pour la suite n − ϕ(n). (Les quatre nombres naturels les plus
petits qui ne sont pas termes de cette suite sont 10, 26, 34 et 50).

P2.1. Il existe des suites aussi longues que l’on veut

(1) n, f (n), ff (n), fff (n), . . . , où f (n) = σ(n)− n,
dont le dernier terme est 1.

Démonstration de l’implication P2 → P2.1. D’après P2 pour tout nombre impair m > 7
il existe un nombre impair n = g(m) > m, tel que f (n) = m. Pour tout n impair > 7 la
suite infinie de nombres naturels

n, g(n), gg(n), . . .

est donc croissante. k étant un nombre naturel, posons n = gk(11). Nous obtenons ainsi
la suite

n = gk(11), f (n) = gk−1(11), . . . , f k(n) = 11, f k+1(n) = 1c

(puisque f (11) = σ(11)−11 = 1) qui a k+2 termes dont le dernier est= 1. L’implication
P2 → P2.1 se trouve ainsi démontrée. 	


P2.2. Il existe un infinité de nombres naturels n tels que la suite infinie (1) est périodique.

Démonstration de l’implication P2 → P2.2. Soit g(m) la fonction définie dans la dé-
monstration de l’implication P2 → P2.1 et posons pour k naturels n = gk(25). Nous
obtiendrons la suite

n = gk(25), f (n) = gk−1(25), . . . , f k(n) = 25, f k+i (n) = 6

pour i = 1, 2, . . . (puisque f (25) = 6 et f (6) = 6).
La suite infinie (1) a donc ici k nombres impairs suivis d’une infinité de nombres 6.
Il est à remarquer que L. E. Dickson a énoncé l’hypothèse que pour tout nombre

naturel n > 1 la suite (1) ou bien se termine par le nombre 1 ou bien elle est périodique
(Dickson [5]; cf. Catalan [3]).

On voit sans peine que l’on peut exprimer cette hypothèse en disant que la suite (1) est
toujours bornée.

On ne sait pas s’il existe une infinité de nombres naturels n pour lesquels la suite (1)
est périodique et la période est pure (comme par exemple pour n = 220, où la période est
formée de deux termes ou pour n = 12496, où la période est formée de 5 termes).

En 1950 G. Giuga a énoncé l’hypothèse que pour qu’un nombre naturel p > 1 soit
premier, il faut et il suffit que le nombre 1p−1+2p−1+ . . .+ (p−1)p−1+1 soit divisible
par p. (On démontre sans peine que cette condition est nécessaire). Il affirme que cette
hypothèse est vraie pour tous les nombres < 101000.

Hypothèse de A. Schinzel. A. Schinzel a énoncé hypothèse H0 suivante :

H0. s étant un nombre naturel et f1(x), f2(x), . . . , fs(x) des polynômes irréductiblesc

en x à coefficients entiers, où le coefficient de la plus haute puissance de x est positif, et
satisfaisant à la condition
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C. Il n’existe aucun entier > 1 qui divise le produit f1(x)f2(x) · · · fs(x) quel que soitc

l’entier x,

alors il existe au moins un nombre naturel x pour lequel les nombres f1(x), f2(x), . . . ,
. . . , fs(x) sont tous premiers.

On démontre sans peine que l’hypothèse H0 équivaut à l’hypothèse H suivante :

H. s étant un nombre naturel et f1(x), f2(x), . . . , fs(x) des polynômes en x satisfaisant
aux conditions de l’hypothèse H0, il existe une infinité de hboxnombres naturels x pour
lesquels les nombres f1(x), f2(x), . . . , fs(x) sont premiers.

En effet, supposons que l’hypothèse H0 soit vraie et soient f1(x), f2(x), . . . , fs(x) des
polynômes satisfaisant aux conditions de l’hypothèse H0. On démontre sans peine que,
quel que soit le nombre naturel k, les polynômes f1(x + k), f2(x + k), …, fs(x + k)
satisfont aussi aux conditions de l’hypothèse H0. D’après H0 il existe donc un nombre
naturel x tel que les nombres f1(x + k), f2(x + k), …, fs(x + k) sont tous premiers et,
comme on le prouve aisément, pour k suffisamment grand tous ces nombres premiers sont
aussi grands que l’on veut. On a donc H0 → H et comme, d’autre part, on a évidemment
H → H0, l’equivalence H0 ≡ H se trouve démontrée.

Quant à l’hypothèse H il est à remarquer que du théorème 1 du travail de G. Ricci [13]
on déduit sans peine que si les polynômes f1(x), f2(x), . . . , fs(x) satisfont aux conditions
de l’hypothèse H0, il existe une constante C dépendant de f1, f2, . . . , fs telle que pour
une infinité de nombres naturels x chacun des nombres f1(x), f2(x), . . . , fs(x) a au plus
C diviseurs premiers.

Nous déduirons maintenant de l’hypothèse H plusieurs conséquences.

C1. Si s est un nombre naturel, a1 < a2 . . . < as des entiers et si les binômesfi(x) = x+ai
(i = 1, 2, . . . , s) satisfont à la condition C, il existe une infinité de nombres naturels x
pour lesquels f1(x), f2(x), . . . , fs(x) sont des nombres premiers consécutifs.

Démonstration de l’implication H → C1. Nos binômes étant irréductibles et satisfaisant à
la condition C, il résulte de H qu’il existe une infinité de nombres naturels x pour lesquels
les nombres fi(x) (i = 1, 2, . . . , s) sont premiers. Soit h � as − 2a1 + 2 un tel nombre
naturel et posons

(2) b = (h+ as)!
(h+ a1)! (h+ a2) · · · (h+ as)c

et

gi(x) = bx + h+ ai pour i = 1, 2, . . . , s.

On a 2(h+ ai) = h+ h+ 2ai � h+ h+ 2a1 � h+ as + 2 > h+ as et, le nombre
h+ai = fi(h) étant premier, les facteurs de (h+as)! autres que h+ai , étant< 2(h+ai),
ne sont pas divisibles par h+ ai et il en résulte que (b, h+ ai) = 1.

Supposons maintenant qu’il existe un nombre premier p tel que

p |g1(x)g2(x) · · · gs(x) pour x = 0, 1, 2, . . . , p − 1.



J1. Sur certaines hypothèses concernant les nombres premiers 1117

On a donc p |g1(0)g2(0) · · · gs(0) = (h + a1)(h + a2) · · · (h + as) et tous ces facteurs
étant premiers, il existe un nombre naturel k � s tel que p = h + ak et d’après (2) etc

h+as < 2(h+ak) = 2p on en conclut quep ne divise pasb. Il existe donc pour tout nombre
naturel i � s un seul nombre x de la suite 0, 1, 2, . . . , p−1, tel quep |bx+h+ai = gi(x)
et il résulte tout de suite de p |g1(x)g2(x) · · · gs(x) pour x = 0, 1, 2, . . . , p−1 que p � s,
donc h+ak � s, et comme, d’autre part, h+ak � h+a1 � as −a1+2 � s+1 (puisque
les entries a1, a2, . . . , as vont en croissant) on aboutit à une contradiction.

Les binômes irréductibles gi(x) (i = 1, 2, . . . , s) satisfont donc à la condition C
et, d’aprés H, il existe une infinité de nombres naturels x tels que les nombres gi(x)
(i = 1, 2, . . . , s) sont premiers. Si pour un tel x ces nombres premiers n’étaient pas
consécutifs, il existerait un entier j tel que a1 � j � as et j �= a1, a2, . . . , as tel
que le nombre q = bx + h + j > h + j serait premier. Or, comme a1 � j � as
et j �= a1, a2, . . . , as , on a, d’aprés (2), h + j |b, donc h + j |q > h + j , ce qui estc

impossible, puisque h+ j > h+ a1 qui est premier.
L’implication H → C1 se trouve ainsi démontrée. 	


C1.1. Tout nombre pair peut être représenté d’une infinité de manières comme la différence
de deux nombres premiers consécutifs.

Démonstration de l’implication C1 → C1.1. Soit f1(x) = x, f2(x) = x + 2n (où n est
un nombre naturel donné). Comme(

f1(1)f2(1), f1(2)f2(2)
) = (2n+ 1, 2(2+ 2n)

) = 1,

il résulte de C1 qu’il existe une infinité de nombres naturels x tels que x et x + 2n sont
deux nombres premiers consécutifs, oit x = pk , x + 2n = pk+1 (où pi désigne le i-ème
nombre premier), d’oú 2n = pk+1 − pk . Cela prouve que C1 → C1.1 (cf. Hardy and
Littlewood [10], Conjecture B). 	


C1.2. m étant un nombre naturel donné, il existe 2m nombres premiers consécutifs formant
m couples de nombres jumeaux.

Démonstration de l’implication C1 → C1.2. Soit

f2i−1(x) = x + (2m)! (i − 1),

f2i (x) = x + (2m)! (i − 1)+ 2 pour i = 1, 2, . . . , m

et

P(x) = f1(x)f2(x) · · · f2m(x).

Soit p un nombre premier tel que p |P(x) pour x = 0, 1, . . . , p−1. Comme P(x) est
un polynôme en x de degré 2m où le coefficient de x2m est = 1, d’après le théorème de
Lagrange la congruence P(x) ≡ 0 (mod p) a au plus 2m racines. Or, comme P(x) ≡ 0
(mod p) pour x = 0, 1, . . . , p−1, on en conclut que p � 2m. Mais P(1) est évidemment
un nombre impair et comme p |P(1), on trouve p > 2. D’autre part, d’après p � 2m
on a p | (2m)! i pour i entier et comme p |P(2), on trouve p |23m, ce qui est impossible.
Les binômes fj (x) (j = 1, 2, . . . , 2m) satisfont donc à la condition C et il résulte de C1
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qu’il existe une infinité de nombres naturels x tels que fj (x) (j = 1, 2, . . . , 2m) sont
des nombres premiers consécutifs, fj (x) = pk+j−1 pour j = 1, 2, . . . , 2m. On a donc
pk+2i−1 − pk+2i−2 = 2 pour i = 1, 2, . . . , n et l’implication C1 → C1.2 se trouve
démontrée. 	


On peut démontrer pareillement qu’il existe pour tout m naturel 4m + 1 nombres
premiers consécutifs dont les 2m premiers et de même les 2m derniers donnentm couples
de nombres jumeaux.

V. Thébault a démontré [18] que si n > 1 termes d’une progression arithmétique de
raison r sont des nombres premiers> n, alors r est divisible par tout nombre premier � n.
Or, nous démontrerons que C1 entraîne la conséquence suivante :

C1.4. Si r est un nombre naturel divisible par tout nombre premier � n, où n est un nombre
naturel donnée > 1, il existe une infinité de systèmes de n nombres premiers consécutifs
formant une progression arithmétique de raison r .

Démonstration de l’implication C1 → C1.4. Soit fi(x) = x + ir pour i = 0, 1, 2, . . . ,
. . . , n − 1. S’il existait un nombre premier p tel que p |f0(x)f1(x) · · · fn−1(x) pour
x = 0, 1, 2, . . . , p − 1, il résulterait du théorème de Lagrange que p � n, donc p | r .
D’autre part on a

p |f0(1)f1(1) · · · fn−1(1) = 1(1+ r)(1+ 2r) · · · (1+ (n− 1)r)

et vu que p | r on trouve p |1, ce qui est impossible. La condition C est donc satisfaite et
il résulte de C1 qu’il existe une infinité de nombres naturels x tels que les nombres fi(x)
(i = 1, 2, . . . , n) sont des nombres premiers consécutifs. Nous avons ainsi démontré que
C1 → C1.4. 	


En particulier, pour n = 3, il résulte de C1.4 qu’il existe pour tout nombre naturel h
une infinité de nombres naturels k tels que pk+1 − pk = pk+2 − pk+1 = 6h. Il en résulte
qu’il existe une infinité de progressions arithmétiques formées de trois nombres premiers
consécutifs. Or, d’après L. E. Dickson ([6], p. 425) Moritz Cantor a énoncé l’hypothèse
([2]) que trois nombres premiers consécutifs dont aucun n’est le nombre 3 ne peuvent
pas former de progression arithmétique. En 1955 A. Schinzel a remarqué que cette hypo-
thèse est en défaut puisque 47, 53 et 59 sont trois nombres premiers consécutifs formant
une progression arithmétique de raison 6. Parmi les nombres < 1000 on trouve plusieurs
telles progressions dont les premiers termes sont respectivement 151, 167, 367, 557, 587,
601, 647, 727, 941, 971. Les nombres 199, 211 et 223 et pareillement les nombres 1499,
1511 et 1523 forment des progressions arithmétiques de raison 12 composées de nombres
premiers consécutifs et les nombres

251, 257, 263, 269 et 1741, 1747, 1753, 1759

forment des progressions arithmétiques de raison 6 composées chacune de quatre nombres
premiers consécutifs. D’après C1.4 (pour n = 4) il existe une infinité de telles progressions.

Nous déduirons maintenant de l’hypothèse H la conséquence suivante :
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C2. a, b, c étant des nombres naturels tels que (a, b) = (a, c) = (b, c) = 1 et 2 |abc,
l’équation ap − bq = c a une infinité de solutions en nombres premiers p et q. (Cette
hypothèse a été énoncée par Hardy et Littlewood [10], p. 45, Conjecture D).

Démonstration de l’implication H → C2. a, b, c étant des nombres naturels tels que
(a, b) = (a, c) = (b, c) = 1 et 2 |abc, il existe, on le sait, des nombres naturels r et s
tels que ar − bs = c. Soit f1(x) = bx + r , f2(x) = ax + s, on a donc f1(x)f2(x) =
abx2 + (ar + bs)x + rs.

S’il existait un nombre premier p tel que p |f1(x)f2(x) pour tout entier x, on aurait
(pour x = 0) p | rs, donc (pour x = ±1) p |ab± (ar+bs), d’où p |2ab et p |2(ar+bs).
Si l’on avait p = 2, on aurait, d’après p | rs, 2 | r ou bien 2 | s. Si 2 | r , on ne peut avoir
2 | s, puisqu’alors il viendrait 2 |ar ± bs, donc 2 |ab et 2 | c, contrairement à (ab, c) = 1.
Donc, si 2 | r , s est impair et de p |ab+ (ar + bs) il résulte que 2 | (a+ 1)b, donc ou bien
a est impair ou bien b est pair. Si b était pair, alors, d’après ar − bs = c, c serait pair,
contrairement à (b, c) = 1. Donc b est impair et a impair et aussi c = ar − bs impair,
contrairement à 2 |abc. Donc r ne peut pas être pair ; s est donc pair et comme plus haut
on démontre que cela implique une contradiction.

On a donc p �= 2, par conséquent p |ab et p |ar + bs et, comme p | rs, d’après
p |ar2 + brs on trouve p |ar2, d’où p |ar et, comme en vertu de p |ars + bs2 on a
p |bs2, d’où p |bs, il vient p |ar − bs = c, ce qui est impossible, puisque (ab, c) = 1.
Les binômes f1(x) et f2(x) satisfont donc à la condition C et il existe une infinité de
nombres naturels x tels que p = f1(x) et q = f2(x) sont des nombres premiers, donc
bx + r = p et ax + s = q, ce qui donne ap− bq = ar − bs = c. L’implication H → C2
se trouve ainsi démontrée. 	


Voici maintenant une conséquence de C2 :

C2.1. Tout nombre rationnel positif peut être représenté d’une infinité de manières sous la
forme (p+1)/(q+1) ainsi que sous la forme (p−1)/(q−1), où p et q sont des nombres
premiers.

Démonstration de l’implication C2 → C2.1. Soit r un nombre rationnel > 1 ; on peut le
représenter sous la forme r = b/a, où a et b sont des nombres naturels, b > a ; (a, b) = 1
et il en résulte que (a, b − a) = 1 et on a évidemment 2 |ab(b − a). D’après C2 il existe
donc une infinité de systèmes de deux nombres premiers p et q tels que ap− bq = b− a,
d’où b/a = (p + 1)/(q + 1).

Si r était rationnel, 0 < r < 1, on aurait r = a/b où b > a et on trouverait a/b =
(q+1)/(p+1). Pour la forme (p−1)/(q−1) la démonstration serait analogue, en partant
de l’équation ap − bq = a − b pour a > b. Pour r = 1 la proposition C2.1 est évidente.

En particulier, pour r = 2 il résulte de C2.1 qu’il existe une infinité de nombres premiers
p pour lesquels le nombre 2p + 1, respectivement le nombre 2p − 1 est premier. 	


Si p et 2p+ 1 sont premiers, on a ϕ(2p+1) = 2p, donc de C2.1 résulte la proposition
suivante :

C2.1.1. La suite 1
2ϕ(n) (n = 1, 2, . . . ) contient une infinité de nombres premiers.
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Soit k un nombre naturel pair. D’après C2.1 il existe une infinité de nombres premiers
p > k tels que 2p−1 est un nombre premier. k étant pair, on a k = 2l. Or, pour tout l naturel
on a ϕ(4l) = 2ϕ(2l), donc ϕ(4lp) = 2ϕ(l)ϕ(p) = 2(p − 1)ϕ(l) et ϕ

(
2l(2p − 1)

) =
ϕ(2l)ϕ(2p−1) = (2p−2)ϕ(2l) doncϕ(4lp−2l) = ϕ(4lp) et l’équationϕ(x+k) = ϕ(x)c

est remplie pour x = 4lp − 2l, k = 2l. On a ainsi la proposition suivante :

C2.1.2. L’équation ϕ(x + k) = ϕ(x), où k est un nombre naturel pair, a une infinité de
solutions.

Pour k impairs l’étude de cette équation est beaucoup plus compliquée : voirA. Schinzel
[16].

Il résulte tout de suite de C2.1 qu’il existe pour tout nombre rationnel r > 0 une infinité
de couples de nombres naturels x et y tels que σ(x)/σ (y) = r (on peut prendre pour x et y
des nombres premiers).

Une propriété analogue de la fonction ϕ peut aisément être démontrée sans faire appel
à l’hypothèse H. En effet, si r = l/m, où l et m sont des nombres naturels et (l, m) = 1
et si k est un nombre naturel quelconque tel que (k, lm) = 1, on a

ϕ(l2mk)/ϕ(lm2k) = l/m = r.
Or, il résulte tout de suite C2.1 que, pour tout nombre rationnel r > 0, l’équation
ϕ(x)/ϕ(y) = r a une infinité de solutions en nombres premiers x et y.

P. Erdős a démontré d’une façon élémentaire l’existence des suites infinies mk et nk
(k = 1, 2, . . . ) de nombres naturels tels que mk/nk → +∞ et ϕ(mk) = ϕ(nk) pour
k = 1, 2, . . . . Sa méthode n’est pas applicable à la fonctionσ . Or, C2.1 entraîne le corollaire
suivant :

C2.1.3. Quel que soit le nombre naturel k, il existe des nombres naturels m et n tels que
σ(m) = σ(n) et m/n > k.

Démonstration de l’implication C2.1 → C2.1.3. Comme on sait, il existe pour tout nombre
naturel k un nombre naturel l tel que σ(l)/ l > 2k (ce qui résulte par exemple de l’inégalité

σ(n!)
n! � 1

1
+ 1

2
+ . . .+ 1

n
pour n = 1, 2, . . .

et de la divergence de la série harmonique). Or, d’après C2.1 (pour r = σ(l)) il existe des
nombres premiers p > l et q > l tels que

σ(p)

σ(q)
= p + 1

q + 1
= σ(l).

Posons m = p, n = lq. On aura donc σ(n) = σ(lq) = σ(l)σ (q) = σ(p) = σ(m)
donc σ(m) = σ(n), et

m

n
= p

lq
= p

σ(p)
· σ(q)
q

· σ(l)
l
>

p

p + 1
· 2k > k. 	


C3. Si a, b et c sont des entiers, a > 0, (a, b, c) = 1 et les nombres a + b et c ne sont
pas simultanément pairs, et b2 − 4ac n’est pas un carré, il existe une infinité de nombres
premiers de la forme ax2 + bx + c. (Cf. Hardy et Littlewood [10], p. 48, Conjecture F).
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Démonstration de l’implication H → C3. Comme b2− 4ac n’est pas un carré, le trinôme
ax2 + bx + c est irréductible. Il remplit aussi la condition C, puisque(

f (0), f (1), f (2)
) = (c, a + b + c, 4a + 2b + c) = (c, a + b, 2a)
= (c, a + b, a) = (c, b, a) = 1.

L’implication H → C3 se trouve ainsi démontrée. 	
c

C3.1. Si k est un entier et−k n’est pas un carré, il existe une infinité de nombres premiers
de la forme x2 + k. (Pour k = 1 cf. Hardy et Littlewood [10], p. 48, Conjecture E).

Pour déduire C3.1 de C3 il suffit de poser, dans C3, a = 1, b = 0, c = k.

C3.1.1. Tout nombre naturel pair est d’une infinité de manières somme de deux nombres
premiers conjugués du corps Q(

√−1).c

Démonstration de l’implication C3.1 → C3.1.1. Pour k naturel donné il existe, d’après
C3.1, une infinité de nombres premiers > 2 de la forme p = x2 + k2 ; ces nombres sont,
on le voit sans peine, de la forme 4t + 1, et on a p = (k+ xi)(k− xi) où k+ xi et k− xi
sont des nombres premiers conjugués du corps Q(

√−1), et 2k = (k + xi)+ (k − xi).
Quant aux nombres impairs, on peut démontrer que tout nombre naturel impair < 29

est la somme de deux nombres premiers du corps Q(
√−1), mais il existe une infinité de

nombres impairs qui ne sont pas de telles sommes, par exemple tous les nombres 170k+29
et tous les nombres 130k + 33 où k = 0, 1, 2, . . . .

Il est à remarquer que sans avoir recours à l’hypothèse H nous ne savons pas démontrer
non seulement qu’il existe une infinité de nombres premiers de la forme x2 + 1, où x est
un nombre naturel, mais aussi qu’il existe une infinité de nombres premiers de la forme
x2 + y2 + 1, où x et y sont des nombres naturels. Cependant on sait démontrer qu’il
existe une infinité de nombres premiers de la forme x2 + y2 + z2 + 1, où x, y, z sont des
nombres naturels : tels sont, par exemple, tous les nombres premiers de la forme 8k+ 7.	


C4. L’équation ax2 + bx + c = dy, où a, b, c, d sont des entiers, a > 0 et d > 0, a une
infinité de solutions en nombres premiers x et y si et seulement siΔ = b2− 4ac n’est pas
un carré (d’un nombre entier) et si elle a au moins une solution en nombres entiers x0, y0
tels que (x0y0, 6ad) = 1.

Démonstration de l’implication H → C4. Nous prouverons sans avoir recours à l’hypo-
thèse H que la condition est nécessaire.

Si l’équation ax2 + bx + c = dy a une infinité de solutions en nombres premiers, il
existe des nombres premiers x0 et y0 plus grands que 6ad et tels que ax2

0 + bx0+ c = dy0
et alors on a (x0y0, 6ad) = 1.

Si Δ était un carré, soit b2 − 4ac = k2, où k est un entier � 0, on aurait, comme on le
vérifie aisément 4ady0 = (2ax0+ b+ k)(2ax0+ b− k). Or, on déduit sans peine de cette
égalité que pour x0 premiers suffisamment grands le nombre y0 ne peut pas être premier.

La condition de C4 est donc nécessaire. Supposons maintenant que le nombre Δ ne
soit pas un carré et que x0 et y0 soient des entiers tels que ax2

0 + bx0 + c = dy0 et
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(x0y0, 6ad) = 1. Posons

f1(x) = dx + x0, f2(x) = adx2 + (2ax0 + b)x + y0.

Les polynômes f1 et f2 sont irréductibles, puisque

(2ax0 + b)2 − 4ady0 = (2ax0 + b)2 − 4a(ax2
0 + bx0 + c) = b2 − 4ac = Δ

et, d’après l’hypothèse, Δ n’est pas un carré (d’un nombre rationnel).
S’il existait un nombre premier p tel que p |f1(x)f2(x) pour x entiers, alors, en vertu

du théorème de Lagrange, on aurait ou bien p � 3 ou bien p |ad2, donc toujours p |6ad2

et p |f1(0)f2(0) = x0y0 et, comme (x0y0, 6ad) = 1, d’où (x0y0, 6ad2) = 1, on aurait
p |1, ce qui est impossible. Les polynômes f1(x) et f2(x) satisfont donc aux conditions
de l’hypothèse H, par conséquent pour une infinité de nombres naturels x les nombres
f1(x) = p et f2(x) = q sont premiers et on vérifie sans peine que ap2 + bp + c = dq.
L’implication H → C4 est ainsi démontrée. 	


C4.1. Tout nombre rationnel r > 1 peut être représenté d’une infinité de manières sous la
forme (p2 − 1)/(q − 1), où p et q sont des nombres premiers.

Démonstration de l’implication C4 → C4.1. Soit r un nombre rationnel > 1, donc
r = d/a, où a et d sont des nombres naturels, d > a. Posons, dans C4, b = 0, c = d − a.
On aura donc b2 − 4ac = −4a(d − a) < 0, ce qui n’est pas un carré. Or, les nombres
x0 = y0 = 1 sont tels que (x0y0, 6ad) = 1 et ax2

0 + (d − a) = dy0. En vertu de C4 il
existe donc une infinité de nombres premiers p et q tels que ap2 + (d − a) = dq, d’où
(p2 − 1)/(q − 1) = d/a = r , ce qui prouve que C4 → C4.1. 	


C4.1.1. Il existe une infinité de triangles orthogonaux de côtés naturels dont deux sont des
nombres premiers.

Démonstration de l’implication C4.1 → C4.1.1. Pour r = 2 il résulte de C4.1 que l’équation
p2 = 2q − 1 a une infinité de solutions en nombres premiers. Or, cette équation équivaut
évidemment à l’équation p2 + (q − 1)2 = q2. On a donc C4.1 → C4.1.1. Voici quelques
triangles satisfaisant aux conditions de C4.1.1 :

(3, 4, 5), (5, 12, 13), (11, 60, 61), (19, 180, 181),

(29,420,421), (61,1860,1861). 	
c

Dans Scripta Mathematica 22 (1956), p. 158, Curiosum 435 (G. An interesting obser-
vation) on trouve l’observation qu’il existe un grand nombre de cas où pour p premier
l’addition de l’unité au nombre triangulaire d’ordre p, respectivement la soustraction du
nombre 2 donne un nombre premier, par exemple t3 + 1 = 7, t7 + 1 = 29, t5 − 2 = 13.
Nous déduirons de l’hypothèse H les conséquences C4.2 et C4.3 suivantes :

C4.2. Il existe une infinité de nombres premiers p tels que 1
2p(p + 1)+ 1 est un nombre

premier.
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Démonstration de l’implication C4 → C4.2. Posons, dans C4, a = b = 1, c = d = 2. Le
nombre b2 − 4ac = −7 n’est pas un carré. L’équation x2 + x + 2 = 2y admet la solution
x0 = −1, y0 = 1, qui remplit la condition (x0y0, 6ad) = 1, et la proposition C4.2 résulte
immédiatement de C4. 	


C4.3. Il existe une infinité de nombres premiers p tels que le nombre 1
2p(p + 1) − 2 est

premier.

Démonstration de l’implication C4 → C4.3. Posons, dans C4, a = b = 1, c = −4, d = 2.
Le nombre b2−4ac = 17 n’est pas un carré. L’équation x2+x−4 = 2y admet la solution
x0 = 1, y0 = −1, telle que (x0y0, 6ad) = 1, donc C4 entraîne immédiatement C4.3. 	


C4.4. La suite σ(n) (n = 1, 2, . . . ) contient une infinité de nombres premiers.

Démonstration de l’implication C4 → C4.4. Posons, dans C4, a = b = c = d = 1. Le
nombre b2 − 4ac = −3 n’est pas un carré. L’équation x2 + x + 1 = y admet la solution
x0 = −1,y0 = 1, où (x0y0, 6ad) = 1, et, comme pourp premiers on aσ(p2) = p2+p+1,
C4 entraîne la proposition C4.4. 	


C5. Tout nombre naturel peut être représenté d’une infinité de manières sous la forme
σ(x)− σ(y) (où x et y sont des nombres naturels).

Démonstration de l’implication H → C5. Sin est pair, il existe, d’après C1.1, une infinité de
nombres premiersp et q tels quep−q = n, d’où σ(p)−σ(q) = (p+1)−(q+1) = n. Or,
si n est impair, posons, dans C4, a = b = d = 1, c = n. Le nombre b2−4ac = 1−4n < 0
n’est pas un carré. Si 3 |n, alors,n étant impair, on a (n+2, 6) = 1 et pourx0 = 1,y0 = n+2
on a x2

0+x0+n = y0 et (x0y0, 6ad) = (n+2, 6) = 1. Si l’on n’a pas 3 |n, alors (n, 6) = 1
et pour x0 = −1, y0 = n on trouve x2

0 + x0 + n = y0 et (x0y0, 6ad) = (−n, 6) = 1.
D’après C4 il existe donc une infinité de nombres premiers p et q tels que p2+p+n = q,
d’où

σ(q)− σ(p2) = q + 1− (p2 + p + 1) = q − p2 − p = n.
On a donc H → C5. 	


Il est à remarquer que pour la fonction ϕ la proposition analogue à C5 est fausse, car on
peut démontrer d’une façon élémentaire qu’aucun des nombres 2 · 7n − 1 (n = 1, 2, . . . )
n’est de la formeϕ(x)−ϕ(y), mais, comme pourp et q premiers on aϕ(p)−ϕ(q) = p−q,
on déduit de C1.1 que tout nombre pair est de la forme ϕ(x)− ϕ(y).

C6. n étant un nombre impair > 1, k un entier donné quelconque qui n’est pas une
puissance d’un entier à l’exposant d > 1 et d |n, il existe une infinité de nombres premiers
de la forme xn + k, où x est un nombre naturel (pour n = 3 cf. Hardy et Littlewood [10],
p. 50, Conjecture K). Si, en outre k est pair, il existe une infinité de nombres premiers p
tels que pn + k est un nombre premier.
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Démonstration de l’implication H → C6. n étant un nombre impair et k n’étant pas
une puissance d’un entier à l’exposant d > 1 et d |n, le polynôme f1(x) = xn + k est
irréductible. Or, on a

(
f1(0), f1(1)

) = (k, k + 1) = 1 et on déduit de H la première
partie de C6. Si k est pair, alors, en posant f2(x) = x on a

(
f1(−1)f2(−1), f1(1)f2(1)

) =
(k − 1, k + 1) = 1, la condition C est encore remplie et H entraîne la deuxième partie
de C6. 	


Il est à remarquer que sans l’aide de l’hypothèse H nous ne savons démontrer même
pas l’existence d’une infinité de nombres premiers de la forme x3 + y3 + z3, où x, y et z
sont des entiers. On sait cependant démontrer (sans l’aide de l’hypothèse H) l’existence
d’une infinité de nombres premiers de la forme x3 + y3 + z3 + t3 où x, y, z, t sont des
entiers : tels sont, par exemple, tous les nombres de la forme 9k ± 1.

C7. Il existe une infinité de nombres naturels n tels que chacun des nombres n, n + 1,
n+ 2 est le produit de deux nombres premiers distincts.

Démonstration de l’implication H → C7. Soit f1(x) = 10x + 1, f2(x) = 15x + 2,
f3(x) = 6x + 1. On a ici a = f1(0)f2(0)f3(0) = 2 et b = f1(1)f2(1)f3(1) = 11 · 17 · 7,
donc (a, b) = 1 et il résulte de H qu’il existe une infinité de nombres naturels x tels que
les nombres p = 10x+1, q = 15x+2, r = 6x+1 sont premiers. Pour n = 3p on trouve
n + 1 = 3p + 1 = 2(15x + 2) = 2q, n + 2 = 2q + 1 = 30x + 5 = 5(6x + 1) = 5r
et p � 11 > 3, q � 17 > 2, r � 7 > 5, d’où il résulte que chacun des nombres n,
n+ 1, n+ 2 est le produit de deux nombres premiers distincts. De C7 résulte tout de suite
l’existence d’une infinité de nombres naturels n tels que les nombres n, n+ 1 et n+ 2 ont
le même nombre de diviseurs. 	


Or, il n’existe pas quatre nombres naturels consécutifs dont chacun serait le produit de
nombres premiers distincts, un de ces nombres étant toujours divisible par 4.

C8. Il existe pour tout nombre naturel s un nombre naturelms tel que chacune des équations
ϕ(x) = ms et σ(x) = ms a plus de s solutions. (Ce problème a été posé par P. Erdős).

Démonstration de l’implication H → C8. Posons fi(x) = 2ix + 1 et gi(x) = 2ix − 1
(i = 0, 1, . . . , 2s + 1).

Comme f0(0)f1(0) · · · f2s+1(0)g0(0)g1(0) · · · g2s+1(0) = 1, les polynômes fi et gi
(i = 0, 1, . . . , 2s + 1) satisfont à la condition C et d’après H, il existe un nombre naturel
x tel que les nombres fi(x) et gi(x) pour i = 0, 1, . . . , 2s + 1 sont premiers. Posons

ai = fi(x)f2s−i+1(x), bi = gi(x)g2s−i+1(x), (i = 0, 1, . . . , 2s + 1)

fi(x) et f2s−i+1(x), respectivement gi(x) et g2s−i+1(x) (pour i = 0, 1, . . . , 2s + 1) étant
des nombres premiers distincts, on a(
fi(x), f2s−i+1(x)

) = 1 et
(
gi(x), g2s−i+1(x)

) = 1 pour i = 0, 1, . . . , 2s + 1,

donc, pour i = 0, 1, . . . , 2s + 1 :

ϕ(ai) = ϕ
(
fi(x)

)
ϕ
(
f2s−i+1(x)

) = 2ix22s−i+1x = 22s+1x2,

σ (bi) = σ
(
gi(x)

)
σ
(
g2s−i+1(x)

) = 2ix22s−i+1x = 22s+1x2.
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Les nombres ai (i = 0, 1, . . . , s) et de même les nombres bi (i = 0, 1, . . . , s) étant
distincts, l’implication H → C8 se trouve démontrée. 	


Il est à remarquer qu’une proposition analogue pour la fonction ϕ a été démontrée
sans avoir recours à l’hypothèse H par P. Erdős ([7], p. 213) et que, selon son avis, une
modification de sa démonstration permettrait de démontrer une proposition analogue pour
la fonction σ . Or, une démonstration tout à fait élémentaire pour la fonction ϕ a été donnée
par A. Schinzel [15].

Sans avoir recours à l’hypothèse H nous ne savons par démontrer que l’équationϕ(x) =
σ(y) a une infinité de solutions en nombres naturels x et y.

C9. Il existe une infinité de nombres premiers p pour lesquels le nombre 2p − 1 est
composé.

Démonstration de l’implication H → C9. Soit f1(x) = 4x−1, f2(x) = 8x−1. Il résulte
de H qu’il existe une infinité de nombres naturels x pour lesquels les nombres p = 4x− 1
et q = 8x − 1 sont premiers. Mais alors on a q − 1 = 2p et, comme on sait, q |2p − 1 et,
si x > 1, on a 2p − 1 > q et le nombre 2p − 1 est composé. Il résulte donc l’hypothèse H
qu’il existe une infinité de nombres de MersenneMp = 2p − 1 composés dont les indices
p sont des nombres premiers. 	


Un nombre naturel composé n est dit absolument pseudo-premier si pour tout entier a
on a n |an − a.

C10. Il existe une infinité de nombres absolument pseudo-premiers.

Démonstration de l’implication H → C10. Soit f1(x) = 6x + 1, f2(x) = 12x + 1,
f3(x) = 18x+1. Comme f1(0)f2(0)f3(0) = 1, il résulte de H qu’il existe une infinité de
nombres naturels x tels que chacun des nombres p = 6x + 1, q = 12x + 1, r = 18x + 1c

est premier et alors on le sait, le nombre pqr est absolument pseudo-premier (il est donc
aussi un nombre de Carmichael) (voir [4], p. 271). 	


C11 (Hypothèse de E. Artin). Tout nombre entier g �= −1 qui n’est pas un carré est racine
primitive pour une infinité de nombres premiers.

Démonstration de l’implication H → C11. Soit g = a2b, où a est un nombre naturel, b
un entier qui n’est divisible par aucun carré> 1. Comme g n’est pas un carré, on a b �= 1.
Soit b1 le plus grand diviseur impair de b.

Nous prouverons d’abord qu’il existe des binômes f1(x) et f2(x) satisfaisant à la
condition C et tels que

1◦ quel que soit le nombre naturel x, b est un non-résidu quadratique pour f1(x);
2◦ f1(x)− 1 = 2f2(x) si b �= 3 et f1(x)− 1 = 4f2(x) si b = 3.

Si b < 0, soit f1(x) = −4bx−1, f2(x) = −2bx−1. La condition 2◦ est évidemment
remplie et, comme f1(0)f2(0) = 1, les binômes f1(x) et f2(x) satisfont à la condition C.
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Si b est pair, on a f1(x) ≡ −1 (mod 8) et le symbole de Jacobi(
2

f1(x)

)
= 1

et (
b

f1(x)

)
=
( −b1

f1(x)

)
= −

(
b1

f1(x)

)
= −(−1)(b1−1)/2

(
f1(x)

b1

)
= −(−1)(b1−1)/2

(−1

b1

)
= −1,

ce qui prouve que b est un non-résidu quadratique pour f1(x), c’est-à-dire que la condi-
tion 1◦ est remplie. Si b est impair, on a b = −b1 et on parvient au même résultat.

Si b > 0 et b est pair, on a b = 2b1. Soit f1(x) = 4bx+ 2b− 1, f2(x) = 2bx+ b− 1,
P(x) = f1(x)f2(x). On a P(1)+ P(−1)− 2P(0) = 16b2, P(0) = (2b − 1)(b − 1) et,
b étant pair, on a

(
P(1)+P(−1)− 2P(0), P (0)

) = 1 et on en conclut que la condition C
est remplie. La condition 2◦ est évidemment aussi remplie. Comme b = 2b1 = 2(2k+ 1),
on trouve

f1(x) ≡ 3 (mod 8), d’où

(
2

f1(x)

)
= −1

et (
b

f1(x)

)
=
(

2

f1(x)

)(
b1

f1(x)

)
= −

(
b1

f1(x)

)
= −(−1)(b1−1)/2

(
f1(x)

b1

)
= −(−1)(b1−1)/2

(−1

b1

)
= −1,

ce qui prouve que b est un non-résidu quadratique pour f1(x) et la condition 1◦ est remplie.

Soit maintenant b un nombre impair> 3, donc b = q1q2 · · · qk , où qi sont des nombres
premiers (i = 1, 2, . . . , k), q1 < q2 < . . . < qk et qk > 3. Le nombre premier qk a donc
au moins deux non-résidus quadratiques et l’un d’eux est n0 �≡ −1 (mod qk). Le système
des deux congruences n ≡ −1 (mod 4q1q2 · · · qk−1) et n ≡ −n0 (mod qk) a évidemment
une solution n = n1. Soit

f1(x) = 4bx + n1, f2(x) = 2bx + 1
2 (n1 − 1), P (x) = f1(x)f2(x).

On trouve sans peine

P(0) = 1
2 n1(n1 − 1), P (1)+ P(−1)− 2P(0) = 16b2.

Or, comme n1 ≡ −1 (mod 4q1q2 · · · qk−1), d’où 1
2 (n1−1) ≡ −1 (mod 2q1q2 · · · qk−1), et

n1 �≡ 0 (mod qk) (puisquen1 ≡ −n0 (mod qk) etn0 est un non-résidu quadratique pour qk)
et 1

2 (n1 − 1) �≡ 0 (mod qk) (puisque n1 − 1 ≡ −n0 − 1 �≡ 0 (mod qk)), on a (4b, n1) = 1
et
(
2b, 1

2 (n1 − 1)
) = 1, d’où

(
16b2, 1

2n1(n1 − 1)
) = 1, donc

(
P(0), P (1) + P(−1) −

2P(0)
) = 1, d’où il résulte que les binômes f1(x) et f2(x) satisfont à la condition C.

Or, la condition 2◦ est évidemment remplie. Or, on a f1(x) ≡ −1 (mod 4q1q2 · · · qk−1) et
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f1(x) ≡ n1 (mod qk), d’où(
b

f1(x)

)
= (−1)(b−1)/2

(
f1(x)

b

)
=
(−f1(x)

b

)
=
( −n1

q1q2 · · · qk−1

)(−n1

qk

)
=
(

1

q1q2 · · · qk−1

)(
n0

qk

)
= −1.

Le nombre b est donc un non-résidu quadratique pour f (x) et la condition 1◦ est remplie.
Dans le cas b = 3 soit f1(x) = 12x + 5, f2(x) = 3x + 1. Ici on vérifie sans peine que

les conditions C, 1◦ et 2◦ sont remplies.
Il résulte de l’hypothèse H qu’il existe une infinité de nombres naturels x tels que les

nombres f1(x) et f2(x) sont tous les deux premiers. Soit x un de ces nombres, tel que
f1(x) > g

4. Si g appartenait modulo f1(x) à un exposant < f1(x)− 1, on aurait, d’après
2◦, f1(x) |g(f1(x)−1)/2 − 1 ou bien f1(x) |g4 − 1. Or, vu le théorème d’Euler relatif au
symbole de Legendre, l’égalité g = a2b et la condition 1◦, on a

g(f1(x)−1)/2 ≡
(

g

f1(x)

)
≡
(

b

f1(x)

)
≡ −1 (mod f1(x)),

ce qui est incompatible avec f1(x) |g(f1(x)−1)/2−1 (puisque f1(x) est impair). On a donc
f1(x) |g4−1, ce qui est impossible vu que f1(x) > g

4 > 1. g est donc une racine primitive
pour le module f1(x). L’hypothèse de Artin est donc une conséquence de l’hypothèse H.	


Nous étudierons maintenant la fonction

�(x) = lim
y→∞[π(y + x)− π(y)].

(Cf. Hardy et Littlewood [10], p. 52–68).
On a �(1) = �(2) = 1, mais nous ne connaissons pas des valeurs �(x) pour aucun

nombre naturel x > 2.
Il sera utile d’introduire la fonction auxiliaire

�(x) = max
0�y<x!

[
ϕ(x!, y + x)− ϕ(x!, y)]

où ϕ(m, n) désigne le nombre de nombres naturels ne dépassant pas n et premiers avecm.
De la définition de la fonction �(x) résultent les lemmes suivantes :

Lemme 1.

�(x) = max
y,z=1,2,...

{
min
[
z, ϕ(z!, y + x)− ϕ(z!, y)]}

� max
y=1,2,...

{
min
[
y, π(y + x)− π(y)]} � �(x).

Lemme 2. �(x + 1) � �(x).

Lemme 3. �(x)+ �(y) � �(x + y).
Lemme 4. �(x) � ϕ(x).

Nous démontrerons maintenant :
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Théorème 1. �(1) = �(2) = 1, �(3) = �(4) = �(5) = �(6) = 2, �(7) = �(8) = 3,
�(9) = . . . = �(12) = 4, �(13) = . . . = �(16) = 5, �(17) = . . . = �(20) = 6,
�(21) = . . . = �(26) = 7, �(27) = . . . = �(30) = 8, �(31) = �(32) = 9, �(33) =
. . . = �(36) = 10.

Démonstration. D’après de lemme 4 on trouve �(2) � 1, �(6) � 2, �(12) � 4, �(30) � 8.
En vertu du lemme 3 on a �(8) � �(6) + �(2) � 3, �(32) � �(30) + �(2) � 9,
�(36) � �(30) + �(6) � 10. Enfin il est facile de démontrer que parmi 16 nombres
naturels consécutifs quelconques il y a au plus 5 nombres qui ne sont divisibles par aucun
des nombres 2, 3 et 5, parmi 20 nombres naturels consécutifs quelconques il y a au plus 6 tels
nombres et parmi 26 nombres naturels consécutifs quelconques il y a au plus 7 nombres
qui ne sont divisibles par aucun des nombres 2, 3, 5 et 7. Donc �(16) � 5, �(20) � 6,
�(26) � 7. D’autre part on aπ(1+1)−π(1) = 1,π(3+2)−π(2) = 2,π(7+4)−π(4) = 3,
π(9+4)−π(4) = 4,π(13+6)−π(6) = 5,π(17+6)−π(6) = 6,π(21+10)−π(10) = 7,
π(27+ 10)− π(10) = 8, π(31+ 10)− π(10) = 9, π(33+ 10)− π(10) = 10. Donc, en
vertu du lemme 1 on a �(1) � 1, �(3) � 2, �(7) � 3, �(9) � 4, �(13) � 5, �(17) � 6,
�(21) � 7, �(27) � 8, �(31) � 9, �(33) � 10. La fonction �(x) étant monotone
(lemme 2), notre théorème résulte sans peine des inégalités obtenues. 	


Appelons k-jumeaux (en allemand k-linge) k nombres premiers k < q1 < q2 < . . .

. . . < qk tels que �(qk − q1) = k − 1. Ainsi deux nombres premiers q1 > 2 et q2 seront
2-jumeaux si �(q2 − q1) = 1, c’est-à-dire q2 − q1 = 2. Les nombres premiers q1, q2, q3
tel que 3 < q1 < q2 < q3 et �(q3 − q1) = 2 seront appelés 3-jumeaux etc.

Les données numériques concernant les nombres k-jumeaux ont été données
pour k = 2, qk � 106 par G. H. Hardy et J. E. Littlewood ([10], p. 44),
pour k = 3, qk � 106 par G. H. Hardy et J. E. Littlewood ([10], p. 63),
pour k = 4, qk � 106 par G. H. Hardy et J. E. Littlewood ([10], p. 63),
pour k = 4, 106 < qk � 2 · 106 par Ch. Sexton [17],
pour k = 4, 2 · 106 < qk � 3 · 106 par W. A. Golubew [8],
pour k = 4, 3 · 106 < qk � 5 · 106 par W. A. Golubew [9],
pour k = 5, qk � 2 · 106 par W. A. Golubew [8],
pour k = 5, 2 · 106 < qk � 5 · 106 par W. A. Golubew [9],
pour k = 6, qk � 14 · 106 par W. A. Golubew [9].

Le problème si pour tout k naturel il existe une infinité de nombres k-jumeaux équivaut,
comme on le démontre sans peine, au problème si l’on a pour tout x, �(x) = �(x) : l’hypo-
thèse H résout donc ce problème positivement (voir plus loin C12).

Théorème 2. �(57) = �(58) = �(59) = �(60) = 15.

Démonstration. L.Aubry a démontré (voir L. E. Dickson [6], p. 355) que parmi 30 nombres
impairs consécutifs il y a au plus 15 nombres qui ne sont divisibles par aucun des nombres
3, 5 et 7. Il en résulte que �(60) � 15. D’autre part on a π(57+ 16)− π(16) = 15, donc
�(57) � 15. Vu le lemme 2 on a donc �(57) = . . . = �(60) = 15. 	


Théorème 3. On a �(95) = . . . = �(100) = 23.
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Démonstration. A. Schinzel a démontré (dans un article qui paraître ailleurs(2)) que parmi
100 nombres naturels consécutifs quelconques il y a au plus 23 nombres qui ne sont
divisibles par aucun nombre premier � 17, d’où résulte tout de suite que �(100) � 23.
D’autre part on a ϕ(23!, 4083966+95)−ϕ(23!, 4083966) = 23, donc d’après le lemme 1 :c

�(95) � 23.
La fonction �(x) étant monotone on en obtient le théorème 3. 	


En vertu du lemme 1, le théorème 3 donne �(100) � 23, ce qui est incompatible avec
l’inégalité �(97) � 24 qui a été déduite à la p. 67 du travail cité de Hardy et Littlewood [10]
de leur hypothèse X. Or, cette déduction était fausse, car ces auteurs affirment qu’aucun
des nombres premiers � 17 et � 113 ne donne le reste 8 mod 17, ce qui n’est pas vrai,
puisque 59 ≡ 8 (mod 17).

Théorème 4. On a �(x) � π(x) pour 1 < x � 132.

Démonstration. Vu le théorème 1 nous avons �(2) = 1 = π(2), �(6) = 2 = π(3),
�(8) = 3 < π(7), �(12) = 4 = π(9), �(16) = 5 < π(13), �(20) = 6 < π(17),
�(26) = 7 < π(21), �(30) = 8 < π(27), �(32) = 9 < π(31), �(36) = 10 < π(33), et,
les fonctions �(x) et π(x) étant monotones, cela prouve le théorème 4 pour 1 < x � 36.

Or, en vertu du lemme 3 on a

�(38) � �(30)+ �(8) = 8+ 3 = 11 < π(37),

�(42) � �(30)+ �(12) = 8+ 4 = 12 = π(39),

�(46) � �(30)+ �(16) = 8+ 5 = 13 < π(43),

�(50) � �(30)+ �(20) = 8+ 6 = 14 < π(47).

D’après le théorème 2 on a �(60) = 15 = π(51). En vertu du lemme 3 on trouve

�(62) � �(60)+ �(2) = 15+ 1 = 16 < π(61),

�(66) � �(60)+ �(6) = 15+ 2 = 17 < π(63),

�(68) � �(60)+ �(8) = 15+ 3 = 18 < π(67),

�(72) � �(60)+ �(12) = 15+ 4 = 19 = π(69),

�(76) � �(60)+ �(16) = 15+ 5 = 20 < π(73),

�(80) � �(60)+ �(20) = 15+ 6 = 21 = π(77),

�(86) � �(60)+ �(26) = 15+ 7 = 22 = π(81).

En vertu du théorème 3 on a �(100) � 23 = π(87). En vertu du lemme 3 on trouve

�(102) � �(100)+ �(2) = 23+ 1 = 24 < π(101),

�(106) � �(100)+ �(6) = 23+ 2 = 25 < π(103),

�(108) � �(100)+ �(8) = 23+ 3 = 26 < π(107),

�(112) � �(100)+ �(12) = 23+ 4 = 27 < π(109),

�(116) � �(100)+ �(16) = 23+ 5 = 28 < π(113),

(2) Voir J2, p. 1139.
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�(120) � �(100)+ �(20) = 23+ 6 = 29 < π(117),

�(126) � �(100)+ �(26) = 23+ 7 = 30 < π(121),

�(130) � �(100)+ �(30) = 23+ 8 = 31 < π(127),

�(132) � �(100)+ �(32) = 23+ 9 = 32 = π(131).

Les fonctions �(x) et π(x) étant monotones, nous en concluons que le théorème 4 est vrai
pour 1 < x � 132. 	


Corollaire 1. �(x) � π(x) pour 1 < x � 132.

La démonstration résulte du lemme 1 et du théorème 4.
Hardy et Littlewood ont énoncé ([10], p. 54) l’hypothèse que �(x) � π(x) quel que

soit le nombre x > 1.

Corollaire 2. Si x > 1, y > 1 et si l’un au moins des nombres x et y est � 132, on a

π(x + y) � π(x)+ π(y).
Démonstration. Sans nuire à la généralité nous pouvons supposer que x < y, 1 < x � 132.
En vertu du théorème 4 on a donc �(x) � π(x). Or, en vertu du lemme 1 on a, pour tout
nombre y,

min
(
y, π(x + y)− π(y)) � π(x).

Comme y � x � π(x+y)−π(y), on a π(x+y)−π(y) � π(x), c’est-à-dire π(x+y) �
π(x)+ π(y). 	


Il est à remarquer que E. Landau [12] a démontré que pour x suffisament grands on a
π(2x) < 2π(x).

Nous appliquerons maintenant l’hypothèse H à l’étude de la fonction �(x).

C12. �(x) = �(x) pour x naturels.

Démonstration de H → C12. D’après le lemme 1 il suffit de prouver que �(x) � �(x).
Dans ce but supposons que pour x naturel donné s = �(x). D’après la définition de �(x)
il existe un entier y tel que 0 � y < x! et que s = ϕ(x!, y + x)− ϕ(x!, y). Évidemment
on a s � x et il existe s entiers croissants a1, a2, . . . , as , où 0 � a1 < as � x tels que
(y + ai, x!) = 1 pour i = 1, 2, . . . , s.

Soit fi(ξ) = ξ + ai pour i = 1, 2, . . . , s,

P(ξ) =
s∏
i=1

fi(ξ).

Si p est un nombre premier tel que p |P(ξ) pour ξ entiers, on a, d’après le théorème de
Lagrange, p � s � x, donc p |x! et, d’après (y + ai, x!) = 1, (y + ai, p) = 1 pour

i = 1, 2, . . . , s, et comme P(y) =
s∏
i=1
(y + ai), cela donne

(
P(y), p

) = 1, contrairement

à p |P(y).
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La condition C est donc remplie et d’après H il existe une infinité de nombres naturels ξ
tels que le nombres ξ +ai (i = 1, 2, . . . , s) sont tous premiers. Comme 0 � a1 < as � x,
il en résulte que π(ξ + x)− π(ξ) � s = �(x) pour une infinité de nombres naturels ξ et,
vu la définition de la fonction �(x) cela donne �(x) � �(x). L’implication H → C12 se
trouve ainsi démontrée. 	


C12.1. �(1) = �(2) = 1, �(3) = . . . = �(6) = 2, �(7) = �(8) = 3, �(9) = . . . =
�(12) = 4, �(13) = . . . = �(16) = 5, �(17) = . . . = �(20) = 6, �(21) = . . . =
�(26) = 7, �(27) = . . . = �(30) = 8, �(31) = �(32) = 9, �(33) = . . . = �(36) = 10,
�(57) = . . . = �(60) = 15, �(95) = . . . = �(100) = 23.

C12.1 est une conséquence immédiate de C12 et des théorèmes 1, 2 et 3.

C12.2. L’hypothèse de Hardy et Littlewood suivant laquelle �(x) � π(x) pour x naturels
> 1 équivaut à l’inégalité

(∗) π(x + y) � π(x)+ π(y) pour x > 1, y > 1.

Démonstration de C12 → C12.2. L’inégalité (∗) entraîne tout de suite l’inégalité �(x) �
π(x) (sans avoir recours à l’hypothèse H).

Supposons maintenant que �(x) � π(x) pour x naturels > 1 et soient x et y deux
nombres naturels> 1. Sans diminuer la généralité du raisonnement nous pouvons supposer
que 1 < x � y. Comme �(x) � π(x), on a, d’après C12, �(x) � π(x), donc d’après le
lemme 1, pour tout y, min

(
y, π(x+y)−π(x)) � π(x). Or, y � x � π(x+ y)− y, donc

π(x + y)− π(y) � π(x), c’est-à-dire π(x + y) � π(x)+ π(y). 	


Il est intéressant qu’on ne puisse démontrer par le calcul ni la fausseté de l’hypothèse H
ni celle de l’hypothèse de Hardy–Littlewood sur la fonction �(x). (Quant à cette dernière,
si l’inégalité �(x) � 2 avait lieu pour un x quelconque, on aurait lim

k→∞
(pk+1−pk) <∞).

Il est cependant possible qu’on puisse trouver des nombres x et y plus grands que 1 pour
lesquels π(x + y) > π(x)+ π(y), ce qui prouverait que l’hypothèse H et l’hypothèse de
Hardy–Littlewood sur la fonction �(x) ne peuvent pas être simultanément vraies.

Hypothèse H1 de W. Sierpiński. Si pour un nombre naturel n > 1 les nombres 1, 2,
3, . . . , n2 sont rangés successivement en n lignes, n nombres dans chaque ligne, alors
chaque ligne contient au moins un nombre premier.

La proposition que la deuxième ligne contient au moins un nombre premier équivaut
évidemment au théorème de Tchebycheff que pour n naturels > 1 il existe entre n et 2n
au moins un nombre premier.

La proposition que pour n � 9 chacune des 9 premières lignes contient au moins un
nombre premier peut sans peine être déduite du théorème de R. Breusch [1] d’après lequel
pour x � 48 il y a entre x et 9

8x au moins un nombre premier. Ensuite il est facile de
déduire du théorème d’Hadamard–de la Vallée Poussin sur les nombres premiers que pour
tout k et n � n0(k) chacune des k premières lignes contient au moins un nombre premier.
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On a ici lim
k→∞

n0(k) = +∞ et le problème se pose si le plus grand nombre n pour lequel

il n’existe aucun nombre premier entre (k − 1)n et kn tend vers +∞ avec k.
Par la méthode de Brun on pourrait démontrer (voir G. Ricci [13]), que chacune des

lignes de notre carré contient un nombre dont le nombre des diviseurs premiers est limité
par une constante universelle.

Consequence. Entre deux carrés consécutifs il existe au moins deux nombres premiers
distincts.

En effet, pour démontrer cette implication, il suffit de remarquer que si n est un nombre
naturel> 1 les nombres naturels consécutifs (n−1)2, (n−1)2+1, . . . , n2 forment les deux
dernières lignes dans notre carré composé des nombres 1, 2, . . . , n2. En observant que dans
tout intervalle fermé dont les extrémités sont les cubes de nombres naturels consécutifs,
il y a au moins deux carrés distincts, on en déduit tout de suite qu’entre deux cubes de
nombres naturels consécutifs il y a au moins deux nombres premiers. Cette proposition
n’est pas encore démontrée sans avoir recours à l’hypothèse H1, mais on a démontré que
pour n naturels suffisamment grands il existe entre n3 et (n + 1)3 au moins un nombre
premier. (On ne sait pourtant pas si cela est vrai pour tout n naturel).

Remarquons que l’hypothèse H1 pour les nombre n premiers résulte tout de suite de
l’hypothèse suivante énoncée en 1932 par R. Haussner : entre deux multiples consécutifs
d’un nombre premierpi qui sont tous les deux inférieurs àp2

i+1 il existe au moins un nombre
premier ([11], p. 192). Pour n = 7, par exemple, il résulte de l’hypothèse de R. Haussner
que non seulement chacune des 7 lignes de notre carré des nombres 1, 2, . . . , 49, mais
aussi les 10 lignes suivantes (dont la première contient sept nombres 50, 51, . . . , 56 et la
dernière les nombres 113, 114, . . . , 119) contient chacune au moins un nombre premier.
Il est intéressant de remarquer ici que la ligne suivante la 18-ème, formée des nombres
120, 121, . . . , 126, ne contient aucun nombre premier.

Hypothèse H2 deA. Schinzel. Si pour un nombre natureln > 1 les nombres 1, 2, 3, . . . , n2

sont rangés en n lignes, n nombres dans chaque ligne, alors, si (k, n) = 1, la k-ième
collonne contient au moins un nombre premier.

Nous ne savons pas quel sera le sort de nos hypothèses, cependant nous pensons que
même si elles seront mises en défaut, cela ne sera pas sans profit pour la théorie des
nombres.
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Remarks on the paper
“Sur certaines hypothèses

concernant les nombres premiers”

In the paper [14] mentioned in the title some historical inaccuracies are committed
which ought to be corrected, besides some new results strictly connected with the above
paper arise, which seem to the writer worthy of mention. This is the aim of the present
paper.

To begin with, as kindly pointed out by Professor P. T. Bateman, Hypothesis H coincides
for the case of linear polynomials fi with a conjecture of L. E. Dickson announced in [7].
Therefore, it is easy to see that C1, C2, C7–C12 are consequences of Dickson’s conjecture.

On the other hand, as Dickson quoted in [8],Vol. I, p. 333,V. Bouniakowsky conjectured
([1]) that if d is the greatest fixed divisor of a given irreducible polynomial f (x) (with
integral coefficients, the highest coefficient > 0) then the polynomial f (x)/d represents
infinitely many primes. This conjecture of Bouniakowsky implies Hypothesis H for the
case s = 1 and therefore C3 and the first part of C6.

Now we shall deduce Bouniakowsky’s conjecture from Hypothesis H. For further use
we shall deduce the following stronger proposition.

C13. Let F1(x), F2(x), . . . , Fs(x),G1(x),G2(x), . . . ,Gt (x) be irreducible integer-
valued polynomials of positive degree with the highest coefficient > 0. If there does
not exist any integer > 1 dividing the product F1(x)F2(x) · · ·Fs(x) for every x and
if Gj(x) �≡ Fi(x) for all i � s, j � t , then there exist infinitely many positive in-
tegers x such that the numbers F1(x), F2(x), . . . , Fs(x) are primes and the numbers
G1(x),G2(x), . . . ,Gt (x) are composite.

Proof of the implication H → C13. Let Fi = Φi/di ,Gj = Γj/ej , where Φi, Γi are poly-
nomials with integral coefficients, di, ej are positive integers. Let further d = d1d2 · · · ds ,
e = e1e2 · · · et , F = F1F2 · · ·Fs , Φ = Φ1Φ2 · · ·Φs , d = pα1

1 p
α2
2 · · ·pαkk .

Since the polynomial F has no fixed divisor > 1, there exist integers xi such that

F(xi) �≡ 0 (mod pi).

We can assume that the polynomials Fi,Gj (i � s, j � t) are algebraically coprime,
because otherwise eitherGj = Fi orGj(x)would be composite for all sufficiently large x.
We have then (F,Gj ) = 1 (j � t) and there exist polynomials aj (x), bj (x) with integral
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coefficients and an integer cj �= 0 such that

(1) aj (x)F (x)− bj (x)Gj (x) = cj .
Let c = c1c2 · · · ct . Since every non-constant polynomial possesses infinitely many primec

divisors, there exist primes qj /| cde such that qj |G(yj ) for some integer yj . Let q =
q1q2 · · · qt .

In virtue of the Chinese Remainder Theorem, there exist integers z satisfying the fol-
lowing system of congruences

(2)
z ≡ xi (mod pαi+1

i ), i � s,
z ≡ yj (mod qj ), j � t,c

let z0 be any of them. Let us consider polynomials

fi(x) = Fi(dqx + z0) = Φi(dqx + z0)

di
.

Since di |dq and Φi(z0)/di = Fi(z0) is an integer, polynomials fi have integral coeffi-
cients and the highest coefficient > 0. Besides, they are irreducible. We shall show that
f (x) = f1(x) · · · fs(x) has no fixed divisor > 1.

Suppose that prime p is such a divisor. We have by (2), since pαi+1
i /| d,

f (0) = F(z0) ≡ F(xi) �≡ 0 (mod pi), i � s,
and since qj /| e,

Gj(z0) ≡ Gj(yj ) ≡ 0 (mod qj ).

It follows hence by (1), because qj /| c, that

f (0) = F(z0) �≡ 0 (mod qj ).

Therefore, we must have (p, dq) = 1.
On the other hand, by the assumption about F , there exists an integer zp such that

F(zp) �≡ 0 (mod p).

Let x0 be a root of the congruence

dqx + z0 ≡ zp (mod p).

Since (d, p) = 1, we have

f (x0) = F(dqx0 + z0) = Φ(dqx0 + z0)

d
≡ Φ(zp)

d
= F(zp) �≡ 0 (mod p).

Our supposition about p is therefore false and the polynomials fi satisfy the condi-
tions of Hypothesis H. Thus, there exist infinitely many integers x such that numbers
fi(x) = Fi(dqx + z0) are primes. Meanwhile for every xc

Gj(dqx + z0) = Γj (dqx + z0)

ej
≡ Γj (z0)

ej
= Gj(z0) ≡ 0 (mod qj )

then for sufficiently large x numbers Gj(dqx + z0) are composite. 	




1136 J. Prime numbers

Now we shall deduce

C14. For every k > 1 there exist infinitely many numbers mk such that the equation

ϕ(y) = mk
has exactly k solutions.

Proof of the implication H → C14. Consider first k even, k = 2l, and put in H

fi(x) = 2x2i−1 + 1 (i = 1, 2, . . . , 2l), f2l+1(x) = x.
The polynomials fi(x) are irreducible, their highest coefficient is > 0 and since
f1(−1)f2(−1) · · · f2l+1(−1) = −1, they satisfy the conditions of Hypothesis H. There-
fore, there exist infinitely many integers x such that all fi(x) are primes. Consider for such
x > 5 the equation

(3) ϕ(y) = mk = 4x4l .

Since x is odd,mk �≡ 0 (mod 8), y may have only one of the following forms: pα , 2pα ,
4pα ,pαqβ , 2pαqβ , wherep and q are primes> 2. Ifα > 1 we should havep(p−1) |4x4l ,
whence as x is prime > 5, p = x and x − 1 |4x4l , which is impossible. Therefore, there
is α = 1 and similarly, β = 1.
y = p or 2p is impossible since then

p = ϕ(y)+ 1 = 4x4l + 1 ≡ 0 (mod 5).

y = 4p is also impossible, because then

p = 1
2ϕ(y)+ 1 = 2x4l + 1 ≡ 0 (mod 3).

In the case y = pq or 2pq, we get

(p − 1)(q − 1) = 4x4l ,

whence

p = 2xn + 1, q = 2x4l−n + 1.

Since for n even 2xn + 1 ≡ 0 (mod 3), there remains the only possibility

(4) y = (2x2i−1 + 1)(2x4l−2i+1 + 1) = fi(x)f2l−i+1(x)

or

y = 2fi(x)f2l−i+1(x) (i = 1, 2, . . . , l).

Since the numbers fi(x) are primes, the 2l values y given by formulae (4) satisfy (3),
which completes the proof for even k.

Consider now odd k, k = 2l + 3 (l = 0, 1, . . . ) and put in C13

Fi(x) = 2x6i−3 + 1, Fl+i (x) = 6x6i−1 + 1 (i = 1, 2, . . . , l),

F2l+1(x) = x, F2l+2(x) = 6x6l+2 + 1,

Gj (x) = 2x6j−5 + 1, Gl+j (x) = 2x6j−1 (j = 1, 2, . . . , l),

G2l+1(x) = 2x6l+1 + 1, G2l+2(x) = 12x6l+2 + 1.
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The polynomials Fi are irreducible and satisfy other conditions of C13, because in view of

F(−1) = −5l · 7, F (1) = 3l · 7l+1, F (2) �≡ 0 (mod 7),

F (x) has no fixed divisor> 1. SinceGj �= Fi (i, j � 2l+ 2), there exist by C13 infinitely
many integers x such that numbers Fi(x) are primes and numbers Gj(x) are composite
(i, j � 2l+2). Observe that the numbers 2xn+1 are composite for all positive n � 6l+2,
n �= 6i − 3, because for n even 2xn + 1 ≡ 0 (mod 3). Consider for x of the above kind
the equation

(5) ϕ(y) = mk = 12x6l+2.

By much the same arguments as in case of (3), we infer that y may have only one of thec

following forms: p, 2p, 4p, pq, 2pq, where p, q are primes > 2 (the possibility y = 9q
or 18q fails, because we should have then q = 1

6ϕ(y)+ 1 = 2x6l+2 + 1).
It cannot be y = p or 2p, because then p = ϕ(y) + 1 = 12x6l+2 + 1, which is

composite.
The case y = 4p gives

(6) p = 1
2ϕ(y)+ 1 = 6x6l+2 + 1 = F2l+2(x).

In the case y = pq or 2pq, we get

(p − 1)(q − 1) = 12x6l+2,

whence p − 1 = 2xn, q − 1 = 6x6l+2−n (0 � n � 6l + 2) or p, q change places.
The numbers 2xn + 1 being composite (0 < n � 6l + 2, n �= 6i − 3), the only two

possibilities remain

1◦ y = 3(6x6l+2 + 1) = 3F2l+2(x) or y = 6F2l+2(x);
2◦ y = (2x6i−3 + 1)(6x6(l−i)+5 + 1) = Fi(x)F2l−i+1(x)

or y = 2Fi(x)F2l−i+1(x) (i = 1, 2, . . . , l).

The numbers Fi(x) being primes, the 2l + 2 values y given above satisfy (5), which
together with (6) gives exactly 2l + 3 solutions of (5). 	


C15. For every k � 1, there exist infinitely many numbers nk such that the equation

σ(y) = nk
has exactly k solutions.

Proof of the implication H → C15. Put in H,

fi(x) = 2(2x + 1)2i − 1 (i = 1, 2, . . . , 2k), f2k+1(x) = x, f2k+2(x) = 2x + 1.c

The polynomials fi(x) are irreducible, their highest coefficient is > 0 and since
f1(−1)f2(−1) · · · f2k+2(−1) = 1, they satisfy the conditions of Hypothesis H. There-
fore, there exist infinitely many integers x such that all fi(x) are primes and since
(2x − 1)/(2x + 1)4k+2 tends to infinity, infinitely many of them satisfy the inequalityc

2x − 1 > 4(2x + 1)4k+2.
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Consider for any such x the equation

σ(y) = nk = 4(2x + 1)4k+2.

Suppose that pα |y, pα+1 /| y, where p is prime, α > 1. It follows from the above equation

that
pα+1 − 1

p − 1

∣∣∣ 4(2x + 1)4k+2.

In virtue of the theorem of Zsigmondy (cf. [8], Vol. I, p. 195), (pα+1− 1)/(p− 1) has
at least one prime factor of the form (α+ 1)l+ 1. Since α+ 1 > 2 and the numbers x and
2x + 1 are primes, we clearly must have

(α + 1)l + 1 = 2x + 1, α + 1 = x,
hence

2x − 1 � px − 1

p − 1
� 4(2x + 1)4k+2,

which contradicts the assumption about x. The obtained contradiction proves that y is
square-free, and since nk �≡ 0 (mod 3), nk �≡ 0 (mod 8), y may have only one of the forms
p, pq where p and q are primes, 2 < p < q.
y = p is impossible since then

p = σ(y)− 1 = 4(2x + 1)4k+2 − 1 ≡ 0 (mod 3).

In the case y = pq we get

(p + 1)(q + 1) = 4(2x + 1)4k+2,

whence

p = 2(2x + 1)n − 1, q = 2(2x + 1)4k+2−n − 1, 0 < n < 2k + 1.c

Since x ≡ −1 (mod 3), 2(2x + 1)n − 1 ≡ 0 (mod 3) for all odd n, there remains the
only possibility

y = (2(2x + 1)2i − 1
)(

2(2x + 1)4k+2−2i − 1
) = fi(x)f2k+1−i (x) (i = 1, 2, . . . , k).

Since the numbers fi(x) are primes, the k values of y given above satisfy the equation
σ(y) = nk , which completes the proof. 	


P. Erdős proved without any conjecture that if there exists onemk such that the equation
ϕ(y) = mk has exactly k solutions, then there exist infinitely many such mk ([9], Theo-
rem 4), and the analogous theorem for the equation σ(y) = nk (l.c., p. 12). For k = 1 the
well known conjecture of Carmichael states that such a number mk does not exist and for
k > 1 W. Sierpiński conjectured thatmk and nk exist (cf. [9], p. 12). We have just deduced
this conjecture from Hypothesis H; by more complicated arguments we could also deduce
that for every pair 〈k, l〉, where k �= 1, l � 0, there exist infinitely many numbers m such
that the equation ϕ(y) = m has exactly k solutions and the equation σ(y) = m has exactly
l solutions.
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On page 191(1) paper [14] contains two historical mistakes. The theorem about the dif-
ference of arithmetical progression formed by primes, ascribed to V. Thébault, was proved
earlier by M. Cantor ([2]). On the other hand, the disproving of the M. Cantor conjecture
about progressions formed by consecutive primes, ascribed to the writer, was made much
earlier by F. H. Loud (cf. [4]).

Part of the paper [14] concerning functions �, � was covered to some extent by the
results of H. Smith’s paper [16]. It is easy to notice that the function Δn considered by
Smith is connected with function � by the condition �(Δn) = n − 1 < �(1 + Δn) and
“k-tuples” considered by him just correspond “nombres k-jumeaux” of [14].

Theorem 1 of [14] follows from the table given for Δn by Smith, his results further
imply the following equalities

(7)

�(37) = . . . = �(42) = 11, �(43) = . . . = �(48) = 12,

�(49) = �(50) = 13, �(51) = . . . = �(56) = 14,

�(57) = . . . = �(60) = 15, �(61) = . . . = �(66) = 16,

�(67) = . . . = �(70) = 17, �(71) = . . . = �(76) = 18,

�(77) = . . . = �(80) = 19, �(81) = . . . = �(84) = 20,

�(85) = . . . = �(90) = 21, �(91) = . . . = �(94) = 22,

�(95) = . . . = �(100) = 23, �(101) = . . . = �(110) = 24,

�(111) = . . . = �(114) = 25, �(115) = �(116) = 26,

thus, in particular Theorems 2 and 3 of [14].
It dispenses the writer of the duty of publishing mentioned in [14] the laborious proof

that �(100) � 23.
From formulae (7) it immediately follows that �(x) � π(x) for 36 < x � 116. Paper

[14] contained a proof that �(x) � π(x) for 1 < x � 132. Owing to Smith’s results, one
can prove the stronger

Theorem. �(x) � π(x) for 1 < x � 146.

Proof. It is sufficient to prove the above inequality for 132 < x � 146. Profiting by
Lemma 3 of [14] we get

�(140) � �(114)+ �(26) = 25+ 7 = 32 = π(133),

�(146) � �(114)+ �(32) = 25+ 9 = 34 = π(141),

which in view of monotonicity of functions � and π gives the desired result. 	


Analogously, as in [14], we obtain

Corollary. If x > 1, y > 1 and if at least one of the numbers x and y is � 146, then

(8) π(x + y) � π(x)+ π(y).

(1) Page 1118 in this collection.
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As to inequality (8), it was verified by E. Łukasiak for 1 < x, y < 1223 = p201.
H. Smith gave also in [16], numerical data concerning k-tuples for 7 � k � 15,

qk � 137 · 106. One may remark that there was omitted the 15-tuple formed by primes
17, . . . , 73.

As to Hypothesis H1 of [14], we shall give the following remarks.
L. Skula noticed (written communication) that if H1 is true, then also the intervals

[n2 + 1, n2 + n] and [n2 + n+ 1, n2 + 2n] contain primes.
On the other hand Hypothesis H1 is a simple consequence of the conjectures that for

all x � 117 there is a prime between x and x + √x or that for all x � 8 there is a
prime between x and x + log2 x (cf. H. Cramér [6]). Since these conjectures hold for
x � 20.3 · 106, as can be verified owing to A. E. Western ([17]) and D. H. Lehmer ([11])
tables, Hypothesis H1 holds for all n � 4500 < 103

√
20.3.

As to Hypothesis H2, it was verified by A. Gorzelewski for n � 100.
Finally, it seems interesting to review 17 conjectures concerning primes, written out

by R. D. Carmichael from Dickson’s book [8]: 13 from Volume I ([3], p. 401) and 4 from
Volume II ([5], p. 76). One of these conjectures ([3], 14) is already proved ([13], [15]),
3 are consequences of Hypothesis H ([3], 6, 8, 11), 2 are consequences of Hypothesis H1
([3], 12, 13), 4 are various modifications of Goldbach conjecture ([3], 9; [5], 1, 2, 3), 7 are
false. Among these latter: 2 are mentioned in [14], Schaffler’s and Cantor’s conjectures
([3], 7, 10), 3 concerning Mersenne primes Mn ([3], 1, 2, 3) are wrong respectively for
n = 13, 263, 607, one concerning primitive roots ([3], 15) was recently disproved by
A. M ↪akowski ([12]) and one ([5], 4) we shall disprove now.

It states that every prime 18n ± 1, or else its triple, is expressible in the form
x3 − 3xy2 ± y3. If it is true, then for all z, the form x3 − 3xy2 ± y3 represents at least
π ′( 1

3z) numbers � z (π ′(x) is the number of primes 18n±1 � x). But this is incompatiblec

with Siegel’s theorem (cf. [10], p. 139).
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A remark on a paper of Bateman and Horn

Let f1, f2, . . . , fk be distinct irreducible polynomials with integral coefficients and
the highest coefficient positive, such that f (x) = f1(x)f2(x) · · · fk(x) has no fixed divi-
sor > 1. Denote by P(N) the number of positive integers x � N such that all numbers
f1(x), f2(x), . . . , fk(x) are primes.

P. T. Bateman and R. A. Horn [1] recently gave the heuristic asymptotic formula for
P(N):

(1) P(N) ∼ N

logk N
(h1h2 · · ·hk)−1

∏
p

(
1− ω(p)

p

)(
1− 1

p

)−k
,

wherehi is the degree offi andω(p) is the number of solutions of the congruencef (x) ≡ 0
(mod p).

Formula (1) contains as particular cases six conjectures from a well known paper of
Hardy and Littlewood [3] called by the latter Conjectures B, D, E, F, K, P, as well as
their conditional theorem X1. This is evident except for Conjecture D, which concerns the
number of solutions of the equation

(2) ap − bp′ = k (a > 0, b > 0, (a, b) = 1)

in primes p, p′ with p � n. In order to apply formula (1) here one should put f1(x) =
u0 + bx, f2(x) = v0 + ax, N = n− u0

b
, where u0, v0 are fixed integers such that

au0 − bv0 = k.
Conjectures denoted by Hardy and Littlewood by J, M, N are of distinctly different

character; besides the first has been proved by S. Chowla [2] andYu. V. Linnik [4]. Conjec-
ture A (a strong form of Goldbach’s Conjecture) is a particular case of C, Conjectures H
and I are particular cases of G. It remains therefore to consider Conjectures C, G, L, which
are, according to Hardy and Littlewood, conjugate to Conjectures D, F, K, respectively.
We quote them below for the convenience of a reader, with slight changes in the notation
(e.g. p, p′ denote primes).

Conjecture C. If a, b are fixed positive integers and (a, b) = 1 and P(k) is the number
of representations of k in the form

k = ap + bp′
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then

P(k) = o
(

k

(log k)2

)
unless (k, a) = 1, (k, b) = 1, and one and only one of k, a, b is even. But if these conditions
are satisfied then

P(k) ∼ 2C2

ab

k

(log k)2
∏(p− 1

p− 2

)
,

where

C2 =
∞∏
p=3

(
1− 1

(p − 1)2

)
and the first product extends over all odd primes p which divide k, a or b.

Conjecture G. Suppose that a and b are integers, and a > 0, and let P(n) be the number
of representations of n in the form am2 + bm+ p. Then if n, a, b have a common factor,c

or if n and a + b are both even, or if b2 + 4an is a square then

P(n) = o
( √

n

log n

)
.

In all other cases

P(n) ∼ ε√
a

√
n

log n

∏( p

p− 1

) ∏
p�3
p/| a

(
1− 1

p − 1

(b2 + 4an

p

))
,

where p is a common odd prime divisor of a and b, and ε is 1 if a + b is odd and 2 if
a + b is even.

Conjecture L. Every large number n is either a cube or the sum of a prime and a (positive)
cube. The number P(n) of representations is given asymptotically by

P(n) ∼ n1/3

log n

∏
p

(
1− 1

p − 1
(n)p

)
,

where p ≡ 1 (mod 3), p /| n, and (n)p is equal to 1 or to − 1
2 according as n is or is not a

cubic residue of p.

A comparison of formula (1) with the above formulas of paper [3] suggests forcibly
the following conjecture.

Let polynomials f1, f2, . . . , fk (k � 0), f = f1f2 · · · fk satisfy the same conditions as
above. Let g be a polynomial with integral coefficients and the highest coefficient positive.
Let n be a positive integer such that n−g(x) is irreducible and f (x)(n−g(x)) has no fixed
divisor> 1. Denote byN(n) = N the number of positive integers x such that n−g(x) > 0
and by P(n) the number of x’s such that all numbers f1(x), f2(x), . . . , fk(x) and n−g(x)
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are primes. Then for large n we have

(3) P(n) ∼ N

logk+1N
(h0h1 · · ·hk)−1

∏
p

(
1− ω(p)

p

)(
1− 1

p

)−k−1
,

where h0 is the degree of g and ω(p) is the number of solutions of the congruence
f (x)(n− g(x)) ≡ 0 (mod p).

Conjectures C, G, L and therefore also A, H, I are particular cases of formula (3). To
see this, as far as C is concerned, one should put

f1(x) = bx + l, g(x) = ax, n = k − al
b

,

where l is an integer such that al ≡ k (mod b), −b < l � 0. Conjecture A has been
extensively verified ([3], p. 37). I have had no possibility to verify by computation the
agreement of formula (3) with reality in other cases. For such comparisons one should
replace N(logN)−k−1 by

∫ N
2 (log u)−k−1 du, as is pointed out in [3].

I conclude with expressing my thanks to the referee for his valuable suggestions.
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and some of their applications

5. The greatest prime factor
of a quadratic or cubic polynomial

One of the consequences of Theorem 10 merits to be stated as a separate theorem (q(n)
denotes the greatest prime factor of n).

Theorem 11. If ν = 2 or 3, A and E are non-zero integers then

lim
x=∞

q(Axν − E)
log log x

�

⎧⎪⎪⎪⎨⎪⎪⎪⎩
4
7 if ν = 2 and AE is not a perfect square

or ν = 3 and A2E is a perfect cube,
2
7 if ν = 2 and AE is a perfect square,
3

14 if ν = 3 and A2E is not a perfect cube.

Proof. Since Axν −E = A1−ν((Ax)ν −Aν−1E
)

we apply Theorem 10 case (iv)(1) with
εP1 = Aν−1E and obtain the assertion except in the case A2E being a perfect cube. In
this case we set A2E = F 3 and since

q(y3 − A2E) � q(y2 + Fy + F 2) = q((2y + F)2 + 3F 2)
we apply Theorem 10 case (iv) with εP1 = −3F 2. 	


Corollary 7. If f (x) is any quadratic polynomial without a double root, then

lim
x=∞

q
(
f (x)

)
log log x

�
{

4
7 if f is irreducible,
2
7 if f is reducible.

Proof is obtained by reducing f (x) to the canonical form. 	


Theorem 11 can be improved if ν = 2, E | 4 or ν = 3, E |3. The latter case was done
by Nagell [18], cf. [19]. We prove

(1) See Acta Arith. 13 (1967), p. 221.
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Theorem 12. If A �= 0 is an integer and E |4, then

lim
x=∞

q(Ax2 − E)
log log x

�
{

4 if AE is not a perfect square,

2 if AE is a perfect square.

Proof. It is sufficient to prove the theorem for A > 0 square-free and (A,E) = 1. Let
Ax2 − E = d > AE2 and let d0 be the square-free kernel of d. Clearly

(164) do �
∏
p |d
p.

The primes p dividing d have the property that AE is mod p a quadratic residue. If AE
is not a perfect square the density of primes with that property is 1/2, hence by the prime
number theorem

(165)
∏
p |d
p � exp

{
δ1q(d)+ o(q(d))

}
where

δ1 =
{

1 if AE is a perfect square,
1
2 otherwise.

On the other hand,

d = d0d
2
1 , (Ax)2 − Ad0d

2
1 = AE.

Since (Ax)2 − AE > (AE)2, Ad0 is not a perfect square. Moreover if E = ±4 we may
assume Ad0d1 odd.

Let U1, V1 be the least positive solution of the equation

(166) U2 − Ad0V
2 = AE

and consider the recurrence

(167) un = Ωωn +Ω ′ω′n,
where

ω = |AE|−1(U1 + V1

√
Ad0

)v
, ω′ = |AE|−1(U1 − V1

√
Ad0

)v
,

Ω = (U1 + V1

√
Ad0

)
/2, Ω ′ = (−U1 + V1

√
Ad0

)
/2

and v = 1 if AE = 1 or 4 or E = −d0 or −4d0, v = 2 otherwise. It follows from
Theorems 11 and 13 of [19] that ifE |2, ω is the least greater than 1 totally positive unit of
the ring generated by

√
Ad0 and if E = 4, ω is the least such unit of the field R generated

by
√
Ad0. Henceω does not exceed the sixth power of the fundamental unit ofR. Applying

(157)(2) with D = Ad0 or 4Ad0 we get from (164) and (165)

logω = O(√d0 log d0
)

� exp
{ 1

2δ1q(d)+ o(q(d))
}
.

(2) See ibid., p. 225.
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It follows further from the quoted theorems of [19] that all the positive integersV satisfying
(166) for a suitable integer U , are contained in {un}. Thus in particular

|d1| = un.
Since ω/ω′ = (−Ω/Ω ′)v , it follows from Theorem 8(3) that

q(d) � q(d1) � nv or 24 � nv.
Now, by (167)

log un = n logω +O(1)
and we get

log d = log d0 + 2 log |d1| � δ1q(d)+ o
(
q(d)

)+ q(d) exp
{ 1

2δ1q(d)+ o
(
q(d)

)}
= exp

{ 1
2δ1q(d)+ o

(
q(d)

)}
.

Solving this inequality with respect to q(d) we obtain the theorem. 	


The theorems which follow go in the direction opposite to that of Theorems 11 and 12.

Theorem 13. If ν,A,E are non-zero integers, ν � 2, then

lim
x=∞

log q(Axν − E) log log log x

log |Axν − E| �

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

e−γ 2ν

ϕ(2ν)
if AE < −1,

2e−γ if AE = −1,

e−γ if AE = 1,

e−γ ν

ϕ(ν)
if AE > 1,

where γ is Euler’s constant and ϕ is Euler’s function.

Proof. We assume without loss of generality A > 0, set for positive integers n:

xn =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
A−1(Aν−1E)2n if AE < −1,

22n−1 if AE = −1,

2n if AE = 1,

A−1(Aν−1E)n if AE > 1

and find

log log log xn = log log n+ o(1).
On the other hand,

Axνn − E = E ×

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(Aν−1E)2νn−1 − 1 if AE < −1,

(−2ν)2n−1 − 1 if AE = −1,

2νn − 1 if AE = 1,

(Aν−1E)νn−1 − 1 if AE > 1.

(3) See ibid., p. 217.
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Denoting by Xδ the δ-th cyclotomic polynomial and by d(δ) the number of divisors of δ
we have for any positive integers g > 1 and m

gm − 1 =
∏
δ |m
Xδ(g)

and by [3], p. 178

q(gm − 1) � max
δ |m |Xδ(g)| � max

δ |m g
ϕ(δ)+d(δ) � gϕ(m)+d(m).

It follows that

lim
n=∞

log q(Axνn − E) log log log xn
log |Axνn − E|

� lim
n=∞

(
ϕ(kn− 1)+ d(kn− 1)

)
log log n

kn
,

where k = 2ν if AE < −1, k = 2 if AE = −1, k = 1 if AE = 1 and k = ν if AE > 1.
Now, a standard argument (cf. [14], §59) shows that

lim
n=∞

ϕ(kn− 1) log log n

kn
= e−γ k

ϕ(k)
.

Since

lim
n=∞

d(kn− 1) log log n

kn
= 0

the theorem follows. 	


If ν = 2, E |4, Theorem 13 can be improved to the following

Theorem 14. If A,E, r, s are integers, Ar �= 0, E |4, then

lim
x=∞

log q
(
A(rx + s)2 − E) log log log x

log |A(rx + s)2 − E| <∞.

Proof. We assume without loss of generality that A > 0, r > 0, s > |E| and set

α = s
√
A+√As2 − E√|E| , β = s

√
A−√As2 − E√|E| .

Then
√
A(As2 − E) generates a real quadratic field and α2 is a unit of this field. Let l be

the least positive exponent such that

α2l ≡ 1 mod r(α + β).
We set for positive integers n

xn =
√|E|
2r
√
A

(
α2ln+1 + β2ln+1)− s

r
.

We have

√|E|
2r
√
A
(α+β) = s

r
and the quotient

α2ln+1 + β2ln+1

α + β can be expressed rationally

in terms of (α+β)2 = 4As2/E and αβ = ±1, thus xn is rational. Moreover by the choice
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of l

α2ln+1 + β2ln+1

α + β ≡ 1 mod r,

thus xn is an integer. Since α > |β|, we have

log log log xn = log log n+ o(1),
log
(
A(rxn + s)2 − E

) = 2ln logα +O(1).
On the other hand,

A(rxn + s)2 − E = |E|
4

(
α2ln+1 − β2ln+1)2 = (As2 − E)

∏
δ |2ln+1
δ>1

X2
δ (α, β),

where

Xδ(α, β) = βϕ(δ)Xδ
(α
β

)
.

Since Xδ(α, β) can be for δ > 2 expressed rationally in terms of (α + β)2 and αβ, all
factors on the right hand side are rational integers and we get

q
(
A(rxn + s)2 − E

)
� max

{
q(As2 − E), max

δ |2ln+1
δ>1

|Xδ(α, β)|
}

� max
{
q(As2 − E), αϕ(2ln+1)+d(2ln+1)}.

It follows like in the proof of Theorem 13:

lim
n=∞

log q
(
A(rxn + s)2 − E

)
log log log xn

log
(
A(rxn + s)2 − E

)
� lim
n=∞

(
ϕ(2ln+ 1)+ d(2ln+ 1)

)
log log n

2ln
= e−γ 2l

ϕ(2l)
<∞. 	


Theorems 13 and 14 do not say anything about q
(
f (x)

)
for a general quadratic poly-

nomial f (x). A much weaker but more general result is the following

Theorem 15. If f (x) is any polynomial of degree ν > 1 with integer coefficients, then

lim
x=∞

log q
(
f (x)

)
log |f (x)| �

⎧⎪⎨⎪⎩
1
2P(4) for ν = 2,
1
2P(6) for ν = 3,

P (ν) for ν > 3,

where

P(ν) =
∞∏
i=1

(
1− 1

ui

)
, u1 = ν − 1, ui+1 = u2

i − 2.

In the proof of this theorem we denote by S the set of all polynomials with integer
coefficients and the leading coefficient positive.
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Lemma 10. If F(x) ∈ S is a polynomial of degree d there exists a polynomial H(x) ∈ S
of degree d − 1 such that F

(
H(x)

)
has a factor G(x) ∈ S of degree d2 − 2d.

Proof. Let F(x) = a0x
d + . . .+ ad . We set for any integer k

Gk(x) = xdF
(

1

x
− a1

(d − 1)a0
− k
)
= a0

(
1− a − 1

(d − 1)a0
x − xHk(x)

)
,

where Hk(x) is a polynomial, Hk(0) = dk and if F

(
− a1

(d − 1)a0
− k
)
�= 0, Hk(x) is of

degree d − 1 with the leading coefficient

−a−1
0 F

(
− a1

(d − 1)a0
− k
)
.

Clearly

(168) F
(
Hk(x)− k

) ≡ F(−Gk(x)
a0x

+ 1

x
− a1

(d − 1)a0
− k
)

≡ F
(

1

x
− a1

(d − 1)a0
− k
)
≡ 0 modGk(x).

We choose k such that

(−1)dF

(
− a1

(d − 1)a0
− k
)
> 0

and set

H(x) = Hk
(
(−1)d−1(d − 1)2a2

0x
)− k.

It is easy to verify thatH(x)∈S. On the other hand, in view of (168), F
(
H(x)

)
is divisible

byGk
(
(−1)d−1(d−1)2a2

0x
)
. The complementary factor of F

(
H(x)

)
is of degree d2−2d

and its suitable multiple belonging to S can be taken as G(x). 	


Lemma 11. If f (x) satisfies the assumptions of Theorem 15, then for any positive integer n
there exists a polynomial hn(x) ∈ S of degree u1u2 · · · un such that f

(
hn(x)

)
has a factor

gn(x) ∈ S of degree un+1 + 1.

Proof by induction with respect to n. For n = 1 the assertion follows from Lemma 10 on
setting there F = ±f . Assume that f

(
hn(x)

)
has a factor gn(x) ∈ S of degree un+1 + 1.

Applying Lemma 10 with F = gn(x)we find a polynomialH(x) ∈ S of degree un+1 such
that gn

(
H(x)

)
has a factor gn+1(x) ∈ S of degree

(un+1 + 1)2 − 2(un+1 + 1) = u2
n+1 − 1 = un+2 + 1.

Clearly gn+1(x) is also a factor of F
(
hn(H(x))

)
and we complete the proof by taking

hn+1(x) = hn
(
H(x)

)
. 	
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Proof of Theorem 15. It follows easily by induction that

un+1 + 1 = ν
n∏
i=1

(ui − 1) (n = 1, 2, . . . ).

Hence
un+1 + 1

νu1u2 · · · un tends to P(ν) decreasing monotonically. Since P(ν) � P(4) =
0.55 . . . > 1

2 for ν > 3, we have

un+1 + 1 > νu1 · · · un − un+1 − 1.

By Gauss’s Lemma we can assume that in Lemma 11 both polynomials gn(x) and
f
(
hn(x)

)
/gn(x) have integer coefficients. It follows that for ν > 3

lim
x=∞

log q
(
f (x)

)
log |f (x)| � lim

x=∞
log q

(
f (hn(x))

)
log |f (hn(x))|

� lim
x=∞

log max
{|gn(x)|, |f (hn(x))/gn(x)|}

log |f (hn(x))|
= max{un+1 + 1, νu1 · · · un − un+1 − 1}

νu1u2 · · · un = un+1 + 1

νu1u2 · · · un .

Since the last inequality holds for every n, we get

lim
x=∞

log q
(
f (x)

)
log |f (x)| � P(ν) (ν > 3).

It remains to consider ν = 2 and ν = 3. If ν = 2 we have

f
(
x + f (x)+ f (x + f (x))) = f (x)(1+ f ′(x)+ 1

2f
′′(x)f (x)

)
f1(x),

where f1(x) is a quartic polynomial with integer coefficients. It follows by the already
proved part of the theorem

lim
x=∞

log q
(
f1(x)

)
log |f1(x)| � P(4)

and

lim
x=∞

log q
(
f (x)

)
log |f (x)| � lim

x=∞
log max

{|f (x)|, ∣∣1+ f ′(x)+ 1
2f
′′(x)f (x)

∣∣, q(f1(x)
)}

log
∣∣f (x + f (x)+ f (x + f (x)))∣∣

� max
{ 1

4 ,
1
4 ,

1
2P(4)

} = 1
2P(4).

If ν = 3 there exists by Lemma 10 a polynomial H(x) ∈ S such that

f
(
H(x)

) = G1(x)G2(x),

where G1,G2 are cubic polynomials with integer coefficients. Applying again
Lemma 10 withF(x) = ±G1(x)we find a polynomialH1(x) ∈ S such thatG1

(
H1(x)

) =
G3(x)G4(x), whereG3,G4 are cubic polynomials with integer coefficients. It follows by



1152 J. Prime numbers

the already proved part of the theorem

lim
x=∞

log q
(
G2(H1(x))

)
log |G2

(
H1(x)

)| � P(6)

and since f
(
H
(
H1(x)

)) = G2
(
H1(x)

)
G3(x)G4(x)

lim
x=∞

log q
(
f (x)

)
log |f (x)| � lim

x=∞
log max

{
q
(
G2(H1(x))

)
, |G3(x)|, |G4(x)|

}
log
∣∣f (H(H1(x))

)∣∣
� max

{
1
2 P(6),

1
4 ,

1
4

}
= 1

2 P(6).

This completes the proof. 	


The above proof of Theorem 15 suggests the following

Problem. Does there exist for any polynomial f (x) ∈ S and any ε > 0 a polynomial
h(x) ∈ S of degree d such that the degree of each irreducible factor of f

(
h(x)

)
is less

than εd ?

I do not know the answer to this problem even for f (x) = 4x2 + 4x + 9, ε = 1
2 .

Addendum*

In the formulation of Theorem 15 occurs the product
∞∏
i=1

(
1 − 1

ui

)
, u1 � 3, ui+1 =

u2
i − 2. I have overlooked that already in 1929 A. Ostrowski [A] gave the value of this

product as

√
u2

1 − 4

u1 + 1
(l.c., formula (7.10)). Hence Theorem 15 takes the form:

Theorem 15′. If f (x) is any polynomial of degree ν > 1 with integer coefficients then

lim
x=∞

log q
(
f (x)

)
log x

�

⎧⎪⎨⎪⎩
1
4

√
5 for ν = 2,

1
4

√
21 for ν = 3,√
(ν − 1)2 − 4 for ν > 3.
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On the relation between two conjectures
on polynomials

1.

The aim of this paper is to establish a relation between the conjecture H on simulta-
neous representation of primes by several irreducible polynomials (see [12] and [5]) and
a conjecture on Diophantine equations with parameters that we shall denote by C. Both
conjectures involve the notion of the fixed divisor of a polynomial, i.e. the greatest com-
mon divisor of all values the polynomial takes for integral values of the arguments. The
conjectures run as follows.

H. Let f1(x), . . . , fk(x) be irreducible polynomials with integral coefficients and the

leading coefficients positive such that
k∏
j=1
fj (x) has the fixed divisor 1. Then there exist

infinitely many positive integers x such that all numbers fj (x) are primes.

C. Let F(x, y) ∈ Z[x, y] be a form such that

(1) F(x, y) = F1(ax + by, cx + dy) for any F1 ∈ Z[x, y] and any a, b, c, d ∈ Z

implies

∣∣∣∣a b

c d

∣∣∣∣ = ±1.

If f (t1, . . . , tr ) ∈ Z[t1, . . . , tr ] has the fixed divisor equal to its content and the equation

(2) F(x, y) = f (t1, . . . , tr )
is soluble in integers x, y for all integral vectors [t1, . . . , tr ] then there exist polynomials
X, Y ∈ Z[t1, . . . , tr ] such that identically

(3) F
(
X(t1, . . . , tr ), Y (t1, . . . , tr )

) = f (t1, . . . , tr ).
A conjecture similar to C has been proposed by Chowla [3]. He has made no assump-

tion (1) but required F and f to be irreducible and have the fixed divisor 1. The following
example shows that this is not enough:

F(x, y) = x2 + 3y2, f (t1, t2) = t21 + t1t2 + t22 .
In this example the set of values of F(x, y) and of f (t1, t2) is the same, but F and f are
not equivalent by unimodular transformation, which answers in the negative a question of
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Chowla (ibid., p. 73) repeated in [9]. The condition imposed in C on the fixed divisor of f
is essential, as the following example shows

F(x, y) = 2x2y3, f (t) = t3(t + 1)4.

Here the solutions of the equations (2) are given by

x = 2(t + 1)2, y = 1
2 t if t ≡ 0 mod 2,

x = 1
4 (t + 1)2, y = 2t if t ≡ 1 mod 2,

but there are no integer-valued polynomials X(t), Y (t) satisfying (3). Another example
with F primitive is given at the end of Section 2.

One special case of C corresponding to F = x2 + y2 has been proved in [3] and [4].
Chowla has also indicated how his conjecture for F(x, y) quadratic should follow from
the special case k = 1 of H. We shall extend these results in the following two theorems.

Theorem 1. C holds if F(x, y) = xkyl (k � 1, l � 1) or if F is quadratic and equivalent
(properly or improperly) to every form in its genus. For such and for no other quadratic F
C extends to all polynomials f ∈ Z[t1, . . . , tr ].
Theorem 2. H implies C if F is a quadratic form or a reducible cubic form.

We shall see (Corollary to Lemma 3) that C implies the following, less precise but more
general assertion.

D. Let F(x, y) ∈ Z[x, y] be any form and f ∈ Z[t1, . . . , tr ] any polynomial. If the
equation (2) is soluble in integers x, y for all integral vectors [t1, . . . , tr ] then there exist
polynomials X, Y ∈ Q[t1, . . . , tr ] satisfying (3).

D has been proved for F = xn and any r in [7] and [11] also for any irreducible
quadratic F and r = 1 in [4], r > 1 in [14]; for reducible quadratic F it follows easily.
We shall show

Theorem 3. H implies D if F factorizes into two relatively prime factors in an imaginary
quadratic field.

In virtue of Theorem 3 H implies D for F = xn + yn. By a modification of the proof
of that theorem in this special case we shall show yet

Theorem 4. H implies C if F(x, y) = xn + yn (n � 2). For n = 2 and for no other n in
question C extends to all polynomials f ∈ Z[t1, . . . , tr ].

At the cost of considerable technical complications indicated briefly later one can extend
Theorem 2 to all formsF splitting completely over a cyclic field except those with all zeros
conjugate and real. The quantitative version of H formulated by Bateman and Horn [1]
(see also [5]) implies C in the exceptional case at least for r = 1. Similarly Theorem 3 can
be extended to all forms F that factorize into two distinct complex conjugate factors over
an imaginary cyclic field.
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2.

In the sequel we shall use the vector notation and write t instead of [t1, . . . , tr ], t ′
instead of [t2, . . . , tr ], ‖t‖ for max

1�i�r
|ti |. We shall denote the content of a polynomial f by

C(f ), its total degree by |f | and call a form F satisfying (1) primary. The letters N, Z, Q

denote the set of positive integers, the ring of integers and the rational field, respectively.
For a fixed field K N denotes the norm from K to Q or from K(t) to Q(t). The content of
a polynomial over K is an ideal of K but if K = Q it is often identified with the positive
generator of this ideal.All considered forms are defined over Z unless stated to the contrary.c

Lemma 1. Let P ∈ Z[t], p be a prime dividing neither the leading coefficient nor
the discriminant of P . If t0 ∈ Z, P(t0) ≡ 0 mod p then either P(t0) �≡ 0 mod p2 or
P(t0 + p) �≡ 0 mod p2.

Proof. Denoting the leading coefficient of P by a, the discriminant of P by D and its
derivative by P ′ we have

P(t)U(t)+ P ′(t)V (t) = aD,
where U,V ∈ Z[t]. Setting t = t0 we infer from P(t0) ≡ 0 mod p, aD �≡ 0 mod p that
P ′(t0) �≡ 0 mod p. Now from the expansion

P(t0 + p) = P(t0)+ P ′(t0)p + P
′′(t0)
2

p2 + . . .
we get P(t0 + p)− P(t0) �≡ 0 mod p2, whence the assertion. 	


Lemma 2. If a quadratic form F is primary then

F = AG(x, y), where A ∈ Z, G(x, y) ∈ Z[x, y],
A is square-free, the discriminant Δ of G is either 1 or fundamental and

(Δ
p

)
= −1 for

every prime factor p of A.

Proof. If G is reducible, G = (ax + by)(a′x + b′y) we have

F(x, y) = (Aax + Aby)(a′x + b′y)
and by (1)

A

∣∣∣∣a b

a′ b′
∣∣∣∣ = ±1, A = ±1 and Δ =

∣∣∣∣a b

a′ b′
∣∣∣∣2 = 1.

If G is irreducible, let G = ax2 + bxy + cy2, and let ω1, ω2 be a basis of the ideal

a =
(
a,
b +√Δ

2

)
. Then we have for suitable integers a1, a2, b1, b2

a = a1ω1 + a2ω2,

b +√Δ
2

= b1ω1 + b2ω2.
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Let K = Q(
√
Δ) and let us set

F1(x, y) = Aa−1N(xω1 + yω2).

Since Na = |a| and (ω1, ω2) ≡ 0 mod a we have

F1(x, y) ∈ Z[x, y].
On the other hand

ax + b +
√
Δ

2
y = (a1x + b1y)ω1 + (a2x + b2y)ω2,

hence

F(x, y) = F1(a1x + b1y, a2x + b2y)

and by (1) ∣∣∣∣a1 b1
a2 b2

∣∣∣∣ = ±1.

It follows that

[
a,
b +√Δ

2

]
is itself a basis for a and by a well known result

|a| = 1√|d| abs

∣∣∣∣∣∣∣∣
a

b +√Δ
2

a
b −√Δ

2

∣∣∣∣∣∣∣∣ ,
where d is the discriminant of K . It follows that Δ = d is a fundamental discriminant. Ifc

A is not square-free or for some p |A we have
(Δ
p

)
= 0 or 1 then for a suitable prime

ideal p: Np |A.
Let pa have an integral basis [Ω1,Ω2] and let us set

F1(x, y) = Aa−1Np−2N(xΩ1 + yΩ2).

Since N(Ω1,Ω2) = |a|Np we have

F1(x, y) ∈ Z[x, y].
On the other hand

ωiNp = ciΩ1 + diΩ2 (i = 1, 2)

for suitable ci, di ∈ Z, hence

(ω1x + ω2y)Np = (c1x + c2y)Ω1 + (d1x + d2y)Ω2

and we get

F(x, y) = F1(c1x + c2y, d1x + d2y).
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Now by (1) ∣∣∣∣c1 c2
d1 d2

∣∣∣∣ = ±1,

hence [ω1Np, ω2Np] is a basis for ap and aNp = ap, a contradiction. 	


Remark. Similarly one can show that if a primary form F(x, y) is irreducible and
F(ϑ, 1) = 0 then [1, ϑ] can be extended to a basis of the ideal (1, ϑ).

Proof of Theorem 1. Consider first F(x, y) = xkyl and let

(4) f (t) = c
n∏
ν=1

fν(t)
eν

be the canonical factorization of f into primitive irreducible polynomials with integral
coefficients. In view of the condition on the fixed divisor of f for every prime factor p of c
there exists a vector tp ∈ Zr such that

n∏
ν=1

fν(tp)
eν �≡ 0 mod p.

It follows from (2) with t = tp that

ordp c = kα + lβ,
where α = ordp x, β = ordp y, and we get

(5) c = ±ξkηl, ξ, η ∈ Z.

On the other hand we can assume that f (t) depends upon t1. Let a0(t
′), D(t ′) be the

leading coefficient and the discriminant respectively of
n∏
ν=1
fν(t) with respect to t1. We

have a0D �= 0 and there exists a vector t ′0 ∈ Zr−1 such that

a0(t
′
0)D(t

′
0) �= 0.

For every ν � n there exists a prime p and an integer t0 such that

(6) fν(t0, t
′
0) ≡ 0 mod p, ca0(t

′
0)D(t

′
0) �≡ 0 mod p.

Put

(7) P(t) =
n∏
ν=1

fν(t, t
′
0).

Since a0(t
′
0) �= 0, the discriminant of P(t) equalsD(t ′0). Hence by (6) and Lemma 1 there

exists a t1 ∈ Z such that

P(t1) ≡ 0 mod p, P (t1) �≡ 0 mod p2.
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We infer from (4), (5) and (6) that

(8) fν(t1, t
′
0) ≡ 0 mod p, fν(t1, t

′
0) �≡ 0 mod p2, fμ(t1, t

′
0) �≡ 0 mod p (μ �= ν).

It follows from (2) with t = [t1, t ′0], (6) and (8) that

(9) eν = kαν + lβν,
where αν = ordp x, βν = ordp y. Take now

X0(t) = ξ
n∏
ν=1

fν(t)
αν , Y0(t) = η

n∏
ν=1

fν(t)
βν .

It follows from (5) and (9) that

X0(t)
kY0(t)

l = ±f (t).
If the sign on the right hand side is positive we take X = X0, Y = Y0. If the sign is
negative and either k or l is odd, we take X = ±X0, Y = ±Y0. If the sign is negative and
k, l are both even we get a contradiction. Indeed, by (5) c < 0, by (9) eν ≡ 0 mod 2, hence
by (4) f (t) � 0. Taking t ∈ Zr such that f (t) �= 0 we get from (2) xkyl < 0, which is
impossible.

Consider now the case of F quadratic. By Lemma 2 F is of the form AG(x, y), where

A is square-free, G(x, y) is a primitive form with discriminant Δ,
(Δ
p

)
= −1 for every

prime factor p of A and either Δ = 1 or Δ is fundamental. In the first case F(x, y) is
equivalent to xy and for the latter form one can takeX(t) = f (t), Y (t) = 1. In the second
case, if G(ϑ, 1) = 0, K = Q(ϑ) and a is the ideal (1, ϑ), we have

G(x, y) = N(x − ϑy)
Na

.

Changing, if necessary, the sign of A we can assume that

(10) F(x, y) = A

Na
N(x − ϑy).

The solubility of the equation N(ω) = Na

A
f (t) for all t ∈ Zr implies, by Theorem 1

of [14], the existence of a polynomial ω(t) ∈ K[t] such that

(11) N
(
ω(t)

) = Na

A
f (t).

Let b = C(ω) and let

ba−1 =
j∏
i=1

p
ai
i

j∏
i=1

p
′bi
i

k∏
i=1

q
ci
i

be the factorization of ba−1 in prime ideals of K . Here pi are distinct pairwise non-
conjugate prime ideals of degree 1 in K , p′i is conjugate to pi and qi are prime ideals of
degree 2 in K . Since AN(ba−1) ∈ Z and A has only prime ideal factors of degree 2 in K ,
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we get

ai + bi � 0 (1 � i � j),
2ci + 1 � 0 (1 � i � k),

hence

max{0, ai} +min{0, bi} � 0, max{0, bi} +min{0, ai} � 0 (1 � i � j),(12)

ci � 0 (1 � i � k).

Let us consider the ideal

c =
j∏
i=1

p
min(0,bi )−min(0,ai )
i p

′min(0,ai )−min(0,bi )
i .

Since F is equivalent to every form in its genus the same is true aboutG, thus there is only
one narrow class in the genus of a, or there are two such classes represented by a and a′. In
any case the principal genus consists only of the principal class and the class of a2. Since
p′i ∼ p−1

i , c belongs to the principal genus and we get c ∼ 1 or c ∼ a2. In the former case
let c = (γ1) with γ1 totally positive and consider the polynomial

ω1(t) = γ1ω(t).

We have

C(ω1) = (γ1)C(ω) = cb = a

j∏
i=1

p
max{0,ai }+min{0,bi }
i

j∏
i=1

p
′max{0,bi }+min{0,ai }
i

k∏
i=1

q
ci
i

and by (12) C(ω1) ≡ 0 mod a.
It follows that all the coefficients of ω1 are in a and since, by Lemma 2, [1, ϑ] is a basis

of a, we get

ω1(t) = X1(t)− ϑY1(t),

where X1, Y1 ∈ Z[t]. It follows now from (10) and (11) that

F
(
X1(t), Y1(t)

) = A

Na
Nω1(t) = A

Na
Nγ1Nω(t) = Nc · f (t) = f (t).

In the case c ∼ a2 let ca−1a′ = (γ2) with γ2 totally positive and consider the polynomial

ω2(t) = γ2ω(t).

We have

C(ω2) = (γ2)C(ω) = ca−1a′b

= a′
j∏
i=1

p
max{0,ai }+min{0,bi }
i

j∏
i=1

p
′max{0,bi }+min{0,ai }
i

k∏
i=1

q
ci
i ,

and by (12) C(ω2) ≡ 0 mod a′.
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Since [1, ϑ ′] is a basis of a′, we infer that

ω2(t) = X2(t)− ϑ ′Y2(t),

where X2, Y2 ∈ Z[t]. Since Nγ2 = 1, it follows as before that

F
(
X2(t), Y2(t)

) = f (t).
It remains to prove that if there is a form inequivalent to F in the genus of F , then C does
not extend to all polynomials f ∈ Z[t]. For this purpose let us observe that there exists
then in K a class C of ideals such that C2 is neither the principal class nor the class of a2.
Choose in C−1 a prime ideal p of degree 1 withNp = p. There exists a prime ideal q such
that p2aq is principal, equal to, say (α). Consider the polynomials

(13) ω(t) = α t
p − t
p

, f (t) = A

Na
Nω(t).

We have

C(f ) = |A|
Na

|Nα|
p2 = |A|Nq ∈ Z,

hence f (t) ∈ Z[t]. Also, since
tp − t
p

∈ Z for all t ∈ Z we have for all t ∈ Z: ω(t) ∈ a;

ω(t) = x − ϑy and

f (t) = F(x, y)
for suitable x, y ∈ Z. On the other hand, suppose that

(14) f (t) = F (X(t), Y (t)), X, Y ∈ Z[t]
and let x, y be the leading coefficients of X, Y . Then comparing the leading coefficients
on both sides of (14) we get by (13)

A

Na

Nα

p2 = F(x, y) =
A

Na
N(x − ϑy), Nq = N (x − ϑy)

a
.

Since q is a prime ideal, x − ϑy ∈ a, it follows that

(x − ϑy)
a

= q or q′.

Hence aq ∼ 1 or aq−1 ∼ 1. By the choice of q this gives p2 ∼ 1 or p2a2 ∼ 1 contrary to
the choice of p. 	


Remark. The above proof seems to suggest that if F satisfies (1) and for all t ∈ Zr the
equation (2) is soluble in integers x, y, then there exist integer-valued polynomials X(t),
Y (t) satisfying (3) identically. The following example shows that this is not the case.

Let F(x, y) = x2 + xy + 6y2, K = Q(
√−23), ω = 1+√−23

2
,

f (t) = N(( 1
2ω

4 − ω)t2 + ω − 8
)
.
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The discriminant of F is −23 hence F is primary. Further, f (t) ∈ Z[t] since

( 1
2ω

4 − ω,ω − 8) = (2, ω)

(2, ω′)
with ω′ conjugate to ω.

Moreover the equation F(x, y) = f (t) is soluble in integers x, y for all t ∈ Z. Indeed
if t ≡ 0 mod 2 we can take

x + yω = ( 1
2ω

4 − ω)t2 + ω − 8

and if t ≡ 1 mod 2 we can take

x + yω = −3−√−23

−3+√−23

[
( 1

2ω
4 − ω)t2 + ω − 8

]
.

The number on the right hand side is an integer in K since for t ≡ 1 mod 2

( 1
2ω

4 − ω)t2 + ω − 8 ≡ 1
2ω

4 − 8 mod 4(ω4 − 2ω)

and we have in K the factorization into prime ideals

(2) = pp′, (ω) = pq,
(
(−3+√−23)/2

) = p3.

On the other hand, the polynomial ( 1
2ω

4 − ω)t2 + ω − 8 is irreducible over K since

N
8− ω

1
2ω

4 − ω =
62

381
is not a square in Q. Therefore, if integer-valued polynomials X(t),

Y (t) satisfied

F
(
X(t), Y (t)

) = f (t)
identically, we should have either

X(t)+ Y (t)ω = γ ( 1
2ω

4 − ω)t2 + γ (ω − 8)

or

X(t)+ Y (t)ω′ = γ ( 1
2ω

4 − ω)t2 + γ (ω − 8)

for some γ ∈ K with Nγ = 1. Taking t = 0 and 1 we should get γ ( 1
2ω

4 − ω,ω − 8)

integral, hence (γ )
p

p′
integral and (γ ) = p′

p
. However the ideal on the right hand side is

not principal.

3.

Lemma 3. Every form F(x, y) with at least two distinct zeros (in P1(C)) can be repre-c

sented as F1(ax + by, cx + dy), where F1 is primary, a, b, c, d ∈ Z and

∣∣∣∣a b

c d

∣∣∣∣ �= 0.

Proof. Suppose that F(x, y) = G(ax + by, cx + dy),
∣∣∣∣a b

c d

∣∣∣∣ �= 0. Let F ∗ be the product

of all projectively distinct primitive irreducible factors of F and similarly G∗ for G. Itc
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follows that

F ∗ = ±C−1G∗(ax + by, cx + dy),c

where C = C(G∗(ax + by, cx + dy)) |C(F). Hence

discF ∗ = C2−2|F ∗| discG∗ ·
∣∣∣∣a b

c d

∣∣∣∣|F ∗|(|F ∗|−1)

and since discF ∗ �= 0, |F ∗| > 1 the absolute value of

∣∣∣∣a b

c d

∣∣∣∣ is bounded. Take now a

representation of F(x, y) asG(ax + by, cx + dy), where abs

∣∣∣∣a b

c d

∣∣∣∣ is maximal.G must
c

be primary, otherwise representing it as G1(a1x + b1y, c1x + d1y) we should obtain a
representation of F as G1(αx + βy, γ x + δy) with

abs

∣∣∣∣α β

γ δ

∣∣∣∣ = abs

∣∣∣∣a b

c d

∣∣∣∣ · abs

∣∣∣∣a1 b1
c1 d1

∣∣∣∣ > abs

∣∣∣∣a b

c d

∣∣∣∣ ,c

contrary to the choice ofG, unless

∣∣∣∣a1 b1
c1 d1

∣∣∣∣ = 0. In the latter case, however,G and hence

also F should have only one zero, contrary to the assumption. 	


Corollary. C implies D.

Proof. Let F(x, y) ∈ Z[x, y] be any form, f (t) ∈ Z[t] any polynomial and suppose that
for all t ∈ Zr there exist x, y ∈ Z satisfying F(x, y) = f (t). If F(x, y) = const or
f (t) = const, D is trivial. If F(x, y) has only one zero, we take without loss of generality
F(x, y) = a(bx + cy)n, where b �= 0. Applying Theorem 3 of [13] to the equation
aun = f (t)we infer the existence of a polynomialU(t) ∈ Q[t] such that aU(t)n = f (t).c

It suffices to take X(t) = b−1U(t), Y (t) = 0.
If F(x, y) has at least two distinct zeros then, by Lemma 3, F(x, y)= F1(ax + by,

cx + dy), where F1 is primary and

∣∣∣∣a b

c d

∣∣∣∣ �= 0. On the other hand there exists a vector

t0 ∈ Zr such that f (t0) = e �= 0. Consider now the equation

F1(x, y) = f (et + t0).

The polynomial on the right hand side has both the content and the fixed divisor equal to |e|,
hence by C there exist polynomialsX1, Y1 ∈ Z[t] such thatF1

(
X1(t), Y1(t)

) = f (et+t0).
Determining X(t), Y (t) from the equations

aX(t)+ bY (t) = X1

( t − t0

e

)
, cX(t)+ dY (t) = Y1

( t − t0

e

)
we get

X(t), Y (t) ∈ Q[t], F
(
X(t), Y (t)

) = f (t),
thus D holds. 	
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Lemma 4. H implies the following.
Let fν ∈ Z[t] (1 � ν � n) be distinct irreducible polynomials such that their leading

forms hν(t) all assume a positive value for a t ∈ Nr and that
n∏
ν=1
fν(t) has the fixed

divisor 1. Then for any B there exists a t ∈ Nr such that fν(t) are distinct primes > B.

Proof. The condition that fν are irreducible and distinct implies that they are prime to
each other. Indeed, otherwise two of them would differ by a constant factor c �= 1. The

numerator and the denominator of c would divide
n∏
ν=1
fν(t) for all t hence c = −1. But

this contradicts the condition on hν .
Let us choose an a ∈ Nr such that

(15) hν(a) > 0 (1 � ν � n)
and let

a = (|h1| + |h2| + . . .+ |hr |
)! n∏
ν=1

hν(a).

Since

f (t) =
n∏
ν=1

fν(t)

has the fixed divisor 1 we infer from the Chinese Remainder Theorem the existence of a
τ ∈ Zr such that

(16)
(
f (τ ), a

) = 1.

Consider the polynomials fν(ax + at + τ ) (1 � ν � n).
They are irreducible as polynomials in x, t and prime to each other. Consequently the

resultant Rμ,ν(t) of fμ(ax+ at + τ ) and fν(ax + at + τ ) is non-zero for all μ < ν � n.
By Hilbert’s irreducibility theorem there exists a t0 ∈ Zr such that fν(ax + at0 + τ )

(1 � ν � n) are all irreducible as polynomials in x and

(17)
n∏
μ<ν

Rμ,ν(t0) �= 0.

The leading coefficients of fν(ax + at0 + τ ) are positive by (15). Moreover

p(x) =
n∏
ν=1

fν(ax + at0 + τ )

has the fixed divisor 1. Indeed, the |p|-th difference

Δ|p|p(0) = a,
on the other hand,

p(0) = f (at0 + τ ) ≡ f (τ )mod a

and we get
(
p(0),Δ|p|(0)

) = 1 by (16).
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By H there exist infinitely many x ∈ N such that fν(ax + at0 + τ ) are primes. For
sufficiently large x we have ax + at0 + τ ∈ Nr and

(18) fν(ax + at0 + τ ) > |B| +
n∑
μ<ν

|Rμ,ν(t0)|.

Thus the primes in question are > B. They are distinct since the common value of
fμ(ax + at0 + τ ) and fν(ax + at0 + τ ) would have to divide Rμ,ν(t0) which is im-
possible by (17) and (18). 	


Lemma 5. Let K be the rational field or a quadratic field,Δ be the discriminant of K and
let ϕν ∈ K[t] (1 � ν � n) be polynomials irreducible over K and prime to each other. If

(19) the fixed divisor of
n∏
ν=1

Nϕν(t) equals
n∏
ν=1

NC(ϕν)

then for every M ∈ N, there exists a μ ∈ N prime to M with no prime ideal factor of
degree 1 in K and τ ∈ Zr with the following property. Let

ψν(t) = ϕν(μt + τ ) (1 � ν � n).

For any A ∈ N, t1 ∈ Zr and m ∈ N prime to Δ
n∏
ν=1

Nψν(t1)

NC(ψν)
H implies the existence of a

t2 ∈ Nr such that t2 ≡ t1 modm, all the ideals

(
ψν(t2)

)
C(ψν)

are prime in K , distinct and do

not divide A.

Moreover, either μ = 1, τ = 0 have the above property (this happens for K = Q) or
there is a sequence of pairs 〈μi, τ i〉 with the above property such that (μi, μh) = 1 for
i �= h, and the number of distinct μi � x is greater than cx1/n/ log x for a certain c > 0
and all x > x0.

Proof. We begin with a remark concerning the fixed divisor that we shall use twice. If
P ∈ Z[t] has the fixed divisor d then any fixed prime divisor p of P(mt + a) divides dm.
Indeed, if p /| d then there exists a u ∈ Zr such that P(u) �≡ 0 mod p and if p /| m there
exists a v ∈ Zr such that mv + a ≡ u mod p, hence P(mv + a) �≡ 0 mod p.

Now we proceed to the proof of the lemma. Let

ϕν(t) = aνfν(t) (ν � k),
Nϕν(t) = aνfν(t) (k < ν � n),

where fν ∈ Z[t] are irreducible over Q and

(aν) = C(ϕν) (ν � k),
|aν | = NC(ϕν) (k < ν � n).

(If K = Q we take k = 0.) Let hν be the leading form of fν . We can choose the signs
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of aν so that for a suitable t ∈ Nr : hν(t) > 0 for all ν � n. We have

(20)
n∏
ν=1

Nϕν(t)

NC(ϕν)
= ±

k∏
ν=1

f 2
ν (t)

n∏
ν=k+1

fν(t)

and (19) implies on an application of the Chinese Remainder Theorem that for a suitable
τ 0 ∈ Zr

(21)
(
Δ,

n∏
ν=1

fν(τ 0)
)
= 1.

Let fν(τ 0) ≡ �ν modΔ, �ν > 0 (ν � k). Without loss of generality we may assume that

(22)
(Δ
�ν

)
= 1 (1 � ν � j),

(Δ
�ν

)
= −1 (j < ν � k).

c

Since ϕν are prime to each other

(23) (fλ, fν) = 1 unless λ = ν or λ > k, ν > k and ϕλ/ϕ
′
ν ∈ K,

where ϕ′ν is conjugate to ϕν over Q(t).

In particular, f1, . . . , fj and
n∏

ν=j+1
fν are prime to each other. Let t = [t, t ′], a0(t

′)

be the leading coefficient of
n∏
ν=1
fν(t), D(t ′) the discriminant of

j∏
ν=1
fν(t) and R(t ′) the

resultant of
j∏
ν=1
fν(t),

n∏
ν=j+1

fν(t) with respect to t . It follows that

(24) a0DR �= 0.

Since fν(t) are irreducible over K for ν � j we infer by Hilbert’s irreducibility theorem
that there exists a τ ′ ∈ Zr−1 such that fν(t, τ ′) are irreducible over K for ν � j and

(25) a0(τ
′)D(τ ′)R(τ ′) �= 0.

Let fν(ϑν, τ ′) = 0 and Kν = Q(ϑν) (ν � j). We have K �⊂ Kν and by Bauer’s theorem
there exist for each ν � j infinitely many primes with a prime ideal factor of degree 1
in Kν , but not in K . Choose for each ν � j a different prime pν with the above property
and such that

(26) pν /|Ma0(τ
′)D(τ ′)R(τ ′).

Since pν does not split in K we have

(27)
( Δ
pν

)
= −1 (ν � j).

On the other hand, since pν has a prime ideal factor of degree 1 in Kν , by Dedekind’s
theorem, there exists an integer u such that

fν(u, τ
′) ≡ 0 mod pν.
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By (25) and (26) the discriminant of
j∏
i=1
fi(t, τ

′) equals D(τ ′) �≡ 0 mod pν . Since

a0(τ
′) �≡ 0 mod pν and

j∏
i=1
fi(u, τ

′) ≡ 0 mod pν we infer from Lemma 1 that either

j∏
i=1

fi(u, τ
′) �≡ 0 mod p2

ν

or

j∏
i=1

fi(u+ pν, τ ′) �≡ 0 mod p2
ν .

Therefore, there exists an integer τν such that

fν(τν, τ
′) ≡ 0 mod pν,(28)

j∏
i=1

fi(τν, τ
′) �≡ 0 mod p2

ν .(29)

Moreover, since by (25) and (26) the resultant of
j∏
i=1
fi(t, τ

′) and
n∏

i=j+1
fi(t, τ

′) is equal

to R(τ ′) �≡ 0 mod pν , we have

(30)
n∏

i=j+1

fi(τν, τ
′) �≡ 0 mod pν.

Let us choose τ ≡ τν mod p2
ν (1 � ν � j ) and set

(31) μ =
j∏
ν=1

pν, τ = [τ, τ ′].

By (28)–(30) we have

fν(τ ) ≡ 0 mod pν,(32)
n∏
i=1

fi(τ ) �≡ 0 mod p2
ν .(33)

We shall show that
n∏
i=1

fi(μt + τ ) = P(μt + τ )

has the fixed divisor d equal to p1p2 · · ·pj . Indeed by (19) and (20) the fixed divisor of
P(t) equals 1, hence d consists of prime factors of μ. However by (33)

d �≡ 0 mod p2
ν (ν � j).

On the other hand by (31) and (32)

fν(μt + τ ) ≡ fν(τ ) ≡ 0 mod pν.
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Thus d = p1p2 · · ·pj , the polynomials

(34)
gν(t) = p−1

ν fν(μt + τ ) (ν � j),
gν(t) = fν(μt + τ ) (j < ν � n)

have integral coefficients,
n∏
ν=1
gν(t) has the fixed divisor 1 and a fortiori the content 1.

Moreover by (23)

(35) gλ �= gν unless λ = ν or λ > k, ν > k and ϕλ/ϕ
′
ν ∈ K.

It follows that

ψν(t) = aνpνgν(t) (ν � j),(36)

ψν(t) = aνgν(t) (j < ν � k),
Nψν(t) = aνgν(t) (k < ν � n),(37)

where besides

C(ψν) = (aνpν) (ν � j), C(ψν) = (aν) (j < ν � k),(38)

NC(ψν) = |aν | (k < ν � n).(39)

It follows that

n∏
ν=1

Nψν(t)

NC(ψν)
= ±

k∏
ν=1

g2
ν (t)

n∏
ν=k+1

gν(t).

If now for a t1 ∈ Zr we have (
m,Δ

n∏
ν=1

Nψν(t1)

NC(ψν)

)
= 1

there exists a t0 ∈ Zr satisfying

(40) t0 ≡ t1 modm, μt0 + τ ≡ τ 0 modΔ.

Since (
m,

n∏
ν=1

gν(t0)
)
=
(
m,

n∏
ν=1

gν(t1)
)
= 1

and by (34) and (21)(
Δ,

n∏
ν=1

gν(t0)
)
=
(
Δ,

n∏
ν=1

gν(0)
)
=
(
Δ,

n∏
ν=1

fν(τ 0)
)
= 1,

it follows that
n∏
ν=1

gν(Δmt + t0)



J5. Relation between two conjectures on polynomials 1169

has the fixed divisor 1. The polynomials gν(Δmt + t0) are irreducible and their leading
forms all take a positive value for a suitable t ∈ Nr in virtue of the corresponding property
of fν(t). By Lemma 4 H implies the existence of an x ∈ Nr such that gν(Δmx + t0) are
primes greater than |A| and

(41) gλ(Δmx + t0) �= gν(Δmx + t0) unless gλ = gν.
Taking t2 = Δmx + t0 we get from (40)

(42) t2 ≡ t1 modm, μt2 + τ ≡ τ 0 modΔ.

Thus by (34)

pνgν(t2) = fν(μt2 + τ ) ≡ fν(τ 0) ≡ �ν modΔ (ν � j),
gν(t2) = fν(μt2 + τ ) ≡ fν(τ 0) ≡ �ν modΔ (j < ν � k)

and we infer from (22) and (27) that(
Δ

gν(t2)

)
= −1 (ν � k).

Hence, for ν � k, gν(t2) are prime in K not dividing A and in virtue of (36) and (38) the

same applies to the ideals aν =
(
ψν(t2)

)
C(ψν)

. The remaining ideals aν (k < ν � n) are prime
c

and do not divide A in virtue of (37) and (39).
Assuming

λ �= ν, aλ = aν,

we get by (35) and (41) for a suitable γ ∈ K

λ > k, ν > k, ϕλ = γ ϕ′ν, ψλ = γψ ′ν, C(ψλ) = (γ )C(ψ ′ν),(
ψν(t2)

)
C(ψν)

=
(
ψ ′ν(t2)

)
C(ψ ′ν)

,

thus the ideal aν is ambiguous.
By Dedekind’s theorem aν |Δ, hence by (37) and (39)

gν(t2) |Δ.
However by (34) and (42)

gν(t2) = fν(μt2 + τ ) ≡ fν(τ 0)modΔ

and we get a contradiction with (21). The contradiction shows that the ideals aν are distinct
and the proof of the first part of the lemma is complete.

To prove the second part we note that if j = 0 then (31) gives μ = 1. The value
of τ is then irrelevant and can be taken 0. Therefore assume that j > 0 and that we have
already defined 〈μ1, τ 1〉, . . . , 〈μi−1, τ i−1〉 (i � 1), each μi with j prime factors. Then
we replace in the above proof M by Mμ1 · · ·μi−1 and define μi, τ i by (31). It is clear
that the sequence thus obtained satisfies (μi, μh) = 1 for i �= h. Denote by P(Kν) the set
of primes with a prime ideal factor of degree 1 in Kν . By Bauer’s theorem P(Kν) \P(K)
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has a positive density, say, δν . Computing μi from (31) we take pν to be the least element
of P(Kν)\P(K) different from ω+j (i−1)+ν−1 given primes, where ω is the number
of prime factors of Ma0(τ

′)D(τ ′)R(τ ′). Hence for i > i0 we have pν � 2δ−1
ν j i log ji

and

μi =
j∏
ν=1

pν � (c−1ji log ji)j , c = 1
2

j∏
ν=1

δ1/j
ν .

Since the number of solutions of the inequality

(c−1ji log ji)j � x

in positive integers i is for x large enough at least
cx1/j

log x − 1
, the number of distinctμi � x

is at least

cx1/j

log x − 1
− i0 > cx

1/n

log x
(x > x0)

which completes the proof. 	


Remark. The lemma extends to all cyclic fields.

Lemma 6. Let K be any field, K an algebraic closure of K , f ∈ K[t] a non-zeroc

polynomial. If a form F ∈ K[x, y] has at least three distinct zeros in P1(K) then therec

exist no more than |F |33|f | pairs 〈X(t), Y (t)〉 such that X, Y ∈ K[t], X, Y linearly
independent over K and

(43) F
(
X(t), Y (t)

) = f (t).
Proof. Without loss of generality we may assume that K is algebraically closed. By a linear
transformation we can transform F to the form

F(x, y) = xkylG(x, y), k � 1, l � 1,
(
G(x, y), xy

) = 1.

Let us assign two solutions 〈X1, Y1〉 and 〈X2, Y2〉 of (43) to the same class if X2 = ξX1,
Y2 = ηY1 for some ξ, η ∈ K \ {0}. The number of classes does not exceed the number of
pairs of monic polynomials x, y ∈ K[t] such that

xy |f (t),
which is clearly bounded by 3|f |. The number of polynomials in one class can be estimated
as follows.

If

F(ξX1, ηY1) = F(X1, Y1)

then

F
(
ξ
X1

Y1
, η
)
= F

(X1

Y1
, 1
)
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and since X1/Y1 takes in K infinitely many values we have identically

F(ξu, η) = F(u, 1).
Hence

ξkηlG(ξu, η) = G(u, 1)
and the comparison of the leading coefficients and of the constant terms on both sides
gives

ξkηlξ |G| = 1, ξ kηlη|G| = 1.

It follows that

ξ |G| = η|G|, ξ |G|(k+l+|G|) = 1, ξ |G| |F | = 1.

Thus there are |G| |F | possibilities for ξ and for each ξ at most |G| possibilities for η,
which gives at most |F | |G|2 � |F |3 possibilities for 〈ξ, η〉. The lemma follows. 	


Lemma 7. If F(x, y) ∈ Z[x, y] is a non-singular cubic form, then for every integer
a �= 0 the number of solutions of the equation F(x, y) = az3 in integers x, y, z such that
(x, y, z) = 1 and 1 � z � Z isO

(
(logZ)b

)
, where b is a constant depending on F and a.

Proof. It is enough to estimate the number of solutions with |x| � |y|. Assume that

(44) F(x, y) = az3, 1 � z � Z and |x| � |y|.
If F(1, 0) = 0 we have |F(x, y)| � |y| hence h = max

(|x|, |y|, |z|) � Z3, where the
constant in the symbol� depends on a, later also on F . If F(1, 0) �= 0 let

(45) F(x, y) = a0

3∏
l=1

(x − ξly),

where ξ1 is the real zero of F nearest to x/y. Since F(x, y) �= 0 we have by Thue’s
theorem

|x − ξ1y| � |y|−3/2.

On the other hand |x − ξ2y| |x − ξ3y| � y2. Hence by (44) and (45)

|a|z3 = |F(x, y)| � y1/2 and h� Z6.

Since F(x, y) = az3 represents in projective coordinates a curve of genus 1, in virtue of
a theorem of Néron (see [8], p. 82), the number of solutions of (44) is O

(
(logZ6)g/2+1

)
where g is the rank of the curve. 	


Remark. The lemma extends to all forms F with at least three distinct zeros. If the genus
of the curve F(x, y) = az|F | is greater than 1 one needs a theorem of Mumford [10].

Lemma 8. Let K be any field,U a finite subset of K and P ∈ K[t], P �= 0. The equation
P(t) = 0 has no more than |P | |U |r−1 solutions t ∈ Ur , where |U | is the number of
elements of U .
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Proof (by induction on r). For r = 1 the assertion is obvious. Assume that it holds for
polynomials in r − 1 variables and let

P(t) =
p∑
i=0

Pi(t
′)tp−i1 .

The solutions of P(t) = 0 are of two kinds: satisfying P0(t
′) = 0 and P0(t

′) �= 0. Since t1
can take at most |U | values, by the inductive assumption the number of solutions of the
first kind does not exceed |P0| |U |r−1. Similarly since t ′ can take at most |U |r−1 values the
number of solutions of the second kind does not exceed p|U |r−1. However |P0|+p � |P |
and the proof is complete. 	


Remark. A different proof can be obtained by an adaptation of the proof given by Schmidt
for the special case K = U (see [17], p. 147, Lemma 3A).

Lemma 9. If f (t), g(t) ∈ Q[t], g(t) |f (t)n and the fixed divisor of f (t) equals C(f )
then the fixed divisor of g(t) equals C(g).

Proof. Let the fixed divisor of g be C(g)d, d ∈ N and let f (t)n = g(t)h(t). Clearly for
all t ∈ Zr f (t)n is divisible by C(g)dC(h) = dC(f n) = dC(f )n. On the other hand the
fixed divisor of f (t)n is C(f )n. Hence d = 1. 	


Proof of Theorem 2. Consider first the case whereF is a quadratic form. Then by Lemma 2

F(x, y) = A(ax2 + bxy + cy2), where A, a, b, c ∈ Z

and either Δ = b2 − 4ac = 1 or Δ is a fundamental discriminant. Since the fixed divisor
of f (t) equals C(f ) we have A |C(f ) and we can assume without loss of generality that
A = 1. Let K = Q(

√
Δ),

(46) f (t) = l
n∏
ν=1

ϕν(t)
eν

be a factorization of f (t) over K into irreducible factors such that ϕν are distinct and have
the coefficient of the first term in the inverse lexicographical order equal to 1. Since thec

fixed divisor of f equals C(f ) the condition (19) is satisfied in virtue of Lemma 9. Let
μ, τ be parameters whose existence for {ϕν} andM = a is asserted in Lemma 5 and let

ψν = ϕν(μt + τ ) (1 � ν � n).
It follows that

(47) f (μt + τ ) = l
n∏
ν=1

ψν(t)
eν

and

(48) B = |l|
n∏
ν=1

C(ψν)
eν = C(f (μt + τ )

) ∈ N,
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where an ideal in Q is identified with its positive generator. IfΔ = 1, F is equivalent to xy
and Theorem 1 applies. Assume that Δ �= 1, thus K is a quadratic field. Taking m = 1 in

Lemma 5 we infer that H implies the existence of a t2 ∈ Zr such that

(
ψν(t2)

)
C(ψν)

are distinct

prime ideals of K not dividing B. By the assumption there exist x0, y0 ∈ Z such that

(49) ax2
0 + bx0y0 + cy2

0 = f (μt2 + τ ).

Hence, after a transformation

N

(
ax0 + b +

√
Δ

2
y0

)
a

= |f (μt2 + τ )|, where a =
(
a,
b +√Δ

2

)
.

It follows from (47) and (48) that for an integral ideal b and some αν � 0

(50)
(
ax0 + b +

√
Δ

2
y0

)
a−1 = b

n∏
ν=1

(
ψν(t2)

)αν
C(ψν)αν

,

(
b,

n∏
ν=1

(
ψν(t2)

)
C(ψν)

)
= 1.

On the other hand ϕeνν ‖f (t) implies ϕ′eνν ‖f (t), where ϕ′ν is conjugate to ϕν with respect
to Q(t). If ϕν /∈ Q[t]we have ϕ′ν �= ϕν and since ϕ′ν has the coefficient of the leading term
equal to 1, by (46)

ϕ′ν = ϕλ, eν = eλ, ψ ′ν = ψλ for a λ �= ν.
Thus without loss of generality we may assume that for a certain k ≡ nmod 2

(51) ϕ′ν = ϕν′ , eν = eν′ , ψ ′ν = ψν′ , where ν′ = ν (1 � ν � k),
ν′ = ν − (−1)n−ν (k < ν � n).

Hence by (48)

|ax2
0 + bx0y0 + cy2

0 | = Nb

n∏
ν=1

(
ψν(t2)

C(ψν)

)αν+αν′
,

(
Nb,

n∏
ν=1

(
ψν(t2)

)
C(ψν)

)
= 1

and a comparison with (49) gives

(52) αν + αν′ = eν (1 � ν � n).
Let us define now X(t), Y (t) by the equation

(53) ϑ(t) = aX(t)+ b +
√
Δ

2
Y (t) =

(
ax0 + b +

√
Δ

2
y0

) n∏
ν=1

( ϕν(t)
ψν(t2)

)αν
.

The polynomials X(t), Y (t) have integral coefficients since by (50)

C
(
ϑ(νt + τ )

) = (ax0 + b +
√
Δ

2
y0

) n∏
ν=1

( C(ψν)(
ψν(t2)

))αν = ab,
c

μ|ϑ |C(ϑ) ≡ 0 mod a

and (μ, a) = 1 implies C(ϑ) ≡ 0 mod a.
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On the other hand, by (53), (49), (51), (52), (46) and (47)

F
(
X(t), Y (t)

) = aX(t)2 + bX(t)Y (t)+ cY (t)2
= (ax2

0 + bx0y0 + cy2
0 )

n∏
ν=1

( ϕν(t)ϕ
′
ν(t)

ψν(t2)ψ ′ν(t2)

)αν
= f (μt2 + τ )

n∏
ν=1

( ϕν(t)
ψν(t2)

)αν+αν′
= f (μt2 + τ )

n∏
ν=1

( ϕν(t)
ψν(t2)

)eν = f (t).
Assume now that F is a reducible cubic form. If F is singular we have F = (ax + by)2 ·
(cx + dy), hence by the condition (1)∣∣∣∣a b

c d

∣∣∣∣ = ±1,

F is equivalent to x2y and Theorem 1 applies.

If F is non-singular we have

(54) F(x, y) = (a0x + b0y)F1(x, y),

where F1 is a non-singular primitive quadratic form. By Lemma 3 we have

(55) F1(x, y) = G(a1x + b1y, a2x + b2y),

where G is primary and primitive. Let us put G(x, y) = ex2 + gxy + hy2. By Lemma 2,
the discriminantΔ = g2−4eh equals 1 or is fundamental. The condition that F is primary
implies that

(56) d =
(∣∣∣∣a0 a1
b0 b1

∣∣∣∣ , ∣∣∣∣a1 a2
b1 b2

∣∣∣∣ , ∣∣∣∣a2 a0
b2 b0

∣∣∣∣) = 1.

Otherwise, by a classical result on integral matrices (see [2], p. 52) the linear forms aix+biy
(0 � i � 2) would be expressible integrally in terms of two linear forms with determinant
d > 1. Let K = Q(

√
Δ) and let the factorization of f (t) over K be given by (46). Since

the fixed divisor of f (t) equals C(f ) the condition (19) is satisfied in virtue of Lemma 9.
By Lemma 6 the equation

(57) F
(
X(t), Y (t)

) = f (t)
has only finitely many solutions in polynomials X(t), Y (t) ∈ Q[t] that are linearly inde-
pendent. LetM be a positive integer such thatMX,MY ∈ Z[t] for all of them. We apply
Lemma 5 to the sequence {ϕν} with thisM . Let μ, τ be any parameters with the property
asserted in that lemma and let ψν(t) = ϕν(μt + τ ). We have again the formulae (47)
and (48).
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We shall deduce from H the existence of polynomials x(t), y(t) ∈ Z[t] such that
F
(
x(t), y(t)

) = f (μt + τ ). This suffices to prove the theorem. Indeed the polynomials

X(t) = x
( t − τ

μ

)
, Y (t) = y

( t − τ

μ

)
satisfy (57) and on one hand

μ|x|X,μ|y|Y ∈ Z[t],
on the other hand, if X, Y are linearly independent, we have by the choice ofM

MX,MY ∈ Z[t].
Since (μ,M) = 1 we get X, Y ∈ Z[t].

IfX, Y are linearly dependent, thenF
(
X(t), Y (t)

) = f (t) = C0(f )f0(t)
3,C(f0) = 1

and

X(t) = ξζ−1f0(t), Y (t) = ηζ−1f0(t), ξ, η, ζ ∈ Z, (ξ, η, ζ ) = 1;
F(ξ, η) = C(f )ζ 3, ζ |μ|f0|.

If the above holds for all pairs 〈μi, τ i〉 of the sequence mentioned in the last assertion
of Lemma 5, then, using the obvious notation, we infer from (μi, μh) = 1 that either
|ζi | �= |ζh| for i �= h or there exists an i with |ζi | = 1. In the former case since |ζi | � μ|f0|

i

the number of distinct |ζi | � Z is Ω
(Z1/|f0|n

logZ

)
, which contradicts Lemma 7. Therefore,

the latter case holds and Xi, Yi ∈ Z[t].
In order to deduce the existence of x(t), y(t) we shall consider successively the cases

Δ = 1, Δ < 0, Δ > 1.
If Δ = 1, by (47), (48) and Lemma 5, H implies the existence for every t1 ∈ Zr and

every m prime to f (μt1 + τ ) of a t2 ≡ t1 modm such that
|ψν(t2)|
C(ψν)

are distinct primes

not dividing B (1 � ν � n).
On the other hand, since a unimodular transformation ofG does not affect the condition

(56), we can assume G(x, y) = xy.
By the assumption of C there exist integers x, y such that

F(x, y) = f (μt2 + τ )

and it follows from (47), (48), (54) and (55) that for suitable integers ci and nonnegative
integers αiν (0 � i � 2, 1 � ν � n)

aix + biy = ci
n∏
ν=1

(ψν(t2)

C(ψν)

)αiν
,(58)

c0c1c2 = B sgn l, α0ν + α1ν + α2ν = eν.(59)

The set S of systems
[{ci}, {αiν}] satisfying (59) is finite. It follows from (58) that

(60)
∏
s∈S
Ds(t2) = 0,



1176 J. Prime numbers

where for s = [{ci}, {αiν}]:
Ds(t) = det[ai, bi, Ψis(t)]0�i�2, Ψis(t) = ci

n∏
ν=1

( ψν(t)
C(ψν)

)αiν
.

Since Ψis(t2) ≡ Ψis(t1)modm, Ds(t2) ≡ Ds(t1)modm and (60) gives∏
s∈S
Ds(t1) ≡ 0 modm.

The latter congruence holds for all m prime to f (μt1 + τ ), hence

f (μt1 + τ )
∏
s∈S
Ds(t1) = 0

and since t1 is an arbitrary integral vector

f (μt + τ )
∏
s∈S
Ds(t) = 0

identically. However f (μt + τ ) �= 0, thus there exists an s ∈ S such that

Ds(t) = 0.

By (56) the rank of the matrix [ai, bi]0�i�2 is two, thus the system of equations

aix + biy = Ψis(t) (0 � i � 2)

is soluble in polynomials x, y ∈ Q[t].
Moreover, by Cramer’s formulae∣∣∣∣ai bi

aj bj

∣∣∣∣ x, ∣∣∣∣ai bi
aj bj

∣∣∣∣ y ∈ Z[t] (0 � i � j � 2)

and again by (56) x, y ∈ Z[t]. On the other hand, by (59), (48) and (47)

F(x, y) =
2∏
i=0

(aix + biy) =
2∏
i=0

ci

n∏
ν=1

( ψν(t)
C(ψν)

)αiν = B sgn l
n∏
ν=1

( ψν(t)
C(ψν)

)eν
= l

n∏
ν=1

ψν(t)
eν = f (μt + τ ).

Let us consider now the case Δ �= 1. Then, by Lemma 5 and (47), (48), H implies the
existence for every t1 ∈ Zr and every m prime to Δf (μt1 + τ ) of a t2 ≡ t1 modm such

that the ideals

(
ψν(t2)

)
C(ψν)

(ν � n) are prime in K , distinct and do not divide B. By the

assumption of C there exist integers x, y such that

F(x, y) = f (μt2 + τ )

and it follows from (47), (48), (51) and (55) that for suitable integral ideals a, b and
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nonnegative integers αν, βν (1 � ν � n)

(61)

(a0x + b0y) = a

n∏
ν=1

((
ψν(t2)

)
C(ψν)

)αν
,

(
e(a1x + b1y)+ g +

√
Δ

2
(a2x + b2y)

)
g−1 = b

n∏
ν=1

(
ψν(t2)

C(ψν)

)βν
,

where g =
(
e,
g +√Δ

2

)
,

(62) aNb = (B), αν + βν + βν′ = eν (1 � ν � n),

ν′ is defined in (51). We get

(63)

a0x + b0y = α
n∏
ν=1

ψν(t2)
αν ,

e(a1x + b1y)+ g +
√
Δ

2
(a2x + b2y) = β

n∏
ν=1

ψν(t2)
βν ,

where

(64) (α) = a

n∏
ν=1

C(ψν)
−αν , (β) = gb

n∏
ν=1

C(ψν)
−βν

and by (47) and (62)

(65) αNβ = le.

Since a is integral,Ψ0(t;α, αν) = α
n∏
ν=1
ψν(t)

αν has integral coefficients. On the other

hand, by (51) and (62) αν = αν′ (k < ν � n) and by (65) α ∈ Q, hence

Ψ0(t;α, αν) ∈ Z[t].

Similarly, since b is integral, β
n∏
ν=1
ψν(t)

βν ∈ g[t] and we get

(66) β

n∏
ν=1

ψν(t)
βν = eΨ1(t;β, βν)+ g +

√
Δ

2
Ψ2(t;β, βν),

where

Ψi(t;β, βν) ∈ Z[t] (i = 1, 2).

The equations (63) take the form

(67)
a0x + b0y = Ψ0(t2;α, αν),
aix + biy = Ψi(t2;β, βν) (i = 1, 2).
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For a system s = [α, β, {αν}, {βν}] we put

Ψ0s(t) = Ψ0(t;α, αν), Ψis(t) = Ψi(t;β, βν) (i = 1, 2)

and denote by S the set of all such systems satisfying (62) and (64). If Δ < 0 the set S is
finite. It follows from (67) that

(68)
∏
s∈S
Ds(t2) = 0,

where

Ds(t) = det
[
ai, bi, Ψis(t)

]
0�i�2.

Since Ψis(t2) ≡ Ψis(t1)modm we infer from (68), as in the case Δ = 1 from (60), that
for a suitable s ∈ S the system of equations

aix + biy = Ψis(t) (0 � i � 2)

is soluble in polynomials x, y ∈ Z[t]. By (54), (55), (66), (47), (65) and (51) we get

F(x, y) = (a0x + b0y)N
(
e(a1x + b1y)+ g +

√
Δ

2
(a2x + b2y)

)
e−1

= Ψ0s(t)N
(
eΨ1s(t)+ g +

√
Δ

2
Ψ2s(t)

)
e−1

= α
n∏
ν=1

ψν(t)
ανN

(
β

n∏
ν=1

ψν(t)
βν
)
e−1

= αNβe−1
n∏
ν=1

ψν(t)
αν+βν+βν′ = l

n∏
ν=1

ψν(t)
eν = f (μt + τ ).

IfΔ > 0 the set S is infinite. We can however divide it into finitely many classes assigning
two systems [α, β, {αν}, {βν}] and [α, γ, {αν}, {βν}] to the same class if±γ /β is a totally
positive unit of K . Then every class contains exactly one system satisfying

(69) 1 � β < ε,
where ε > 1 is the fundamental totally positive unit. Denoting the set of all systems
satisfying (62), (64) and (68) by S0 we infer from (67) the existence of a σ ∈ Z such that∏

s∈S0

Dσs(t2) = 0,

where for s = [α, β, {αν}, {βν}]

Dσs(t) =
∣∣∣∣∣∣
a0 b0 Ψ0(t;α, αν)
a1 b1 Ψ1(t; εσβ, βν)
a2 b2 Ψ2(t; εσβ, βν)

∣∣∣∣∣∣ .
Since Dσs(t2) ≡ Dσs(t1)modm for all s we conclude that

(70)
∏
s∈S0

Dσs(t1) ≡ 0 modm

where σ depends on m.
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We have an identity

(71) u
(
eΨ1s(t)+ g +

√
Δ

2
Ψ2s(t)

)
= eΦ1s(t, u)+ g +

√
Δ

2
Φ2s(t, u),

where

Φ1s(t, u) = 1

2

[
u
(

1− g√
Δ

)
+ u−1

(
1+ g√

Δ

)]
Ψ1s(t)+ Δ− g

2

4e

u− u−1

√
Δ

Ψ2s(t),

Φ2s(t, u) = e u− u
−1

√
Δ

Ψ1s(t)+ 1

2

[
u
(

1+ g√
Δ

)
+ u−1

(
1− g√

Δ

)]
Ψ2s(t).

c

Since ε is conjugate to ε−1

Φis(t, ε
σ ) ∈ Q[t] (i = 1, 2)

and by (71)

Ψi(t; εσβ, βν) = Φis(t, εσ ) (i = 1, 2).

The congruence (70) takes the form

(72)
∏
s∈S0

Es(t1, ε
σ ) ≡ 0 modm,

where

(73) Es(t, u) =
∣∣∣∣∣∣
a0 b0 Ψ0s(t)

a1 b1 Φ1s(t, u)

a2 b2 Φ2s(t, u)

∣∣∣∣∣∣ .
However uEs(t, u) ∈ Q[t, u] and hence u|S0| ∏

s∈S0

Es(t1, u) ∈ Q[u].
c

Since the congruence (72) is soluble for all m prime to Δf (μt1 + τ ), it follows from
Theorem 6 of [15] that the equation

f (μt1 + τ )
∏
s∈S0

Es(t1, ε
σ ) = 0

is soluble in integers σ . Thus for every t1 ∈ Zr either f (μt1+ τ ) = 0 or f (μt1+ τ ) �= 0
and there exist a σ ∈ Z and an s =[α, β, {αν}, {βν}] ∈ S0 such that Es(t1, ε

σ ) = 0.

In the latter case it follows from (71) and (73) that∣∣∣∣∣∣∣∣∣∣∣

a0 b0 Ψ0s(t1)

ea1 + g +
√
Δ

2
a2 eb1 + g +

√
Δ

2
b2 εσβ

n∏
ν=1
ψν(t1)

βν

ea1 + g −
√
Δ

2
a2 eb1 + g −

√
Δ

2
b2 ε−σ β ′

n∏
ν=1
ψν(t1)

βν′

∣∣∣∣∣∣∣∣∣∣∣
= −e√ΔEs(t1, ε

σ ) = 0
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and εσβ
n∏
ν=1
ψν(t1)

βν satisfies the quadratic equation

Lz2 −KΨ0s(t1)z− L′Nβ
n∏
ν=1

ψν(t1)
βν+βν′ = 0,

where β ′, L′ are conjugate to β, L, respectively,

(74)

L =
∣∣∣∣∣∣

a0 b0

ea1 + g −
√
Δ

2
a2 eb1 + g −

√
Δ

2
b2

∣∣∣∣∣∣ ,

K =

∣∣∣∣∣∣∣∣
ea1 + g +

√
Δ

2
a2 eb1 + g +

√
Δ

2
b2

ea1 + g −
√
Δ

2
a2 eb1 + g −

√
Δ

2
b2

∣∣∣∣∣∣∣∣
Since e[a0, b0] �= 0 we have L �= 0 by (56), and

(75) εσβ

n∏
ν=1

ψν(t1)
βν � ‖t1‖|f |

where denotes the maximum modulus of the conjugates and the constant in the symbol�
depends on F, f, μ, τ , s.

On the other hand, by (47), (51), (62), (65) and (69)

β

n∏
ν=1

ψν(t1)
βν � ‖t1‖|f |/2.

Since f (μt1 + τ ) �= 0 whence by (64)∣∣∣∣N(β n∏
ν=1

ψν(t1)
βν
)∣∣∣∣� Ngb� 1

we get

β−1
n∏
ν=1

ψν(t1)
−βν < ‖t1‖|f |/2.

This together with (75) implies

ε|σ | = εσ � ‖t1‖3|f |/2, |σ | � 3

2
|f | log ‖t1‖

log ε
+ �,

where � is a constant depending on F, f, μ, τ but independent of s (S0 is finite).
Let us choose now a positive integer T so large that

(76) 2T + 1 > |f |(|S0| + 1)
(

3|f | log T

log ε
+ 2� + 1

)
.
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If t1 runs through all integral vectors satisfying ‖t1‖ � T , σ runs through integers satis-
fying

|σ | � 3

2
|f | log T

log ε
+ �.

The number of vectors in question is (2T + 1)r , the number of integers does not exceed

3|f | log T

log ε
+ 2� + 1, hence there is an integer σ0 that corresponds to at least

(2T + 1)r
(

3|f | log T

log ε
+ 2� + 1

)−1

different vectors t1 satisfying ‖t1‖ � T . By (76) we get more than |f |(|S0| + 1) ×
(2T + 1)r−1 such vectors satisfying the equation

f (μt1 + τ )
∏
s∈S0

Es(t1, ε
σ0) = 0.

Since by (62), (71) and (73) the degree ofEs(t, εσ0) does not exceed |f |, the degree of the
polynomial on the left hand side does not exceed |f |(|S0| + 1) and Lemma 8 shows that

f (μt + τ )
∏
s∈S0

Es(t, ε
σ0) = 0

identically. Therefore, there exists an s ∈ S0 such that Es(t, εσ0) = 0 and by (56) the
system of equations

a0x + b0y = Ψ0s(t),

aix + biy = Φis(t) (i = 1, 2)

is soluble in polynomials x, y ∈ Z[t]. By (54), (55), (71), (66), (47), (62), (65) and (51)
we get for these polynomials

F(x, y) = (a0x + b0y)N

(
e(a1x + b1y)+ g +

√
Δ

2
(a2x + b2y)

)
e−1

= Ψ0s(t)N

(
ε−σ0e(a1x + b1y)+ ε−σ0

g +√Δ
2

(a2x + b2y)

)
e−1

= Ψ0s(t)N

(
eΨis(t)+ g +

√
Δ

2
Ψ2s(t)

)
e−1 = f (μt + τ )

and the proof is complete. 	


Remark. For the proof of a more general result mentioned in the introduction one needs
more general versions of Lemmata 2, 5 and 7 and Theorem 7 of [16] instead of Theorem 6
of [15]. In the difficult case of an irreducible form F with all zeros real Theorem 7 of [16]
does not suffice, but Skolem’s conjecture on exponential congruences would do (see [18]).
One could avoid this step in the proof provided it were known that the number of vectors t

satisfying ‖t‖ � T and the conditions of Lemma 4 grows faster than T r−1(log T )|F |. For
r = 1 much more has been conjectured by Bateman and Horn [1].
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4.

The next lemma is a refinement of Lemma 1 of [13].

Lemma 10. Let P ∈ Q[t, u] be a polynomial such that for no ϕ ∈ Q(t)

P
(
t, ϕ(t)

) = 0

identically. Then there exists a t1 ∈ Zr such that for any M ∈ N there exists an m ∈ N

prime toM such that for all t ∈ Zr , t ≡ t1 modm and all u ∈ Q

P(t, u) �= 0.

Proof. Following the proof of Lemma 1 in [13] we takem = q1 · · · qk , where in the notation
of that paper the primes qi are chosen not to divideM . 	


Lemma 11. Let G,H ∈ Q[x, y] be relatively prime forms, p, gi, hi ∈ Q[t] (i � I )

arbitrary polynomials, p �= 0.
If for every t1 ∈ Zr and for every integerm prime to p(t) there are an i � I , a t2 ∈ Zr ,

t2 ≡ t1 modm and x, y ∈ Q satisfying

(77) G(x, y) = gi(t2), H(x, y) = hi(t2)

then there exist a j � I and polynomials X, Y ∈ Q[t] such that

G(X, Y ) = gj , H(X, Y ) = hj .

Proof. If G(x, y)− gi(t), H(x, y)− hi(t) had a common factor d(x, y, t) �= const then
the leading forms of d with respect to x, y would divide G(x, y) and H(x, y). Thus for
each i � I (

G(x, y)− gi(t),H(x, y)− hi(t)
) = 1.

LetRi(t, x), Si(t, y) be the resultants ofG(x, y)−gi(t) andH(x, y)−hi(t)with respect
to y and x respectively. It follows from the construction of resultants that the leading
coefficients of Ri in x and of Si in y are equal to the resultants of G(1, z), H(1, z) and of
G(z, 1), H(z, 1) respectively. Hence these leading coefficients are independent of t . Let

Ri(t, x) = Ri0(t, x)
ri∏
�=1

(
x − Ri�(t)

)
,(78)

Si(t, y) = Si0(t, y)
si∏
σ=1

(
y − Siσ (t)

)
,(79)

where Ri0 and Si0 have no factor linear in x or y respectively. If for some triple (i, �, σ )
with i � I , 1 � � � ri , 1 � σ � sic

G(Ri�, Siσ ) = gi and H(Ri�, Siσ ) = hi,
the lemma follows.
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Therefore, suppose that for each triple (i, �, σ ) in question

G(Ri�, Siσ ) �= gi or H(Ri�, Siσ ) �= hi.
Then

(80) Ti�σ =
(
G(Ri�, Siσ )− gi

)2 + (H(Ri�, Siσ )− hi)2 �= 0c

and we set in Lemma 10

(81) P(t, u) = p(t)
I∏
i=1

Ri0(t, u)Si0(t, u)

ri∏
�=1

si∏
σ=1

Ti�σ (t).

By that lemma withM = 1 there exist anm ∈ N and a t1 ∈ Zr such that if t ≡ t1 modm
and u ∈ Q we have

(82) P(t, u) �= 0.

In particular, taking t = t1 we get p(t1) �= 0. Applying Lemma 10 again with
M = p(t1) we infer the existence of an integer m with the above property satisfying(
m,p(t1)

) = 1. However now by the assumption there exist an i � I , a t2 ≡ t1 modm
and x, y ∈ Q such that (77) holds. By the fundamental property of resultants we have

Ri(t, x) = 0 = Si(t, y)
and in view of (78), (79), (81) and (82) there exist �, σ such that 1 � � � ri , 1 � σ � si ,

x = Ri�(t2), y = Siσ (t2).

It follows from (77) and (80) that

Ti�σ (t2) = 0,

contrary to (81) and (82). 	


Remark. Lemma 11 extends to any system of formsG1, . . . ,Gk ∈ Q[x1, . . . , xk]without
a common non-trivial zero.

Proof of Theorem 3. If f = 0 the theorem is trivially true. If f �= 0 let f (t0)=e �=0. We
set f0(t) = f (et + t0) and find as in the proof of Corollary to Lemma 3 that the fixed
divisor of f0(t) equals C(f0). (If the fixed divisor of f equals C(f ) we can take directly
e = 1, t0 = 0.) Let K be the least field over which F factorizes into two coprime factors
G, H and letc

(83) f0(t) = l
n∏
ν=1

ϕν(t)
eν

be a factorization of f over K into irreducible factors such that ϕν are distinct and have
the coefficient of the first term in the inverse lexicographical order equal to 1. Since the
fixed divisor of f0(t) equals C(f0) the polynomials ϕν satisfy (19) in virtue of Lemma 9.
Let μ, τ be parameters whose existence for {ϕν} and μ = 1 is asserted in Lemma 5 and
let

ψν = ϕν(μt + τ ) (1 � ν � n).
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It follows that

(84) f0(μt + τ ) = l
n∏
ν=1

ψν(t)
eν

and

(85) B = |l|
n∏
ν=1

C(ψν)
eν = C(f0(μt + τ )

) ∈ N,

where an ideal in Q is identified with its positive generator. Consider first the case where
K = Q and let

(86) f0(μt + τ ) = gi(t)hi(t) (1 � i � I )

be all possible factorizations of the left hand side into two factors with integral coefficients.
H implies that if

(
m, f0(μt1+τ )

) = 1 there exist an i � I , a t2 ≡ t1 modm and x, y ∈ Z

such that

(87) G(x, y) = gi(t2), H(x, y) = hi(t2).

Indeed, by (84) and (85), the condition
(
m, f0(μt1 + τ )

) = 1 implies(
m,

n∏
ν=1

ψν(t1)

C(ψν)

)
= 1

and, by Lemma 5, H implies the existence of a t2 ∈ Zr , t2 ≡ t1 modm such that
|ψν(t2)|
C(ψν)

(ν � n) are distinct primes not dividing B. By the assumption of D there exist x, y ∈ Z

such that

G(x, y)H(x, y) = F(x, y) = f0(μt2 + τ )

and it follows from (84) and (85) that for some a, b, αν, βν ∈ Z, αν � 0, βν � 0, we have

G(x, y) = a
n∏
ν=1

(ψν(t2)

C(ψν)

)αν
, H(x, y) = b

n∏
ν=1

(ψν(t2)

C(ψν)

)βν
,

ab = B sgn l, αν + βν = eν (1 � ν � n).

Taking

gi(t) = a
n∏
ν=1

( ψν(t)
C(ψν)

)αν
, hi(t) = b

n∏
ν=1

( ψν(t)
C(ψν)

)βν
c

we get (86) and (87). Now we apply Lemma 11 with p(t) = f0(μt + τ ) and we get the
existence of X0, Y0 ∈ Q[t] satisfying

G(X0, Y0) = gj , H(X0, Y0) = hj
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for some j � I . Setting

(88) X(t) = X0

( t − eτ − t0

eμ

)
, Y (t) = Y0

( t − eτ − t0

eμ

)
,

we get by (86)

F
(
X(t), Y (t)

) = gj( t − eτ − t0

eμ

)
hj

( t − eτ − t0

eμ

)
= f0

( t − t0

e

)
= f (t).

Consider now the case where K is an imaginary quadratic field with discriminantΔ. Then

(89) F(x, y) = v

w
NΦ(x, y),

where v,w ∈ Z, (v,w) = 1, Φ ∈ K[x, y] has integral coefficients and

(90)
(
Φ(x, y),Φ ′(x, y)

) = 1,

where Φ ′ is conjugate to Φ over Q(x, y). Let

(91)
w

v
f0(μt + τ ) = ηiη′i (t) (i � I )

be all the factorizations of the left hand side into two conjugate polynomials with integral
coefficients in K . Since K has finitely many units the number of such factorizations is
finite. H implies that if

(
m,Δf0(μt1+ τ )

) = 1 there exist an i � I , a t2 ≡ t1 modm and
x, y ∈ Z such that

(92) Φ(x, y) = ηi(t2).

Indeed, by (84) and (85), we have

(93)
(w
v
f0(μt + τ )

)
=
(w
v
B
) n∏
ν=1

(
ψν(t)

)eν
C(ψν)eν

.

Since, by Lemma 5,
n∏
ν=1

Nψν(t)

NC(ψν)
has the fixed divisor 1,

n∏
ν=1
ψν(t)

eν has the fixed divisor

n∏
ν=1
C(ψν)

eν . On the other hand, for every t ∈ Zr

w

v
f0(μt + τ ) = NΦ(x, y) ∈ Z,

hence

(94)
w

v
A ∈ Z.

By (84) and (85) the condition
(
m,Δf0(μt1 + τ )

) = 1 implies(
m,Δ

n∏
ν=1

Nψν(t1)

NC(ψν)

)
= 1

and, by Lemma 5, H implies the existence of a t2 ≡ t1 modm such that

(
ψν(t2)

)
C(ψν)

(ν � n)
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are distinct prime ideals not dividing wB. By the assumption of D there exist x0, y0 ∈ Z

such that

(95) NΦ(x0, y0) = w
v
F(x0, y0) = w

v
f (μt2 + τ )

and it follows from (93) and (94) that for an integral ideal b and some integers αν � 0

(
Φ(x0, y0)

) = b

n∏
ν=1

(
ψν(t2)

)αν
C(ψν)αν

,

(
b,

n∏
ν=1

(
ψν(t2)

)
C(ψν)

)
= 1.

On the other hand, in full analogy with (51), we can assume that for a certain k ≡ nmod 2

(96) ψ ′ν = ψν′ , eν = eν′ , ν′ = ν (ν � k), ν′ = ν − (−1)n−ν (ν > k).

Hence

NΦ(x0, y0) = Nb

n∏
ν=1

(
ψν(t2)

C(ψν)

)αν+αν′
,

(
Nb,

n∏
ν=1

(
ψν(t2)

)
C(ψν)

)
= 1

and a comparison with (93) gives

(97) αν + αν′ = eν (1 � ν � n).

Now let us put

(98) η(t) = Φ(x0, y0)

n∏
ν=1

(
ψν(t)

ψν(t2)

)αν
.

The polynomial η(t) has integral coefficients in K since

C(η) = (Φ(x0, y0)
) n∏
ν=1

C(ψν)
αν(

ψν(t2)
)αν = b.

Moreover, by (95), (96), (97) and (84)

η(t)η′(t) = NΦ(x0, y0)

n∏
ν=1

(
ψν(t)ψ

′
ν(t)

ψν(t2)ψ ′ν(t2)

)αν
= w
v
f0(μt2 + τ )

n∏
ν=1

(
ψν(t)

ψν(t2)

)αν+αν′
= w
v
f0(μt2 + τ )

n∏
ν=1

(
ψν(t)

ψν(t2)

)eν
= w
v
f0(μt + τ ).

Hence η(t) = ηi(t) for an i � I and (92) follows immediately from (98). Now we apply
Lemma 11 with p(t) = Δf0(μt + τ ),

G(x, y) = Φ(x, y)+Φ ′(x, y), H(x, y) = (Φ(x, y)−Φ ′(x, y))/√Δ
and we get the existence of X0, Y0 ∈ Q[t] satisfying

(99) Φ(X0, Y0) = ηj , Φ ′(X0, Y0) = η′j
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for a j � I . Using again the transformation (88) we get by (89) and (90)

F
(
X(t), Y (t)

) = w
v
ηj

( t − eτ − t0

eμ

)
η′j
( t − eτ − t0

eμ

)
= w
v
f0

( t − t0

e

)
= f (t). 	


Lemma 12. Let k ∈ N be odd, ai(t) ∈ Z[t] (0 � i � k), a0(t) = 1, x(t) ∈ Q[t]. If

(100)
k−1∑
i=0

(
k

i + 1

)
ai(t)x(t)

k−1−i = 0

then x(t) ∈ Z[t].

Proof. Suppose that C(x) /∈ Z. Then for some prime p

ordp C(x) = −c � −1.

The function ordp C(P ) is a valuation of the ring Q[t] (see [6], p. 171). In virtue of the
properties of valuations (100) implies

ordp
(
kC(x)k−1) � min

0<i<k
ordp

((
k

i + 1

)
C(ai)C(x)

k−1−i
)
,

hence for a positive i < k

ordp k − (k − 1)c � ordp

(
k

i + 1

)
− (k − 1− i)c

and

(101) ordp k � ordp

(
k

i + 1

)
+ i.

However (
k

i + 1

)
= k

i + 1

(
k − 1

i

)
thus (101) implies

ordp(i + 1) � i, i + 1 � pi; p = 2,

which is impossible since then the left hand side of (101) is 0. 	


Proof of Theorem 4. Let n = 2αk, k odd. In order to prove the first part of the theorem
let us assume that the fixed divisor of f equals C(f ) and take in the proof of Theorem 3
f0 = f . If k > 1 we take further K = Q, μ = 1, τ = 0,

G(x, y) = x2α + y2α , H(x, y) =
∑

i+j=k−1

x2αi(−y2α )j
and we get from (86) and (88) that for some polynomials g, h ∈ Z[t] and X, Y ∈ Q[t]

g(t)h(t) = f (t),
G(X, Y ) = g, H(X, Y ) = h.(102)
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However

H(X, Y ) =
k−1∑
i=0

(
k

i + 1

)
G(X, Y )i(−X2α )k−1−i

hence taking in Lemma 12

ai(t) = g(t)i (0 � i < k − 1), ak−1(t) = −h(t), x(t) = −X(t)2α

we get from (102) that

−X(t)2α ∈ Z[t].
Thus X(t) ∈ Z[t] and by symmetry Y (t) ∈ Z[t]. Moreover

X(t)n + Y (t)n = G(X, Y )H(X, Y ) = f (t).
If k = 1 we take in the proof of Theorem 3 K = Q(ζ4),

(103) Φ(x, y) = x2α−1 + ζ4y2α−1
, v/w = 1,

where ζq is a primitive q-th root of unity.
By Lemma 5 μ factorizes over K into prime ideals of degree 2. By (92) and (99) forc

some polynomials η ∈ Z[ζ4, t] and X0, Y0 ∈ Q[t]
η(t)η′(t) = f (μt + τ ), η′ conjugate to η over Q(t),(104)

Φ
(
X0(t), Y0(t)

) = η(t).(105)

Let us set

(106) ϑ(t) = η
( t − τ

μ

)
, X(t) = X0

( t − τ

μ

)
, Y (t) = Y0

( t − τ

μ

)
.

We have

μ|η|ϑ(t) ∈ Z[ζ4, t]
hence, if p is a prime ideal of K in the denominator of C(ϑ), p |μ and p = p′. However
by (104)

ϑ(t)ϑ ′(t) = f (t), NC(ϑ) = C(f ) ∈ Z

hence ordp C(ϑ) = 1
2 ordp C(f ) � 0 and

ϑ(t) ∈ Z[ζ4, t].
Now (103), (105) and (106) imply

X(t)2
α−1
, Y (t)2

α−1 ∈ Z[t]; X(t), Y (t) ∈ Z[t]
and we get by (104)

X(t)2
α + Y (t)2α = f (t).

The proof of the first part of the theorem is complete. In order to prove the second part
it is enough to consider the case n > 2 (for n = 2 the assertion is contained in Theorem 1).
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Let p be a prime satisfying

(107) p ≡ 1 mod 2α+1, p �≡ 1 mod 2n if n �= 2α

and let us choose an integer c such that

cn + 1 ≡ 0 mod pn, c = −1 if α = 0.

Consider now the polynomial

(108) f (t) = u(t)n + v(t)n,
where

u(t) = t (t − 1) · · · (t − p + 1)

p
, v(t) = cu(t)+ pn−1.

It is easily seen that f (t) ∈ Z[t] and

(109) |f | =
{
pn if α > 0,

p(n− 1) if α = 0.c

Moreover, since polynomials u(t), v(t) are integer-valued the equation xn+ yn = f (t) is
soluble in x, y ∈ Z for all t ∈ Z. On the other hand, suppose that

(110) X(t)n + Y (t)n = f (t), X, Y ∈ Z[t].
Since

X(t)n + Y (t)n =
n−1∏
i=0

(
X(t)− ζ 2i+1

2n Y (t)
)

we have

|f | �
{
nmax{|X|, |Y |} if α > 0,

(n− 1)max{|X|, |Y |} if α = 0.

Hence by (109)

(111) max{|X|, |Y |} � p.

Taking i = 0, 1, . . . , p − 1 we get u(i) = 0 hence

(112) X(i)n + Y (i)n = pn(n−1).

If n = 2α , α > 1 or n = 3 by special cases of Fermat’s last theorem (111) implies

(113) X(i)Y (i) = 0 (0 � i < p).

If n > 3, by Zsigmondy’s theorem either X(i)Y (i) = 0 or X(i) = ±Y (i) or
X(i)n + Y (i)n has the so-called primitive prime factor ≡ 1 mod 2n. The last two pos-
sibilities are incompatible with (107) and (112) hence (113) holds for all n > 2. By (112)
if X(i) = 0, Y (i) = pn−1 for α = 0, Y (i) = ±pn−1 for α > 0. In view of symmetry be-
tweenX and Y we may assume that there is a set S ⊂ {0, 1, . . . , p−1}with the following
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properties

|S| � p + 1

2(n, 2)
, X(i) = 0, Y (i) = pn−1 for i ∈ S.

(If n is even we can replace Y by −Y .) Let

P(t) =
∏
i∈S
(t − i).

It follows that

(114) |P | � p + 1

2(n, 2)
, X(t) ≡ 0 mod P(t), Y (t) ≡ pn−1 mod P(t)

and we get from (108) and (110)

Y (t)n ≡ v(t)n mod P(t)n.

Since Y (t) ≡ v(t)mod P(t) and (v, P ) = 1 we obtain

Y (t) ≡ v(t)mod P(t)n.

However by (111)

max{|Y |, |v|} � p < n|P |
hence

Y (t) = v(t) /∈ Z[t]. 	
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Commentary on K: Analytic number theory

by Jerzy Kaczorowski

1. Papers K1 and K4 concern the following closely related topics: values of Dirichlet
L-functions at 1, class numbers of quadratic number fields, existence of the Siegel zero
and character sums. Problems related to them occupy central position in number theory
and attracted attention of many leading mathematicians.

Study of the ideal class group goes back to C. F. Gauss who used the language of binary
quadratic forms (like in K1). Let d be a fundamental discriminant. Famous Dirichlet class
number formula relates h(d), the class number of Q(

√
d), to L(1, χd), where

χd(n) =
(
d

n

)
is the Kronecker symbol. For instance if d < −4 we have

h(d) = π−1
√
dL(1, χd).

We refer to W. Narkiewicz [19] for the basic theory. The fact that the size of L(1, χ) is
related to the exceptional zero was first observed by H. Hecke, who proved that if such
a zero does not exist then L(1, χd) � (log |d|)−1, see e.g. [17]. In particular for d < 0
we have then h(d)� √|d|(log |d|)−1. The main theorem of K1 makes this relation very
explicit, see also D. Goldfeld [10] and A. Granville, H. M. Stark [12]. E. Landau [17]
introduced the idea of twisting L-functions by Dirichlet characters which proved to be
very useful later on. Using it he proved that if L(β, χ) = L(β ′, χ ′) = 0 for certain real β
and β ′ and two primitive real characters χ (mod |d|) and χ ′ (mod |d ′|), then min(β, β ′) �
1 − c(log(|dd ′|))−1, c being a positive constant. Hence if real zeros exist they are very
rare. This is a simple instance of a general repulsion principle saying roughly that if an
L-function has a real zero close to 1 then for many other L-functions with comparable
conductors such zeros cannot exist. This was mastered in papers by M. Deuring [7] and
H. Heilbronn [16] and is known under the name the “Deuring–Heilbronn phenomenon”.
Yu. V. Linnik [18] exploited this in a clever way in his famous work on the least prime in
an arithmetic progression. C. L. Siegel [24] proved that

L(1, χ)� |d|−ε
for every primitive character χ (mod |d|) and every positive ε. This implies that

h(d)� |d|1/2−ε
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as d → −∞. In particular, for every positive integer h0 there are finitely many quadratic
imaginary fields with the class number equal to h0. Unfortunately Siegel’s theorem is
ineffective and consequently it cannot be used for determining fields with a given class
number. In particular, it does not help in finding all fundamental discriminants d < 0 with
h(d) = 1. This was done by K. Heegner [15] and H. M. Stark [25], who used arithmetic
of elliptic curves, and independently by A. Baker [2], who used his theory of linear form
in logarithms of algebraic numbers. See also [26]. Basing on ideas by J. Friedlander [9]
and D. Goldfeld [11], B. Gross and D. Zagier [13] gave effective lower estimate for h(d).
Their method uses elliptic curves whose L-functions have central zero of the proper order.
Choosing an elliptic curve of rank 3 and conductor 5077, J. Oesterlé [20] proved that for
a negative fundamental discriminant

h(d) � 1

55

∏
p |d

(
1− 2√

p

)
log |d|.

Assuming the Modified Generalized Riemann Hypothesis (zeros are all on the critical
line or on the real axis) lower estimates for L(1, χd) and h(d) can be much improved,
see P. Sarnak, A. Zaharescu [23]. For instance assuming MGRH for all L-functions of
elliptic curves one has L(1, χd) � |d|−2/5−ε, where χd(37) = −1, with an effective
implied constant. Siegel’s theorem can be also improved making other assumptions on the
distribution of zeros of L-functions. B. Conrey and H. Iwaniec [6] proved that

h(d)� √|d|(log |d|)−A

for some constantA > 0 if the gap between consecutive zeros on the critical line is smaller
than the average for sufficiently many pairs of zeros.

Connections between class numbers of quadratic number fields and character sums are
well known. For instance if d < −4 is a fundamental discriminant, then

h(d) = − 1

|d|
∑

0<k<|d|
kχd(k) = 1

2− χd(2)
∑

0<k<|d|/2
χd(k),

see eg. [5]. In K4 sums of type

(1)
∑

q1|d|<n<q2|d|
χd(n)

are studied. It is known ([27]) that they can be expressed as linear combinations of gener-
alized Bernoulli numbers. Of particular interest are cases when such a linear combination
reduces just to a single term since then we have a clear expression of h(Ed) for certain
integerE in terms of a short sum of the form (1). As a result one obtains amazing relations,
as for instance the following one

h(12d) =
∑

(1/12)|d|<n<(1/10)|d|
χd(n)

which holds for every fundamental discriminant |d| ≡ 11 or 59 (mod 60).
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2. The paper K3 is devoted to the study of the difference

E(x) =
∑
n�x
(r(n))2 − 4x log x − cx,

where c is a suitable constant and r(n) stands for the number of representations of n as a
sum of two squares of integers. Classical result by W. Sierpiński is thatE(x)� x3/4 log x
as x → ∞, whereas S. Ramanujan stated without proof that E(x) � x3/5+ε for every
positive ε. Up to now (2005) the best known upper estimate of E(x) is still the one due to
W. G. Nowak: E(x)� x1/2(log x)8/3(log log x)1/3. The main result from K3, saying that
E(x) = Ω(x3/8), is the best known lower estimate of this function. The method of proof
used in K3 is an adaptation for the specific situation of the r(n) function of a general method
developed by R. Balasubramanian and K. Ramachandra [3] and R. Balasubramanian,
K. Ramachandra and M. V. Subbarao [4] for treating omega estimates for summatory
functions of coefficients of Dirichlet series satisfying appropriate analytic conditions.

3. The paper K2 concerns a multiplicative property of the partition function p(n).
Classical result on p(n) due to G. H. Hardy and S. Ramanujan [14] states that

p(n) = (4√3 λn)
−1 exp(π

√
2/3 λn)+O(exp(π

√
2/3 λn)λ

−3
n ) (n→∞),

whereλn=√n− (1/24).The full asymptotic expansion was found by H. Rademacher [21].
For a variety of results concerning partition function see G. E. Andrews [1] and
H. Rademacher [22].

P. Erdős and A. Ivić conjectured thatω(
N∏
m=1

p(m))→∞ asN →∞. This was proved

by A. Schinzel, the proof appeared in [8]. Paper K2 gives a quantitative solution of the
Erdős–Ivić problem.
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On Siegel’s zero
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1.

Let d be fundamental discriminant, and let

χ(n) =
(d
n

)
(Kronecker’s symbol).

It is well known (see [1]) that L(s, χ) has at most one zero β in the interval
(1 − c1/ log |d|, 1) where c1 is an absolute positive constant. The main aim of this pa-
per is to prove

Theorem 1. Let d ,χ andβ have the meaning defined above. Then the following asymptotic
relation holds

(1) 1− β = 6

π2

L(1, χ)∑′ 1/a

(
1+O

( (log log |d|)2
log |d|

)
+O((1− β) log |d|))

c

where
∑′ is taken over all quadratic forms (a, b, c) of discriminant d such that

(2) −a < b � a < 1
4

√|d|,
and the constants in the O-symbols are effectively computable.

In order to apply the above theorem we need some information about the size of the
sum

∑′ 1/a. This is supplied by the following.

Theorem 2. If (a, b, c) runs through a class C of properly equivalent primitive forms of
discriminant d , supposed fundamental, then

∑
1
4
√|d|�|a|�b>−|a|
(a,b,c)∈C

1

|a| �

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

m0
if d < 0,

log ε0

log
( 1

2

√
d − 1

) + 4√
d

if d > 676,
c

where m0 is the least positive integer represented by C and ε0 is the least totally positive
unit of the field Q

(√
d
)
.
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Theorems 1 and 2 together imply

Corollary. For any η > 0 and |d| > c(η) (d fundamental) we have

1− β �

⎧⎪⎪⎪⎨⎪⎪⎪⎩
( 6

π
− η
) 1√|d| if d < 0,

( 6

π2 − η
) log d√|d| if d > 0,

where c(η) is an effectively computable constant.

Remark. In the case d < 0, the constant 6/π could be improved by using the knowledge
of all fields with class number � 2.

Similar inequalities with 6/π and 6/π2 replaced by unspecified positive constants
have been claimed by Haneke [3], however, as pointed out by Pintz [8], Haneke’s proof
is defective and when corrected gives inequalities weaker by a factor log log |d|. Pintz
himself has proved the first inequality of the corollary with the constant 6/π replaced by
12/π (see [8]).

For d < 0, the first named author [2] has obtained (1) with a better error term by an
entirely different method. M. Huxley has also found a proof in the case d < 0 by a more
elementary method different, however, from the method of the present paper.

The authors wish to thank Scuola Normale Superiore which gave them the opportunity
for this joint work.

2.

The proofs of Theorems 1 and 2 are based on several lemmata.

Lemma 1. Let f (d) = (log |d|/ log log |d|)2. Then∑
Na� 1

4
√|d|f (d)

1

Na
= π

2

6

∑′ 1

a

(
1+O

( (log log |d|)2
log |d|

))
,

where the left hand sum goes over all ideals a ∈ Q(
√
d) with norm � 1

4

√|d|f (d) and the
constant in the O-symbol is effectively computable.

Proof. Every ideal a of Q(
√
d) can be represented in the form

a = u
[
a,
b +√d

2

]
where u, a are positive integers and b2 ≡ d (mod 4a) (see [5], Theorem 59). If we impose
the condition that

−a < b � a
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then the representation becomes unique. Since Na = u2a, it follows that

(3)
∑

Na� 1
4
√|d|f (d)

1

Na
=
∑′ 1

a

∑
1�u2�√|d|f (d)/4a

1

u2 +O
( ∑

1
4
√|d|<a< 1

4
√|d|f (d)

1

a

)

=
∑′ 1

a

(π2

6
+O((f (d))−1/2))+O(S).

To estimate the sum S, we divide it into two sums S1 and S2. In the sum S1, we gather all
the terms 1/a such that a has at least one prime power factor

pα > l(d) = d1/21 log log |d|,
pα |a,

and in S2 all the other terms.
Let ν(a) be the number of representations of a as Na where a has no rational integer

divisor > 1. Then ν(a) is a multiplicative function satisfying

ν(pα) =
⎧⎨⎩1+

(
d

pα

)
if p /| d or α = 1,

0 otherwise.

Clearly

S1 �
∑′ 1

a

∑′′
ν(pα)p−α �

∑′ 1

a

∑′′
2p−α

where
∑′′ goes over all prime powers pα with

max
(
l(d),

√|d|/4a) < pα �
√|d|f (d)/4a.

Now, by a well known result of Mertens∑
pα<x

p−α = log log x + c +O((log x)−1)
where c is a constant.

Hence ∑
x<pα<y

= log
( log y

log x

)
+O((log x)−1)

� log y

log x
− 1+O((log x)−1)

= log y/x +O(1)
log x

.

This gives ∑′′
p−α � log f (d)+O(1)

log l(d)
� (log log |d|)2

log |d|c
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and we get

(4) S1 = O
(
(log log |d|)2

log |d|
)∑′ 1

a
.

To estimate S2, we notice that each a occurring in it must have at least

k0 =
⌈

log
( 1

4

√|d|)
log l(d)

⌉
� 10 log log |d|

distinct prime factors. Therefore

S2 �
∑
k�k0

(1/k!)
( ∑
pα<l(d)

ν(pα)p−α
)k
< (1/k0!)σ k0eσ

where

σ =
∑

pα<l(d)

ν(pα)p−α < 2 log log l(d)+O(1)

= 2 log log |d| +O(1).
Now, Stirling’s formula gives k0! > kk0

0 exp(−k0). Hence

log S2 � −k0 log k0 + k0
(
(log σ)+ 1

)+ σ
� −k0

(
log 10+ log log log |d| − log 2− log log log |d| − 1

)+ σ
< −3 log log |d| +O(1)

and

(5) S2 = O
(
(log |d|)−3).

The lemma now follows from equations (3), (4) and (5). 	


The next lemma gives the growth conditions for the Riemann zeta-function and Dirich-
let L-functions on the imaginary axis.

Lemma 2. For all real t

|ζ(it)| � (|t |1/2 + 1
)

log
(|t | + 2

)
(6)

|L(it, χ)| � √|d|(|t |1/2 + 1
)

log
(|d|(|t | + 2)

)
.(7)

Proof. If |t | > t0, the estimate

|ζ(it)| � |t |1/2 log |t |
holds (see [10], p. 19). Since ζ(s) has no pole on the imaginary axis, we have

|ζ(it)| � 1 for |t | � t0
and the inequality (6) now follows.
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To prove (7), we note that

|L(1− it, χ)| � log
(|d|(|t | + 2)

)
(see [1], p. 17, Lemma 2 with q = |d|, x = 2|d|(|t | + 2)).

Now, by the fundamental equation for L-functions

|L(it, χ)| = |L(1− it, χ)| |d|1/2∣∣Γ ( 1
2 it + A)Γ −1( 1

2 − 1
2 it + A)

∣∣
where

A = 1
4

(
1− χ(−1)

)
.

Using the formula

|Γ (s)| = √2π |t |σ−1/2 exp(− 1
2πt)

(
1+O(|t |−1)

)
valid for s = σ + it , 0 � σ � 1

2 , |t | > 1 (see [9], p. 395), equation (7) follows, upon
noting that ∣∣Γ ( 1

2 t + A)Γ −1( 1
2 − 1

2 t + A)
∣∣� 1 for |t | < 1. 	


Proof of Theorem 1. By the standard argument ([4], p. 31)

1

2πi

∫ 2+i∞

2−i∞
ys

s(s + 2)(s + 3)
ds =

⎧⎪⎨⎪⎩
1

6
− y

−2

2
+ y

−3

3
if y � 1,

0 if 0 < y < 1.

Since for Re(s) > 1

ζ(s)L(s, χ) =
∑
(Na)−s ,

it follows that for any x > 0

I = 1

2πi

∫ 2+i∞

2−i∞
ζ(s + β)L(s + β, χ) xs

s(s + 2)(s + 3)
ds

=
∑
Na�x

(Na)−β
(

1

6
− (Na)2

2x2 + (Na)3

3x3

)
.

c

Choose x = 1
4

√|d| f (d) with f (d) = (log |d|/ log log |d|)2.
If Na � x, we have

(Na)−β = (Na)−1(1+O((1− β) log |d|)).
Hence

I = 1

6

∑
Na�x

(Na)−1(1+O((1− β) log |d|))
+O

( ∑
Na�x/f (d)

(Na)−1f (d)−2
)
+O

( ∑
x/f (d)�Na�x

(Na)−1
)
,



1204 K. Analytic number theory

and by Lemma 1 (cf. formula (3))

(8) I = 1

6

∑′ 1

a

(
1+O

( (log log |d|)2
log |d|

)
+O((1− β) log |d|)).

c

On the other hand, after shifting the line of integration to Re(s) = −β

(9) I = L(1, χ)x1−β

(1− β)(3− β)(4− β)
+ 1

2πi

∫ −β+i∞

−β−i∞
ζ(s + β)L(s + β, χ) xs

s(s + 2)(s + 3)
ds.

By Lemma 2, the integral on the right does not exceed

O
(
x−β

√|d| log |d|)
and since

x1−β = 1+O((1− β) log |d|)
(3− β)(4− β) = 6+O(1− β)c

we get from (8) and (9)

1− β = 6

π2

L(1, χ)∑′ 1/a

(
1+O

( (log log |d|)2
log |d|

)
+O((1− β) log |d|)). 	


c

3.

Proof of Theorem 2. For d < 0 it is enough to prove that every class contains at most one
form satisfying

(10) −|a| < b � |a| < 1
4

√|d|.
Now, since

|d| = 4ac − b2

we infer from (10) that

a <
√|d| < d/4a � c,

thus every form satisfying (10) is reduced, and it is well known that every class contains
at most one such form.

For d > 0, let us choose in the class C a form(1) (α, β, γ ) reduced in the sense of
Gauss, i.e. such that

(11) β +√d > 2|α| > −β +√d > 0.

(1) β is not to be confused with Siegel’s zero.
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We can assume without loss of generality that α > 0. Now, for any form f ∈ C, there
exists a properly unimodular transformation

T =
(
p r

q s

)
taking (α, β, γ ) into f . The first column of this transformation can be made to consist of
positive rational integers by Theorem 79 of [5]. If f satisfies (10), we infer from

(12) αp2 + βpq + γ q2 = a
that ∣∣∣∣p + β −

√
d

2α
q

∣∣∣∣ = a∣∣∣∣αp + β +
√
d

2
q

∣∣∣∣−1

� 1

4

√
d · 2(√d q)−1 = 1

2
q−1

and by Lemma 16, p. 175 from [5],p/q is a convergent of the continued fraction expansion
for

ω = −β +
√
d

2α
.

From this point onwards, we shall use the notation of Perron’s monograph [7]. Since
by (11)

ω−1 > 1 and 0 > (ω′)−1 > −1,c

ω−1 is a reduced quadratic surd and it has a pure periodic expansion into a continued
fraction. Hence

ω = [0, b1, b2, . . . , bk]
where the bar denotes the primitive period. The corresponding complete quotients form
again a periodic sequence

ων = Pν +
√
d

Qν
, ω0 = ω,

where for all ν � 1, ων is reduced,

(13) ων = ων+k,
and k is the least number with the said property.

Lemma 3. Let [0, b1, b2, . . . , bk] be the continued fraction for ω defined above. Then

∑′′

(a,b,c)∈C

1

|a| � 2√
d

[k,2]∑
ν=2√
d�bν�2

min

(√
d

2
, bν + 1

)

where the sum on the left is taken over all (a, b, c) in the class C satisfying (10).

Proof. If Aj/Bj is the j -th convergent of ω, we have by formula (18), §20 of [7]

(Aν−1Q0 − Bν−1P0)
2 − d(Bν−1)

2 = (−1)νQ0Qν



1206 K. Analytic number theory

which gives on simplification

(14) αA2
ν−1 + βAν−1Bν−1 + γB2

ν−1 = (−1)νQν/2.

Similarly, eliminatingQν from formulae (16) and (17) in §20 of [7], we get

(15) 2αAν−1Aν−2 + β(Aν−1Bν−2 + Bν−1Aν−2)+ 2αBν−1Bν−2 = (−1)ν−1Pν.c

Let p = Aν−1, q = Bν−1 (ν � 1). By (12)

a = (−1)νQν/2.

Hence, by formula (1) of §6 of [7]∣∣∣∣Aν−1 Aν−2
Bν−1 Bν−2

∣∣∣∣ = (−1)ν

and since ∣∣∣∣Aν−1 r

Bν−1 s

∣∣∣∣ = 1

it follows that

T =
(
Aν−1 Aν−2
Bν−1 Bν−2

)(
1 t

0 (−1)ν

)
, t ∈ Z.

Thus we find using (14) and (15)

f = (α, β, γ )
(
Aν−1 Aν−2
Bν−1 Bν−2

)(
1 t

0 (−1)ν

)
=
(
(−1)ν

Qν

2
, (−1)ν−1Pν, (−1)ν

Qν−1

2

)(
1 t

0 (−1)ν

)
.

In order to make f satisfy (10) we must choose

t = (−1)ν
[
Pν

Qν
+ 1

2

]
.

Thus f is uniquely determined by ων and, in view of (13), we have

(16)
∑′′

(a,b,c)∈C

1

|a| �
[k,2]∑
ν=1

Qν<
1
2

√
d

2(Qν)
−1.

Since ων is reduced, we have further for ν in question

√
d � 2

√
d

Qν
>
Pν +

√
d

Qν
>

√
d

Qν
� 2.

Hence for

bν = [ων],
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we get the inequalities
√
d > bν � 2, bν + 1 >

√
d/Qν,

and by (16), Lemma 3 follows. 	


Now, let ε0 be the least totally positive unit ε0 > 1 of the ring Z[σ ] where

σ =

⎧⎪⎪⎨⎪⎪⎩
1

2

√
d if d ≡ 0 (mod 4),

1+√d
2

if d ≡ 1 (mod 4).

By Theorem 7 of Chapter IV of [6]

ε0 = u+ v
√
d

2
,

where for l = [k, 2],
v = (ql−1, pl−1 − ql−2, pl−2), u = pl−1 + ql−2

and pj , qj are the numerator and denominator, respectively, of the j -th convergent for
ω−1. Moreover, since ω−1 satisfies the equation

−γω−2 − βω−1 − α = 0 (−γ > 0),

we find from formula (1) of §2 of Chapter IV of [6] that

ql−2 − pl−1 = −βv, −pl−2 = −αv.
Hence

ε0 = pl−1 + ql−2

2
+ pl−2

√
d

2α
= ql−2 + β +

√
d

2α
pl−2.

Since pj = Bj+1, qj = Aj+1, we get

(17) ε0 = Bl−1

(
Al−1

Bl−1
+ β +

√
d

2α

)
� Bl−1

(
ω + β +

√
d

2α

)
=
√
d

α
Bl−1.

Now,

ωl = bl + ω−1
l+1 = bl + ω−1

1 = bl + ω, ω′l = bl + ω′

and since ωl is reduced 0 > bl + ω′ > −1

bl = [−ω′] =
[
β +√d

2aα

]
<

√
d

α
.

Thus (17) gives

ε0 > blBl−1 >

l∏
ν=1

bν,
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and by (16)

(18)
∑′′

(a,b,c)∈C

1

|a| � 2√
d

max
∑
(xi + 1) = 2√

d
M

where maximum is taken over all non-decreasing sequences of at most l real numbers
satisfying

2 � xi � 1
2

√
d − 1 = D,

∏
xi � ε0.c

Let (x1, x2, . . . , xm) be a point in which the maximum is taken with the least numberm.
We assert that the sequence contains at most one term x with 2 < x < D. Indeed, if we
had 2 < xi � xi+1 < D, we could replace the numbers xi, xi+1 byc

xi

min(xi/2,D/xi+1)
, xi+1 min

(xi
2
,
D

xi+1

)
and the sum

∑
(xi + 1) would increase. Also, if we had x1 = x2 = x3 = 2, we could

replace them by x1 = 8, and the sum
∑
(xi + 1) would remain the same while m would

decrease.

Let

ε0

4
= Deθ, where e =

[
log(ε0/4)

logD

]
.

c

Using d > 676, we get

M =

⎧⎪⎪⎨⎪⎪⎩
1
2e
√
d +max(4θ + 1, 2θ + 4) if 4θ < D,

1
2e
√
d + 2θ + 4 if 2θ < D � 4θ,

1
2e
√
d + θ + 7 if D � 2θ.

Now,

e = log ε0

logD
− log 4θ

logD
.

Since for 1 � x � y, y(log x/ log y) � x − 1, and for d > 676, D/ logD �
12/ log 12 > 4.8, we obtain if 4θ < D,

M − 1

2

√
d

log ε0

logD
= max(4θ + 1, 2θ + 4)−D log 4θ

logD
− log 4θ

logD

< max(4θ + 1, 2θ + 4)−max(4θ − 1, 6) � 2,c

if 2θ < D � 4θ ,

M − 1

2

√
d

log ε0

logD
= 2θ + 4−D log 2θ

logD
−D log 2

logD
− log 4θ

logD

< 2θ + 4− 2θ + 1− 3− 1 = 1,
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if D � 2θ ,

M − 1

2

√
d

log ε0

logD
= θ + 7−D log θ

logD
−D log 4

logD
− log 4θ

logD

< θ + 7− θ + 1− 6− 1 = 1.

This together with (18) gives the theorem. 	


4.

Proof of Corollary. We can assume 1 − β < (log |d|)−2. It follows then by Theorem 1
that, for every η > 0, there exists c(η) such that if d > c(η)

(19) 1− β � 6

π2

L(1, χ)∑′ 1/a

(
1− η

2

)
.

Let h0 be the number of classes of forms in question. For d < −4, we have

L(1, χ) = πh0√|d| ,

and by Theorem 2 ∑′ 1

|a| � h0.

Hence by (19)

1− β � 6

π2

h0π

h0
√|d|

(
1− η

2

)
>
( 6

π
− η
) 1√|d| .

For d > 0, we have

L(1, χ) = h0 log ε0√
d

.

Now, for any class C of forms∑′′

(a,b,c)∈C

1

|a| =
∑

(a,b,c)∈C
1
4

√
d�a�b>−a

1

a
+

∑
(−a,b,−c)∈C√
d�−a�b>a

1

|a| .

If (a, b, c) runs through C, (−a, b,−c) runs through another class which we denote by
−C (it may happen that −C = C). If C1 �= C2, then −C1 �= −C2. Hence∑

C

∑
(a,b,c)∈C

1
4

√
d�|a|�|b|>−|a|

1

|a| = 2
∑′ 1

a
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and by Theorem 2∑′ 1

a
� h0

2

(
log ε0

log
( 1

2

√
d − 1

) + 4√
d

)
<
h0 log ε0

log d

(
1+O

(
1√
d

))
,

where the constant in theO-symbol is effective. (Note that ε0 >
1
2

√
d.) This together with

(19) gives the corollary. 	
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Multiplicative properties of the partition function

with E. Wirsing (Ulm)

Abstract. A lower bound for the multiplicatively independent values of p(n) for N � n < N + R
is given. The proof depends on the Hardy–Ramanujan formula and is of an elementary nature.

1. Introduction

P. Erdős andA. Ivić [1] in their study of the number of non-isomorphicAbelian groups of
a given order needed a lower estimate for the numberm(N) of multiplicatively independent
values of the partition function p(n) in 1 � n � N . The first named author has proved
(see [1], Lemma 2) that, denoting the number of prime divisors of n by ω(n), one has

ω

( N∏
n=1

p(n)

)
→∞,

whence m(N)→∞, as N →∞.
In the present paper we give an explicit estimate form(N), at the same time eliminating

from the proof the appeal to “linear forms in logarithms”. What we actually treat is the
numberm(N,N +R) of multiplicatively independent values of p(n) inN � n < N +R,
where R is relatively small compared to N .

2.
Theorem. There is an N0 such that

m(N,N + R) � R logN − logR
3
2 logN + R log 2

for N � N0 and all R ∈ N.

The same lower bound applies to

ω

( ∏
N�n<N+R

p(n)

)
,

which is, of course, � m(N,N + R).
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It will be seen that, given N , our bound decreases as a function of R for R � log2N ,
more precisely if R log 2 > 2

3 logN(logN − 1 − logR). Thus in the proof and in appli-
cations like Corollary 2 below there is no need to consider larger R.

Corollary 1.

m(N,N + R) �
( 2

3 − o(1)
)
R if R = o(logN) as N →∞.

Corollary 2.

m(N,N + R) �
( 1

log 2
− o(1)

)
logN if

R

logN
→∞ as N →∞.

In particular we may state that

ω

( N∏
n=1

p(n)

)
� m(N) � (1− ε) logN

log 2
if N � N0(ε).

Concerning the paper of Erdős and Ivić we have

Corollary 3. Let a(n) be the number of non-isomorphic Abelian groups of order n and
C(x) the number of distinct values of a(n) for n � x. Then for every ε > 0 and x � x1(ε)

logC(x) � (log log x)2

log 16+ ε .
Similarly for the numberD(x) of distinct values a(n) � x with any n one has, if x � x2(ε),

logD(x) � (log log x)2

log 4+ ε .

Proof of Corollary 3. Notation as in [1]. Our Corollary 2 allows to pick p(ki) multiplica-
tively independent, k1, . . . , kt � √log x, with t (log 4+ ε) ∼ log log x. The construction
gives C(x) � rt where 2rt log(rt) � √

log x. Here r = [(log x)1/2−ε
]

is admissible if
x � x1, which gives our proposition.

For the estimate of D(x) take k1, . . . , kt � log x with t (log 2 + ε) ∼ log log x. Now
D(x) � rt upon the condition that

∑
i

r logp(ki) � log x, which because of logp(k) �
√
k � √log x is again satisfied by r ∼ (log x)1/2−ε. 	


3.

The proof uses the Hardy–Ramanujan formula for p(n) (see (1) below) to construct a
large number of distinct linear combinations of the numbers logp(n)with bounded integral
coefficients. If, on the other hand, the dimension of this Z-module were too small it would
contain too few elements with bounded height. This mechanism is rather unspecific. Thus
the theorem as it stands applies to any function q(n) = p(n) + O[exp(c

√
n)] where
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c < π
√

2/3, and similar results can be proved whenever an arithmetic function q(n)
allows an expansion

log q(n) = a0n
α0 + a1n

α1 + . . .+ b log n+ remainder,

where a0 > 0, α0 > 0, α0 /∈ N, α0 > α1 > . . ., αi − αi+1 � 1, and where the remainder
term is small enough. The factor 2/3 in Corollary 2 would become (α0 + 1)−1.

Lemma 1. Write Δ for the forward difference and put

Δr := |Δr logp(N)|.
Then, as N →∞, we have

Δr = c2r!
∣∣∣∣(1/2

r

)∣∣∣∣N1/2−r (1+O(N−1/3))

with some constant c2, uniformly in 0 � r � N1/6.

Proof. The Hardy–Ramanujan formula (see [2]) gives

(1) p(n) = c1f (n− 1
24 )+O[exp(c3

√
n)],

where

f (x) :=
(

1√
x

exp(c2
√
x)

)′
, c2 > c3 > 0.

The actual values (
c1 = 1

π
√

8
, c2 = π

√
2/3 , c3 = c2

2

)
are mostly irrelevant for our purpose. Keeping the abbreviation x = n− 1/24 we find

p(n) = c1

2x

(
c2 − 1√

x

)
exp(c2

√
x)+O[exp(c3

√
x)]

= c1

2x

(
c2 − 1√

x

)
exp(c2

√
x)
(
1+O[exp(−c4

√
x)])

with some c4 > 0. Therefore

logp(n) = g(x)+O[exp(−c4
√
n)],

where

g(x) = c2
√
x + log

c1c2

2
+ log

(
1− 1

c2
√
x

)
− log x

—apart from the log x term—is a power series that converges for all large x,

g(x) =
∞∑
i=−1

aix
−i/2 − log x.

Actually

a−1 = c2, |ai | � c−i2 for i � 1.
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The case r = 0 of the lemma is now obvious.

For r � 1 the generalized mean-value theorem gives

Δr logp(N) = g(r)(ξ)+O(2r exp(−c4
√
N)
)
,

where N − 1
24 < ξ < N + r . Hence for r � 1

Δr logp(N) = r!
∞∑
i=−1
i �=0

ai

(−i/2
r

)
ξ−i/2−r + (−1)r (r − 1)! ξ−r

+O(2r exp(−c4
√
N)
)
.

If i � 1, r � 1, then

(−(i + 1)/2

r

)(−i/2
r

)−1

=
r−1∏
j=0

i + 1

2
+ j

i

2
+ j

<

r−1∏
j=0

i

2
+ 1+ j
i

2
+ j

= 1+ 2r

i
� 3r.

Similarly

r!
∣∣∣∣(−1/2

r

)∣∣∣∣(r − 1)!−1 � r, (r − 1)!
(
r!
∣∣∣∣(1/2

r

)∣∣∣∣)−1

� 4r.

Therefore

Δr = c2r!
∣∣∣∣(1/2

r

)∣∣∣∣ξ1/2−r
(

1+
∞∑
i=1

O

(( 4r

c2
√
ξ

)i))+O(2r exp(−c4
√
N)
)

= c2r!
∣∣∣∣(1/2

r

)∣∣∣∣ξ1/2−r
(

1+O
( r√
N

))
+O(2r exp(−c4

√
N)
)
.

We also have

ξ1/2−r = (N +O(r))1/2−r = N1/2−r
(

1+O
( r
N

))1/2−r

= N1/2−r
(

1+O
( r2

N

))
= N1/2−r(1+O(N−2/3)

)
by our bound for r . Finally

2r
(
r!
∣∣∣∣(1/2

r

)∣∣∣∣N1/2−r
)−1

� (2N)r = exp[o(√N)],

whence altogether

Δr = c2r!
∣∣∣∣(1/2

r

)∣∣∣∣N1/2−r(1+O(N−1/3)+O[exp(−c4
√
N/2)])

for all r � N1/6, which is the lemma. 	
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Lemma 2. Let R � N1/6 and 1 � r � R. Then

Δr/Δr−1 � R/N
provided that N � N0. The N0 does not depend on R.

Proof. Lemma 1 for 2 � r � N1/6 supplies

Δr

Δr−1
= r −

3
2

N

(
1+O(N−1/3)

) = r

N
− 3

2N
+O

( r

N4/3

)
<
r

N
� R

N

if N � N0, and similarly for r = 1. 	


Proof of the theorem. We assume, somewhat arbitrarily, R � N1/6. This includes for
large N the range R � log2N that by an earlier remark is relevant.

Consider now the numbers

ω =
R−1∑
r=0

xrΔr, where xr ∈ N0, xr � N

R
− 1.

They all are distinct because of

R−1∑
r=s+1

xrΔr �
R−1∑
r=s+1

(N
R
− 1
)
Δr �

R−1∑
r=s+1

(Δr−1 −Δr) < Δs.

The number A of the ω’s is therefore

A =
[N
R

]R
>
(N
R
− 1
)R = (N

R

)R(
1− R

N

)R
�
(N
R

)R(
1+O

(
1√
N

))
as N →∞.

On the other hand

Δr = εr
r∑
s=0

(−1)s
(
r

s

)
logp(N + s), εr = ±1,

implies that each ω is a linear combination over Z of the logp(n), N � n < N + R. If
q1, . . . , qk denote the primes that make up the p(N), . . . , p(N + R − 1),

p(n) =
k∏
j=1

q
aj (n)

j , aj (n) ∈ N0,

say, then we obtain the representation

ω =
k∑
j=1

yj log qj

with

yj :=
∑

0�s�r<R
εr(−1)s

(
r

s

)
xraj (N + s).
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Trivially aj (n) � (logp(n))/ log 2. Therefore, if N is large,

aj (n) � c2

√
n

log 2
,

|yj | � c2

log 2

√
N + R

R−1∑
r=0

2rxr

� c2

log 2

√
N + R · 2R

(N
R
− 1
)

� c2

log 2
N3/2 2R

R

for 1 � j � k.
If now m(N,N + R) =: l then the ω’s are elements of an l-dimensional Z-module.

A suitable choice of l of the coordinates yj (j = 1, . . . , k) will then determine the k − l
others. Therefore the number A of the ω’s cannot exceed(

2c2

log 2
N3/2 2R

R
+ 1

)l
.

Consequently

(2)

(
3c2

log 2
N3/2 2R

R

)l
�
(N
R

)R(
1+O

(
1√
N

))
.

Thus, if anyR0 > 3c2/ log 2 and a suitableN0 are chosen then for allR � R0 andN � N0(
2RN3/2)l �

(N
R

)R R0 log 2

3c2

(
1+O

(
1√
N

))
�
(N
R

)R
,

as claimed. For each of the remaining R < R0, formula (2) implies 3l � 2R − ε, and
therefore 3l � 2R, if N is large enough, hence again

(
2RN3/2

)l � (N/R)R .
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On an analytic problem
considered by Sierpiński and Ramanujan

Abstract. Let r(n) be the number of representations of n as a sum of two squares. An Ω-estimate
for the error term in the summation formula for r(n)2 is obtained.

Let r(n) be the number of representations of n as a sum of two squares.
W. Sierpiński in his doctorate thesis (see [6]), written in 1906, has proved the estimate∑

n�x
r(n)2 = 4x log x + cx +O(x3/4 log x),

where c is a certain constant. The same asymptotic formula with the better error term
O(x(3/5)+ε) was stated without proof in [4]. B. M. Wilson [8] indicated without giving
the details that O(x(3/5)+ε) can be replaced by O(x(1/2)+ε) for every ε > 0. Recently,
W. R. Recknagel [5] improved the error term to O(x1/2 log4 x) and M. Kühleitner [2] has
improved it further to O(x1/2(log x)11/3(log log x)1/3).c

As far as I know, there is noΩ-result in the literature, and it is the aim of this paper to
prove such a result.

Theorem. We have ∑
n�x

r(n)2 = 4x log x + cx +Ω(x3/8).

The proof is based on the approach of [1]. The possibility of using this approach has
been indicated to me by Prof. A. Ivić. In comparison with [1], the present paper contains
no new idea, but the work is motivated by historical reasons. I thank Dr. W. G. Nowak
for pointing out some obscurities in an early draft of the paper, and the Department of
Mathematics in Geneva for their help in preparing the manuscript.

Notation. ζ(s) is the Riemann zeta function, ζK(s) the Dedekind zeta function of the field
K = Q(i), p denotes a general prime, A is a large constant, not necessarily the same at
each occurrence, T is a sufficiently large real number,

y = T B, where B is a sufficiently large constant;

J = {T 2/3 � t � 2T : for any complex number z with Re z � 1/3 and

|Im z− t | � (log T )20 we have ζ(2z) �= 0};
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J1 = {T 2/3 − (log T )4 � t � 2T + (log T )4 : for any complex number z

with Re z � 1/3 and |Im z− t | � (log T )15 we have ζ(2z) �= 0}.
Lemma 1.

F(s) =
∞∑
n=1

r(n)2

ns
= 16ζK(s)2

(1+ 2−s)ζ(2s)
for Re s > 1.

Proof. See [4]. 	


Lemma 2. If Re s � 1/3 and |Im s| � 1, then

ζK(s) = O
(
(|t | + 2)A

)
,

where s = σ + it .
Proof. See Lemma 7 in [7]. 	


Lemma 3. If Re s � 1/3 and t ∈ J1, then

1

ζ(2s)
= O(|t | + 2).

Proof. This is a consequence of Lemma 1 in [1]. 	


Lemma 4. If Re s � 1/3 and t ∈ J1, then

F(s) = O((|t | + 2)A
)

for a suitable A > 0.

Proof. This is a consequence of Lemmas 1–3. 	


Lemma 5. Let

E(x) =
∑
n�x

r(n)2 − 4x log x − cx.

If ∫ ∞

T

E(u)2

u7/4 e−u/y du � log2 T ,

t = Im s ∈ J , and Re s = 3/8, then we have

F(s) =
∑
n�T0

r(n)2

ns
e−n/y + s

∫ 1

0

∑
n>T0

E(n+ u)
(n+ u)s+1 e

−(n+u)/y du+O((log T )20)
for a suitable T0, T � T0 � 2T .

Proof. We start with
∞∑
n=1

r(n)2e−n/y

ns
= 1

2πi

∫
Rew=2

F(s + w)ywΓ (w) dw.
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Now we break off the portion |Imw| � (log T )4 of the integral, with a small error, and
move the line of integration to Rew = −(1/24).

Now using the estimate of F(s) given in Lemma 4 (and assuming that B is large
enough), and using the fact that, since t ∈ J and t + Imw ∈ J1, we see that the value of
the integral on the horizontals t+Imw = c ∈ J1, as well as on the vertical Rew = −(1/24)
is small. This proves that

∞∑
n=1

r(n)2e−n/y

ns

equals nearly the sum of the residues inside the contour. Thus we have

F(s) =
∞∑
n=1

r(n)2

ns
e−n/y +O(T −10) =

∑
n�T0

+
∑
n>T0

+O(T −10).

Now ∑
n>T0

r(n)2e−n/y

ns
=
∫ ∞

T0

1

us
e−u/y d

(∑
n�u

r(n)2
)

=
∫ ∞

T0

1

us
e−u/y d

(
4u log u+ cu+ E(u))

=
∫ ∞

T0

1

us
e−u/y

(
4 log u+ 4+ c) du+

∫ ∞

T0

1

us
e−u/y dE(u)

= S1 + S2 (say).

The first integral does not exceed up to a constant factor∫ ∞

T0

1

us
e−u/yu1/24 du,

and hence is small by Lemma 3 of [1]. Now S2 is (after one integration by parts)[
E(u)e−u/y

us

]∞
T0

+ s
∫ ∞

T0

E(u)e−u/y

us+1 du+ 1

y

∫ ∞

T0

E(u)e−u/y

us
du.

Hence, using Lemma 4 in [1], and choosing a suitable T0 in the interval T �T0 �2T , we
obtain

S2 = s
∫ ∞

T0

E(u)

us+1 e
−u/y du+O(log T )

= s
∑
n�T0

∫ 1

0

E(n+ u)
(n+ u)s+1 e

−(n+u)/y du+O(log T ).

This proves the lemma. 	
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Lemma 6. We have ∫ T

0

∣∣∣∣∑
n

bnn
it

∣∣∣∣2 dt =∑
n

(
T +O(n))(|bn|2)

for any sequence of complex numbers bn provided the right hand side is convergent.

Proof. For the proof of this lemma we refer the reader to [3]. 	


Lemma 7. We have ∫
Re s=3/8
Im s=t∈J

∣∣∣∣∑
n�T0

r(n)2

ns
e−n/y

∣∣∣∣2 dtt2 � 1.
c

Proof. It is sufficient to prove that∫ 2T

T 2/3

∣∣∣∣∑
n�T0

r(n)2

n3/8 e
−n/y

∣∣∣∣2 dtt2 � 1.

By Lemma 6, we have∫ 2m+1

2m

∣∣∣∣∑
n�T0

r(n)2

n3/8 e
−n/y

∣∣∣∣2 dt = ∑
n�T0

(
2m +O(n)) r(n)4

n3/4
c

� 2mT 1/4
0 log7 T0 + T 5/4

0 log7 T0.

Hence ∫ 2m+1

2m

∣∣∣∣∑
n�T0

r(n)2

ns
e−n/y

∣∣∣∣2 dtt2 � T
1/4

0 log7 T0

2m
+ T

5/4
0 log7 T0

22m .

c

Now, summing over m satisfying (1/2)T 2/3
0 < 2m � 2T , it follows that∫ 2T

T 2/3

∣∣∣∣∑
n�T0

r(n)2

ns
e−n/y

∣∣∣∣2 dtt2 � 1. 	

c

Lemma 8. If ∫ ∞

T

E(u)2

u7/4 e−u/y du � log2 T ,

then we have∫
Re s=3/8
Im s=t∈J

∣∣∣∣∫ 1

0

∑
n�T0

E(n+ u)e−(n+u)/y
(n+ u)s+1 du

∣∣∣∣2 dt � ∫ ∞

T

|E(u)|
u7/4 e−2u/y du,

for a suitable T0, T � T0 � 2T .

Proof. This follows from Lemma 6 in the same way as in [1] Lemma 8 follows from
Lemma 6. 	




K3. Problem considered by Sierpiński and Ramanujan 1221

Lemma 9. If ∫ ∞

T

E(u)2

u7/4 e−u/y du � log2 T ,

we have ∫
Re s=3/8
Im s=t∈J

|F(s)|2
|s|2 dt � 1+

∫ ∞

T

E(u)2

u7/4 e−2u/y du.

Proof. This follows from Lemmas 5, 7 and 8. 	


Lemma 10. Let

f (s) =
∞∑
n=1

bn

ns

be convergent in some half-plane and analytically continuable in σ � 1/3, A � t �
A+M . Then ∫ A+M

A

∣∣f (3/8+ it)∣∣2 dt � M,

providedM � logA, b1 = 1, and

max
{|f (s)| : A � t � A+M, Re s � 3/8

}
� eA.

Proof. This is a consequence of Lemma 9 in [1] for α = 3/8. 	


Definition 1.

f (s) = ζK(s + 1/4)2

(1+ 2−s)ζ(2s)
=

∞∑
n=1

bn

ns
.

Lemma 11. If an interval [A,A+M] is contained in J and A � M � logA, we have∫ A+M

A

|f (3/8+ it)|2 dt � M.

Proof. It follows from the definition of f (s) that b1 = 1,
∞∑
n=1

bn

ns
is convergent in Re s > 3/4

and analytically continuable in the whole plane with poles at

s = 3

4
,
(2k + 1)πi

log 2
, k ∈ Z,

and at the zeros of ζ(2s). If Re s � 3/8 and [A,A+M] is contained in J , then by Lemma 2
we have ∣∣ζK(s + 1/4)

∣∣ � (|t | + 2
)A/(2 log(2A+2)) � eA/2,
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and by Lemma 3, ∣∣ζ(2s)−1
∣∣� |t | + 2 � 2A+ 2.

Hence |f (s)|�eA for A large enough. The lemma follows now from Lemma 10. 	


Lemma 12. If [A,A+M] ⊂ J and A � M � logA, we have∫ A+M

A

∣∣F(3/8+ it)∣∣2 dt � AM.

Proof. For Re s = 3/8, we note that |ζK(1− s)| = |ζK(s + (1/4))|. Using the functional
equation

BsΓ (s)ζK(s) = B1−sΓ (1− s)ζK(1− s),
where B is a constant, we obtain for Re s = 3/8,

|F(s)| = 16|f (s)| |ζK(s)|2|ζK(1/4)|−2 = 16|f (s)| |ζK(s)|2|ζK(1− s)|−2

= 16|f (s)| |B2−4sΓ (1− s)2Γ (s)−2| � ∣∣f (s)∣∣ |t |1/2.
Hence Lemma 12 follows from Lemma 11. 	


Definition 2. For every x such that T 2/3 � x � 2T ,

J (x) = J ∩ [x, 2x],
N(x) is the number of zeros of ζ(2s) with t ∈ [x − (log T )20, 2x + (log T )20

]
and

Re s � 1/3.

Lemma 13. We have

N(x)� x49/60.

Proof. This follows from Lemma 13 in [1] for ε = 1/6. 	


Definition 3. J2(x) is the portion of J (x) obtained by deleting all connected components
whose length is not greater than log 2x.

Lemma 14. We have ∫
J2(x)

∣∣F(3/8+ it)∣∣2 dt � x2.

Proof. The total length of [x, 2x]\J2(x) isO
(
N(x)(log T )20

) = O(x5/6). Hence the total
length of J2(x) is� x. Now applying Lemma 12 to each connected component of J2(x)

and adding we obtain Lemma 14. 	


Lemma 15. We have ∫
Re s=3/8
Im s=t∈J

|F(s)|2
|s|2 dt � log T .
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Proof. From Lemma 14 we have∫
J (x)

|F(3/8+ it)|2 dt � x2,

and Lemma 15 follows by integration by parts. 	


Proof of the Theorem. By Lemma 9 and Lemma 15 we have∫ ∞

T

E(u)2

u7/4 e−2u/y du� log T .

If for every ε > 0 we had |E(u)| < εu3/8 for T � T0(ε), it would follow that∫ ∞

T0(ε)

E(u)2

u7/4 e−2u/T0(ε)
B

du � ε2
(∫ T0(ε)

B

T0(ε)

du

u
+
∫ ∞

1
e−2v dv

v

)
< ε2(B log T0(ε)+ 1

)
,

in contrary to the above inequality. 	
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1. Introduction

We shall consider sums of the form

S(D, q1, q2) =
∑

q1|D|<n<q2|D|

(
D

n

)
,

where D belongs to the set F of fundamental discriminants different from 1,

(1.1) q1, q2 ∈ Q ; 0 � q1 < q2 � 1.

Let r be the least common denominator of q1 and q2, and

χ = χD =
(
D

·
)
.

It follows from the result of Szmidt, Urbanowicz, and Zagier [5] that if D ∈ F and
(D, r) = 1 we have

(1.2) S(D, q1, q2) =
∑
ψ

cψB1,χψ ,

where the sum is over all primitive characters ψ with conductor fψ such that

(1.3) fψ | r and ψ(−1) = −χ(−1),

B1,χψ is the generalized first Bernoulli number attached to the character χψ , and
cψ = cψ(D, q1, q2) are given explicitly. In particular, for all ψ satisfying (1.3)

cψ(D, 1− q2, 1− q1) = χ(−1)cψ(D, q1, q2),(1.4)

cψ(D, 0, 1− q2) = −χ(−1)cψ(D, 0, q2),(1.5)

cψ(D, q1, 1− q2) = cψ(D, q1, q2), if q1 + q2 � 1, D < 0,(1.6)

cψ(D, q1, q2) = cψ(D0, q1, q2)(1.7)

Communicated by D. B. Zagier
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provided

(1.8) D,D0 ∈ F , sgnD = sgnD0, and D ≡ D0

(
mod r

(r3, 8)

(r, 8)

)
and

(1.9) cψ(D, q1, q2) = cψ(D, q1, q2),

where the bar denotes the complex conjugation.
Denote by C(D, q1, q2) the set of all primitive characters ψ satisfying (1.3) such that

cψ �= 0.

Definition. For ε = 0 or 1, let Pε be the set of all pairs 〈q1, q2〉 satisfying both (1.1) and

(1.10) q1 + q2 � 1 and q2 � 1
2 if q1 = 0 or D < 0

such that cardC(D, q1, q2) = ε for at least one D ∈ F prime to r .

The aim of the present paper is to prove

Theorem. The sets P0 and P1 are both finite. More precisely, P0 has 55 elements and
P1 has 116 elements, as listed in Section 5.

The sets Pε are of interest for the following reason.
For each ε = 0, 1 and 〈q1, q2〉 ∈ Pε the set of all D ∈ F prime to r satisfying

cardC(D, q1, q2) = ε is, by virtue of (1.7), the intersection of F with the union of some
arithmetic progressions with the first term D0 and the difference r

(
(r3, 8)/(r, 8)

)
sgnD0.

Hence the condition cardC(D, q1, q2) = ε if fulfilled by oneD ∈ F prime to r is fulfilled
by infinitely many such D. The condition (1.10) is justified by the formulae (1.4), (1.5),
and (1.6); it permits us to retain in the theorem only essentially different cases.

Moreover, cardC(D0, q1, q2) = 0, (D0, r) = 1 and (1.8) imply, by virtue of (1.2),
that

(1.11) S(D, q1, q2) = 0.

Further,

(1.12) cardC(D0, q1, q2) = 1, (D0, r) = 1

and (1.8) imply, by virtue of (1.3) and (1.9), that

C(D, q1, q2) = C(D0, q1, q2) = {χE},
where E is a fundamental discriminant satisfying

E | r, χE(−1) = −χD(−1),

hence (D,E) = 1, DE < 0. It follows by (1.2) that for D satisfying (1.8) we have

S(D, q1, q2) = cχEB1,χDE .
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We now recall (for example see [6]) that for every fundamental discriminant D < −4 we
have

B1,χD = −h(D),
where h(D) is the class number of the field Q(

√
D) and infer that (1.8) and (1.12) imply

(1.13) h(ED) = cS(D, q1, q2).

(c = −c−1
χE

). Now, relations of the form (1.11) and (1.13) have been studied by many
authors, see e.g. Berndt [1], Mitchell and Johnson [4], and Hudson and Williams [3],
mostly, but not exclusively in the case q2 − q1 = 1/r , |D| a prime.All pairs 〈q1, q2〉 known
to satisfy (1.1), (1.10), and (1.11) for someD prime to r happen to belong to P0 and P0
does not contain any new pair with q2 − q1 = 1/r . We do not know, however, whether the
conditions (1.1), (1.10), and (1.11) for some D prime to r imply 〈q1, q2〉 ∈ P0. Also,
we cannot say anything about relation (1.11) with (D0, r) �= 1. On the other hand, as we
shall show in Section 4, if 〈q1, q2〉 ∈ P0, cardC(D0, q1, q2) = 0, and (D0, r) = 1 then
(1.8) implies (1.11) without the condition D ∈ F , for all non-square discriminants D.

Further, all known pairs 〈q1, q2〉 satisfying (1.1), (1.10), and (1.13) for fixed E, c and
some D0 ∈ F prime to r happen to belong to P1, and again we do not know whether
these conditions imply 〈q1, q2〉 ∈ P1. In this case, however, there is a new relation with
q2 − q1 = 1/r , namely

h(12D) = 4
∑

(1/12)|D|<n<(1/10)|D|

(
D

n

)
for all D ∈ F , |D| ≡ 11 or 59 (mod 60).

The paper is organized as follows: In Section 2 we prove three propositions on charac-
ters, in Section 3 we express S(D, q1, q2) in the form (1.2) obtaining the formulae for cψ ,
and in Section 4 we apply the results of Sections 2 and 3 to prove the finiteness of the sets
P0 and P1. Section 5 consists of two tables, which for every 〈q1, q2〉 ∈ Pε (ε = 0, 1)
give arithmetic progression relevant to (1.11) or (1.13). In the former case r and in the
latter case e = E sgnD and c are also given.

Professor A. Granville has communicated to us that he also proved the final theorem
of the paper in a somewhat different way. The second author worked on the paper during
his visits to the Carleton University, the Louisiana State University, and the University of
Georgia. He warmly thanks Professors A. Granville and K. S. Williams for some helpful
conversations and the staff of the universities for their hospitality. The third author was
partially supported by Grant LESQF(1995–97)-RD-A-09 from the Louisiana Educational
Quality Support Fund.

In the proofs of Propositions 1 and 2 of the next section we have used some hints from
the referee which we gratefully acknowledge.

2. Dirichlet characters

In this section we prove three propositions giving the existence of Dirichlet characters
with certain properties. For definitions and basic facts on Dirichlet characters we refer the
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reader to Hasse [2]. Throughout the paper let ζm denote a fixed primitivem-th root of unity
and ϕ denote the Euler totient function.

For a prime power P let gP be a generator of the group of characters mod P , even if
P = 2α , α � 3. The following lemmas are implicit in [2] (Section 13, No. 6).

Lemma 1. For every positive integerm �≡ 2 (mod 4) there exists a primitive character of
conductor m.

Lemma 2. If P = pα (p an odd prime), then gkP has conductor P unless

ϕ(pα)

ϕ(pα−1)

∣∣∣ k.
Proposition 1. Let f be a positive integer with f �≡ 2 (mod 4), and either f /| 120 or
40 |f . Assume ε = ±1. Then there exists a non-real primitive characterψ of conductor f
such that

ψ(−1) = ε and ψ(2)2 �= 1.

Lemma 3. For every positive integer f �≡ 2 (mod 4), f /| 12, and every ε = ±1 there
exists a primitive character ξ of conductor f such that ξ(−1) = ε.
Proof. By the assumption there exists a prime power P such that P |f , (P, f/P )=1 and
P > 4. By Lemma 1 there exists a primitive character ξ0 of conductor f/P . We now take

ξ = ξ0g(3+εξ0(−1))/2
P if P is odd,

ξ = ξ0g(3+εξ0(−1))/2
4 gP if P is even.

By Lemma 2, if P > 4 is odd, g2
P has conductor P , hence ξ has conductor f . Moreover

ξ(−1) = εξ0(−1)2 = ε. 	


Proof of Proposition 1. Assume first that f /| 120. Then there exists a prime power P such
that

(2.1) P |f, P /| 120,
(
P,
f

P

)
= 1.

We distinguish two cases

(i) f/P |12,
(ii) f/P /| 12.

In the case (i) there exists a primitive real character ξ of conductor f/P . We take

ψ =
{
ξg
(3+εξ(−1))/2
P if P is odd,

ξg
(3+εξ(−1))/2
4 gP if P is even,

and obtain ψ(−1) = ε. Also ψ is not real since g2
P (P odd) and gP (P even) are not real.

The same characters, by Lemma 2, have conductorP , henceψ is primitive of conductor f .
If we hadψ(2)2 = 1 it would follow P odd, gP (2)4 = 1, hence 24 ≡ 1 (mod P), contrary
to (2.1).



1228 K. Analytic number theory

In the case (ii) by Lemma 3 there exists a primitive character ξ of conductor f/P such
that ξ(−1) = εgP (−1). We put

ψ± = ξg±1
P .

ψ± are primitive characters of conductorf , non-real sincegP is not real.Alsoψ±(−1) = ε.
If we had ψ±(2)2 = 1 for both signs, it would follow that

1 = ψ+(2)2ψ−(2)−2 = gP (2)4,
hence 24 ≡ 1 (mod P), contrary to (2.1).

It remains to consider the case 40 |f |120. Here we take

ψ =
{
g5g

(3−ε)/2
4 g8, if f = 40,

g3g5g
(3+ε)/2
4 g8, if f = 120.

	


Proposition 2. Let k, f ∈ N, (k, f ) = 1, k �≡ ±1 (mod f ), and f odd, f /| 3 · 5 · 17. For
each ε = ±1 and η = ±1 there exists a non-real primitive character ψ of conductor d
such that d |f and

ψ(−1) = ε, ψ(k) �= η, and ψ(p)2 �= 1 for all primes p

such that

(2.2) p |2f and p /| d.
If the condition (2.2) is restricted to p |f and p /| d then the condition f /| 3 · 5 · 17 can be
relaxed to f /| 3 · 5.

Proof. Let

f =
h∏
i=1

p
αi
i ,

where the pi are distinct primes. We put pαii = Pi , and

P = {Pi : 1 � i � h},
T = {Pi : 1 � i � h, k2 �≡ 1 (mod Pi)},

and we shall consider successively three cases:

(i) T �⊂ {5, 17}.
(ii) ∅ �= T ⊂ {5, 17}.
(iii) T = ∅.

Case (i). Here there exists a P ∈P such that

(2.3) k2 �≡ 1 (mod P) and 28 �≡ 1 (mod P).

We put

ψ = ψ1ψ2,
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where

ψ1(x) =
∏

1�i�h
pi /|P

(
x

pi

)
,

and

ψ2 = gP , if ψ1(−1) = −ε,(2.4)

ψ2 = g2
P , if ψ1(−1) = ε and either ψ1(k) = η(2.5)

or k2 �≡ −1 (mod P),

ψ2 = g4
P , if ψ1(−1) = ε and ψ1(k) = −η(2.6)

and k2 ≡ −1 (mod P).

The charactersψ1 andψ2 are primitive mod
∏
pi /|P

pi and P , respectively, andψ2 is not real

since ζ 4
ϕ(P ) �∈ R. Hence ψ is not real and is primitive mod d = ∏

pi /|P
piP . Thus the only

prime satisfying (2.2) is 2 and the equality ψ(2)2 = 1 would give

gP (2)
8 = 1,

hence 28 ≡ 1 (mod P), contrary to (2.3). Moreover

ψ(−1) = ψ1(−1)ψ2(−1) = ε
and ψ(k) = η would imply

ψ2(k) = ηψ1(k),

which gives in the case (2.4) gP (k) = ±1; in the case (2.5) either gP (k)2 = 1 or gP (k)2 =
−1 and k2 �≡ −1 (mod P) and in the case (2.6) gP (k)4 = −1 and k2 ≡ −1 (mod P),
which in cases (2.4) and (2.5) contradicts k2 �≡ 1 (mod P). In case (2.6) we have k4 ≡ 1
(mod P) and so gP (k)4 = 1, a contradiction.

Before we proceed to the cases (ii) and (iii) we make the following observation. Since
f /| 28 − 1, there exists the least P ∈P such that

(2.7) P /| 28 − 1.

Then if ψ1 is a character mod f/P and c |2, at least one of the characters ψ± = ψ1g
±c
P

satisfies ψ(2)2 �= 1; otherwise we should have

1 = ψ+(2)2ψ−(2)−2 = g4c
P (2),

hence 28 ≡ 1 (mod P), contrary to (2.7).

Therefore, whenever in the following the exponent ofgP divides 2 we obtainψ(2)2 �= 1,
replacing gP by g−1

P , if necessary.
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Case (ii). Here we put

ψ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g2
5g17g

(3−ε)/2
P

∏
q∈P\{5,17,P }

g2
q, if T = {5, 17} and 3 /∈P,

g3g
2
5g17g

(3+ε)/2
P

∏
q∈P\{3,5,17,P }

g2
q, if T = {5, 17} and 3 ∈P,

gpg
(3−ε)/2
P

∏
q∈P\{p,P }

g2
q, if T ∩ {5, 17} = {p} and 3 /∈P,

g3gpg
(3+ε)/2
P

∏
q∈P\{3,p,P }

g2
q, if T ∩ {5, 17} = {p} and 3 ∈P.

c

By Lemma 2, ψ is a primitive character of conductor f . The only prime satisfying (2.2)
is 2. Since

(
(3 ± ε)/2) |2, a proper choice of gP gives ψ(2)2 �= 1 and ψ is not real.

Moreover,

ψ(−1) = −(−1)(3−ε)/2 = (−1)(3+ε)/2 = ε,
and ψ(k) = η would imply

g17(k)
2 = ψ(k)2 = 1, k2 ≡ 1 (mod 17), if T = {5, 17},

or

gp(k)
2 = ψ(k)2 = 1, k2 ≡ 1 (mod p), if T ∩ {5, 17} = {p},

contrary to 17 ∈ T , or p ∈ T , respectively.

Case (iii). Here we assume without loss of generality that k ≡ 1 (mod Pi) for i � j ,
k ≡ −1 (mod Pi) for i > j and if 3 ∈ {P1, . . . , Ph} then 3 = P1 or 3 = Ph. Since k �≡ ±1
(mod f ) we have 1 � j < h.

If either 3 /∈ {P1, . . . , Ph} or 3 = P1, η = ε or 3 = Ph, η = 1 we put

(2.8) ψ = g(3−εη)/2P1
g
(3−η)/2
Ph

h−1∏
i=2

gPi .

By Lemma 2, ψ is a primitive character of conductor f , thus the only prime satisfying
(2.2) is 2. Since all the exponents on the right hand side of (2.8) divide 2, a proper choice
of gP gives ψ(2)2 �= 1 and that ψ is not real. Moreover,

ψ(−1) = (−1)(3−εη)/2 · (−1)(3−η)/2 = ε,
ψ(k) = (−1)(3−η)/2 = −η.

If 3 = P1, η = −ε and j > 1 we put

(2.9) ψ = g3gP2
g
(3−η)/2
Ph

h−1∏
i=3

g2
Pi
.

By Lemma 2, ψ is a primitive character of conductor f , thus the only prime satisfying
(2.2) is 2. Since all the exponents on the right hand side of (2.9) divide 2, a proper choice
of gP givesψ(2)2 �= 1 and thatψ is not real. Similarly to the above we obtainψ(−1) = ε
and ψ(k) = −η.
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Likewise, if Ph = 3, η = −1 and j < h− 1 we put

(2.10) ψ = g3g
(3+ε)/2
P1

gPh−1

h−2∏
i=2

g2
Pi
.

By Lemma 2, ψ is a primitive character of conductor f , thus the only prime satisfying
(2.2) is 2. Since all the exponents on the right hand side of (2.10) divide 2, a proper choice
of gP gives ψ(2)2 �= 1 and that ψ is not real. Moreover,

ψ(−1) = (−1)(3+ε)/2 = ε, ψ(k) = 1.

If either

(2.11) 3 = P1, η = −ε, and j = 1

or

(2.12) 3 = Ph, η = −1, and j = h− 1

we put

ψ = ψ1ψ2,

where

ψ1(x) =
∏

1�i�h
pi /| 3P

(
x

pi

)
,

ψ2 = g(3+εψ1(−1))/2
P .

ψ1, ψ2 are primitive characters mod
∏
pi /| 3P

pi and P , respectively. Thus ψ is a primitive

character mod
∏
pi /| 3P

piP , non-real since ζ 2
ϕ(P ) �∈ R. We have

ψ(−1) = ψ1(−1)ψ2(−1) = ψ1(−1)(−1)(3+εψ1(−1))/2 = ε.
Moreover, (2.11) implies k ≡ −1 (mod (f/3)), ψ(k) = ψ1(−1)ψ2(−1) = ε �= η; (2.12)
implies k ≡ 1 (mod (f/3)), ψ(k) = 1 �= η. The only primes satisfying (2.2) are 2 and 3
and the equalities ψ(2)2 = 1, ψ(3)2 = 1 would give 24 ≡ 1 (mod P) or 34 ≡ 1 (mod P),
P = 5, contrary to (2.7).

This completes the proof of the proposition except for the last statement. That follows
by inspection of the argument, where the prime 17 is avoided only because of the condition
ψ(2)2 �= 1. 	


Proposition 3. Let k, f ∈ N, (k, f ) = 1, k �≡ ±1 (mod f ), and either f /| 16 · 3 · 5 or
16 · 5 |f . For each ε = ±1 there exists a non-real primitive character ψ of conductor d,
where d |f such that

ψ(−1) = ε, ψ(k) �= 1, and ψ(p)2 �= 1 for all primes p,

satisfying

(2.13) p |f and p /| d.
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Proof. We shall distinguish four cases:

(i) f �≡ 0 (mod 4),
(ii) f ≡ 4 (mod 8),
(iii) f = 2αf1, where α � 3, f1 odd, f1 /| 15,
(iv) f = 2αf1, where f1 |15 and either α � 5 or α = 4, 5 |f1.

For the sake of brevity in each case we only define a character ψ with the required
properties, leaving to the reader the actual verification.

Case (i). If f is odd it suffices to take in Proposition 2 η = 1. If f ≡ 2 (mod 4) it suffices
in view of Proposition 2 to consider the case 17 |f |510. If k �≡ ±1 (mod 17) or k ≡ −1
(mod 17), ε = −1, we put

ψ = g(3+ε)/217 .

If k ≡ −1 (mod 17), ε = 1, there is a prime p |f such that k �≡ −1 (mod p). We put

ψ = gpg17.

If k ≡ 1 (mod 17), there is a prime p |f such that k �≡ 1 (mod p), p = 3 or 5. We put

ψ(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
g3g

(3−ε)/2
17 , if p = 3,

g2
5g
(3+ε)/2
17 , if p = 5, k ≡ ±2 (mod 5),

g5g
(7−ε)/2
17 , if p = 5, k ≡ −1 (mod 5), and either f = 170 or ε = 1,

g3g5g17, otherwise.

Case (ii). In Proposition 2 we replace f by f/4, ε by −ε, and η by g4(k). If k �≡ ±1
(mod (f/4)) there exists by virtue of Proposition 2 a non-real primitive character ψ ′ of
conductor d such that d |f/4 and

(2.14) ψ ′(−1) = −ε, ψ ′(k) �= g4(k)

and

(2.15) ψ ′(p)2 �= 1 for all primes p | (f/4), p /| d.
If k ≡ −1 (mod 4), k ≡ 1 (mod (f/4)), or if k ≡ 1 (mod 4), k ≡ −1 (mod (f/4)),
ε = 1, the properties (2.14) and (2.15) belong to every primitive character ψ ′ mod f/4
with ψ ′(−1) = −ε. In each case the character

ψ = g4ψ
′

satisfies the condition of the proposition.
In the remaining case k ≡ 1 (mod 4), k ≡ −1 (mod (f/4)), ε = −1, there exists a

prime power P such that

P

∣∣∣ f
4
,
(
P,

f

4P

)
, P �= 3, 5.

We put

ψ = ψ1ψ2,
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where

ψ1(x) =
∏

p |(f/4P)
p prime

(
x

p

)
, ψ2 = g(3−ψ1(−1))/2

P .

Case (iii). If k �≡ ±1 (mod f1) we argue as in the case α = 2 above. If k ≡ 1 (mod f1)

we have k �≡ 1 (mod 2α). We choose a character ψ2 mod 2α such that ψ2(k) �= 1 and then
a non-real primitive character ψ1 mod f1 such that

ψ1(−1) = εψ2(−1).

Then ψ = ψ1ψ2 has the required properties.
If k ≡ −1 (mod f1) we have k �≡ −1 (mod 2α). We choose a non-trivial character

ψ2 mod 2α such that ψ2(−k) �= ε and then a non-real primitive character ψ1 mod f1 such
that

ψ1(−1) = εψ2(−1).

The character ψ = ψ1ψ2 has the required properties.

Case (iv). If k �≡ ±1 (mod 2α−1) we put

ψ = g(3+ε)/24 g2α .

The same formula is good if k ≡ 1+ 2α−1 (mod 2α); or k ≡ −1+ 2α−1 (mod 2α), ε = 1;
or k ≡ −1 (mod 2α), ε = −1.

If k ≡ −1+ 2α−1 (mod 2α), ε = −1, we put

ψ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

g4g
2
2α , if α � 5,

g5g
2
2α , if α = 4, k �≡ 1 (mod 5),

g5g2α , if α = 4, k ≡ 1 (mod 5), f = 80,

g3g
2
5, if α = 4, k ≡ 1 (mod 5), f = 240, k ≡ 1 (mod 3),

g3g4g5g2α , if α = 4, k ≡ 1 (mod 5), f = 240, k ≡ −1 (mod 3).

If k ≡ η (mod 2α), η = ±1, ε = 1, then f1 has a prime factor p such that k �≡ η (mod p).
If α � 5, or if p = 3, or if p = 5 = f1 we put

ψ = g4gpg2α .

If f = 240, k ≡ η (mod 48), k �≡ η (mod 5), ε = 1 we put

ψ = g3g5g2α .

In the remaining case k ≡ 1 (mod 2α), ε = −1, f1 has a prime factor p such that k �≡ 1
(mod p). We put

ψ =
{
gpg2α , if α � 5, or if p = 3, or if p = 5 = f1,

g5g
2
2α , otherwise.
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3. Character sums in terms of Bernoulli numbers

Let χ be a Dirichlet character modM and let N be a multiple of M . For any integer
r > 1 prime to N and natural m we have the formula from [5]:

(3.1) mrm−1
∑

0<n<N/r

χ(n)nm−1 = −Bm,χ rm−1 + χ̄(r)
ϕ(r)

∑
ψ

ψ̄(−N)Bm,χψ(N),

where the last sum is over all Dirichlet charactersψ mod r . Here for a Dirichlet character θ ,
Bm,θ denotes the generalized Bernoulli number attached to θ and

Bm,θ (X) =
m∑
k=0

(
m

k

)
Bk,θX

m−k.

Note that if the character θ mod T is induced from a character θ1 mod some divisor of T ,
then we have

(3.2) Bm,θ = Bm,θ1
∏
p |T
(1− θ1(p)pm−1),

where the product is over all primes p dividing T . For more details see [5].
If m = 1 and χ is not trivial, formula (3.1) implies∑

0<n<N/r

χ(n) = −B1,χ + χ̄(r)
ϕ(r)

∑
ψ

ψ̄(−N)B1,χψ

because for non-trivial characters θ we have B0,θ = 0 and so B1,θ (X) = B1,θ .
Let χ be a non-trivial character of conductorM . Then the above identity and (3.2) give

(3.3)
∑

0<n<N/r

χ(n) = −B1,χ + χ̄(r)
ϕ(r)

∑
ψ

ψ̄(−N)
∏
q |r
(1− χψ(q))B1,χψ ,

where the last sum is over all primitive characters ψ with conductor fψ such that fψ | r
and where ψ has parity opposite to that of χ (B1,θ = 0 for even non-trivial θ ).

Let χ =
(
D

·
)

, where D �= 1 is a fundamental discriminant. We shall consider sums

of the form

S(D, q1, q2) =
∑

q1|D|<n<q2|D|

(
D

n

)
,

where

q1, q2 ∈ Q ; 0 � q1 < q2 � 1,

qi = ki
ri
, ri ∈ N, ki ∈ Z, (ki, ri) = 1, (ri ,D) = 1 (i = 1, 2).

We put r = l.c.m.(r1, r2) and ρ = (r1, r2), so that

r = r1
ρ
· ρ · r2

ρ
and

(
r1

ρ
,
r2

ρ

)
= 1.



K4. Class numbers and short sums of Kronecker symbols 1235

The formula (3.3) implies

Proposition 4. For r > 1

S(D, q1, q2) =
∑
ψ

cψB1,χψ ,

where the sum is over all primitive characters ψ with conductor fψ such that fψ | r and
ψ(−1) = −χ(−1) and where cψ are given by the formulae

1. if q1 = 0 (r1 = 1, k2 = k, r2 = r),
(a) and if ψ is trivial,

cψ = −1+ χ(r)
ϕ(r)

∏
q |r

q prime

(1− χ(q));

(b) otherwise,

(3.4) cψ = χ(r)ψ̄(−k|D|)
ϕ(r)

∏
q |r

q prime

(1− χ(q)ψ(q));

2. if q1 > 0,

(a) and if fψ |ρ,

(3.5) cψ = c′ψ · c′′ψ,
where

c′ψ = χ(ρ)ψ̄(−|D|)
∏
q |ρ

q prime

(1− χ(q)ψ(q))
c

and

c′′ψ =
χ(r2/ρ)ψ̄(k2)

ϕ(r2)

∏
q |r2, q /|ρ
q prime

(1− χ(q)ψ(q))

− χ(r1/ρ)ψ̄(k1)

ϕ(r1)

∏
q |r1, q /|ρ
q prime

(1− χ(q)ψ(q));

(b) and if fψ | r2 but fψ /| ρ,

(3.6) cψ = χ(r2)ψ̄(−k2|D|)
ϕ(r2)

∏
q |r2
q prime

(1− χ(q)ψ(q));

(c) and if fψ | r1 but fψ /| ρ,

(3.7) cψ = −χ(r1)ψ̄(−k1|D|)
ϕ(r1)

∏
q |r1
q prime

(1− χ(q)ψ(q));
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(d) and if fψ /| r1, fψ /| r2, then cψ = 0.

Corollary 1. For all characters ψ satisfying (1.3) we have (1.4), (1.5) and (1.6).

Proof. It follows by calculation from Proposition 4 that

cψ(D, 1− q2, 1− q1) = −ψ̄(−1)cψ(D, q1, q2),

cψ(D, 0, 1− q2) = ψ̄(−1)cψ(D, 0, q2),

cψ(D, q1, 1− q2) = cψ(D, q1, q2) if q1 + q2 � 1 and ψ(−1) = 1,

and then we use the condition ψ(−1) = −χ(−1). 	


Corollary 2. For all characters ψ satisfying (1.3), (1.8) implies (1.7).

Proof. It follows from Proposition 4 that

cψ(D, q1, q2) = cψ(D0, q1, q2),

provided χD(−1) = χD0
(−1) and χD(q) = χD0

(q) for all primes q | r . The first condition
gives sgnD = sgnD0, the second D ≡ D0 (mod 8) if q = 2 and D ≡ D0 (mod q) if
q > 2. 	


Corollary 3. For all characters ψ satisfying (1.3) we have (1.9).

Proof. This follows from Proposition 4 since χ is real. 	


Corollary 4. If cψ(D, q1, q2) = 0 for all characters ψ with fψ | r and ψ(−1) =
−χD(−1), then

S(χ, q1, q2) =
∑

q1m<n<q2m

χ(n) = 0

for every character χ modm induced from χD provided (m, r) = 1.

Proof. It follows from (3.2) that the coefficient ofB1,χψ in the representation ofS(χ, q1, q2)

as the linear combination of generalized Bernoulli numbers derived from (3.3) is divisible
by cψ(D, q1, q2), hence 0. 	


The last corollary justifies the remark made in the introduction about non-fundamental

discriminantsD. Indeed, ifD = D1s
2, whereD1 ∈ F , then

(
D

·
)

is induced from

(
D1

·
)

and, assuming (s, r) = 1, the residue class of D1s
2 mod r

(
(r3, 8)/(r, 8)

)
is admissible in

the sense of (1.8).

4. Results

In this section we shall determine when cardC(D, q1, q2) = 0 or 1. Recall that r =
l.c.m.(r1, r2) and ρ = (r1, r2).
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Proposition 5. Let C = C(D, q1, q2), where D ∈ F , (D, r) = 1 and 〈q1, q2〉 satisfy
(1.1). Assume that r /| 8 · 3 · 5 and besides

(a) r �= 14, 18 if max{r1, r2} = 2 min{r1, r2} ≡ 2 (mod 4),
(b) r �= 16, 48 if r1 = r2 = r , q1 + q2 �= 1,
(c) D > 0 if q1 + q2 = 1.

Then C contains a non-real character and

cardC � 2.

Proof. It is enough to show that under the assumption of the theorem there exists both an
even and an odd primitive non-real character ψ , such that cψ �= 0. In view of (1.4) we
may assume without loss of generality that r1 � r2. If k1 = 0 a requiredψ exists by virtue
of Proposition 1 and formula (3.4). If k1 > 0 we consider four cases:

(i) r1 /| r2,
(ii) r1 | r2, r1 �= r2,
(iii) r1 = r2, q1 + q2 �= 1,
(iv) r1 = r2, q1 + q2 = 1.

Case (i). In this case we have r1 < r2. If r2 /| 120 and r2 is odd or divisible by 4 then by
virtue of Proposition 1 we can find both an even and an odd primitive non-real character
ψ of conductor fψ = r2. Moreover, fψ /| ρ (recall r1 < r2) and it follows by (3.6) that
for this ψ , cψ �= 0. A similar argument shows that we get a non-zero cψ if r1 /| 120 and r1
is odd or divisible by 4. Then by virtue of Proposition 1 we can find a primitive non-real
character of prescribed parity of conductor fψ = r1 and by assumption (i) we have fψ /| ρ.
Here we can use formula (3.7) and it remains to consider the cases when r2 /| 120, 2 ‖ r2 or
r1 /| 120, 2 ‖ r1.

If r2 /| 120 and 2 ‖ r2, by Proposition 1 we can find both an even and an odd primitive
non-real character ψ of conductor fψ = (r2/2) such that ψ(2) �= ±1. Moreover, the
divisibility (r2/2) |ρ would imply r1 = r2 or r2 = 2r1, which is not the case. Thus fψ /| ρ
and by virtue of (3.6) cψ �= 0.

If r1 /| 120 and 2 ‖ r1, by Proposition 1 we can find a primitive non-real character of
prescribed parity of conductor fψ = (r1/2) such that ψ(2) �= ±1. If fψ /| ρ we can use
formula (3.7) and cψ �= 0. If (r1/2) |ρ we have (r1/2) | r2 and in consequence r2 /| 120.
This case was considered above.

Case (ii). Here we may assume that r2 /| 120 and by Proposition 1 we can find both an odd
and an even primitive non-real character of conductor fψ = (r2/2) such that ψ(2) �= ±1.
If fψ /| ρ we can use formula (3.6) and cψ �= 0. The divisibility (r2/2) |ρ implies (r2/2) | r1
and by assumption we obtain r2 = 2r1.

Let r2 = 2r1 and r2 /| 120.Then r2 is even. If r1 is divisible by 4, in virtue of Proposition 1
we can find a non-real primitive character of prescribed parity of conductor fψ = r2. By
assumption we have fψ /| ρ. Consequently we can use formula (3.6) and cψ �= 0.

It remains to consider the case 2 ‖ r2 (r1 odd). By virtue of Proposition 2 (for k = 8),
since by (a) r1 /| 7 and r1 /| 9 we can find a primitive non-real character ψ of prescribed
parity of conductor d | r1 such that ψ(8) �= −χ(2) and ψ(q)2 �= 1 for all primes q such
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that q | r1 and q /| d . By virtue of formula (3.5) it follows easily that c′ψ �= 0 for this ψ . We
shall prove the same for c′′ψ by contradiction. The equality c′′ψ = 0 would imply

χ(2)ψ̄(k2) (1− χ(2)ψ(2))− ψ̄(k1) = 0,

and in consequence

(4.1) ψ(k)+ ψ(2) = χ(2),
where k2 ≡ kk1 (mod d). Therefore we obtain

|ψ(t)+ 1| = 1,

where k ≡ 2t (mod d) and hence

Reψ(t) = − 1
2 .

Therefore ψ(t) = ζ±1
3 and ψ(k) = ζ±1

3 ψ(2). Substituting it into formula (4.1) gives

ψ(2) = −χ(2)ζ±1
3 ,

which implies

ψ(8) = −χ(2),
a contradiction.

Case (iii). Here in view of (3.5) we have

c′ψ = χ(r)ψ̄(−|D|)
∏
q |r

(
1− χ(q)ψ(q))

and

ϕ(r)c′′ψ = ψ̄(k2)− ψ̄(k1).

Let k denote a natural number such that 1 � k � r − 1 and k2 ≡ kk1 (mod r). Since
q1 < q2, q1 + q2 �= 1 we have k2 �≡ ±k1 (mod r), k �≡ ±1 (mod r). By (b), r /| 240 or
80 | r , hence by virtue of Proposition 3 we can find a non-real primitive character ψ of
prescribed parity of conductor d | r such that ψ(k) �= 1 and ψ(q)2 �= 1 for all primes q | r
and q /| d. Hence we have c′ψ �= 0 and c′′ψ �= 0, and in consequence cψ �= 0.

Case (iv). Here by (c) we have χ(−1) = 1, hence all characters ψ in question are odd and
ϕ(r)c′′ψ = 2ψ̄(k2) �= 0. Since r /| 8·3·5, by Proposition 1 there exists an odd primitive non-

real character ψ of conductor r
(
(r, 4)/(r2, 4)

)
with ψ(2)2 �= 1 if 2 ‖ r . For this character

we have c′ψ �= 0 and in consequence cψ �= 0. 	


Proof of the Theorem. Proposition 5 implies that there is only a small finite set of 〈q1, q2〉
satisfying (1.1) for which cardC(D, q1, q2) < 2 for at least one D ∈ F prime to r (with
D > 0 if q1+ q2 = 1). It is now an easy matter to write a computer program to find given
q1, q2, the congruence |D|must satisfy to make at most one of the cψ �= 0. The results of
such a search are presented in the next section. It follows from them that if we only require
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cardC � 2, the conditions on r in Proposition 5 can be relaxed to r /| 4 · 3 · 5, r �= 8, 24
and both (a), (c). 	


Remark. Using Proposition 5 one can find all pairs 〈q1, q2〉 such thatC(D, q1, q2) consists
only of real characters for at least one D in F prime to r . For such pairs and for all D
in F from a certain arithmetic progression,

S(D, q1, q2) =
k∑
i=1

aih(−ei |D|),

where the coefficients ai , ei do not depend on D.

5. Tables

The following table lists values for r , q1, q2, s0, and m such that 0 � q1 < q2,
q1 + q2 � 1 and q2 � 1

2 if q1 = 0, r is the least common denominator of q1, q2 and∑
q1|D|<n<q2|D|

(
D

n

)
= 0,

for all fundamental discriminantsD �= 1 (in fact, for all non-square discriminantsD) such
that |D| ≡ s0 (modm). For q2 >

1
2 we exclude D > 0. There are 55 such formulae.

r q1, q2 s0;m

2 0, 1
2 1;4

4 0, 1
4 3;8

4 1
4 ,

1
2 7;8

6 0, 1
6 5;8

6 1
6 ,

1
3 11;12

6 1
6 ,

1
2 5, 7;8∗

6 1
6 ,

5
6 5;8

6 1
3 ,

1
2 23;24

10 0, 1
10 3, 27;40

10 0, 3
10 3, 27;40

10 1
10 ,

3
10 3;8

18 1
9 ,

5
18 11;24

18 7
18 ,

4
9 11;24

r q1, q2 s0;m

12 0, 1
12 5;24

12 0, 5
12 5;24

12 1
12 ,

1
6 5;24

12 1
12 ,

1
4 13;24

12 1
12 ,

1
3 17;24

12 1
12 ,

5
12 5;8

12 1
12 ,

1
2 5;24

12 1
12 ,

7
12 5;12

12 1
12 ,

5
6 5;24

12 1
12 ,

11
12 5;24

12 1
6 ,

1
4 7;8

30 1
30 ,

1
5 73, 97;120

30 1
30 ,

11
30 17, 33;40

r q1, q2 s0;m

12 1
6 ,

5
12 5;24

12 1
6 ,

7
12 5;24

12 1
4 ,

1
3 23;24

12 1
4 ,

5
12 13;24

12 1
3 ,

7
12 17;24

12 5
12 ,

1
2 5;24

12 5
12 ,

7
12 5;24

14 1
14 ,

2
7 3, 19, 27;56

14 1
7 ,

3
14 3, 19, 27;56∗∗

14 5
14 ,

3
7 3, 19, 27;56∗∗

18 1
18 ,

2
9 11;24

30 11
30 ,

3
5 17, 113;120

30 2
5 ,

17
30 73, 97;120

∗ This case was listed in [4] only for D = p ≡ 5 (mod 8).
∗∗ These cases were listed in [4] for D = −p with a misprint, 9 instead of 19.
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r q1, q2 s0;m

20 1
10 ,

1
4 3, 27;40

20 1
4 ,

3
10 3, 27;40

24 1
24 ,

5
24 13;24

24 1
24 ,

11
24 5;24

24 5
24 ,

7
24 5;24

24 7
24 ,

11
24 13;24

r q1, q2 s0;m

30 1
30 ,

3
5 17, 113;120

30 1
10 ,

1
6 11, 59;120

30 1
10 ,

1
3 11, 59;120

30 1
6 ,

3
10 11, 59;120

30 1
5 ,

7
30 17, 113;120

30 1
5 ,

11
30 73, 97;120

r q1, q2 s0;m

30 1
5 ,

17
30 17, 113;120

30 7
30 ,

2
5 73, 97;120

30 7
30 ,

17
30 17, 33;40

30 3
10 ,

1
3 11, 59;120

In the following table we list values for e, q1, q2, c, s0, and m such that 0 � q1 < q2,
q1 + q2 � 1, q2 � 1

2 if q1 = 0

c
∑

q1|D|<n<q2|D|

(
D

n

)
= h(−e|D|),

for all fundamental discriminantsD �= 1 relatively prime to r such that |D| ≡ s0 (modm),
e|D| > 4 and if m is odd, D has the prescribed sign. For q2 >

1
2 we exclude D < 0. We

list 222 such formulae involving 116 different pairs 〈q1, q2〉. The section number sign “§”
(resp., dagger “†”) means that D < 0 (resp., D > 0).

e q1, q2 c s0;m

1 0, 1
2

1
3 3;8

1 0, 1
2 1 7;8

1 0, 1
3

1
2 1;3§

1 0, 1
3 1 2;3§

1 0, 1
4 1 7;8

1 1
4 ,

1
2

1
3 3;8

1 0, 1
6 −1 19;24

1 0, 1
6 1 7, 11, 23;24

1 1
6 ,

1
3

1
3 19;24

1 1
6 ,

1
3 1 7;24

1 1
6 ,

1
2

1
4 19;24

1 1
6 ,

1
2

1
2 11;24

1 1
3 ,

1
2 −1 7;24

1 1
3 ,

1
2

1
2 11;24

1 1
3 ,

1
2 1 19;24

1 0, 1
10 1 11, 19;40

1 0, 3
10 1 11, 19;40

1 1
10 ,

1
2

1
3 3, 27;40

e q1, q2 c s0;m

1 1
10 ,

1
2

1
2 11, 19;40

1 3
10 ,

1
2

1
3 3, 27;40

1 3
10 ,

1
2

1
2 11, 19;40

1 1
6 ,

1
4 −1 11;24

1 1
6 ,

1
4 1 19;24

1 1
4 ,

1
3

1
2 19;24

1 1
4 ,

1
3 1 7, 11;24

1 1
14 ,

2
7 1 11, 43, 51;56

1 1
7 ,

3
14 −1 11, 43, 51;56

1 5
14 ,

3
7 1 11, 43, 51;56

1 1
18 ,

2
9 −1 19;24

1 1
9 ,

5
18 1 19;24

1 7
18 ,

4
9 −1 19;24

1 1
10 ,

1
4 −1 11, 19;40

1 1
4 ,

3
10 1 11, 19;40

1 1
10 ,

1
6 −1 43, 67;120

1 1
10 ,

1
6 − 1

2 19, 91;120

1 1
10 ,

1
6 1 83, 107;120

e q1, q2 c s0;m

1 1
10 ,

1
3

1
2 43, 67;120

1 1
10 ,

1
3 1 19, 83;120

91, 107;120

1 1
6 ,

3
10 −1 83, 107;120

1 1
6 ,

3
10

1
2 19, 91;120

1 1
6 ,

3
10 1 43, 67;120

1 3
10 ,

1
3

1
2 43, 67;120

1 3
10 ,

1
3 1 19, 83;120

91, 107;120

3 0, 1
3 2 0;1†

3 1
3 ,

2
3 −1 0;1†

3 0, 1
6 1 1;8

3 1
6 ,

1
3 −2 1;8

3 1
6 ,

1
3 2 5;8

3 1
6 ,

1
2 −1 1;8

3 1
6 ,

2
3 −2 5;8

3 1
6 ,

2
3 − 2

3 1;8

3 1
6 ,

5
6 − 1

2 1;8
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e q1, q2 c s0;m

3 1
3 ,

1
2 −2 1;4

3 0, 1
12 2 17;24

3 0, 5
12 −2 17;24

3 1
12 ,

1
6 2 17;24

3 1
12 ,

1
4 −2 1;24

3 1
12 ,

1
3 2 5;24

3 1
12 ,

5
12 −1 1;8

3 1
12 ,

1
2 −2 17;24

3 1
12 ,

2
3 −2 5;24

3 1
12 ,

2
3 −1 17;24

3 1
12 ,

5
6 − 2

3 17;24

3 1
12 ,

11
12 −1 17;24

3 1
6 ,

5
12 − 2

3 17;24

3 1
6 ,

7
12 −2 17;24

3 1
4 ,

5
12 −2 1;24

3 1
3 ,

5
12 −2 5;24

3 1
3 ,

5
12 −1 17;24

3 1
3 ,

7
12 −2 5;24

3 5
12 ,

1
2 2 17;24

3 5
12 ,

7
12 1 17;24

3 1
18 ,

2
9 −2 1;24

3 1
18 ,

2
9 2 17;24

3 1
9 ,

5
18 −2 1;24

3 1
9 ,

5
18 2 17;24

3 7
18 ,

5
9 −2 1;24

3 7
18 ,

5
9 2 17;24

3 1
24 ,

5
24 −2 1;24

3 1
24 ,

11
24 −2 17;24

3 5
24 ,

7
24 2 17;24

3 7
24 ,

11
24 −2 1;24

3 1
30 ,

1
5 −2 1, 49;120

3 1
30 ,

11
30 −1 1, 41;120

49, 89;120

3 1
30 ,

3
5 −2 41, 89;120

e q1, q2 c s0;m

3 7
30 ,

2
5 −2 1, 49;120

3 7
30 ,

17
30 −1 1, 41;120

49, 89;120

3 11
30 ,

3
5 2 41, 89;120

3 2
5 ,

17
30 −2 1, 49;120

3 1
60 ,

11
60 −2 1, 49;120

3 7
60 ,

17
60 −2 1, 49;120

3 13
60 ,

23
60 −2 1, 49;120

3 19
60 ,

29
60 −2 1, 49;120

4 0, 1
4 2 1;4

4 1
4 ,

1
2 −2 1;4

4 1
4 ,

3
4 −1 1;4

4 1
8 ,

3
8 −2 1;8

4 1
8 ,

3
8 2 5;8

4 0, 1
12 2 13;24

4 0, 5
12 2 13;24

4 1
12 ,

1
6 −2 13;24

4 1
12 ,

1
4 2 5;24

4 1
12 ,

1
3 −2 1;24

4 1
12 ,

1
2 −2 13;24

4 1
12 ,

7
12 −1 1;12

4 1
12 ,

3
4 −2 5;24

4 1
12 ,

3
4 −1 13;24

4 1
12 ,

5
6 −2 13;24

4 1
12 ,

11
12 −1 13;24

4 1
6 ,

1
4 2 5;8

4 1
6 ,

5
12 2 13;24

4 1
6 ,

7
12 −2 13;24

4 1
6 ,

3
4 −2 5;8

4 1
4 ,

5
12 −2 5;24

4 1
4 ,

7
12 −2 5;24

4 1
4 ,

7
12 −1 13;24

4 1
3 ,

7
12 −2 1;24

4 5
12 ,

1
2 −2 13;24

e q1, q2 c s0;m

4 1
24 ,

11
24 2 13;24

4 5
24 ,

7
24 2 13;24

4 5
24 ,

11
24 −2 1;24

4 5
24 ,

11
24 2 13;24

4 1
60 ,

11
60 2 73, 97;120

4 7
60 ,

17
60 −2 73, 97;120

4 13
60 ,

23
60 2 73, 97;120

4 19
60 ,

29
60 −2 73, 97;120

5 1
5 ,

2
5 2 0;1§

5 1
10 ,

1
5 −4 11, 19;40

5 1
10 ,

1
5 4 31, 39;40

5 1
10 ,

3
10 1 7;8

5 1
10 ,

2
5

4
3 31, 39;40

5 1
10 ,

2
5 4 11, 19;40

5 1
10 ,

1
2 2 7;8

5 1
5 ,

3
10

4
3 31, 39;40

5 1
5 ,

3
10 4 11, 19;40

5 1
5 ,

1
2 4 31, 39;40

5 3
10 ,

2
5 −4 31, 39;40

5 3
10 ,

2
5 4 11, 19;40

5 3
10 ,

1
2 −2 7;8

5 2
5 ,

1
2 −4 31, 39;40

5 1
5 ,

1
3 4 11, 14;15§

5 1
3 ,

2
5 4 11, 14;15§

5 1
10 ,

1
4 2 7;8

5 1
5 ,

1
4 4 31, 39;40

5 1
4 ,

3
10 2 7;8

5 1
4 ,

2
5 4 31, 39;40

5 1
10 ,

1
6 2 7;8

5 1
10 ,

1
3 2 23;24

5 1
6 ,

1
5 −4 11, 31, 59;120

71, 79;120

119;120

5 1
6 ,

3
10 2 7;8
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e q1, q2 c s0;m

3 1
5 ,

7
30 2 41, 89;120

3 1
5 ,

11
30 −2 1, 49;120

3 1
5 ,

17
30 −2 41, 89;120

5 3
10 ,

1
3 −2 23;24

7 1
14 ,

2
7 2 5;8

7 1
7 ,

11
14 −2 5;8

7 5
14 ,

3
7 −2 5;8

8 1
8 ,

1
4 4 7;8

8 1
8 ,

3
8 2 3;4

8 1
8 ,

1
2 4 7;8

8 1
8 ,

5
8 −2 1;4

8 1
4 ,

3
8 4 7;8

8 3
8 ,

1
2 −4 7;8

8 1
24 ,

5
24 2 5;24

8 1
24 ,

7
24 2 5;12

8 1
8 ,

1
6 4 7;8

8 1
8 ,

1
3 4 23;24

8 1
6 ,

3
8 4 7;8

8 5
24 ,

11
24 −2 5;12

8 7
24 ,

11
24 −2 5;24

8 1
3 ,

3
8 4 23;24

12 1
12 ,

1
6 4 7, 11, 23;24

12 1
12 ,

1
4 4 7;8

12 1
12 ,

1
3 4 11, 19, 23;24

12 1
12 ,

5
12 2 7, 11;24

19, 23;24

12 1
12 ,

1
2 4 7;8

12 1
6 ,

5
12 4 7, 11, 23;24

e q1, q2 c s0;m

4 5
12 ,

7
12 −1 13;24

4 1
24 ,

7
24 −2 1;24

4 1
24 ,

7
24 2 13;24

12 1
4 ,

5
12 4 7;8

12 1
3 ,

5
12 4 11, 19, 23;24

12 5
12 ,

1
2 −4 7;8

12 1
24 ,

5
24 −4 19;24

12 1
24 ,

5
24 4 7;24

12 7
24 ,

11
24 −4 7;24

12 7
24 ,

11
24 4 19;24

12 1
12 ,

1
10 4 11, 59;120

12 1
12 ,

3
10 4 11, 59;120

12 1
10 ,

5
12 4 11, 59;120

12 3
10 ,

5
12 4 11, 59;120

15 1
15 ,

11
15 −4 ±2;5†

15 2
15 ,

7
15 −4 ±2;5†

15 1
30 ,

1
5 4 29, 53;120

77, 101;120

15 1
30 ,

11
30 2 13, 29, 37;120

53, 61, 77;120

101, 109;120

15 1
30 ,

2
5 4 13;24

15 1
5 ,

11
30 4 29, 53;120

77, 101;120

15 1
5 ,

13
30 4 13;24

15 1
5 ,

23
30 −4 13;24

15 7
30 ,

2
5 −4 29, 53;120

77, 101;120

e q1, q2 c s0;m

5 1
6 ,

2
5 4 11, 31, 59;120

71, 79;120

119;120

15 7
30 ,

17
30 −2 13, 29, 37;120

53, 61, 77;120

101, 109;120

15 11
30 ,

2
5 −4 13;24

15 2
5 ,

17
30 −4 29, 53;120

77, 101;120

15 1
60 ,

11
60 −4 61, 109;120

15 7
60 ,

17
60 4 61, 109;120

15 13
60 ,

23
60 4 61, 109;120

15 19
60 ,

29
60 −4 61, 109;120

20 1
20 ,

11
20 −4 1, 9;20

20 3
20 ,

13
20 −4 1, 9;20

20 1
60 ,

11
60 4 17, 113;120

20 7
60 ,

17
60 4 17, 113;120

20 13
60 ,

23
60 −4 17, 113;120

20 19
60 ,

29
60 −4 17, 113;120

24 1
24 ,

11
24 4 7;12

24 1
24 ,

13
24 −4 1;12

24 1
24 ,

17
24 −4 5;8

24 1
24 ,

19
24 −4 5;12

24 5
24 ,

7
24 4 7;12

24 5
24 ,

13
24 −4 5;8

24 5
24 ,

17
24 −4 1;12

24 7
24 ,

13
24 −4 5;12
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Geometry of numbers
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Commentary on L: Geometry of numbers

by Wolfgang M. Schmidt

When x is a point in Zk , write h(x) for its maximum norm, and when S ⊂ Rk is a

rational subspace of dimension m, write Ĥ (S) = h(X), where X ∈ Z(
k
m) is a Grassmann

vector of S with coprime coordinates. When 0 < m ≤ � ≤ k and m < k, and S is again
of dimensionm, then there are linearly independent integer points p1, . . . ,p� whose span
contains S and which have

�∏
i=1

h(pi ) ≤ cĤ (S)(k−�)/(k−m)

with a constant c depending on k, �,m.
The series of papers [5], L1, [6], L2 is concerned with the infimum c0(k, �,m) of the

constants c where this holds. In L1 the value c0(3, 2, 1) = 2/
√

3 is established, whereas
in L2 an upper bound for c0(k, �,m) is given, with equality when � = m ≤ 2. These
bounds are independent of k, but in [4] an estimate is given which depends on k and is
better when k = o(�2). Very roughly speaking, the argument depends on two steps, first
the existence of a rational space T ⊃ S of dimension � with small Ĥ (T ), and then of �
independent integer points p1, . . . ,p� in T with small product

∏
h(pi ). Lemma 1 of L2 is

of independent interest and gives a purely geometric fact about parallelopipeds containing
a given parallelohedron.

In the related work L4 the analog of the above problem is taken up with the Euclidean
norm |x| in place of h(x) and with H(S) = |X| in place of Ĥ (S) = h(X). Let c(k, �,m)
be the analog of c0(k, �,m). Given a lattice $ and s with 0 < s < rank$, let γs($) be
minimal such that there is a sublattice % ⊂ $ of rank s with det % ≤ γs($)(det$)s/r , and
for r > s let γr,s (the generalized Hermite constant as defined by Rankin) be the supremum
of γs($)2 over all lattices$ of rank r (so that γr = γr1 is the ordinary Hermite constant).
Then

γ
1/2
k−m,k−� ≤ c(k, �,m) ≤ γ 1/2

k−m,k−�γ
1/2
� .

Also, c(k, 2, 1)→∞ as k→∞. The proof of the further estimate c(3, 2, 1) ≥ 6/(722)1/4

depends on the explicit construction of a sequence of one-dimensional subspaces. It is also
shown that the successive minima λi($) (i = 1, . . . , r) with respect to a symmetric convex
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body of a full lattice $ in Rr are continuous in the natural topology of the space of such
lattices, and the same could easily be shown for the functions γs($).

In L3 it is established that if certain sets of coprime polynomials in Z[T , T1, . . . , T�]
have no fixed prime divisor as (t, t1, . . . , t�) ranges through Z�+1, then there are integers
t∗1 , . . . , t∗� and an arithmetic progression P such that these sets of polynomials are coprime
at (t, t∗1 , . . . , t∗� ) for every t ∈ P . This is later used to prove the interesting but not explicitly
stated fact that when b1, . . . , b� are independent points in Z�+1, then for every t in a certain
arithmetic progression there are points g1, . . . ,g�with |gi−tbi | � 1 (i = 1, . . . , �) which
are the basis of a primitive lattice in Z�+1. Of a theorem on the Geometry of Numbers
whose proof is stated to be a generalization of arguments of Chaładus and Aliev, we will
mention only some consequences. For � ≥ 2 let c(�,∞) be the infimum of the constants
c such that for every x ∈ Z�+1 \ {0} there is an a ∈ Z�+1 \ {0} with inner product ax = 0
and h(a) ≤ ch(x)1/�. Then c(�,∞) ≥ 1 and c(2,∞) = 4/3, c(3,∞) = 27/19. As for
Siegel’s Lemma, suppose A ⊂ Rn is a rational subspace of dimension m < n. Then there
is an integer point x ∈ Zn \{0}which is orthogonal toA and has |x| ≤ γ 1/2

n−mH(A)1/(n−m),
and here the constant γ 1/2

n−m is best possible. This can also be derived from [7] or [8].
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A decomposition of integer vectors II

with S. Chaładus (Warszawa)

In this paper we shall consider integer vectors n = [n1, n2, . . . , nk] and write for such

vectors: h(n) = max |ni |, l(n) =
√
n2

1 + n2
2 + . . .+ n2

k . One of us has recently proved [3]

that for every non-zero vector n ∈ Zk (k > 1) there is a decomposition: n = up + vq,
u, v ∈ Z, where p, q ∈ Zk are linearly independent and

h(p)h(q) � 2h(n)(k−2)/(k−1).

The exponent (k − 2)/(k − 1) cannot be improved (see [2], Remark after Lemma 1). It is
natural to ask for the best value of the coefficient. We shall answer this question for k = 3
by proving the following two theorems.

Theorem 1. For every non-zero vector n ∈ Z3 there exist linearly independent vectors
p, q ∈ Z3, such that n = up + vq, u, v ∈ Z and

h(p)h(q) <

√
4
3 h(n).

Theorem 2. For every ε > 0 there exists a non-zero vector n ∈ Z3, such that for all
non-zero vectors p, q ∈ Z3 and all u, v ∈ Q, n = up + vq implies

h(p)h(q) >

√( 4
3 − ε

)
h(n).

Originally, in the proof of Theorem 1 some computer calculations were used which
were kindly performed by Dr. T. Regińska. We thank her for the help.

The proof of Theorem 1 will be based on geometry of numbers. The inner product of
two vectors n,m will be denoted by nm, their exterior product by n × m, the area of a
plane domain D by A(D).

Lemma 1. Let ai, bi be real numbers (i = 1, 2, 3) and M1,M2,M3 the three mi-

nors of order two of the matrix

[
a1 a2 a3
b1 b2 b3

]
not all equal to 0. The area of the domain

H : |aix + biy| � 1 (i = 1, 2, 3) equals

2|M1M2| + 2|M1M3| + 2|M2M3| −M2
1 −M2

2 −M2
3

|M1M2M3|c
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if each of the numbers |M1|, |M2|, |M3| is less than the sum of the two others, and
4/max{|M1|, |M2|, |M3|} otherwise.

Proof. We may assume without loss of generality that

|M1| = abs

∣∣∣∣a1 a2
b1 b2

∣∣∣∣ > 0, |M1| � |M2| = abs

∣∣∣∣a2 a3
b2 b3

∣∣∣∣ , |M1| � |M3| = abs

∣∣∣∣a1 a3
b1 b3

∣∣∣∣ .
The affine transformation a1x + b1y = X, a2x + b2y = Y transforms the domain H

into the domain

H ′ : |X| � 1, |Y | � 1;
∣∣∣M2

M1
X − M3

M1
Y

∣∣∣ � 1.

If |M2| + |M3| > |M1|, the domain H ′ is obtained from the square |X| � 1, |Y | � 1 byc

subtracting two rectangular triangles, symmetric to each other with respect to (0, 0), with
the vertices

±
(

1,− sgn
M2

M3

|M1| − |M2|
|M3|

)
, ±

(
1,− sgn

M2

M3

)
, ±

( |M1| − |M3|
|M2| ,− sgn

M2

M3

)
.

Hence,

A(H ′) = 4− (|M2| + |M3| − |M1|)2
|M2| |M3| .

If |M2|+|M3| � |M1|, then H ′ coincides with the square |X| � 1, |Y | � 1 andA(H ′) = 4.
Since A(H ) = A(H ′)/|M1|, the lemma follows. 	


Lemma 2. If 0 � a � b < 1, then the domain

D : |x| � 1, |y| � 1, |ax + by| � 1, x2 + y2 + (ax + by)2 � 3
2

contains an ellipse E with

(1) A(E) > π

√
3
4 .

Proof. We take

E : f (x, y) = x2 + c
( ab

b2 + 1
x + y

)2
� 1,

where

(2) c = max
{2

3
(b2 + 1),

(b2 + 1)2

(b2 + 1)2 − a2b2

}
.

In order to see that |x| � 1, |y| � 1 for (x, y) ∈ E, we notice that by (2)

(3) min
y
f (x, y) = x2, min

x
f (x, y) = c

c a2b2

(b2+1)2
+ 1

y2 � y2.

c
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Moreover, for (x, y) ∈ E we have by (2)

(4) x2 + y2 + (ax + by)2

� 3

2

(
2

3

a2 + b2 + 1

b2 + 1
x2 + 2

3
(b2 + 1)

( ab

b2 + 1
x + y

)2
)

� 3

2
f (x, y) � 3

2
.

If for (x, y) ∈ E we had |ax + by| > 1, it would follow

(5) x2 + y2 < 1
2 ,

hence, by the Cauchy–Schwarz inequality

(6) (ax + by)2 � (a2 + b2)(x2 + y2) < 2 · 1
2 = 1,

a contradiction. Thus, for (x, y) ∈ E we have

(7) |ax + by| � 1.

Finally, A(E) = π/√c and since by (2) c < 4/3, (1) follows. 	


Lemma 3. Let n ∈ Z3 \ {[0, 0, 0]}. The lattice of integer vectors m ∈ Z3 satisfying
nm = 0 has a basis a = [a1, a2, a3], b = [b1, b2, b3], such that

(8)

∣∣∣∣a1 a2
b1 b2

∣∣∣∣ = n3

(n1, n2, n3)
,

∣∣∣∣a2 a3
b2 b3

∣∣∣∣ = n1

(n1, n2, n3)
,

∣∣∣∣a3 a1
b3 b1

∣∣∣∣ = n2

(n1, n2, n3)
.

Proof. Since na = nb = 0 and a, b are linearly independent, we have

n = c(a × b)

for a certain c ∈ Q. However, the numbers

∣∣∣∣a1 a2
b1 b2

∣∣∣∣, ∣∣∣∣a2 a3
b2 b3

∣∣∣∣ and

∣∣∣∣a3 a1
b3 b1

∣∣∣∣ are relatively
c

prime (see e.g. [1], p. 53); hence the formulae (8) hold with± sign on the right hand side.
Changing if necessary the order of a, b, we get the lemma. 	


Lemma 4. For every vector n ∈ Z3 different from [0, 0, 0] and [±1,±1,±1] for any
choice of signs, there exists a vector m ∈ Z3 such that

mn = 0,(9)

0 < h(m) <
√

4
3 h(n)(10)

and

(11) l(m) <
√

2h(n) .

Proof. Without loss of generality we may assume that

(12) 0 � n1 � n2 � n3 > 0.

If n2 = n3 we take

m =
{
[1, 0, 0] if n1 = 0,

[0, 1,−1] if n1 �= 0,
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and we find (9)–(11) satisfied, unless n1 = n2 = n3 = 1. Therefore, we may assume
besides (12) that n2 > n3.

In virtue of Lemma 2 the domain

D : |X| � 1, |Y | � 1,
∣∣∣n1

n3
X + n2

n3
Y

∣∣∣ � 1, X2 + Y 2 +
(n1

n3
X + n2

n3
Y
)2

� 3

2

contains an ellipse E with A(E) > π
√

3/4.
Let a, b be a basis the existence of which is asserted by Lemma 3. The substitution

X = a1x + b1y√
4
3 n3

, Y = a2x + b2y√
4
3 n3

transforms D into the domain

D′ : |aix + biy| �
√

4
3 n3 (i = 1, 2, 3),

3∑
i=1

(aix + biy)2 � 2n3.

Hence, D′ contains an ellipse E′ with

A(E′) = 4

3
n3

∣∣∣∣a1 a2
b1 b2

∣∣∣∣−1

A(E) > π

√
4

3
(n1, n2, n3) � π

√
4

3
,

by (8). Since the packing constant for ellipses is π/
√

12, it follows that E′ and, hence, D′
contains in its interior a point (x0, y0) ∈ Z2 different from (0, 0). Putting m = x0a+ y0b,
we get the assertion of the lemma. 	


Lemma 5. If 0 � a � 1, 0 � b � 1 and a + b > 1, the area of the hexagon |x| � 1,
|y| � 1, |ax + by| � 1 is greater than

(
24/(a2 + b2 + 1)

)1/2
.

Proof. In virtue of Lemma 1 the area in question equals

(2ab + 2a + 2b − a2 − b2 − 1)/ab,

thus, it remains to prove that for (a, b) in the domain

G : 0 � a � 1, 0 � b � 1, a + b > 1

the following inequality holds

f (a, b) = (2ab + 2a + 2b − a2 − b2 − 1)2(a2 + b2 + 1)− 24a2b2 > 0.

We have ∂G = L1 ∪ L2 ∪ L3, where

L1 = {(a, 1) : 0 � a � 1}, L2 = {(1, b) : 0 � b � 1},
L3 = {(a, 1− a) : 0 � a � 1}.

We find f (a, 1) = a2(a − 1)3(a − 5)+ 3a2, but a2(a − 1)3(a − 5) � 0 for a � 1, hence
f (a, 1) � 3a2 � 0. In view of symmetry between a and b, f (1, b) � 3b2 � 0.

Moreover, f (a, 1− a) = 8a2(1− a)2(2a− 1)2 � 0. Hence, for (a, b) ∈ ∂G we have
f (a, b) � 0 with the equality attained only if (a, b) /∈ G. It suffices to show that in the
interior of G the function f (a, b) has no local extremum.
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Indeed, putting g(a, b) = 2ab + 2a + 2b − a2 − b2 − 1, we findc

∂f

∂a
= 2ag2 + 2(2b + 2− 2a)(a2 + b2 + 1)g − 48ab2,

∂f

∂b
= 2bg2 + 2(2a + 2− 2b)(a2 + b2 + 1)g − 48a2b,

hence

a
∂f

∂a
− b ∂f

∂b
= 2(a − b)((a + b)g + (a2 + b2 + 1)(2− 2a − 2b)

)
,

b
∂f

∂a
− a ∂f

∂b
= 4(b − a)((a + b + 1)(a2 + b2 + 1)g − 12ab(a + b)).

The equations ∂f /∂a = ∂f /∂b = 0 imply a = b or

(a + b)g + (a2 + b2 + 1)(2− 2a − 2b) = 0,(13)

(a + b + 1)(a2 + b2 + 1)g − 12ab(a + b) = 0.

Eliminating g from the above equations we obtain

(14) 2(a2 + b2 + 1)2
(
(a + b)2 − 1

)− 12ab(a + b)2 = 0.c

The left hand sides of the equations (13) and (14) are symmetric functions of a, b.
Expressing them in terms of s = a + b and p = ab, then eliminating p, we get

s(s − 1)(2s − 1)(4s2 − s + 1) = 0.

For s = a+b > 1 this is clearly impossible, there remains the possibility a = b. However,c

in that case
∂f

∂a
= 16a3 − 24a2 + 18a − 4 = 2(2a − 1)3 + 3(2a − 1)+ 1 > 1. 	


Lemma 6. For every non-zero vector n = [n1, n2, n3] ∈ Z3 there exist linearly indepen-
dent vectors p, q ∈ Z3 such that pn = qn = 0, and

h(p)h(q) <

√
2

3
l(n),

if each of the numbers |n1|, |n2|, |n3| is less than the sum of the two others;

h(p)h(q) � h(n), otherwise.

Proof. We may assume without loss of generality that 0 � n1 � n2 � n3 > 0.
In virtue of Lemmata 1 and 5 the area A(K) of the domain

K : |X| � 1, |Y | � 1,
∣∣∣n1

n3
X − n2

n3
Y

∣∣∣ � 1

satisfies

(15)

⎧⎪⎨⎪⎩A(K) >
√

24

n2
1 + n2

2 + n2
3

n3, if n1 + n2 > n3,

A(K) = 4, otherwise.
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Let a, b be a basis the existence of which is asserted in Lemma 3. The affine transformation
X = a1x + b1y, Y = a2x + b2y transforms the domain K into the domain

K ′ : |aix + biy| � 1 (i = 1, 2, 3)

satisfying

(16) A(K ′) = A(K) (n1, n2, n3)

n3
.

In virtue of Minkowski’s second theorem there exist two linearly independent integer
vectors [x1, y1] and [x2, y2] such that

(17) |aixj + biyj | � λj (i = 1, 2, 3; j = 1, 2)

and

(18) λ1λ2A(K
′) � 4.

Putting p = ax1+by1, q = ax2+by2, we infer that p, q are linearly independent, satisfy
pn = qn = 0 and in virtue of (15), (18)

h(p)h(q) � λ1λ2

{
<

√
2
3 l(n), if n1 + n2 > n3,

� n3, otherwise.
	


Proof of Theorem 1. If n = [ε1, ε2, ε3], where εi ∈ {1,−1}, it suffices to take p =
[ε1, ε2, 0], q = [0, 0, ε3]. If n �= [ε1, ε2, ε3] for every choice of ε1, ε2, ε3, then by Lemma 4
there exists a vector m ∈ Z3 satisfying the conditions

mn = 0,(19)

0 < h(m) <
√

4
3 h(n), 0 < l(m) <

√
2h(n) .(20)

Now, by Lemma 6 applied with n replaced by m there exist vectors p, q ∈ Z3 such that

(21) pm = qm = 0, dim(p, q) = 2

and

(22) h(p)h(q) < max
{√

2
3 l(m), h(m)

}
.

The equations (19) and (21) imply that n = up + vq; u, v ∈ Q, while the inequalitiesc

(20) and (22) imply that h(p)h(q) <
(
(4/3)h(n)

)1/2.
It follows that the number c0(3) defined in [3] by the formulac

c0(k) = sup
n∈Zk

n�=0

inf
p,q∈Zk

dim(p,q)=2
n=up+vq, u,v∈Q

h(p)h(q)h(n)−(k−2)/(k−1)

c

satisfies c0(3) �
√

4/3 and if c0(3) = √4/3, the supremum occurring in the definition of
c0(k) is not attained. By Theorem 2 of [3] there exist vectors p0, q0 ∈ Z3 linearly inde-c

pendent and such that n = u0p0 + v0q0, u0, v0 ∈ Z, and h(p0)h(q0) <
(
(4/3)h(n)

)1/2.
The proof of Theorem 1 is complete. 	
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The proof of Theorem 2 is again based on several lemmata. We shall set for
t = 1, 2, 3, . . .

nt =
[
(2t2+2t)(6t2+4t−1), (2t2+2t)(6t2+6t−1), (4t2+4t)2−(2t2−1)(2t2+2t−1)

]
,

and for vectors m,p, . . . we shall denote the ν-th coordinate by mν, pν , respectively.

Lemma 7. If ntm = 0, m ∈ Z3, 0 < h(m) � 8t2 + 8t − 2, then we have m = ±mi forc

an i � 6, where

m1 = [6t2 + 6t − 1,−(6t2 + 4t − 1), 0],
m2 = [2t2 + 2t − 1,−(4t2 + 4t), 2t2 + 2t],
m3 = [4t2 + 4t,−(2t2 − 1),−(2t2 + 2t)],
m4 = [2t2 + 2t + 1, 2t2 + 4t + 1,−(4t2 + 4t)],
m5 = [2, 6t2 + 8t + 1,−(6t2 + 6t)] (t �= 1),

m6 = [6t2 + 6t + 1, 4t + 2,−(6t2 + 6t)].

Proof. The vectors mi (1 � i � 6) all satisfy the equation ntmi = 0. Since the vectors m1c

and m2 are linearly independent, every vector m ∈ Z3 satisfying ntm = 0 is of the formc

um1 + vm2, u, v ∈ Q.
Let u = a/c, v = b/c, a, b, c ∈ Z, (a, b, c) = 1, c > 0. It follows from

c |am1i + bm2i , c |am1j + bm2j

that c | (a, b)(m1im2j −m2im1j ), hence, c |m1im2j −m2im1j (1 � i < j � 3).
But (m11m23 − m21m13,m12m23 − m22m13) = m23(m11,m12) = m23 and

(m23,m11,m22 − m21,m12) = (m23,m21,m12) = 1, hence, c = 1 and we get
m = am1+ bm2. Considering the third coordinate, we find |b|(2t2+ 2t) � 8t2+ 8t − 2,
hence, |b| � 3.

Considering the first coordinate, we get

|a(6t2 + 6t + 1)+ b(2t2 + 2t − 1)| � 8t2 + 8t − 2;
|a|(6t2 + 6t − 1) � 8t2 + 8t − 2+ |b|(2t2 + 2t − 1) � 14t2 + 14t − 15,

hence, |a| � 1 or a = ±2, b = 3. For a = 0 we get

m = b[2t2 + 2t − 1,−(4t2 + 4t), 2t2 + 2t] = ±m2.

For |a| = 1 the inequality for the second coordinate

|a(6t2 + 4t − 1)+ b(4t2 + 4t)| � 8t2 + 8t − 2

gives b = 0 or ab < 0. For a = ±1, b = 0 we get m = ±m1; for a = ±1, b = ∓1 we
get m = ±m3; for a = ±1, b = ∓2 we get m = ±m4; for a = ±1, b = ∓3 we get
m = ±m5; for a = ±2, b = ∓3 we get m = ±m6. 	


Lemma 8. If p, q ∈ Z3 are linearly independent and pm1 = qm1 = 0, then

h(p)h(q) > 4t2 + 4t.
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Proof. pm1 = 0 implies p1 ≡ 0 mod 6t2 + 4t − 1, p2 ≡ 0 mod 6t2 + 6t − 1. Hence,
p1 = p2 = 0 or |p2| � 6t2+6t −1. Similarly, q1 = q2 = 0 or |q2| � 6t2+ 6t − 1. Since
p, q are linearly independent, h(p)h(q) � 6t2 + 6t − 1 > 4t2 + 4t . 	


Lemma 9. If p, q ∈ Z3 are linearly independent and pm2 = qm2 = 0, then

h(p)h(q) � 4t2 + 4t.

Proof. The equation

pm2 = (2t2 + 2t − 1)p1 − (4t2 + 4t)p2 + (2t2 + 2t)p3 = 0

gives p1 ≡ 0 mod 2t2 + 2t , hence, p1 = 0 or |p1| � 2t2 + 2t . The former possibilityc

gives |p3| � 2. Similarly, q1 = 0, |q3| � 2 or |q1| � 2t2 + 2t . Since p, q are linearly
independent, p1 = q1 = 0 is excluded, hence,

h(p)h(q) � min
{
2(2t2 + 2t), (2t2 + 2t)2

}
� 4t2 + 4t. 	


Lemma 10. If p, q ∈ Z3 are linearly independent and pm3 = qm3 = 0, then

h(p)h(q) � 4t2 + 4t.

Proof. The equation

pm3 = (4t2 + 4t)p1 − (2t2 − 1)p2 − (2t2 + 2t)p3 = 0

gives p2 ≡ 0 mod 2t2 + 2t , hence p2 = 0 or |p2| � 2t2 + 2t . The further proof is similar
to that of Lemma 9. 	


Lemma 11. If p ∈ Z3, pm4 = 0, then either p = 0 or h(p) � 2t + 1.

Proof. The equation

pm4 = (2t2 + 2t + 1)p1 + (2t2 + 4t + 1)p2 − (4t2 + 4t)p3 = 0

gives

(24) (2t2 + 2t)(p1 + p2 − 2p3)+ p1 + (2t + 1)p2 = 0.

If p1 + p2 − 2p3 = 0, then p1 + (2t + 1)p2 = 0 and either p1 = 0 or |p1| � 2t + 1. If
p1 + p2 − 2p3 �= 0, then since by (24) p1 ≡ p2 mod 2, we obtain

p1 + p2 − 2p3 = 2s, s ∈ Z \ {0}, p1 + (2t + 1)p2 = −(4t2 + 4t)s.

Hence, p3 + tp2 = −(2t2 + 2t + 1)s and

max{|p2|, |p3|} � 2t2 + 2t + 1

t + 1
> 2t,

thus h(p) � 2t + 1. 	


Lemma 12. If p, q ∈ Z3 are linearly independent and pm5 = qm5 = 0, then

h(p)h(q) > 4t2 + 4t (t �= 1).
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Proof. The equation

pm5 = 2p1 + (6t2 + 8t + 1)p2 − (6t2 + 6t)p3 = 0

gives

2p1 + (2t + 1)p2 + (6t2 + 6t)(p2 − p3) = 0.

If p2 = p3, we get p1 ≡ 0 mod 2t + 1, hence, |p1| � 2t + 1. If p2 �= p3, we get
(2t + 3)max{|p1|, |p2|} � 6t2 + 6t , hence

max{|p1|, |p2|} � 6t2 + 6t

2t + 3
> 3t − 2

and h(p) � 3t − 1. Similarly, q2 = q3 and |q1| � 2t + 1 or h(q) � 3t − 1. Since p, q are
linearly independent, p2 = p3, q2 = q3 is excluded and we get for t �= 1

h(p)h(q) � min
{
(2t + 1)(3t − 1), (3t − 1)2

}
� (2t + 1)(3t − 1). 	


Lemma 13. If p, q ∈ Z3 are linearly independent and pm6 = qm6 = 0, then

h(p)h(q) � 4t2 + 4t.

The equation

pm6 = (6t2 + 6t + 1)p1 + (4t + 2)p2 − (6t2 + 6t)p3 = 0

gives

(6t2 + 6t)(p1 − p3)+ p1 + (4t + 2)p2 = 0.

If p1−p3 = 0, we get p1 ≡ 0 mod 4t + 2, hence, |p1| � 4t + 2. If |p1−p3| � 2, we get

(4t + 3)max{|p1|, |p2|} � 2(6t2 + 6t),

hence,

max{|p1|, |p2|} � 12t2 + 12t

4t + 3
> 3t

and h(p) � 3t + 1. If p1 − p3 = ±1, we get p1 + (4t + 2)p2 = ∓(6t2 + 6t), hencec

either |p1| � 4t + 2 or p2 =
(
∓ (6t

2 + 6t)

4t + 2

)
or p2 =

(
∓ (6t

2 + 6t)

4t + 2

)
+ 1.

The last two formulae give the following possible values for ∓[p1, p2]:[
3t,

3t

2

]
,
[
t − 1,

3t + 1

2

]
,
[
−t − 2,

3t + 2

2

]
,
[
−3t − 3,

3t + 3

2

]
.

Hence, either h(p) � 3t + 2{t/2} or p1 − p3 = ±1 and p2 =
(
(3t + 2)/2

)
. Similarly,

either h(q) � 3t + 2{t/2} or q2− q3 = ±1 and q2 =
(
(3t + 2)/2

)
. Since p, q are linearly

independent it follows that

h(p)h(q) �
(

3t + 2
{ t

2

})(3t + 2

2

)
� 4t2 + 4t. 	




1258 L. Geometry of numbers

Proof of Theorem 2. Since

lim
t→∞

4t2 + 4t√
(4t2 + 4t)2 − (2t2 − 1)(2t2 + 2t − 1)

=
√

4

3
,

for every ε > 0 there exist integers t such thatc

(25) 4t2 + 4t >
√( 4

3 − ε
)
h(nt )

and we fix such a value of t .
If nt = up + vq, u, v ∈ Q and p, q ∈ Z3 are linearly dependent, then since

(nt1, nt2, nt3) = 1, we have either p = 0 or p = snt , s ∈ Z \ {0}, thus h(p) � h(nt ), andc

similarly for q. It follows that for p �= 0, q �= 0c

h(p)h(q) � h(nt )2 >
√( 4

3 − ε
)
h(nt ) .

If p, q are linearly independent, then p × q �= 0 and (p × q)nt = 0. On the other hand,
either h(p)h(q) � 4t2+ 4t or h(p× q) � 2h(p)h(q) � 2(4t2+ 4t − 1) = 8t2+ 8t − 2.c

In the latter case in virtue of Lemma 7 we have p × q = mi , for an i � 6. Hence,
pmi = qmi = 0 and from Lemmata 8–13 we obtain h(p)h(q) � 4t2 + 4t .c

In view of (25) the theorem follows. 	


Remark. There exist decompositions nt = up + vq with h(p)h(q) = 4t2 + 4t , namely

nt = (6t2 + 4t − 1)
[
2t2 + 2t, 0,−(2t2 + 2t − 1)

]+ (2t2 + 2t)(6t2 + 6t − 1)[0, 1, 2]
or

nt = (2t2 + 2t)(6t2 + 4t − 1)[1, 0, 2] + (6t2 + 6t − 1)[0, 2t2 + 2t, 1− 2t2].
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A decomposition of integer vectors IV

In memory of Kurt Mahler

Abstract. Given m linearly independent vectors n1, . . . ,nm ∈ Zk and an integer l ∈ [m, k] one
proves the existence of l linearly independent vectors p1, . . . ,pl ∈ Zk or q1, . . . , ql ∈ Zk of small
size (suitably measured) such that the ni ’s are linear combinations of pj ’s with rational coefficients
or of qj ’s with integer coefficients.

In order to generalize the results of [10] (Part III of this series) let us introduce the fol-
lowing notation. Givenm linearly independent vectorsn1, . . . ,nm ∈ Zk letH(n1, . . . ,nm)

denote the maximum of the absolute values of all minors of order m of the matrix⎛⎜⎝n1
...

nm

⎞⎟⎠
and D(n1, . . . ,nm) the greatest common divisor of these minors. Furthermore, let

h(n) = H(n) for n �= 0, h(0) = 0.

Definition 1. For k � l � m, k > m, let

c0(k, l, m) = sup inf

(
D(n1, . . . ,nm)

H(n1, . . . ,nm)

)(k−l)/(k−m) l∏
i=1

h(pi ),

c1(k, l, m) = sup inf

(
D(n1, . . . ,nm)

H(n1, . . . ,nm)

)(k−l)/(k−m) l∏
i=1

h(qi ),

where the supremum is taken over all sets of linearly independent vectors n1, . . . ,nm ∈ Zk

and the infimum is taken over all sets of linearly independent vectors p1, . . . ,pl ∈ Zk or
q1, . . . , q l ∈ Zk such that for all i � m,

ni =
l∑
j=1

uijpj , uij ∈ Q, ni =
l∑
j=1

uijqj , uij ∈ Z.

The Bombieri–Vaaler refinement [1] of the Siegel lemma easily leads (on the lines
of the proof of (8) in [10]) to the conclusion that c0(k, l, m) is finite, first obtained by
Yu. Teterin. The aim of this paper is to give bounds for c0(k, l, m) and c1(k, l, m) which

Communicated by J. H. Loxton
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are independent of k. First however we shall introduce three further series of constants,
this time of geometric character.

Definition 2. For a given positive integer m, let κm be the volume of the unit ball in Rm,

g0(m) = sup inf
vol P

vol K
, g1(m) = sup inf

vol P

vol E (K)
· κm

2m
,

where the suprema are taken over all m-dimensional convex bodies K situated in Rm,
symmetric with respect to the origin, the infima are taken over all parallelopipeds P con-
taining K symmetric with respect to the origin and E (K) denotes the ellipsoid of the
maximum volume contained in K. (It is unique; see [7].) Clearly

2m

κm
� g0(m) � 2m

κm
g1(m).

The best published result pertaining to g0(m), g1(m) seems to be the following in-
equality due to Dvoretzky and Rogers ([4], Theorem 5A):

g1(m) �
(mm
m!
)1/2

.

Professor A. Pełczyński who indicated to me the paper [4] has improved the above
inequality by showing together with S. J. Szarek that (see [9], Proposition 2.1)

g1(m)
2 �

(m(m+1)
2
m

)( 2

m+ 1

)m
and, on the other hand, they have proved that (ibid., Section 6)

g1(m)
2 � 2m

m+ 1
.

For m � 2 the two bounds coincide and give

g1(1) = 1, g1(2) =
√

4
3 .

According to Theorem 5.1 of [9], for every ε > 0,

log g1(m) = m
2
+ o(m2/3+ε).

I am indebted to Professor Pełczyński also for the paradigm (for l = 2) of the proof of
Lemma 1 below, which he has since proved in another way (see [9], Corollary 3.1).

We shall prove

Theorem 1. For all integers k, l,m satisfying k � l � m, k > m > 0,

(1) c0(k, l, m) � min

{
(l −m+ 1)1/2g1(m)γ

l/2
l ,

l!
m! g0(m),(

l

m

)l/2
l(l−m)/2g1(l)γ

l/2
l

}
,

where γl is the Hermite constant. For l = m � 2 we have here equality.
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Theorem 2. For all integers k, l,m satisfying k � l � m, k > m > 0 we havec

c1(k, l, m)

c0(k, l, m)
� f (l) = sup

A

inf
U

( l∑
j=1

|δij |
)
,

where [δij ] = UA−1, A and U run through all lower triangular non-singular integral
matrices and all lower triangular integral matrices of order l, respectively. Moreover

f (l) � (l + λ+ 1)!
4l−λ(2λ+ 1)! where λ =

[
1+√16l + 17

4

]
.

S. Chaładus and Yu. Teterin prove in the forthcoming paper [2] that the exponent
(k − l)/(k − m) in the definition of c0(k, l, m) is the correct one, that is, for any smaller
exponent the corresponding supremum is infinite. Moreover they give an estimate for
c0(k, l, m) that depends on k and is better than (1) for k = o(l2).

Let us note that for large l the minimum on the right hand side of (1) is equal to the first
term for m < c1l/ log l, to the last term for m > c2l, where c1, c2 are suitable constants,
c1 > 0, c2 < 1, provided in the latter case that γl , log

(
g0(l)κl/2l

)
are regularly growing

functions and

lim inf
l→∞

log g0(l)− l
2 log γl

l
>

1

2
.

Form = 1, (1) constitutes an improvement over Theorem 1 of [8] already for l > 50. The
problem of existence of a bound for c0(k, l, m) depending only on m remains open also
for m = 1.

Lemma 1. If A is a parallelohedron given by the inequalities

|aix| � 1, ai ∈ Rl (1 � i � k)

then for every parallelopiped P containing A, symmetric with respect to 0 and for a suitable
subset S of {1, 2, . . . , k} of cardinality l we have

vol P � vol P0(S),

where P0(S) is the parallelopiped

|aix| � 1 (i ∈ S).

Proof.We shall proceed by induction on the numbernof pairs of parallel (l−1)-dimensional
faces of P that do not contain (l− 1)-dimensional faces of A (in the sequel, briefly, faces).
If n = 0 the assertion is true. Suppose it is true for the case of n − 1 pairs of parallel
faces and consider a parallelopiped P symmetric with respect to 0 with exactly n pairs of
parallel faces not containing faces of A. Let P be given by the inequalities

|bix| � 1, bi ∈ Rl (1 � i � l)
and let b1x = ±1 be the pair of hyperplanes corresponding to one of the n pairs in question.
Replacing P if necessary by a smaller parallelopiped we may assume that there is x0 ∈ A
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such that

(2) b1x0 = 1.

Let I = {i � k : |aix0| = 1} and let

(3) aix0 = εi (i ∈ I ).
From the fact that the hyperplane b1x = 1 is supporting A at x0 it follows that

(4) εiai t � 0 (i ∈ I ) implies b1t � 0 for t ∈ Rl .

Indeed, suppose for some t0 ∈ Rl that εiai t0 � 0 and b1t0 > 0. Then for

t1 = t0

lh(t0)
min

{
min
i /∈I

1− |aix0|
h(ai )

,min
i∈I

2

h(ai )

}
we have ±(x0 + t1) ∈ A, b1(x0 + t1) > 1, b1(−x0 − t1) < −1 < 1, and thus the
hyperplane b1x = 1 divides A. This contradiction proves (4). Hence by a theorem of
Farkas ([5], page 5. I owe this reference to Professor S. Rolewicz. There is a related earlier
statement in [8], page 45) we have

b1 =
∑
i∈I
εiaiλi,

where

(5) λi � 0 (i ∈ I )
and by (2) and (3)

(6)
∑
i∈I
λi = 1.

Therefore, (
vol P

)−1 = 2−l
∣∣∣∣det

(∑
i∈I
εiaiλi, b2, . . . , bl

)∣∣∣∣(7)

= 2−l
∣∣∣∣∑
i∈I
λi det(εiai , b2, . . . , bl )

∣∣∣∣.
Regarding λi as variables restricted by the conditions (5) and (6), we easily see that the
right hand side of (7) takes the maximum for λi = 1 if i = i0, λi = 0 otherwise. Hence

(8) vol P � vol P1,

where P1 is the parallelopiped

|ai0x| � 1, |bix| � 1 (2 � i � l).

However P1 contains A and it has only n− 1 pairs of parallel faces that do not contain
faces of A. Thus by the inductive assumption there exists a set S ⊂ {1, 2, . . . , k} of
cardinality l and with the property

vol P1 � vol P0(S).
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In view of (8) this gives

vol P � vol P0(S)

and concludes the inductive argument. 	


Lemma 2. For all linearly independent vectors c1, . . . , cl ∈ Rk the domain

C : h(c1x1 + . . .+ clxl) � 1

satisfies

vol C � 2l

g0(l)H(c1, . . . , cl )
, vol E (C) � κl

g1(l)H(c1, . . . , cl )
.

Proof. Put

(9) ai = [c1i , c2i , . . . , cli] (1 � i � k).
Then

C = {x ∈ Rl : |aix| � 1 for all i � k}
and clearly C is a convex body symmetric with respect to 0. By Definition 2

vol C � g0(l)
−1 inf vol P, vol E (C) � g1(l)

−12−lκl inf vol P,

where the infimum is taken over all parallelopipeds P symmetric with respect to 0 and
containing C. However by Lemma 1 the infimum can be replaced by the minimum taken
over the finite set of all parallelopipeds

P0(S), |aix| � 1 (i ∈ S),
where S runs through all subsets of {1, . . . , k} of cardinality l. Since

vol P0(S) = 2l
∣∣det{ai : i ∈ S}

∣∣−1

we have by (9) that

min vol P0(S) = 2lH(c1, . . . , cl )
−1

and the lemma follows. 	


Lemma 3. If for all linearly independent vectors n1, . . . ,nm ∈ Zk such that
D(n1, . . . ,nm) = 1 there exist linearly independent vectors p1, . . . ,pl ∈ Zk such that

ni =
l∑
j=1

uijpj , uij ∈ Q

and
l∏
j=1

h(pj ) � cH(n1, . . . ,nm)
(k−l)/(k−m)

then c0(k, l, m) � c.
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Proof. Consider m linearly independent vectors n1, . . . ,nm ∈ Zk and let N be the linear
space spanned by them over R. Further, let b1, . . . , bm be a basis of the lattice N ∩ Zk

and c1, . . . , ck−m ∈ Zk linearly independent vectors perpendicular to N . Since N ∩ Zk

is the lattice of all solutions x ∈ Zk of the system cix = 0 (1 � i � k −m), we have by
the known theorem ([3], page 53) that

(10) D(b1, . . . , bm) = 1.

On the other hand clearly

(11)

⎛⎜⎝n1
...

nm

⎞⎟⎠ = A

⎛⎜⎝b1
...

bm

⎞⎟⎠ ,
where A is an integral square matrix of order m. It follows from (11) that

D(n1, . . . ,nm) = |det A|D(b1, . . . , bm),

H(n1, . . . ,nm) = |det A|H(b1, . . . , bm)

and by (10)

(12) H(b1, . . . , bm) = H(n1, . . . ,nm)

D(n1, . . . ,nm)
.

By the assumption of the lemma there exist linearly independent vectors
p1, . . . ,pl ∈ Zk and a matrix U ∈Mm,l(Q) such that

(13)

⎛⎜⎝b1
...

bm

⎞⎟⎠ = U

⎛⎜⎝p1
...

pl

⎞⎟⎠ ,
and

(14)
l∏
j=1

h(pj ) � cH(b1, . . . , bm)
(k−l)/(k−m).

It follows from (11) and (13) that⎛⎜⎝n1
...

nm

⎞⎟⎠ = AU

⎛⎜⎝p1
...

pl

⎞⎟⎠ ,
while from (12) and (14) that

l∏
j=1

h(pj ) � c
(
H(n1, . . . ,nm)

D(n1, . . . ,nm)

)(k−l)/(k−m)
.

Thus, by Definition 1, c0(k, l, m) � c. 	


Lemma 4. Let K be a convex domain symmetric with respect to 0 in the linear subspace
L : x1 = . . . = xm = 0 of Rk , not containing in its interior any point of the lattice
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L ∩Zk except 0 and let ‖ ‖K be the corresponding distance function. Let n1, . . . ,nm ∈ Zk

and N be the linear space spanned by n1, . . . ,nm over R. If Δ = det(nij )i,j�m �= 0
and D(n1, . . . ,nm) = 1 there exist vectors nm+1, . . . ,nk ∈ Zk such that n1, . . . ,nk are
linearly independent and

k∏
i=m+1

∥∥(ni +N ) ∩L
∥∥

K
� 2k−m

(
vol K

)−1|Δ|−1.

Remark. SinceΔ �= 0 we have N ∩L = {0}, and hence (ni +N )∩L consists of one
point and

∥∥(ni+N )∩L
∥∥

K
means the distance from this point to 0 measured through K.

Proof. If |Δ| = 1 the desired conclusion follows directly from Minkowski’s second the-
orem. Indeed, by that theorem applied to the domain K there exist linearly independent
vectors nm+1, . . . ,nk ∈ L ∩K such that

k∏
i=m+1

‖ni‖K � 2k−m
(
vol K

)−1
.

Since N ∩L = {0} we have (ni +N ) ∩L = {ni} (m < i � k) and n1, . . . ,nk are
linearly independent. Therefore assume that |Δ| > 1. LetΔi(x) be the determinant of the
matrix obtained from (nij )i,j�m by replacing the ith row by the first m coordinates of the
vector x.

Let us take a real number r > 1 and consider in Rk the domain

Dr (K) : max
1�μ�m

|Δμ(x)| + |Δ|r
∥∥∥∥xΔ− m∑

μ=1

nμΔμ(x)

∥∥∥∥(k−m)r
K

� |Δ|(k−m)r .

Then Dr (K) is convex and symmetric with respect to 0. In order to compute its volume
we make the affine transformation

Δμ(x)

Δ(k−m)r
= yμ (μ = 1, . . . , m), xμ = yμ (μ = m+ 1, . . . , k).

This transformation has Jacobian equal to Δ(k−m)rm−m+1 and it transforms Dr (K) into

D′r (K) : max
1�μ�m

|yμ| + |Δ|r
∥∥∥∥[0, ym+1, . . . , yk] −

m∑
μ=1

n′μyμΔ(k−m)r−1
∥∥∥∥(k−m)r

K

� 1,

where n′μ is the projection of nμ on L . Clearly

vol Dr (K) = |Δ|(k−m)rm−m+1 vol D′r (K)

= |Δ|(k−m)rm−m+1 vol K

∫
max1�μ�m |yμ|�1

dy1 dy2 · · · dym
(

1−max |yμ|
|Δ|r

)1/r

= 2m|Δ|((k−m)r−1)m vol K

∫ 1

0
mtm−1(1− t)1/r dt.
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Put
∫ 1

0 mt
m−1(1− t)1/r dt = Ir,m.

Let λi = inf
{
λ : dim λDr (K)∩Zk � i

}
(1 � i � k). By Minkowski’s second theorem

there exist linearly independent points m1, . . . ,mk such that

(15) mi ∈ λiDr (K) ∩ Zk

and

(16)
k∏
i=1

λi � 2k vol Dr (K)
−1 = 2k−mI−1

r,m

(
vol K

)−1|Δ|(1−(k−m)r)m.

We shall show that

(17) λi = |Δ|1−(k−m)r (1 � i � m)

and

(18) mi ∈ N (1 � i � m).

Indeed, for i � m, μ � m we have

Δμ(ni ) = Δ if μ = i, 0 otherwise;

Δni =
m∑
μ=1

nμΔμ(ni ),

and hence

(19) ni ∈ |Δ|1−(k−m)rDr (K) (1 � i � m).

On the other hand, if x ∈ λDr (K) ∩ Zk and x /∈ N we have Δx �=
m∑
μ=1

nμΔμ(x), and

thus by the assumption about K,
∥∥Δx −

m∑
μ=1

nμΔμ(x)
∥∥

K
� 1 and by the definition of

c

Dr (K),

(20) λ(k−m)r |Δ|(k−m)r � |Δ|r ; λ � |Δ|−1+1/(k−m) > |Δ|1−(k−m)r .

If x ∈ λDr (K)∩Zk and x ∈ N we haveΔx =
m∑
μ=1

nμΔμ(x) and thus by the assumption

that D(n1, . . . ,nm) = 1 we have Δμ(x) ≡ 0 (modΔ), and hence either x = 0 or
max

1�μ�m
|Δμ(x)| � |Δ|, which by the definition of Dr (K) implies

(21) λ � |Δ|1−(k−m)r .
The claims (17) and (18) follow from (19), (20) and (21).

From (16) and (17) we infer that

k∏
i=m+1

λi � 2k−m
(
vol K)−1I−1

r,m
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and since by (15)

|Δ|r
∥∥∥∥Δmi −

x∑
μ=1

nμΔμ(mi )

∥∥∥∥(k−m)r
K

� |Δ|(k−m)rλ(k−m)ri

we obtain

(22)
k∏

i=m+1

∥∥∥∥mi −Δ−1
m∑
μ=1

nμΔμ(mi )

∥∥∥∥
K

� 2k−m
(
vol K

)−1|Δ|−1I−1
r,m.

Moreover, by (18), n1, . . . ,nm,mm+1, . . . ,mk are linearly independent. For every r > 1
there corresponds a certain choice of vectors mi ∈ Zk , however the set of values which
we can obtain on the left hand side of (22) is discrete. Therefore there exist vectors ni
(m < i � k) such that ni (1 � i � k) are linearly independent and

k∏
i=m+1

∥∥∥∥ni −Δ−1
m∑
μ=1

nμΔμ(ni )

∥∥∥∥
K

� 2k−m
(
vol K

)−1|Δ|−1 lim
r→∞ I

−1
r,m.

However {
ni −Δ−1

m∑
μ=1

nμΔμ(ni )

}
= (ni +N ) ∩L

and

lim
r→∞ Ir,m =

∫ 1

0
mtm−1 dt = 1,

which proves the lemma. 	


Lemma 5. If m < k, n1, . . . ,nm ∈ Zk , D(n1,n2, . . . ,nm) = 1 there exist vectors
nm+1, . . . ,nk ∈ Zk such that n1, . . . ,nk are linearly independent and for each l ∈ [m, k]
the domain D : h( l∑

i=1
xini

)
� 1, contained in Rd , satisfies

(23) vol D � 2lm!
g0(m)l! H(n1, . . . ,nm)

−(k−l)/(k−m)

and

(24) vol E (D) � max

{
κl

g1(m)(l −m+ 1)l/2
,
κl

g1(l)

(
l

m

)−1/2

l(m−l)/2
}

×H(n1, . . . ,nm)
(k−l)/(k−m).

Proof. Without loss of generality we may assume that H(n1,n2, . . . ,nm) = |Δ|, where
Δ = det(nij )i,j�m. By Lemma 4 applied with K = {x ∈ L : h(x) � 1} there exist
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vectors nm+1, . . . ,nk ∈ Zk such that n1, . . . ,nk are linearly independent and

(25)
k∏

i=m+1

h(n′i ) � |Δ|−1, where {n′i} = (ni +N ) ∩L (m < i � k).

Permuting the vectors ni if necessary we may assume that the sequence h(n′i ) is nonde-
creasing. Then (25) implies

(26)
l∏

i=m+1

h(n′i ) � H(n1, . . . ,nm)
−(l−m)/(k−m).

In order to prove (23) let us write explicitly

n′i = ni −
m∑
μ=1

aiμnμ (m < i � l).

Then

l∑
i=1

xini =
m∑
μ=1

nμ

(
xμ +

l∑
i=m+1

aiμxi

)
+

l∑
i=m+1

xin
′
i

and

(27) h

( l∑
i=1

xini

)
� h

( m∑
μ=1

nμ

(
xμ +

l∑
i=m+1

aiμxi

))
+

l∑
i=m+1

|xi |h(n′i ).

It follows by a change of variables that

vol D �
∫

D0

dxm+1 · · · dxl vol

{
x ∈ Rm : h

( m∑
μ=1

xμnμ

)
� 1−

l∑
i=m+1

|xi |h(n′i )
}
,

where D0 is the domain
l∑

i=m+1
|xi |h(n′i ) � 1. However by Lemma 2,

vol

{
x ∈ Rm : h

( m∑
μ=1

xμnμ

)
� c
}

� 2mcm

g0(m)H(n1, . . . ,nm)
,

and hence

vol D = 2m

g0(m)H(n1, . . . ,nm)

∫
D0

(
1−

l∑
i=m+1

|xi |h(n′i )
)m
dxm+1 · · · dxl

= 2lm!
g0(m)l!H(n1, . . . ,nm)

l∏
i=m+1

h(n′i )−1

and (23) follows from (26).
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In order to prove the part of (24) corresponding to the first term of the maximum on

the right hand side, let D1 be the domain h
( m∑
i=1
xini

)
� 1. The ellipsoid E (D1) is given

by the inequality F1(x1, . . . , xm) � 1, where F1 is a positive definite quadratic form.
Since E (D1) ⊂ D1 we have for all x ∈ Rm,

(28)
√
F1(x1, . . . , xm) = ‖x‖E (D1) � ‖x‖D1 = h

( m∑
i=1

xini

)
.

By virtue of Lemma 2, we have

vol E (D1) � κmg1(m)
−1H(n1, . . . ,nm)

−1.

However

vol E (D1) = κm√
d(F1)

,

and thus

(29)
√
d(F1) � g1(m)H(n1, . . . ,nm).

Consider now the quadratic form

F(x1, . . . , xl) = (l −m+ 1)F1

(
. . . , xμ +

l∑
i=m+1

aiμxi, . . .

)

+ (l −m+ 1)
l∑

i=m+1

x2
i h

2(n′i ).

For all x ∈ Rl we have by the Cauchy inequality, by (28) and (27), that

√
F(x1, . . . , xl) �

√√√√F1

(
. . . , xμ +

l∑
i=m+1

aiμxi, . . .

)
+

l∑
i=m+1

|xi |h(n′i )

� h
( m∑
μ=1

nμ

(
xμ +

l∑
i=m+1

aiμxi

))
+

l∑
i=m+1

|xi |h(n′i ) � h
( l∑
i=1

xini

)
,

and thus the ellipsoid

E : F(x1, . . . , xl) � 1c

is contained in D and by the definition of E (D),

(30) vol E (D) � vol E = κl√
d(F )

.

Since F is obtained from the quadratic form

(l −m+ 1)

(
F1 +

l∑
i=m+1

x2
i h

2(n′i )
)
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by a unimodular substitution, we have

√
d(F ) = (l −m+ 1)l/2

√
d(F1)

l∏
i=m+1

h(n′i )

and by (26), (29) and (30),

vol E (D) � κl(l −m+ 1)−l/2H(n1, . . . ,nm)
(k−l)/(k−m).

In order to prove the remaining part of (24) note that

H(n1, . . . ,nl ) = H(n1, . . . ,nm,n
′
m+1, . . . ,n

′
l ).

LetM be a minor of order l of the matrix⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

n1
...

nm
n′m+1
...

n′l

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
and S the set of indices of the columns ofM . DevelopingM according to the firstm rows
we obtain from the Laplace theorem

(31) |M| � H(n1, . . . ,nm)
∑
|Mj1,...,jl−m |,

whereMj1,...,jl−m is the minor of ⎛⎜⎝n′m+1
...

n′l

⎞⎟⎠
consisting of the columns j1, . . . , jl−m, while {j1, . . . , jl−m} runs through all subsets of S
of cardinality l −m.

By the generalized Hadamard inequality ([1], formula (2.6))

∑
M2
j1,...,jl−m �

l∏
i=m+1

∑
j∈S
n′2ij � ll−m

l∏
i=m+1

h(n′i )2,

and hence, by the Cauchy inequality,

(32)
∑
|Mj1,...,jl−m | �

(
l

m

)1/2

l(l−m)/2
l∏

i=m+1

h(n′i ).

The inequalities (26), (31) and (32) give

|M| �
(
l

m

)1/2

l(l−m)/2H(n1, . . . ,nm)
(k−l)/(k−m),
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and hence by the arbitrary choice ofM

H(n1, . . . ,nl ) �
(
l

m

)1/2

l(l−m)/2H(n1, . . . ,nm)
(k−l)/(k−m).

Now Lemma 2 applied with C = D implies

vol E (D) � κl

g1(l)

(
l

m

)−1/2

l(m−l)/2H(n1, . . . ,nm)
−(k−l)/(k−m). 	


Proof ofTheorem 1. Letn1, . . . ,nm ∈ Zk be linearly independent andD(n1, . . . ,nm) = 1.
Let nm+1, . . . ,nl be vectors the existence of which is asserted in Lemma 5 and consider

the domain D : h( l∑
j=1
xjnj

)
� 1. Let

μi = min{μ : dimμD ∩ Zl � i} (1 � i � l).

By Minkowski’s second theorem there exist linearly independent vectors
yi = [yi1, . . . , yil] (1 � i � l) such that

(33) yi ∈ μiD ∩ Zl

and

(34)
l∏
i=1

μi � 2l
(
vol D)−1.

By another theorem of Minkowski (see [8], §51 or [6], §18, Theorem 3),

(35)
l∏
i=1

μi � Δ
(
E (D)

)−1
,

where Δ
(
E (D)

)
is the critical determinant of E (D) and by the definition of the Hermite

constant

(36) Δ
(
E (D)

)−1 = γ l/2l
κl

vol E (D)

(see [6], formula (37.6)). Let us put

(37) pi =
l∑
j=1

yijnj (1 � i � l).

It follows from the definition of D and from (34)–(37) that h(pi ) = μi , hence by (34)–(37)

l∏
i=1

h(pi ) � min
{
2l
(
vol D

)−1
, γ
l/2
l κl

(
vol E (D)

)−1}
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and by Lemma 5

l∏
i=1

h(pi ) � min

{
l!
m! g0(m), (l −m+ 1)l/2g1(m)γ

l/2
l ,

(
l

m

)1/2

l(l−m)/2g1(l)γ
l/2
l

}
H(n1, . . . ,nm)

(k−l)/(k−m).

Moreover, since y1, . . . , yl are linearly independent the system (37) can be solved with
respect to n1, . . . ,nl and we obtain

ni =
l∑
j=1

uijpj , uij ∈ Q (1 � i � l).

Since ni (1 � i � l) are linearly independent so are pj (1 � j � l) and we obtain
from (37) and Lemma 3 that

(38) c0(k, l, m) � min

{
(l −m+ 1)l/2g1(m)γ

l/2
l ,

l!
m! g0(m),

(
l

m

)1/2

l(l−m)/2g1(l)γ
l/2
l

}
,

which proves the first part of the theorem.
In order to prove the second part let us observe that if l = m = 1 the right hand

side of (38) equals 1, while it immediately follows from the definition of c0(k, l, m) that
c0(k, 1, 1) � 1. If l = m = 2 the right hand side of (38) equals 4

3 , since

g1(2) =
√

4

3
, γ2 =

√
4

3
, g0(2) � 4

3
.

On the other hand, consider the following vectors in Zk (k � 3)

n1 = [2t, 4t + 1, 2t, 0, . . . , 0], n2 = [4t − 1, 2t,−2t, 0, . . . , 0] (t ∈ N).

We have here

H(n1,n2) = 12t2 + 2t, D(n1,n2) = 1.

Hence, if

ni =
2∑
j=1

uijpj , uij ∈ Q, pj ∈ Zk (1 � i, j � 2)

we have

pj = n1xj + n2yj , [xj , yj ] ∈ Z2 \ {0} (1 � j � 2).

Ifxj = yj we have |pj2| > 6t , otherwise |pj3| � 2t , and thush(pj ) � 2t (1 � j � 2).
If for an ε > 0 we have

h(p1)h(p2) �
( 4

3 − ε
)
H(n1,n2) =

( 4
3 − ε

)
(12t2 + 2t)
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then for t > t0(ε)

(39) h(p1)h(p2) < (16− 10ε)t2

and since h(pj ) � 2t we obtain h(pj ) < (8 − 5ε)t2 (1 � j � 2). Hence for t > t1(ε),
by consideration of the first three coordinates of pj

|2xj + 4yj | � 7, |4xj + 2yi | � 7, |2xj − 2yj | � 7;
|xj | � 1, |yj | � 1 and since [xj , yj ] �= [0, 0], h(pj ) � 4t − 1 (1 � j � 2). It follows
that

h(p1)h(p2) � 16t2 − 8t + 1,

which for t >max{t0(ε), t1(ε), ε−1} contradicts (39). This shows that c0(k, 2, 2)= 4
3 and

completes the proof of the theorem. 	


Proof of Theorem 2. The proof does not differ essentially from the proof of Theorem 2
in [10]. In formula (14) and in the fourth displayed formula on page 701 there, one has to

replace c0(k, l) by c0(k, l, m) and h(n)(k−l)/(k−m) by
(H(n1, . . . ,nm)

D(n1, . . . ,nm)

)(k−l)/(k−m)
. 	


Note added in proof. Yu. Teterin has remarked that Lemma 4 holds under a weaker
assumption, namely that vol K < ∞ instead of K not containing in its interior any point
of the lattice L ∩ Zk except 0. To see this, it suffices to apply the original formulation toc

the body of λK for suitable λ.
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[9] A. Pełczyński, S. J. Szarek, On parallelepipeds of minimal volume containing a convex sym-
metric body in Rn. Math. Proc. Cambridge Philos. Soc. 109 (1991), 125–148.

[10] A. Schinzel, A decomposition of integer vectors III. Bull. Polish Acad. Sci. Math. 35 (1987),
693–703.



Andrzej Schinzel
Selecta

Originally published in
Monatshefte für Mathematik

137 (2002), 239–251

A property of polynomials
with an application to Siegel’s lemma

Dedicated to Professor Edmund Hlawka
at the occasion of his 85th birthday

Abstract. It is proved that natural necessary conditions imply the existence of infinitely many integer
points at which given multivariate polynomials with integer coefficients take relatively prime values.c

As a consequence the best constant in the simplest case of Siegel’s lemma is expressed in terms of
critical determinants of suitable star bodies.

The first aim of this paper is to prove the following:

Theorem 1. Let F,Fμν ∈ Z[T , T1, . . . , Tl] (1 � μ � m, 1 � ν � n), F �= 0 and for
each μ � m, Fμν (1 � ν � n) be relatively prime. If the product

Π =
m∏
μ=1

(
Fμ1(t, t1, . . . , tl), . . . , Fμn(t, t1, . . . , tl)

)
has no fixed prime divisor for [t, t1, . . . , tl] running over Zl+1, then there exist integers
t∗1 , . . . , t∗l and an arithmetic progression P such that for t ∈P

F(t, t∗1 , . . . , t∗l ) �= 0

and for each μ � m the numbers Fμν(t, t∗1 , . . . , t∗l ) (1 � ν � n) are relatively prime.

This implies at once

Corollary 1. Let Fμν ∈ Z[T , T1, . . . , Tl] (1 � μ � m, 1 � ν � n) and for each μ � m,
Fμν (1 � ν � n) be relatively prime. If the numbers Fμν(t, t1, . . . , tl) (1 � ν � n) are
relatively prime simultaneously (1 � μ � m) for at least one integer point [t, t1, . . . , tl],
then they are relatively prime simultaneously for infinitely many integer points.

The following consequence of Theorem 1 is less obvious:

Theorem 2. Let f (x) and g(x) be the distance functions of two bounded star bodies in
Rl+1, both functions symmetric with respect to the coordinates of x and even with respect
to each of them. Let for α ∈ Rl

Sα = {x ∈ Rl : f (x,αx
)
< 1},
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where αx is the inner product. Then

C(f, g) := lim sup
a∈(Z\{0})l+1

h(a)→∞

inf
x∈Zl+1\{0}

ax=0

f (x)l

g(a)
c

= sup
a∈(Z\{0})l+1

inf
x∈Zl+1\{0}

ax=0

f (x)l

g(a)
= sup

α∈Al

'(Sα)
−1

g(α, 1)
,

where Al = {[α1, . . . , αl] ∈ Ql : 0 < α1 � α2 � . . . � αl � 1} and Δ(·) is the critical
determinant, h(a) is defined below.c

This in turn implies several corollaries, some of which are implicit in the literature and
some are new. In order to formulate them we use the following notation.

For x = [x1, . . . , xn] ∈ Rn and 0 < p <∞,

hnp(x) = hp(x) =
( n∑
k=1

|xk|p
)1/p

,

hn∞(x) = h(x) = max
1�k�n

|xk|,

c(l, p) = sup
a∈Zl+1\{0}

inf
x∈Zl+1\{0}

ax=0

hp(x)
l

hp(a)
.

c

Corollary 2. c(l, 2) = γ l/2l , where γl is the Hermite constant.

The inequality c(l, 2) � γ l/2l is contained in Theorem 4D of [7]. The reverse inequality
has been proved even in greater generality (see below), but not published, by Vaaler. The
referee pointed out that it is a direct consequence of the results of [9] and [11] and Prof.
Thunder has kindly supplied a proof.

Corollary 3. For l � 2,

c(l,∞) = sup
α∈Al−2

Δ(Hα)
−1 � 1,

where Hα is a generalized hexagon in Rl given by the inequalities

|xk| � 1 (1 � k � l),
∣∣∣∣ l−2∑
i=1

αixi + xl−1 + xl
∣∣∣∣ � 1.

c

This corollary is new.

Corollary 4. c(2,∞) = 4/3.

This corollary is implicit in [5], namely the inequality c(2,∞) � 4/3 is contained in
Lemma 4 of [5], while the inequality c(2,∞) � 4/3 is a consequence of Lemma 7 of [5].
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Corollary 5. c(3,∞) = 27/19.

The inequality c(3,∞) � 27/19 has been proved by Chaładus [4], while the inequality
c(3,∞) � 27/19 has been recently proved by Aliev [1]. The proof of Theorem 2 is a
generalization of arguments of Chaładus and Aliev.

Corollary 6. For l � 4,

1 � c(l,∞) �
√
l + 1.

The inequality c(l,∞) �
√
l + 1 is implicit in Theorem 1 of [2], the inequality

c(l,∞) � 1 seems to be new.
In order to formulate Theorem 3 we need more notation. Let for a matrix A ∈ Zm×n

of rankm, D(A) be the greatest common divisor of all minors of A of order m,

H(A) =
√

detAAT

D(A)
.

Combining Corollary 2 with a result of Thunder [8] we shall show

Theorem 3. For all positive integers m and n, where m < n, we have

c0(m, n) := lim sup
A∈Zm×n

rankA=m
H(A)→∞

inf
x∈Zn\{0}
Ax=0

h2(x)
n−m

H(A)

= sup
A∈Zm×n

rankA=m
inf

x∈Zn\{0}
Ax=0

h2(x)
n−m

H(A)
= γ (n−m)/2n−m .

A more general form of Theorem 3, concerning algebraic number fields has been
proved, but not published, by Vaaler, via geometry of numbers over adeles. The referee
pointed out it is a direct consequence of the results of [9] and [11].

Proof of Theorem 1. We shall proceed by induction on l. For l = 0, sinceFμν are relatively
prime (1 � ν � n) there exist polynomials Aμν ∈ Z[t] such that

(1)
n∑
ν=1

AμνFμν = Rμ ∈ Z \ {0}.

By the assumption about Π for each prime p dividing
m∏
μ=1

Rμ there exist indices

νp1, . . . , νpm and τp ∈ Z such that for all μ � m
(2) Fμνpμ(τp) �≡ 0 mod p.

Now taking t ≡ τp mod p for all primes p dividing
m∏
μ=1

Rμ we obtain from (1) and (2) for

all μ � m
g.c.d.
1�ν�n

Fμν(t) = 1
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and, if t is large enough, also F(t) �= 0.
Now we assume that the theorem is true for polynomials in l variables and proceed to

prove that it is true for polynomials in l + 1 variables. There is no loss of generality in
assuming that they are all different from 0. Let F = F00,

(3) Fμν =
rμν∑
ρ=0

T rμν−ρGμνρ(T1, . . . , Tl), where Gμν0 �= 0

and for each μ the polynomials Gμνρ (1 � ν � n, 0 � ρ � rμν) are relatively prime.

Let P be the product of all primes not exceeding
m∑
μ=1

max
1�ν�n

rμν . For each prime p

dividing P there exist indices νp1, . . . , νpm and integers τp, τp1, . . . , τpl such that

(4) Fμνpμ(τp, τp1, . . . , τpl) �≡ 0 mod p (1 � μ � m).

By the Chinese remainder theorem there exist integers u∗1, . . . , u∗l such that

(5) u∗j ≡ τpj mod p for all p |P (1 � j � l).

Since Fμν (1 � ν � n) are relatively prime there exist Aμν ∈ Z[T , T1, . . . , Tl] such that

(6)
n∑
ν=1

AμνFμν = Rμ ∈ Z[T1, . . . , Tl] \ {0} (1 � μ � m).

We have

G000(PV1 + u∗1, . . . , PVl + u∗l )
m∏
μ=1

Rμ(PV1 + u∗1, . . . , PVl + u∗l ) �= 0

and for eachμ the polynomialsGμνρ(PV1+u∗1, . . . , PVl+u∗l ) (1 � ν � n, 0 � ρ � rμν)
are relatively prime. Moreover

m∏
μ=1

g.c.d.
ν�n, ρ�rμν

Gμνρ(Pv1 + u∗1, . . . , P vl + u∗l )

has no fixed prime divisor p when [v1, . . . , vl] runs over Zl . Indeed, suppose that such p
exists. In view of (3)–(5) we have p /| P . Hence for every vector [t1, . . . , tl] ∈ Zl there
exists a vector [v1, . . . , vl] ∈ Zl such that tj ≡ Pvj + u∗j mod p (1 � j � l) and we
obtain

m∏
μ=1

g.c.d.
ν�n, ρ�rμν

Gμνρ(t1, . . . , tl) ≡ 0 mod p,

which by (3) gives

m∏
μ=1

g.c.d.
ν�n

Fμν(t, t1, . . . , tl) ≡ 0 mod p,

contrary to the assumption about Π .
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Therefore, we may apply the inductive assumption to polynomials

G000(PV1 + u∗1, . . . , PVl + u∗l )
m∏
μ=1

Rμ(PV1 + u∗1, . . . , PVl + u∗l )

and

Gμνρ(PV1 + u∗1, . . . , PVl + u∗l ) (1 � μ � m, 1 � ν � n, 0 � ρ � rμν).
We obtain existence of integers v∗1 , . . . , v∗l such that

(7) G000(P v
∗
1 + u∗1, . . . , P v∗l + u∗l )

m∏
μ=1

Rμ(Pv
∗
1 + u∗1, . . . , P v∗l + u∗l ) �= 0

and for each μ � m
(8) g.c.d.

ν�n, ρ�rμν
Gμνρ(Pv

∗
1 + u∗1, . . . , P v∗l + u∗l ) = 1.

Let us put

(9) t∗j = Pv∗j + u∗j (1 � j � l)
and consider polynomials in one variable F(T , t∗1 , . . . , t∗l ) and Fμν(T , t∗1 , . . . , t∗l ). We
have F(T , t∗1 , . . . , t∗l ) �= 0, since by (7) and (9)G000(t

∗
1 , . . . , t

∗
l ) �= 0 and for each μ � m

the polynomials Fμν(T , t∗1 , . . . , t∗l ) (1 � ν � n) are relatively prime in view of (6), since
by (7) and (9) Rμ(t∗1 , . . . , t∗l ) �= 0. Suppose that a prime p is a fixed divisor of

m∏
μ=1

g.c.d.
ν�n

Fμν(t, t
∗
1 , . . . , t

∗
l )

when t runs over Z. By (4), (5) and (9) we have for each μ � m
Fμνpμ(τ, t

∗
1 , . . . , t

∗
l ) �≡ 0 mod p, if p |P,

hence p /| P , p >
m∑
μ=1

max
1�ν�n

rμν .

In view of (8) for each μ � m there exist indices νμ � n and ρμ � rμν such that

Gμνμρμ(t
∗
1 , . . . , t

∗
l ) �≡ 0 mod p.

By Lagrange’s theorem and (3) the congruence
m∏
μ=1

Fμνμ(t, t
∗
1 , . . . , t

∗
l ) ≡ 0 mod p

has at most
m∑
μ=1

rμνμ < p solutions, hence it is not satisfied identically.

The obtained contradiction shows that
m∏
μ=1

g.c.d.
1�ν�n

Fμν(t, t
∗
1 , . . . , t

∗
l )
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has no fixed prime divisor when t runs over Z and, by the already proved case l = 0
of the theorem, there exists an arithmetic progression P such that for t ∈ P we have
F(t, t∗1 , . . . , t∗l ) �= 0 and for each μ � m the numbers Fμν(t, t∗1 , . . . , t∗l ) (1 � ν � n) are
relatively prime. 	


For the proof of Theorem 2 we need

Lemma. Let Λ be a sublattice of Zn with a basis a1, . . . , am, A =

⎛⎜⎜⎜⎝
a1
a2
...

am

⎞⎟⎟⎟⎠ and let Λ⊥,

Λ⊥⊥ be the sublattice of Zn consisting of all vectors orthogonal toΛ, orΛ⊥, respectively.
We have

Λ = Λ⊥⊥

if and only if D(A) = 1.

Proof. See [6], p. 336 and [3], p. 15. 	


Proof of Theorem 2. We shall prove first that

(10) sup
a∈(Z\{0})l+1

inf
x∈Zl+1\{0}

ax=0

f (x)l

g(a)
� sup

α∈Al

'(Sα)
−1

g(α, 1)
=: s.

Let a = [a1, . . . , al+1] ∈ (Z \ {0})l+1. Since f (x) and g(x) are symmetric with respect
to the coordinates of x and even with respect to each of them, we may assume that

0 < a1 � a2 � . . . � al+1

and, since g(a) is homogeneous of degree 1, we may assume that

(a1, . . . , al+1) = 1.

We have [a1/al+1, . . . , al/al+1] ∈ Al , hence

Δ(Sa1/al+1,...,al/al+1)
−1 � sg

( a1

al+1
, . . . ,

al

al+1
, 1
)
.

Therefore, by the property of critical determinants, every full lattice Λ in Rl with deter-
minant d(Λ) has a non-zero point (y1, . . . , yl) such that

f

(
y1, . . . , yl,

l∑
k=1

ak

al+1
yk

)l
� sg

( a1

al+1
, . . . ,

al

al+1
, 1
)
d(Λ).

Consider now the lattice Λ0 obtained as projection on the hyperplane xl+1 = 0 of the
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lattice Λ1 of integer vectors orthogonal to a. Let b1, . . . , bl be a basis of Λ1

bk = (bk1, . . . , bk,l+1), B =
⎛⎜⎝b1
...

bl

⎞⎟⎠ ,
and let Bk be the minor of B obtained by omitting the k-th column. Since Λ1 = Λ⊥⊥1 , by
Lemma we have (

B1,−B2, . . . , (−1)lBl+1
) = 1

and bk
(
B1,−B2, . . . , (−1)lBl+1

) = 0 (1 � k � l). Since (a1, . . . , ak+1) = 1 and
bka = 0 there exists an ε = ±1 such that εak = (−1)k+1Bk (1 � k � l) and, in
particular,

al+1 =
∣∣det(bij )1�i,j�l

∣∣ = d(Λ0).

Hence there exist integers u1, . . . , ul not all zero such that

(11) f

( l∑
j=1

bj1uj , . . . ,

l∑
j=1

bjluj ,

l∑
k=1

ak

al+1

l∑
j=1

bjkuj

)l
� sg

( a1

al+1
, . . . ,

al

al+1
, 1
)
al+1 = sg(a1, . . . , al+1).

However, by the definition of Λ1,

l+1∑
k=1

akbjk = 0 (1 � j � l),

hence

l+1∑
k=1

ak

al+1
bjk = −bj,l+1 (1 � j � l)

and inequality (11) takes the form

f

( l∑
j=1

bj uj

)l
� sg(a).

Taking x =
l∑
j=1

bj uj we find x ∈ Λ1, hence ax = 0 and

f (x)l

g(a)
� s,

which proves (10).
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Now we shall prove that

(12) lim sup
a∈(Z\{0})l+1

inf
x∈Zl+1\{0}

ax=0

f (x)l

g(a)
� Δ(Sα)

−1

g(α, 1)

for all α ∈ Al .
Sα as an open bounded star body has a critical latticeΛ. Let a1, . . . , al be a basis ofΛ.

Take a positive δ < 1 and choose b1, . . . , bl in Ql such that

h(bj − aj ) < δ (1 � j � l),(13) ∣∣det(bT1 , . . . , b
T
l )− d(Λ)

∣∣ < δd(Λ) = δΔ(Sα).(14)

Choose a positive integers d such that dbj ∈ Zl and dαkbjk ∈ Z for all j, k � l, where
bjk is the kth coordinate of bj . We shall apply Theorem 1 takingm = 1, F = 1 and taking
for F1ν (1 � ν � l + 1) all minors of order l of the matrix

M = M(T, T1, . . . , Tl)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

db11T + T1 db12T . . . db1lT d
l∑
k=1
αkb1kT

db21T db22T + T2 . . . db2lT d
l∑
k=1
αkb2kT

...
...

. . .
...

...

dbl1T dbl2T . . . dbllT + Tl d
l∑
k=1
αkblkT

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where T , T1, . . . , Tl are variables. Let Mi = Mi(T , T1, . . . , Tl) and mi be the minor
obtained by omitting the ith column inM , or in the matrix⎛⎜⎜⎜⎜⎜⎜⎝

b11 b12 . . . b1l

l∑
k=1
αkb1k

...
...

...
...

bl1 bl2 . . . bll
l∑
k=1
αkblk

⎞⎟⎟⎟⎟⎟⎟⎠ , respectively.

We have, by (14),

|ml+1| =
∣∣det(bjk)

∣∣ �= 0,(15)

|mi | = αi |ml+1| (1 � i � l)(16)

and

(17) Mi = dlmiT l + polynomial of degree less than l in T ,

henceMi is a non-zero polynomial independent of Ti (1 � i � l). A possible non-constant
common factor of M1, . . . ,Ml+1 would have to belong to Q[T ] and, since these minors
are homogeneous in T , T1, . . . , Tl, T would be a common factor. However

Ml+1 ≡ T1T2 . . . Tl mod T ,
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hence T /|Ml+1 andMl+1 (0, 1, . . . , 1) = 1. By Theorem 1 there exist integers t∗1 , . . . , t∗l
and an arithmetic progression P such that for t ∈P we have

(18)
(
M1(t, t

∗
1 , . . . , t

∗
l ), . . . ,Ml+1(t, t

∗
1 , . . . , t

∗
l )
) = 1.

Let

a(t) =
[
M1(t, t

∗
1 , . . . , t

∗
l ), . . . , (−1)lMl+1(t, t

∗
1 , . . . , t

∗
l )
]
.

We shall show that for every ε > 0, sufficiently small δ > 0 and sufficiently large t ∈ P
every integer vector x �= 0 such that a(t)x = 0 satisfies

(19) f (x)l > (1− ε)Δ(Sα)
−1

g(α, 1)
g
(
a(t)

)
.

By (14)–(17) we have for δ < ε/2 and sufficiently large t

(20) g
(
a(t)

) = (1+ o(1))dlt l |ml+1| g(α, 1) � dlt lg(α, 1)
(

1+ ε
2

)
Δ(Sα).

On the other hand, the rows of the matrix M(t, t∗1 , . . . , t∗l ) are orthogonal to a(t) and by
(18) and Lemma they form a basis for the lattice of all integer vectors with this property.
Therefore, for every x = [x1, . . . , xl+1] in Zl+1 \ {0} satisfying a(t)x = 0 we have

xk =
l∑
j=1

uj (dbjkt + δjkt∗k ) (1 � k � l),(21)

xl+1 =
l∑
j=1

uj

(
d

l∑
k=1

αkbjkt

)
,(22)

where δjk is the Kronecker delta anduj are integers not all equal to 0.Assume that, contrary
to (19),

(23) f (x)l � (1− ε) Δ(Sα)
−1

g(α, 1)
g
(
a(t)

)
,

hence, in particular, ε < 1. By (20) this gives for δ < ε/2 and sufficiently large t

f (x)l � (1− ε)
(

1+ ε
2

)
dlt l < dlt l

and, since f is homogeneous of degree 1 and the set {x ∈ Rl+1 : f (x) < 1} is bounded,

h(x) � cf dt, where cf depends only on f.

Solving the system (21) by means of Cramer’s formulae we obtain by virtue of (13)–(14)
for δ < ε/2 and sufficiently large t

|uj | � cf,ak (1 � j � l),

where cf,ak depends only on f and on a1, . . . , am.
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From the continuity of f at the point[ l∑
j=1

ujaj ,

l∑
k=1

αk

l∑
j=1

ujajk

]
we infer that for δ small enough

f

( l∑
j=1

ujbj ,

l∑
k=1

αk

l∑
j=1

ujbjk

)
�
(

1− ε

2l

)
f

( l∑
j=1

ujaj ,

l∑
k=1

αk

l∑
j=1

ujajk

)
,

hence, by the choice of aj ,

f

( l∑
j=1

ujbj ,

l∑
k=1

αk

l∑
j=1

ujbjk

)l
>
(

1− ε

2l

)l
> 1− ε

2
,

by (21) and (22)

f (x)l >
(

1− ε
2

)
dlt l + o(t l),

by (20)

f (x)l

g
(
a(t)

) > (1+ o(1)) 2− ε
2+ ε

Δ(Sα)
−1

g(α, 1)
,

which for t large enough contradicts (23). The obtained contradiction proves (19) and (12).
	


Proof of Corollary 2. For f = hl+1,2 = h2 we have

Sα =
{
[x1, . . . , xl] ∈ Rl :

l∑
k=1

x2
k +

( l∑
k=1

αkxk

)2

� 1

}
.

The matrix of the relevant quadratic form is AAT , where

A =

⎛⎜⎜⎜⎝
1 0 . . . 0 α1
0 1 . . . 0 α2
...
...
. . .

...
...

0 0 . . . 1 αk

⎞⎟⎟⎟⎠ ,
hence

Δ(Sα) = γ
−l/2
l√

detAAT
= γ

−l/2
l√
l∑
k=1
α2
k + 1

and
Δ(Sα)

−1

h2(α, 1)
= γ l/2l .

It remains to consider a ∈ Zl with at least one coordinate 0, say a1 = 0.
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Then ax = 0 for x = [1, 0, . . . , 0] and

h2(x)
l

h2(a)
� 1 < γ l/2l . 	


Proof of Corollary 3. For f = hl+1,∞ = h, α ∈ Al we have

Sα ⊃ Hα1/αl−1,...,αl−2/αl−1 .

Indeed, if x ∈ Hα1/αl−1,...,αl−2/αl−1 we have

(24) |xk| � 1 (1 � k � l),c

(25)

∣∣∣∣ l−2∑
k=1

αk

αl−1
xk + xl−1 + xl

∣∣∣∣ � 1,
c

hence multiplying the last inequality (24) by αl/αl−1 − 1 and adding to (25) we obtain∣∣∣∣ l∑
k=1

αk

αl−1
xk

∣∣∣∣ � αl

αl−1
and

∣∣∣∣ l∑
k=1

αkxk

∣∣∣∣ � αl � 1,
c

thus x ∈ Sα . It follows that

Δ(Sα)
−1 � Δ

(
Hα1/αl−1,...,αl−2/αl−1

)−1

and

sup
α∈Al

Δ(Sα)
−1

h(α, 1)
= sup

α∈Al

Δ(Sα)
−1 � sup

α∈Al−2

Δ(Hα)
−1.

Since for α ∈ Al−2, Hα = Sα,1,1, the inequality in the opposite direction is obvious. Also
Δ(Hα) � 1, since the only integer point inside Hα is 0.

It remains to consider a ∈ Zl with at least one coordinate 0, say a1 = 0. Then ax = 0
for x = [1, 0, . . . , 0] and we have

h(x)l

h(a)
� 1 � sup

α∈Al−2

Δ(Hα)
−1. 	


Proof of Corollary 4. By Corollary 3 we have

c(2,∞) = Δ(H)−1,

where H is the hexagon |x1| � 1, |x2| � 1, |x1 + x2| � 1. Clearly

Δ(H) = volH

4
= 3

4
. 	


Proof of Corollary 5. By Corollary 3 we have

c(3,∞) = sup
α∈A1

Δ(H)−1.
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Now, by the result of Whitworth [12]

Δ(Hα) =

⎧⎪⎪⎨⎪⎪⎩
3

4
if α � 1

2

−α
2 + 3α − 24+ α−1

27
if 1 � α � 1

2
.

Hence Δ(Hα) takes its minimum in the interval [0, 1] at α = 1 and Δ(H1) = 19/27.
	


Remark 1. Using the equality Δ(Hα) = 3
4 if α � 1

2 and following the first part of the
proof of Theorem 2 we infer that if a = [a1, a2, a3, a4] ∈ Z4, 0 � a1 � a2 � a3 � a4

and a1 � 1
2a2, then there exists x ∈ Z4 such that 0 < h(x) � 3

√
4
3h(a). This improves a

conditional result of Chaładus [4] obtained under an unproved assumption and the stronger
condition a4 � −2a1 + a2 + a3.

Proof of Corollary 6. By Corollary 3 we have

c(l,∞) = sup
α∈Al−2

Δ(Hα)
−1 � 1.

Now, by Minkowski’s theorem and Theorem 1 of Vaaler [10]

Δ(Hα) � volHα

2l
�
(√√√√ l∑

k=1

α2
k + 1

)−1

� 1√
l + 1

. 	


Proof of Theorem 3. By Corollary 1 for every positive integer l and every ε > 0 there
exist infinitely many a in Zl+1 such that every y ∈ Zl+1 \ {0} with ay = 0 satisfies

(26)
h2(y)

l

h2(a)
> γ

l/2
l − ε.

Replacing if necessary a by a/D(a)we may assume thatD(a) = 1. Take now l = n−m,
A = (aij ) where i � m, j � n,

aij =

⎧⎪⎨⎪⎩
aj , if i = 1, j � l + 1,

1, if i > 1, j = n−m+ i,
0, otherwise.

We have

(27) H(A) = h2(a)

D(a)
= h2(a).

On the other hand, x ∈ Zn,Ax = 0 implies x = [y, 0, . . . , 0]T , where y ∈ Zl+1, ay = 0,
hence by (27) and (26)

h2(x)
l

H(A)
= h2(y)

l

h2(a)
> γ

l/2
l − ε,
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where H(A) can be arbitrarily large. This proves that c0(m, n) � γ (n−m)/2n−m .
In order to prove the remaining part of the theorem consider a matrix A ∈ Zm×n of

rankm. LetΛ be a lattice spanned by the rows ofA, and b1, . . . , bl (l = n−m) be a basis

of Λ⊥ and B =
⎛⎜⎝b1
...

bl

⎞⎟⎠.

Since Λ⊥⊥⊥ = Λ⊥ we have by Lemma D(B) = 1, hence H(B) = √detBBT .
On the other hand, by Theorem 1 of Thunder [8] we have

H(A) = H(B).
Consider the ellipsoid

E :
n∑
j=1

( l∑
k=1

bkjuk

)2

� 1.

The matrix of the quadratic form on the left hand side is BBT , hence

Δ(t) = γ
−l/2
l√

detBBT
.

By the property of critical determinants there exist integers uk not all 0 such that

hl2

( l∑
k=1

bkuk

)
� γ l/2l

√
detBBT = γ l/2l H(B) = γ l/2l H(A).

Taking xT =
l∑
k=1

bkuk we obtain x ∈ Zn \ {0}, Ax = 0 and

h2(x)
l

H(A)
� γ l/2l ,

which completes the proof. 	


Remark 2. Since for ellipsoids the anomaly is 1 the last argument shows in fact the existence
of linearly independent vectors x1, . . . , xl in Zn such that Axk = 0 (1 � k � l) andc

l∏
k=1

h(xk) � γ l/2l H(A).
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On vectors whose span contains
a given linear subspace

with I. Aliev* (Wien) and W. M. Schmidt (Boulder)

Abstract. Estimates are given for the product of the lengths of integer vectors spanning a given linear
subspace.

The aim of this paper is to estimate for k > l > m > 0

(1) c(k, l, m) = sup inf H(S)(l−k)/(k−m)
l∏
i=1

|pi |,

where the supremum is taken over all subspaces S of Qk of dimensionm and the infimum is
taken over all sets of linearly independent vectors p1, . . . ,pl in Zk , whose span contains S.
Here H(S) is the determinant of the lattice S ∩ Zk and |p| is the Euclidean norm of p.

Let γr,s be the generalized Hermite constant, as defined by Rankin [7], i.e. the least
number such that every latticeΛ of rank r in Rr has a sublatticeΓ of rank s and determinant

det Γ � γ 1/2
r,s (detΛ)s/r .

Here, γr,1 = γr,r−1 = γr is the ordinary Hermite constant. We shall prove

Theorem 1.

γ
1/2
k−m,k−l � c(k, l, m) � γ 1/2

k−m,k−lγ
l/2
l .

Corollary 1.

γ
1/2
k−1 � c(k, 2, 1) � γ 1/2

k−1

√
4

3
.

Theorem 2.

c(3, 2, 1) � 6/(722)1/4 > γ2.

Communicated by F. Grunewald
* The first author was supported by FWF Austrian Science Fund, project M672.
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A related problem has been considered in [1], [4], [5] and [8]. Given m linearly inde-
pendent vectors n1, . . . ,nm in Zk letH(n1, . . . ,nm) denote the maximum of the absolute
values ofm×m-minors of the matrix (nt1, . . . ,n

t
m) andD(n1, . . . ,nm) the greatest com-

mon divisor of these minors. Furthermore, let h(n) = H(n) for n �= 0. In [1], [4], [5]
and [8] the following quantity has been estimated

(2) c0(k, l, m) = sup inf

(
D(n1, . . . ,nm)

H(n1, . . . ,nm)

)(k−l)/(k−m) l∏
i=1

h(pi ),

where the supremum is taken over all sets of linearly independent vectors n1, . . . ,nm in Zk

and the infimum is taken over all sets of linearly independent vectors p1, . . . ,pl in Zk

such that for all i � m

ni =
l∑
j=1

uijpj , uij ∈ Q.

In particular, it has been proved in [8] that for fixed l, m

(3) lim sup
k→∞

c0(k, l, m) <∞,

in [1] that

c0(k, 2, 1) � 2

k1/(k−1)
,

in [4] that c0(3, 2, 1) = 2/
√

3, and in [5] that

(4) c0(k, l, m) � γ 1/2
k−m,k−l

(
k

m

)(k−l)/2(k−m)
.

Taking for n1, . . . ,nm a basis of the lattice S ∩ Zk and using the inequalities

|p| � k1/2h(p),
H(n1, . . . ,nm)

D(n1, . . . ,nm)
� H(S)

one obtains from (1), (2) and (4)

c(k, l, m) � γ 1/2
k−m,k−l

(
k

m

)(k−l)/2(k−m)
kl/2,

following the proof in [5] one can omit the factor
(
k
m

)(k−l)/2(k−m)
. It follows from Corol-

lary 1 that, in contrast to (3),

lim
k→∞ c(k, 2, 1) = ∞

and from Theorem 2 that, at least for k = 3 the lower bound given in Corollary 1 for
c(k, 2, 1) is not sharp. The proof of Theorem 2 is based on the following theorem of
independent interest.
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Theorem 3. IfΛt is a sequence of lattices in Rl convergent to a full latticeΛ and λi(K,Λ)
is the i-th minimum of Λ with respect to a centrally symmetric convex body K , then for
each i � l

lim
t→∞ λi(K,Λt) = λi(K,Λ).

(We say, following [3], Chapter V, §3, that a sequence of latticesΛt in Rl is convergent
to a lattice Λ, if there exists a linear homogeneous transformation τt such that Λt = τtΛ
and ‖τt − ι‖ tends to 0 for t tending to infinity, where ι is the identity transformation and
‖τ‖ = l max

1�i,j�l
|τij |.)

Corollary 2. Let ft (x, y) be a sequence of positive definite quadratic forms over R, mt
and mt be the first and the second minimum of ft (u, v) for (u, v) ∈ Z2. If

lim
t→∞ ft = f,

where f is positive definite, then

lim
t→∞mt = m, lim

t→∞mt = m,
where m and m are the first and the second minimum of f , respectively.

For i = 1 Theorem 3 has been known, see [3], Chapter V, §3.3, Remark. The proof of
Theorem 1 is based on the following

Proposition 1. Let S be an m-dimensional subspace of Qk .

(i) When 0 < n < m < k, there is a subspace T ⊂ S of dimension n with

(5) H(T ) � γ 1/2
m,nH(S)

n/m.

The constant γ 1/2
m,n here is best possible.

(ii) When m < l < k, there is a subspace T ⊃ S of dimension l in Qk with

(6) H(T ) � γ 1/2
k−m,k−lH(S)

(k−l)/(k−m).

The constant γ 1/2
k−m,k−l here is best possible.

Proof. (i) A lattice Λ ⊂ Zk is primitive if Λ = S ∩ Zk , where S is the subspace of Qkc

spanned byΛ. There is a (C) correspondence of subspaces of Qk and primitive lattices. To
a space S corresponds Λ = S ∩ Zk , and to a primitive lattice Λ corresponds the space S
spanned by it. When S,Λ correspond to each other, dim S = rankΛ, and H(S) = detΛ.
To a subspace T of S corresponds a primitive sublattice Γ of Λ. The existence of T as
claimed in (i) now follows from the definition of γm,n.

Let Om be the orthogonal group in Rm, and Õm the group of matrices K = λO with
λ ∈ R+, O ∈ Om. Full lattices Λ,Λ′ in Rm are similar, if Λ′ = KΛ with K ∈ Õm. Let
γm,n(Λ) be the minimum such that there is a sublattice Γ of Λ of rank n with

det Γ = γ 1/2
m,n(Λ) (detΛ)n/m .
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Similar lattices Λ,Λ′ have γm,n(Λ) = γm,n(Λ′).
When a1, . . . , am is a basis of Λ, the matrix A = (at1, . . . , a

t
m) ∈ GLm(R) with

columns at1, . . . , a
t
mwill also be called a basis. NowA can uniquely be written asA = KZ,

with K ∈ Õm and Z ∈Hm, the generalized half-plane (see, e.g. [10], p. 38). The general
basis of Λ is AM with M ∈ GLm(Z) and AM = KMZM , where again KM ∈ Om,
ZM ∈ Hm. The map Z �→ Zm determines an action of GLm(Z) on Hm. Let Fm be
Hm modulo this action, i.e., where Z,ZM with M ∈ GLm(Z) are identified. Then to Λ
corresponds a unique Z = Z(Λ) ∈ Fm, and Z(Λ) = Z(Λ′) precisely when Λ,Λ′ are
similar. There is a certain measure μ on Fk with μ(Fk) = 1, and μ(D) > 0 for every
non-empty open subset D.

A lattice Λ of rank m in Rk is a full lattice in the space it spans, and Z(Λ) ∈ Fm

is again well defined. In [10] it was shown that when D ⊂ Fm is open and non-empty,
then the number of primitive lattices Λ of rank m with Z(Λ) ∈ D and the determinant
not exceeding T is asymptotically equal to ck,mμ(D)T k , as T → ∞, where ck,m > 0.
Therefore as Λ ranges through primitive lattices of rank m in Rk , the elements Z(Λ) will
be dense in Fm. There is a lattice Λ1 with γm,n(Λ1) = γm,n. Set Z1 = Z(Λ1). Given
ε > 0 we have

(7) γm,n(Λ) > γm,n − ε,
when Λ is near Λ1, i.e., when Λ has a basis near some fixed basis of Λ1. There is a
neighborhood D of Z1 in Fm such that (7) holds when Z(Λ) ∈ D. By the density
property enunciated above, there is a primitive lattice Λ of rank m with (7). Since ε > 0
was arbitrary, and by the correspondence (C) of rational subspaces and primitive lattices,
we see that the constant γ 1/2

m,n in (5) is best possible.

(ii) The orthogonal complement S⊥ of S has dimension k −m. By (i) there is a space
T ⊥ ⊂ S⊥ of dimension k − l with

H(T ⊥) � γ 1/2
k−m,k−lH(S

⊥)(k−l)/(k−m).

The orthogonal complement T of T ⊥ has T ⊃ S, dim T = l. Now (6) is a consequence of

(8) H(S⊥) = H(S), H(T ⊥) = H(T ).
(For a proof of the last formulae, see [2], pp. 27–28.) By (i), there is for any ε > 0 a space
S⊥ of dimension k −m such that

(9) H(T ⊥) � (γ 1/2
k−m,k−l − ε)H(S⊥)(k−l)/(k−m),

for any space T ⊥ ⊂ S⊥ of dimension k −m. Let S be the orthogonal complement of S⊥.
When T ⊃ S, dim T = l, then T ⊥ satisfies (9), hence by (8)

H(T ) � (γ 1/2
k−m,k−l − ε)H(S)(k−l)/(k−m).

This shows that the constant in (6) is best possible. 	
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Proposition 2. Let S be an m-dimensional subspace of Qk . When 0 < n � m, there are
linearly independent integer vectors p1, . . . ,pn in S with

(10) |p1| · · · |pn| � γ n/2m H(S)n/m.

The constant γ n/2m here is best possible.

Proof. By Minkowski’s second theorem for balls (see [3], Chapter VIII, Theorem I) in
Λ = S ∩ Zk there are independent vectors p1, . . . ,pm with

|p1| · · · |pm| � γm/2m detΛ = γm/2m H(S),

where |p1| � . . . � |pm|, so that (10) holds. The constant γ n/2m is best possible in (10) by
the definition of γm. 	


Proof of Theorem 1. Let T be a space as in the part (ii) of Proposition 1. By Proposition 2
there are integer vectors p1, . . . ,pl which span T and have

|p1| · · · |pl | � γ l/2l H(T ) � γ l/2l γ
1/2
k−m,k−lH(S)

(k−l)/(k−m).

This implies

c(k, l, m) � γ 1/2
k−m,k−lγ

l/2
l .

On the other hand, let p1, . . . ,pl be independent and with span T containing S. Then

|p1| · · · |pl | � H(T )
(cf. [2], formula (2.6)) and for ε > 0 we shall necessarily have by Proposition 1(ii)

H(T ) > (γ
1/2
k−l,k−m − ε)H(S)(k−l)/(k−m).

This proves

c(k, l, m) � γ 1/2
k−l,k−m. 	


Proof of Corollary 1. From Theorem 1 we obtain

γ
1/2
k−1,k−2 � c(k, 2, 1) � γ 1/2

k−1,k−2γ2

and it suffices to use γk−1,k−2 = γk−1, γ2 = √4/3. 	


Proof of Theorem 3. We will use properties of convergent sequences of lattices as given
in [3]. When a1, . . . , al is a basis of a latticeΛ in Rl , the matrixA = (at1, . . . , atl )will also
be called a basis ofΛ, as in the proof of Theorem 1. There is a finite set V of non-singular
integer matrices such that when M ⊂ Λ are lattices with [Λ : M] � l! and B is a basis
of Λ, then there is a V ∈ V such that A = BV is a basis ofM . Conversely, when A is a
basis of M , then there is a U ∈ V and a basis B of U with A = BU (see [3], Chapter I,
§2.2, where the roles of Λ,M are reversed).

Let a1, . . . , al be independent elements of Λ with F(ai ) = λi (i = 1, . . . , l), where
λ1, . . . , λl are the successive minima of Λ and F is the distance function determined
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byK . Here a1, . . . , al generate a sublatticeM ⊂ Λ with [Λ : M] � l! (ibid., p. 219). Say
A = (at1, . . . , atl ),A = BV with B a basis ofΛ. Now, ifΛt → Λ for latticesΛ1,Λ2, . . .

there are bases Bt of Λt with Bt → B. Setting At = BtV , say At = (at1t , . . . , atlt ), the
points a1t , . . . , alt are independent inΛt and lim F(ait ) = F(ai ) = λi (i = 1, . . . , l). So,
if λ1t , . . . , λlt are the successive minima of Λt , we have lim sup λit � λi (i = 1, . . . , l).

Set nowA∗t =
(
(a∗1t )t , . . . , (a∗lt )t

)
, where (a∗1t )t , . . . , (a∗lt )t are independent inΛt with

F(a∗it ) = λit (i = 1, . . . , l), whereλ1t , . . . , λlt are the minima ofΛt . We haveA∗t = B∗t Vt ,
where B∗t is a basis of Λt and Vt ∈ V . Pick i0, 1 � i0 � l, and set λ̃i0 = lim inf λi0t , as
t →∞. Pick a subsequence, where λi0t → λ̃i0 , and a subsequence of that one, where Vtc

is constant, so that A∗t = B∗t V ∗, with V ∗ ∈ V .
Since the sequence Λt is convergent, the minima λit are bounded, i.e. the F(a∗it ) are

bounded, therefore the lengths a∗it are bounded. So taking a further subsequence, A∗t is
convergent, say A∗t → A∗ = (a∗1, . . . , a∗l ). Thus B∗t → B∗, where B∗ is a basis ofΛ and
A∗ = B∗V ∗. Thus a∗1, . . . , a∗l are in Λ and linearly independent. In particular, F(a∗1) �
. . . � F(a∗i0), so that λi0 the i0-th minimum of Λ, has λi0 � F(a∗i0) = λ̃i0 = lim inf λi0t .
Since i0 was arbitrary in {1, . . . , l}, and by above inequality involving lim sup, we see that

lim
t→∞ λit = λi (1 � i � l). 	


Proof of Corollary 2. If ft = atu2 + btuv + ctv2 it suffices to put in Theorem 3 l = 2,
K = {(x, y) : x2 + y2 � 1},

Λt =
(√
at , 0

)
Z⊕

(
bt

2
√
at
,

√
4atct − b2

t

2
√
at

)
Z. 	


The proof of Theorem 2 is based on Corollary 2 and on four lemmas.

Lemma 1. Let n = (15t2− t−4, 3t2−1, 3t2− t−1)× (69t2−5, 21t2−2, 0). If t ∈ Z,
t �≡ −7 mod 17, t �≡ ±3 mod 11,

(11) mn = 0 and |m| � 18t2, m ∈ Z3 \ {0},
then for large t

m = ±m1,±m2,±m3,

where

m1 = (15t2 − t − 4, 3t2 − 1, 3t2 − t − 1),

m2 = (9t2 + 4t + 11, 9t2 + 2,−12t2 + 4t + 4),

m3 = (−6t2 + 5t + 15, 6t2 + 3,−15t2 + 5t + 5).

Proof. (11) implies that

m = u(15t2 − t − 4, 3t2 − 1, 3t2 − t − 1)+ v(69t2 − 5, 21t2 − 2, 0),
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where u, v ∈ Q. Since m ∈ Z3 we have

u(15t2 − t − 4)+ v(692 − 5) ∈ Z,(12)

u(3t2 − 1)+ v(21t2 − 2) ∈ Z,(13)

u(3t2 − t − 1) ∈ Z.(14)

The relations (12) and (13) give uD ∈ Z, where

D = (21t2 − 2)(15t2 − t − 4)− (3t2 − 1)(69t2 − 5)

≡ (7t + 5)(4t + 1)− t (23t + 18)

≡ 5t2 + 9t + 5

≡ −t2 + 11t + 7 mod 3t2 − t − 1,

hence

3D ≡ 32t + 20 = 4(8t + 5)mod 3t2 − t − 1.

However gcd(2, 3t2 − t − 1) = 1, 64(3t2 − t − 1) − (8t + 5)(24t − 23) = 51, for
t �≡ −7 mod 17, 8t + 5 �≡ 0 mod 17, for t �≡ −1 mod 3, 8t + 5 �≡ 0 mod 3 and for
t ≡ 1 mod 3, D ≡ 1 mod 3. Thus gcd(D, 3t2 − t − 1) = 1 and (12)–(14) imply u ∈ Z.
Hence

(15) v(69t2 − 5) ∈ Z, v(21t2 − 2) ∈ Z.

However

(69t2 − 5)7− (21t2 − 2)23 = 11,

hence if t �≡ ±3 mod 11, we have gcd(69t2 − 5, 21t2 − 2) = 1 and (15) implies v ∈ Z.
Now, if |m| � 18t2 we have

(16) |m|2 = Au2 + 2Buv + Cv2 � 324t4,

where for t tending to infinity

A = (15t2 − t − 4)2 + (3t2 − 1)2 + (3t2 − t − 1)2 = 243t4 +O(t3),
B = (15t2 − t − 4)(69t2 − 5)+ (3t2 − 1)(21t2 − 2) = 1098t4 +O(t3),
C = (69t2 − 5)2 + (21t2 − 2)2 = 5202t4 +O(t3),

hence

AC − B2 = 58482t8 +O(t7) = 81 · 722t8 +O(t7).
The inequality (16) gives

u2 � 324Ct4

AC − B2 =
4C

722t4 +O(t3) < 29+O(t−1),

v2 � 324At4

AC − B2 =
4A

722t4 +O(t3) < 2+O(t−1),
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hence for large t

|u| � 5, |v| � 1

and (16) implies

243u2 + 2196uv + 5202v2 � 324,

(27u+ 112v)2 + 722v2 � 972.

We obtain either u = ±1, v = 0, or v = ±1, u = −4v, or u = −5v. The first case gives
m = ±m1, the second case m = ±m2, the third case m = ±m3. 	


Lemma 2. If p ∈ Z3 \ {0} and pm1 = 0, then for t tending to infinity

|p| � √18t + o(t).

Proof. We easily verify that

p1m1 = q1m1 = 0,

where

p1 = (t,−4t − 1, 1− t), q1 = (1,−3t − 3, 3t − 1).

Since p1, q1 are linearly independent, pm1 = 0, p ∈ Z3 implies

p = up1 + vq1,

where u, v ∈ Q. Now p ∈ Z3 implies

ut + v ∈ Z,(17)

u(4t + 1)+ v(3t + 3) ∈ Z,

u(1− t)+ v(3t − 1) ∈ Z,

hence by taking determinants

(18) u(3t2 − t − 1) ∈ Z, u(3t2 − 1) ∈ Z, u(15t2 − t − 4) ∈ Z.

However

15t2 − t − 4− 4(3t2 − 1)− (3t2 − t − 1) = 1,

hence gcd(3t2 − t − 1, 3t2 − 1, 15t2 − t − 4) = 1, (18) implies u ∈ Z and by (17) v ∈ Z.
Now

|p|2 = A1(t)u
2 + 2B1(t)uv + C1(t)v

2,

where

A1(t) = 18t2 +O(t), B1(t) = 9t2 +O(t), C1(t) = 18t2 +O(t).
The sequence of quadratic forms

A1(t)

t2
x2 + 2

B1(t)

t2
xy + C1(t)

t2
y2
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tends to 18x2 + 18xy + 18y2 and this quadratic form has minimum 18. It follows by
Corollary 2 that

|p|2 � 18t2 + o(t2),
which gives Lemma 2. 	


Lemma 3. If pm2 = qm2 = 0, where p, q ∈ Z3, p, q linearly independent, t ≡
2 mod 28, then for t tending to infinity

|p| |q| � √328t2 + o(t2).

Proof. We easily verify that

p2m2 = q2m2 = 0,

where

p2 = (12t + 20,−28t − 56,−12t − 27),

q2 = (84t + 572,−84t − 1624,−761).

Now, take t ≡ 2 mod 28 and

r2 = 29

112
p2 +

1

112
q2 =

(27t + 72

7
,−8t − 29,−87t + 386

28

)
∈ Z3.

If p ∈ Z3 and pm2 = 0, then p = up2 + vr2, where u, v ∈ Q. We assert that u, v ∈ Z.
Indeed, p ∈ Z3 implies

(12t + 20)u+ 27t + 72

7
v ∈ Z,

(28t + 56)u+ (8t + 29)v ∈ Z,

(12t + 27)u+ 87t + 386

28
v ∈ Z,

hence on taking determinants D1u,D2u,D3u ∈ Z, where

D1 = −12t2 + 4t + 4, D2 = −9t2 − 2, D3 = −9t2 − 4t − 11.

However,

−3D1 + 7D2 − 3D3 = 7

and for t ∈ Z, 7 /| D2, hence gcd(D1,D2,D3) = 1 and u ∈ Z. Similarly v ∈ Z. By
Corollary 2 the problem reduces to finding the first two minima of the quadratic form(

12u+ 27

7
v
)2 + (28u+ 8v)2 +

(
12u+ 87

28
v
)2
.

By reduction we find that the first minimum m is obtained for u = 2, v = −7,

m = 32 +
(

24− 87

4

)2 = 9+ 81

16
= 14.0625
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and the second minimum m is obtained for u = 1, v = −3,

m =
(3

7

)2 + 42 +
(75

28

)2 = 23.358418.

Hence

mm = 328.47775. 	

Lemma 4. If pm3 = qm3 = 0, where p, q ∈ Z3, p, q linearly independent and t ≡
15 mod 55, then for t tending to infinity

|p| |q| � √328t2 + o(t2).
Proof. One easily verifies that p3m3 = q3m3 = 0, where

p3 = (10t + 25,−15t − 65,−10t − 36),

q3 = (165t + 1425, 165t − 3760,−2019).

Now, take t ≡ 15 mod 55 and

r3 = 171

275
p3 +

1

275
q3 =

(75t + 228

11
,
−96t − 595

11
,
−342t − 1635

55

)
∈ Z3.

If pm3 = 0 and p ∈ Z3 we have

p = up3 + vr3,

where u, v ∈ Q. We assert that u, v ∈ Z. Indeed, p ∈ Z3 implies

(10t + 25)u+ 75t + 228

11
v ∈ Z,

(15t + 65)u+ 96t + 595

11
v ∈ Z,

(10t + 36)u+ 342t + 1635

55
v ∈ Z,

hence D1u,D2u,D3u ∈ Z, where

D1 = −15t2 + 5t + 5,

D2 = −6t2 − 3,

D3 = 6t2 − 5t − 15.c

However

2D1 − 3D2 + 2D3 = −11

and for t ∈ Z, 11 /| D1, hence gcd(D1,D2,D3) = 1 and u ∈ Z. Similarly v ∈ Z. By
Lemma 1 the problem reduces to finding the first two minima of the quadratic form(

10u+ 75

11
v
)2 +

(
15u+ 96

11
v
)2 +

(
10u+ 342

55
v
)2 = A3u

2 + 2B3uv + C3v
2,

where

A3 = 425, B3 = 261.2727, C3 = 161.3186.
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By reduction we find the first minimum

4A− 12B + 9C = 16.5948,

the second minimum

9A− 30B + 25C = 19.7834,

the product 328.30. 	


Proof of Theorem 2. Take an ε > 0 and a large integer t such that t �≡ −7 mod 17,
t ≡ 2 mod 28, t ≡ 15 mod 55 and suppose that

n = up + vq,
n = (15t2 − t − 4, 3t2 − 1, 3t2 − t − 1)× (69t2 − 5, 21t2 − 2, 0),

where p, q ∈ Z3,

|p| |q| �
(

6

(722)1/4
− ε
)√|n| .

Since

|n| = 9
√

722t4 +O(t3),
it follows that

(19) |p × q| � |p| |q| �
(

18− ε
2

)
t2,

where we may assume without loss of generality that p, q are linearly independent. There-
fore p × q �= 0 and since (p × q)n = 0 we obtain, by Lemma 1, that p × q =
±m1,±m2,±m3. If p× q = ±mi , then pmi = qmi = 0 implies, by Lemma i + 1, that
|p| |q| � (18+ o(1))t2, contrary to (19). 	


Appendix

We give a proof independent of [10] of the part of Proposition 1(i).

Proposition 3. If n < m < k and ε > 0 there exists anm-dimensional subspace S of Qk

such that for every n-dimensional subspace T of S we have

(20) H(T ) > (1− ε)γ 1/2
m,nH(S)

n/m.

Notation. For a positive integer n we put [n] = {1, . . . , n}, for a vector a, ai is the i-th
coordinate of a and for a matrix A = (aij ), AI,J = det(aij )i∈I, j∈I , |J | is the cardinality
of a set J .



L4. Vectors whose span contains a given linear subspace 1299

Lemma 5. If n < m < k for every three matrices U ∈ Rn×m and A,B ∈ Rm×k we have∣∣detUAAtUt − detUBBtUt
∣∣

�
(
k

n

)(
m

n

)
max |AI,J − BI,J |max |AI,J + BI,J | detUUt,

where the maxima are taken over all subsets I, J of [m] and [k], respectively, with |I | =
|J | = n.

Proof. This follows at once from the identities

detUAAtUt =
∑

J⊂[k], |J |=n

( ∑
I⊂[m], |I |=n

U[n],IAI,J
)2

,(21)

detUUt =
∑

J⊂[m], |J |=n
U2[n],J(22)

and from the Cauchy–Schwarz inequality. 	


Lemma 6. If n � m for every non-singular matrix A ∈ Rm×m, there exists a positive
number c(A) such that for every matrix U ∈ Rn×m we have

detUAAtUt � c(A) detUUt .

Proof. The right hand side of identity (21) is a quadratic form in U[n],I (I ⊂ [m], |I | = n).
We shall show that for k = m it is positive definite. Otherwise there would exist xI not all
equal to 0 such that ∑

I⊂[m], |I |=n
xIAI,J = 0

for all J ⊂ [m], |J | = n. It follows hence that detB = 0 where

B = (AI,J )I,J⊂[m], |I |=|J |=n.
However, by the statement 184 on p. 178 of [6], detB is a power of detA, hence

detB �= 0 and the obtained contradiction shows that the form in question is positive
definite.

Now we use the following argument, kindly supplied by M. Skałba, that is simpler
than our original one. Reducing a positive definite quadratic form f ∈ R[x1, . . . , xl] to a
diagonal form by an orthogonal transformation with matrix (cij ) we obtain that

f (x1, . . . , xl) =
l∑
j=1

λj

( l∑
i=1

cjixi

)2

.

Hence

f (x1, . . . , xl) � λ1

l∑
j=1

( l∑
i=1

cjixi

)2

= λ1

l∑
i=1

x2
i ,
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where λ1 is the least characteristic root of f . Applying this to our quadratic form and using
identity (22) we obtain the lemma. 	


Proof of Proposition 3. It is enough to consider k = m + 1, ε < 1. By the definition of
γm,n there exists a full lattice Λ in Rm such that for every n-dimensional sublattice Γ of
Λ we have

det Γ � γm,n(detΛ)n/m.

Let a1, . . . , am be a basis of Λ and let b1, . . . , bm in Qm be so close to a1, . . . , am,
respectively, that taking

A =
⎛⎜⎝a1
...

am

⎞⎟⎠ , B =
⎛⎜⎝b1
...

bm

⎞⎟⎠
we have

(23) |detB| <
(

1+ ε
2

)
|detA|

and

max |BI,J − AI,J | � min

{
a,
c(A)ε

6
(
m
n

)2
a

}
,

where a = max |AI,J | and the maxima are taken over all subsets I, J of [m] with |I | =
|J | = n.

Let d be a positive integer such that dbi ∈ Zm (1 � i � m) and let us consider the
matrix

C = C(t, t1, . . . , t2m) =
⎛⎜⎝db11t + t1 . . . db1mt tm+1

...
. . .

...
...

dbm1t . . . dbmmt + tm t2m

⎞⎟⎠ .
We have

(24) C[m],[m] ≡ t1 · · · tm mod t,

hence C[m],[m] �= 0 and also for all j � m

C[m],[m+1]−{j}(t, t1, . . . , tm, db1j t, . . . , dbjj t + tj , . . . , dbmj t) = (−1)m+jC[m],[m],

hence C[m],[m+1]−{j} �= 0. However C[m],[m] is independent of tm+1, . . . , t2m and
C[m],[m+1]−{j} is independent of tj (1 � j � m), hence the greatest common divisor D
of C[m],[m+1]−{j} (1 � j � m+ 1), which is homogeneous in t, t1, . . . , t2m could depend
only on t and by (24) D = 1. Also the m + 1 polynomials in question have no common
fixed numerical divisor > 1, since by (24)

C[m],[m](0, 1, . . . , 1) = 1.

Hence, by Theorem 1 of [9], there exist integers t∗1 , . . . , t∗2m and an arithmetic progression
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P ⊂ Z such that for t ∈P

(25) gcd
1�j�m+1

C[m],[m+1]−{j}(t, t∗1 , . . . , t∗2m) = 1.

Let cj be the j -th row of C(t, t∗1 , . . . , t∗2m) and consider the lattice Λ1 and the linear
subspace S of Qm spanned by c1, . . . , cm. For t ∈P tending to infinity we have by (25)

(26) H(S) = detΛ1 =
√√√√m+1∑
j=1

C[m],[m+1]−{j}(t, t∗1 , . . . , t∗2m)2

= dmtm |detB| +O(tm−1).

Assume now that t ∈P and T is an n-dimensional subspace of S. Since Λ1 is primitive,

the lattice T ∩ Zm+1 is generated by
m∑
j=1
uijcj (1 � i � n), where uij ∈ Z and we put

(uij )i�n, j�m = U .
Assume, contrary to (20), that

H(T ) � (1− ε)γ 1/2
m,nH(S)

n/m.

Hence, by (23) and (26) we have for t large enough

H(T ) �
(

1− ε
2

)
γ

1/2
m,n |detA|n/m .

However

H(T ) = √detUCCtUt ,

where

C(t) = C(t, t∗1 , . . . , t∗2m),
thus

detU
C(t)

dt

C(t)t

dt
Ut �

(
1− ε

2

)2
γm,n |detA|2n/m .

Applying Lemma 5 to the matrices U , C(t)/dt and B ′ equal to B augmented by the
(m+ 1)-th column consisting of zeros we obtain

detUBBtUt = detUB ′(B ′)tU t �
(

1− ε
2

)2
γm,n |detA|2n/m +O(t−1) detUUt .

We now apply Lemma 5 to the matrices U , A and B and obtain

(27) detUAAtUt �
(

1− ε
2

)2
γm,n |detA|2n/m +

(ε
2
c(A)+O(t−1)

)
detUUt .

However, by Lemma 6 the left hand side is at least c(A) detUUt . Hence for t large enough

c(A) detUUt � γm,n |detA|2n/m
and combining this with (27) we obtain for t large enough

detUAAtUt < γm,n |detA|2n/m .
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It follows that the lattice Γ1 generated by
m∑
j=1
uijaj (1 � j � n) satisfies

det Γ1 < γ
1/2
m,n(detΛ)n/m,

contrary to the choice of Λ. The obtained contradiction proves (20). 	
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Commentary on M: Other papers*

by Stanisław Kwapień

M1. Since the publication of the paper, it has become customary to call Goł ↪ab–Schinzel
(in the sequel it is abbreviated to G–S) equation the functional equation appearing in the
title of the paper. A motivation for considering the equation was an observation made by
J. Aczél and S. Goł ↪ab connecting the equation with subgroups of the group A of affine
transformations of R1 into itself. If we identify an affine transformation T of R1, given by
the formula T (x) = a + bx, with the pair (a, b) ∈ R1 × (R1 \ {0}) then the function f
fulfils the G–S equation if and only if the part of the graph of f which is R1 × (R1 \ {0})
is a subgroup of A. Perhaps more important reason of the popularity of the G–S equation
is that it is one of the simplest functional equations which combines conditions like in the
Cauchy equation and of iterative type.

In their paper S. Goł ↪ab and A. Schinzel do not pursue connections with the theory of
groups and their subgroups. Instead, they give a treatment of the equation as elementary
as possible. The main results of the article are:

I. The only differentiable solutions of the equation are the function f ≡ 0 and the
functions fm(x) = 1+mx, where m is an arbitrary, fixed real number.

II. The only continuous solutions are the functions as in I and the functions max{fm, 0},
where fm is as in I.

III. A complete and simple description of trivial solutions of the equation is given (a
function f is called trivial iff its values are in the set {−1, 0,+1}). It is proved that a
trivial function is a solution of the equation if and only if it is identically equal to 0, or
identically equal to 1, or it is the difference of the indicator functions of an additive
subgroup of R1 and its disjoint translation.

IV. A complete and simple description of nontrivial and non-microperiodic solutions of
the equation is found (a function on R1 is said to be microperiodic if it has arbitrary
small periods). It is proved that f is such a solution if and only if f = fmIG(fm),
where fm is as in I and IG is the indicator function of a setGwhich is a multiplicative
subgroup of R1 \ 0, containing −1.

* The paper M2 is commented in the next article by E. Szemerédi.
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The question of a description of measurable solutions of the G–S equation is left open
in the paper.

The article started a steady flow of works concerning the equation and its generaliza-
tions. In a recent review paper by J. Brzd ↪ek [7], the author lists 82 publications closely
related to the G–S equation. For the list and a throughout review of all the subsequent
developments to the G–S equation we refer the reader to that paper. Here we will point out
only some of them.

A form of a general solution of the G–S equation was given independently by
P. Javor [10] and S. Wołodźko [15]. Lemma 1 from M1 is a basic tool for this goal.
We will sketch their result. It is easier to describe the inverse g = f−1, which in general
is a multifunction, and we will do that. If f is not identically equal to 0, what will be as-
sumed in the sequel, then g is defined on a multiplicative subgroupG of R\{0} (eventually
G ∪ {0} if f admits values equal to 0). The set A = g(1) is an additive subgroup of R (it
is the group of the periods of f ). It follows by the G–S equation that A is closed under
multiplication by numbers from G, i.e., rA = A for r ∈ G. Moreover Lemma 1 implies
that the values of g, restricted to G, are different cosets of A. Therefore the restriction
of g to G can be treated as an usual 1–1 function from G into the quotient group R/A.
The G–S equation implies that g(xy) = g(x) + xg(y) for x, y ∈ G (since rA = A for
r ∈ G the multiplication by elements ofG is defined on the quotient group R/A). If 0 is a
value of f then g(0) = R \ g(G). Conversely, having such a multiplicative subgroup G,
an additive subgroup A closed under the multiplication by numbers from G and a 1–1
function g : G→ R/A which fulfils the above equation then putting g(0) = R \ g(G) if
the last set is nonempty we obtain a solution f of the G–S equation such that g = f−1.
For many groupsG,Awe see easily that the only functions g with the above properties are
of the form g(x) = xa−a for x ∈ G, where a is a fixed element of R/A. For a discussion
when it is so we refer the reader to the book of K. S. Brown [5], Ch. 4, Sect. 2, p. 89, or
S. Balcerzyk [3], Ch. X, Sect. 4, p. 333. It is true if there exists y ∈ G such that 1/(y − 1)
is in the ring generated in R by G. In particular this is satisfied if f is continuous or has
the Darboux property.

The above description of solutions allows us to obtain not only the results I–IV, stated
above, but also those from many other articles as well. In particular, by the very same
method, we obtain a description of continuous functions fulfilling the G–S equation in
the case when the function f is defined on a linear topological vector space instead
on R1. The continuous solutions of the G–S equation on a topological vector space are
the same as in II, except that mx has to be understood as m(x), where m is a continuous
linear functional on the topological vector space. An exposition of this result and those of
P. Javor and S. Wołodźko can be found in Chapter XI of the monograph by J. Aczél and
J. Dhombres [1].

If we restrict the domain of f to R+ or R\{0} then we cannot repeat directly the above
method to find solutions of such equations. Several papers treat this problem, concentrating
on a description of continuous solutions of such equations. They are called the conditional
G–S equation or the G–S equation with restricted domains in those papers. In most cases
the continuous solutions are similar as in the original G–S equation. An elegant paper of
J. Aczél, J. Schwaiger [2] is the most representative for this approach. Another direction
of generalizations considered in the papers are the G–S equations of a more general form.
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The equations of the form f (f (y)kx + f (x)ly) = λf (x)f (y), and more general, were
investigated in many papers. Essentially new types of continuous solutions of these gen-
eralized G–S equations were found, see e.g. J. Brzd ↪ek [6]. Of special interest is the paper
by P. Kahlig, J. Matkowski [12]. In the paper the authors found continuous solutions on
R+ of the equations f (x + ys(x)r ) = s(x)f (y), where s : R+ → R+ is a fixed mono-
tone function and r is a fixed positive number. It is closely related to the G–S equation
and the continuous solutions of the both equations are of the same type. What makes this
paper interesting is that the authors present some applications to nonlinear processes of
meteorology and fluid mechanics. The differential equations describing evaporation of
cloud droplets, water discharging from reservoir, etc., exhibit some symmetries which are
expressed by the G–S equation modified in the above way. We end this short review with
mentioning recent results on the stability of the G–S equation. A typical result in this di-
rection is that of J. Chudziak [8]. The result says that if for a continuous function f on R

the expression f [x+ yf (x)]−f (x)f (y) is bounded on R×R then either f is a bounded
function or it is an unbounded solution to the G–S equation(1).

M3. The paper treats in an elementary way a special case which can be put in a broad
scheme considered in Potential Theory associated with a random walk, resp. with a Markov
process. According to the general scheme for a given random walk, resp. Markov process,
and a region A we can associate in a natural way a set ∂A—called the Martin boundary
of A, and a kernel HA : A × (A ∪ ∂A) → R+, in such a way that nonnegative func-
tions which are superharmonic in A for the potential theory, associated to random walks,
resp. Markov process, are precisely those which can be represented as

∑
p∈C

HA(x, p)μ(p),

resp. by
∫
C
HA(x, p)dμ(p), where C = A ∪ ∂A and μ is a nonnegative function, resp.

measure, on C. A subject of numerous papers in the probabilistic potential theory is a
study of the behavior of the function HA(x, p), especially when x approaches ∂A. Har-
nack’s inequalities are estimates, independent of p, from above and below of the ratio
HA(x, p)/HA(y, p). There are very few random walks (resp. Markov processes) and re-
gions when the kernel HA can be explicitly computed as it is in the classical potential
theory with A being a ball. This makes the problem quite difficult. For this probabilistic
point of view we refer the reader to Chapter 3 of the monograph of F. Spitzer [14]. The
paper treats simple, symmetric random walk on the plane while A is a disc. Although an
explicit formula for the kernel is not given (probably there is no simple one), quite precise
bounds on the kernel are proved. The paper is an outgrowth of a problem posed at one of
the mathematical olympiads in Poland. It is dedicated to Stefan Straszewicz, one of the
founders of The Mathematical Olympiads in Poland and their chairman through the first
twenty years of their existence. The author’s deep and strong involvement in organizations
of these mathematical competitions for youths is very well known and highly appreciated
in Poland.

(1) The author of this commentary would like to thank Janusz Brzd ↪ek for providing his review
paper on the G–S equation and for his helpful comments also Jan Krempa for showing him
connections of the G–S equation with concepts in Homological Algebra and for references on
that.
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M4. The very well known Hadamard estimate of the determinant of a matrix A =
(ai,j )i,j�n states that

|detA| �
n∏
i=1

‖ai‖2,

where, for i = 1, . . . , n, the vector ai = (ai,1, . . . , ai,n) is the i-th row of the matrixA and
‖·‖2 is the standard Euclidean norm on Rn. The above inequality turns into an equality if all
the vectors ai , i = 1, . . . , n, are orthogonal. Hence the Hadamard inequality is in a sense
optimal. More exactly, if we want the inequality to hold for all matrices A the Euclidean
norm in the inequality can not be replaced by another norm ‖ · ‖ with ‖a‖ � ‖a‖2 for all
a ∈ Rn. We can only hope for a norm which is smaller than the Euclidean norm for some
vectors a ∈ Rn. It is remarkable that such a norm can be found. It is the main result of the

present paper that the norm ‖a‖ = max
{ ∑
j :aj�0

aj − ∑
j :aj<0

aj

}
= max
I⊂{1,...,n}

∣∣∣∑
j∈I
aj

∣∣∣ fulfils

(∗) |detA| �
n∏
i=1

‖ai‖,

for all real matrices A. Obviously ‖a‖ < ‖a‖2 for some a ∈ Rn.

An elementary proof of this fact, given in the paper, can be easily explained using “the
extreme points technique”. Since detA is an n-linear form in the vectors a1, . . . , an, to
prove the inequality (∗) it is enough to check it for a1, . . . , an being extreme points of the
unit ball of the norm ‖ · ‖. However, these extreme points are the vectors which fulfil: they
have at least one and at most two non-zero coordinates, the absolute value of non-zero
coordinates is equal to 1 and the signs of non-zero coordinates alternate. For a matrix A
with rows consisting of such extreme points it is very easy to see that detA is equal to 0,
+1 or −1 and the norm of each row is equal to 1. Thus (∗) holds true. Also, the norm of
the extreme points with two non-zero coordinates is equal to 1 while the Euclidean norm
is equal to

√
2.

The ideas of the paper were subsequently developed by C. R. Johnson and M. Newman
in their paper [11]. In particular they managed to strengthen the inequality (∗) to

|detA| �
n∏
i=1

‖ai‖ −
n∏
i=1

"ai ",

where "a" = min
{ ∑
j :aj�0

aj − ∑
j :aj<0

aj

}
. Also other n-linear forms, like permanents, are

considered in that paper.

That, for some vectors, the Hadamard Inequality can be improved was observed by
A. Schinzel in the note at the end of the paper [13]. Then the observation was repeated in
the proof of Theorem 2 in his paper with J. Browkin and B. Diviš [4]. The second coauthor
of this paper—Bohuslav Diviš, a brilliant young number theorist, died on July 26, 1976,
at age of 34. The present paper, an outgrowth from this observation, is dedicated to his
memory.
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M5. For a polynomialP with coefficients (ak) comparing max
x∈[−1,1] |P(x)|with max

k
|ak|

is a problem very often met in different branches of mathematics. Universal estimates of
the ratio of these two quantities for polynomials in given classes is a subject of many
papers. A lot of effort is put in finding best possible estimates in these works. The present
paper concerns the case of the class, denoted by P (n), of polynomials which are squares
of polynomials of degree< nwith nonnegative coefficients. In this case max

x∈[−1,1] |P(x)| =∑
k

ak and it is more convenient to consider the ratio multiplied by 1/n. The goal of the paper

is to give as good as possible estimates of A(n) = sup

{ 1
n

∑
k ak

maxk ak
: P ∈ P (n)

}
. One of

the motivations to consider these quantities comes from the fact that if J ⊂ {0, . . . , n−1}
then taking P = ∑

k∈J
xk we obtain that at least one integer has at least A(n) times the

cardinality of J representations as a sum of two elements from J . We refer the reader to
the paper [9] by B. Green, devoted to this and more general problems.

The first step is a reduction of the problem of estimatingA(n) to its continuous analogue.
Theorem 1 of M5 states that B(1 − 6/n1/3) < A(n) � B, where B = sup

f∈F
|f |1/|f |∞,

F is the class of functions f which are square convolutions, f = g ∗ g, of nonnegative,
integrable functions g which are equal to zero outside the interval [0, 1] and |f |p is theLp

norm of the function f . The problem of giving the exact value of B is still open. After the
paper had appeared, A. Schinzel found out that the problem of determiningA(n) as well as
B was posed by Leo Moser in Report of the Institute in the Theory of Numbers, University
of Colorado, Boulder, June 21–July 17, 1956, Problems 28, 29. Taking g(x) = 1/

√
x

on (0, 1] and g(x) = 0 outside the interval we compute that |f |1/|f |∞ = 4/π . And a
conjecture, stated also by L. Moser, is that B is equal to 4/π . It is very easy to see that
B � 2. Thus 4/π � B � 2. Any result stronger than that requires a new, nontrivial idea.

A simple and ingenious method applied in the proof of Theorem 2 allowed the authors
to prove that B � 7/4. In Section 6 of the paper the bound 7/4 is improved by 1/80 and
in Section 7 it is further lowered by 0.000200513…. So that the final estimate from above
of B obtained in the paper is 1.7373…. The proofs of these last two estimates depend
on improvements of some details in the proofs of the preceding bounds and the level of
complications of the proofs of the consequent ameliorations increases very rapidly.

An estimate forB by 7/4, and in fact by 1.74998, was obtained by B. Green in the above
mentioned paper, as well. His method, based on properties of the Fourier Transform, can
be easily explained. Since |f |22 � |f |1|f |∞ for each function f we get B � C2 � D2,
where C = sup

f∈F
|f |1/|f |2 and D = sup{∫

R
f dx/|f |2 : f ∈ G}, where G is the class of

functions f which are square convolutions, f = g ∗ g, of integrable function g, which are
equal to zero outside the interval [0, 1]. Moreover it can be easily checked that

D = 1√
2π

sup

{(∫
R

g(x)dx
)2
/|ĝ|24 : g ∈ L1, g(x) = 0 for x /∈ [0, 1]

}
= 1√

2π
inf
{|ĥ|24/3 : ĥ ∈ L4/3, h(x) = 1 for x ∈ [0, 1]}
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where φ̂ denotes the Fourier Transform ofφ, i.e. φ̂(x) = 1√
2π

∫
R
eixyφ(y)dy. From what is

written in the paper of B. Green a functionhwithh(x) = 1 on [0, 1] can be constructed such
that |ĥ|44/3 < 7π/2. This proves that B < 7/4. It is not clear how much we can decrease
7/4 with this method. Narrowing the gap between the lower estimate 4/π = 1.2732 . . .
of B and its upper estimate 1.7373 remains an interesting problem.
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Andrzej Schinzel
Selecta

The influence of the Davenport–Schinzel paper
in discrete and computational geometry

by Endre Szemerédi

The seminal paper of Davenport and Schinzel M2 addressed a problem of Malanowski
concerning independent solutions of a linear differential equation. They started with the
observation that if f1, f2, . . . , fn are everywhere defined real functions R → R, any pair
of which intersect at most k times, then their upper envelope f (x) = max

1�i�n
fi(x) has the

following curious combinatorial property. If we consider the maximal connected pieces
of the upper envelope that belong to the (graph of the) same function fi and, proceeding
from left to right, write down the indices of the corresponding pieces, then

1. no two consecutive indices are the same,

2. there is no alternating subsequence . . . a . . . b . . . a . . . b . . . of length k + 2, for any
a �= b.

Today such a sequence is called an (n, k) Davenport–Schinzel sequence. In fact, it is
not hard to see that every such sequence can be obtained from a sequence of functions
f1, f2, . . . , fn in the way described above. The classical paper M2 gives the first nontrivial
estimates for the maximum length λk(n) of a Davenport–Schinzel sequence.

In [7], I managed to establish the upper bound λk(n) = O(n log∗ n) for any fixed k,
where log∗ n denotes the iterated logarithm function, that is, the minimum height of an
exponential tower 222...

that exceeds n. In other words, I showed that λk(n) is nearly linear.
However, I was unable to prove a superlinear lower bound. Twelve years later Hart and
Sharir [3] essentially settled the combinatorial question raised by Davenport and Schinzel:

they showed that for any fixed k,
λk(n)

n
is an extremely slowly growing function, closely

related to the inverse ofAckermann’s function. Their proof was inspired by Tarjan’s brilliant
analysis of the “union-find” algorithm [8].

Davenport–Schinzel sequences were rediscovered by Atallah [1], who recognized the
relevance of this concept to a variety of problems in discrete and computational geometry.
The simplest example comes from a two-dimensional “visibility” problem, whose relatives
play an important role in computer graphics and in motion planning. Suppose we have a
collection of segments s1, s2, . . . , sn in the plane and we want to compute their view from
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a far away stand-point. Clearly, this problem is equivalent to computing the upper envelope
of n partially defined linear functions. The complexity of any algorithm for solving this
problem is at least as large as and, in fact, roughly proportional to the maximum number
of pieces along this upper envelope. Of course, the same segment may contribute several
pieces to this upper envelope. However, it is not hard to verify that if we list from left
to right the indices of the segments si as they appear on the upper envelope (in the same
way as at the original problem addressed by Davenport and Schinzel), we obtain an (n, 3)
Davenport–Schinzel sequence.

In hidden surface removal and in numerous other geometric applications, one has to
solve similar problems in three and higher dimensions. Unfortunately, in this case the
structure of the upper envelope cannot be combinatorially coded by a single sequence. The
first major achievement in this direction was due to Pach and Sharir [4]. They proved, for
example, that the upper envelope of n triangles in three-dimensional space consists of at
mostO(nλ3(n)), i.e., only slightly superquadratically many pieces. By the early nineties,
Sharir and his coauthors established many far-reaching generalizations of this result to
upper envelopes of multivariate functions. These results more or less directly led to efficient
algorithms for the solution of a variety of problems in computational geometry, including
visibility and “ray shooting” problems, motion planning problems, finding convex hulls,
Voronoi diagrams, etc. The general framework of these applications was laid down by
Schwartz and Sharir [5]. By analytically reformulating a given problem, we often obtain
a number of surface patches in an arbitrarily high dimensional space, which correspond
to the equations describing the geometric constraints. Thus, the original problem reduces
to the computation of certain substructures (such as the upper envelope, a single cell,
or a “zone” of cells) in the arrangement of these surface patches. The first rigorous and
systematic study of the theory of arrangements was given in Edelsbrunner’s monograph [2],
which dealt mainly with arrangements of hyperplanes. The combinatorial and algorithmic
theory of Davenport–Schinzel sequences, arrangements of more general surfaces, and their
geometric and algorithmic applications was the subject of another fundamental monograph
by Sharir and Agarwal [6]. It perfectly illustrates how the 1965 paper of Davenport and
Schinzel on A combinatorial problem connected with differential equations became the
starting point of a rich mathematical discipline with diverse applications in computer
science.
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Sur l’équation fonctionnelle
f [x + y · f (x)] = f (x) · f (y)

avec S. Goł
↪
ab (Cracovie)

Dédié à Monsieur Béla Gyires
à propos de son cinquantième anniversaire

Introduction

On peut déterminer de façons diverses les sousgroupes des groupes centroaffines. En
effet il faut ici résoudre certains systèmes d’équations fonctionnelles itérées.

L’ensemble des solutions du système des équations fonctionnelles dépend, comme on
le sait, des hypothèses concernant la régularité des solutions cherchées. Il peut s’élargir
avec l’affaiblissement des hypothèses de la régularité.

Le premier des auteurs a réduit un des problèmes, dont on parle au commencement à
l’équation fonctionnelle

(1) f [x + y · f (x)] = f (x) · f (y)
qui, étant admise la dérivabilité de la solution cherchée f (x), a comme solutions les
suivantes

f (x) ≡ 0 ou(2)

f (x) = 1+mx (m = constant quelconque).(3)

À cette occasion s’est imposé la question de la classe des solutions de l’équation (1) dans
le domaine des fonctions réelles de la variable réelle ayant des propriétés de régularité
plus faibles. Le travail présent — quoiqu’il ne fournit pas la solution complète de cette
équation — donne quelques théorèmes dans cette direction. La question de la détermina-
tion de toutes les solutions (sans aucune hypothèse de régularité) nous semble difficile.
L’équation (1) possède des solutions non mesurables. Nous donnons ici des exemples de
pareilles solutions, dûs à MM. W. Sierpiński et S. Marcus.

Nous ne pouvons même pas déterminer toutes les solutions mesurables. Dans le
domaine des fonctions continues il existent encore d’autres solutions outre la solution
(2) et (3). Parmi les solutions nous distinguons certaine classe de celles-ci que nous nom-
mons triviales. Ce sont les solutions, pour lesquelles les valeurs f (x) sont comprises dans
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l’ensemble T , qui se compose des trois nombres

(4) 0, 1, −1.

Si l’ensemble des valeurs de la fonction f (x) donnant la solution est plus ample que T ,
alors il doit être infini. Ça résulte de ce que le groupe multiplicatif contenant au moins un
élément différent des nombres+1 et−1 doit contenir déjà un nombre infini des éléments.

Dans nos considérations les soi-disant fonctions micropériodiques jouent un rôle spe-
cial ; ces sont des fonctions périodiques non triviales (non constantes), possédant des
périodes aussi petits qu’on veut (ne possédant pas de soi-disant période principal). Les
fonctions micropériodiques étaient l’objet des recherches des travaux de C. Burstin ([2])
et A. Łomnicki ([4]). En particulier, une fonction micropériodique et continue à un point
est toujors constante.

1.

Excluons d’abord la solution qui est identique à 0. Nous affirmons, que dans ce cas il
doit être

(5) f (0) = 1.

En effet soit

(6) f (x0) �= 0.

En substituant dans l’équation (1) y = 0, x = x0 nous recevrons

f (x0) = f (x0) · f (0),
de là, vu (6), résulte (5).

Supposons d’abord, que la solution f (x) est partout dérivable. Désignons

(7) m = f ′(0)
et différentions (1) par rapport à x.

Nous recevons

f ′[x + y · f (x)] · [1+ y · f ′(x)] = f ′(x) · f (y).
En substituant x = 0 et en tenant compte de (5) et de (7) nous recevons

f ′(y)(1+my) = mf (y),
d’où, pour f (y) �= 0, nous obtenons

f ′(y)
f (y)

= m

1+my ,
et ensuite

f (y) = C(1+my),
où C désigne une certaine constante, mais, vu (5), on a

C = 1
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et alors

(8) f (x) = 1+mx,
si x �= − 1

m
. Mais, vu l’hypothèse de dérivabilité, la formule (8) doit être valable aussi pour

x = − 1

m
autrement dit la formule (8) est toujours juste. D’autre part on voit facilement

que pour chaque valeur constante m la fonction (8) remplit l’équation (1). De cette façon
nous avons déterminé toutes les solutions dérivables(1). Pour trouver à son tour toutes les
solutions continues, nous devons d’abord démontrer certains lemmes.

2.

Lemme 1. Si pour la solution f (x) on a

(9) f (x1) = f (x2) �= 0 où x2 > x1

alors le nombre

ω = x2 − x1

est un période de la fonction f (x).

Démonstration. Supposons (9) et prenons y = x − x1

f (x1)
; nous recevrons

f (x + ω) = f (x + x2 − x1) = f
[
x2 + x − x1

f (x1)
f (x1)

]
= f [x2 + y · f (x1)] = f [x2 + y · f (x2)] = f (x2) · f (y)
= f (x1) · f (y) = f [x1 + y · f (x1)] = f (x)

pour chaque x, ce qui démontre le lemme. 	


Lemme 2. Si la solution f (x) de l’équation (1) est continue et périodique, alors elle est
constante et égale à 0 ou à 1.

(1) Dans un certain problème de la théorie des objets géométriques M. J. Aczél a obtenu l’équation

(1∗) C(x) · C
[ y

C(x)

]
= C(x + y)

qui peut être réduite par un simple changement de la variable à notre équation (1). L’équation
(1∗) possède parmi les solutions dérivables seulement les solutions

C(x) = 1+mx
(on pourrait aussi dans ce but faire une hypothèse plus simple, p. e. que la solution possède
au plus un point où elle s’annule) (Cf. [1], pp. 45–47 et [3], pp. 316–317). L’équivalence de
l’équation (1∗) avec notre équation n’a pas cependant lieu parce que dans nos considérations les
solutions qui s’annulent dans un ensemble relativement vaste, jouent un rôle essentiel pendant
que les fonctions de telle sorte ne remplient pas en principe l’équation (1∗).Ainsi du théorème 1
du présent travail il suit que C(x) = 1+mx est la plus générale solution continue de (1∗).
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Démonstration. Soit p la période de f (x). Si nous faisons abstraction de la solution
f (x)=0, il existent des nombres x1 et x2, x1 < x2, x2 − x1 = p tels, que f (x1) =
f (x2) �= 0. Nous pouvons admettre, que dans l’intérieur de l’intervalle (x1, x2) il y a
déjà f (x) �= f (x1) puisque autrement f (x) serait constante en vertu du lemme 1 et nous
n’aurions rien à démontrer.

De là f (x) − f (x1) a le même signe par exemple positif à l’intérieur (x1, x2), et la
droite y = f (x1)+ ε pour ε > 0 suffisamment petit, coupe le diagramme y = f (x) dans
les points x1 + η1, x2 − η2, où η1, η2 > 0, η1, η2 → 0 quand ε→ 0 et

f (x1 + η1) = f (x2 − η2) �= 0.

Les nombres x2 − x1 − (η1 + η2) = p − (η1 + η2) en vertu du lemme 1 seront des
périodes de la fonction f (x), donc aussi η1 + η2 et la fonction f , comme micropério-
dique et continue, doit être constante f (x) ≡ c. Mais en vertu de (1) c = c2. 	
c

Lemme 3. Si la solution f (x) n’est pas périodique, alors elle doit être invertible dans
l’ensemble

A = {x : f (x) �= 0}.
C’est la conséquence immédiate du lemme 1.

Lemme 4. Si la solution f (x) est continue et n’est pas périodique, alors elle doit avoir
une des formes suivantes :

a) f (x) est négative et strictement croissante dans l’intervalle (−∞, x1), f (x) = 0
dans l’intervalle [x1, x2], f (x) est positive et strictement croissante dans l’intervalle
(x2,+∞), où

−∞ � x1 � x2 < 0.

b) f (x) est positive et strictement décroissante dans l’intervalle (−∞, x1), f (x) = 0
dans l’intervalle [x1, x2], f (x) est négative et strictement décroissante dans l’inter-
valle (x2,+∞), où

0 < x1 � x2 � +∞.
Cela résulte de ce que, f (x) n’est pas constante, f (0) = 1, f (x) est continue et

invertible dans l’ensemble A.

3.

Lemme 5. Si la fonction f (x) est continue sur toute la droite et n’est pas constante, alors

pour tout x ∈ A, x �= 0, la valeur de
f (x)− 1

x
est constante.

Démonstration. Supposons que x ∈ A, y ∈ A, xy �= 0 et
f (x)− 1

x
�= f (y)− 1

y
. Donc

x + y · f (x) �= y + x · f (y), et d’autre part on a

f [x + y · f (x)] = f (x) · f (y) = f [y + x · f (y)] �= 0.
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Donc, en vertu du lemme 1, la fonction f est périodique, ce qui, vu les hypothèses admises,
n’est pas compatible avec le lemme 2. 	


Lemme 6. Les hypothèses du lemme 5 étant admises, le cas −∞ < x1 < x2 <∞ dans
le lemme 4 ne peut pas avoir lieu.

Démonstration. Si −∞ < x1 et x2 < ∞ alors en vertu de la continuité de la fonction f
aux points x1 et x2, nous obtenons du lemme 5

f (x1)− 1

x1
= f (x2)− 1

x2

d’où, vu que f (x1) = f (x2) = 0, x1 = x2.
En outre, dans les intervalles (−∞, x1) et (x2,∞) la fonction f doit être linéaire. Si

x1 = x2, nous obtenons les solutions obtenues déjà dans le §1. Il nous reste donc seulement
le cas, où x1 = −∞ < x2 < 0 ou bien 0 < x1 < x2 = +∞. 	


Nous obtenons donc le

Théorème 1. Les seules solutions continues de l’équation (1) sauf les solutions (2) et (3)
sont les solutions :

(10)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
a) f (x) =

⎧⎨⎩0 pour x � x2 (x2 < 0)

1− x

x2
pour x � x2

b) f (x) =
⎧⎨⎩1− x

x1
pour x � x1 (x1 > 0)

0 pour x � x1

où x1 est un nombre positif quelconque, x2 — un nombre négatif quelconque.

4.

Occupons nous maintenant des solutions triviales. Nous appelons ainsi les solutions
pour lesquelles les valeurs de f (x) sont comprises dans T (voir Introduction).

Ici appartiennent surtout les deux solutions constantes et des autres, qui sont déjà
discontinues.

Nous démontrerons d’abord le

Lemme 7. Si l’ensemble F des valeurs de f (x), qui est la solution de l’équation (1) n’est
pas compris dans T , alors l’ensemble F est infini.

Démonstration. Soit f (x0) �= 0, 1, −1.
En posant

f (x0) = a
x1 = x0f (x0)+ x0

xn+1 = x0f (xn)+ xn
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on prouve aisèment par induction que

f (xn) = an (n = 1, 2, . . . ).

En effet, en substituant dans (1) x = xn, y = x0, nous avons

f (xn+1) = f [xn + x0 · f (xn)] = f (xn) · f (x0) = an · a = an+1.

Comme a �= 0, 1, −1, l’ensemble des valeurs de an est infini. 	


La lemme 7 justifie l’introduction du terme “solutions triviales”.
Supposons, que f (x) est une solution triviale, ne prenant que les valeurs 0 et +1.
Une de telles solutions est la suivante :

f (0) = 1, f (x) = 0, pour x �= 0.

S’il existe un x0 �= 0 tel que f (x0) = 1, alors x0 est une période de la fonction f (x),
car

f (y + x0) = f [x0 + y · f (x0)] = f (x0) · f (y) = f (y).
Désignons par Ω l’ensemble de toutes les périodes. Ω forme évidemment un groupe

additif. Si x /∈ Ω , alors f (x) = 0. D’autre part si nous prenons un groupe additif quel-
conque Ω et posons

(11) f (x) =
{

1 quand x ∈ Ω
0 quand x /∈ Ω

nous obtenons une solution. Le groupeΩ peut se composer des points isolés, ou former un
ensemble dense. En particulier, quandΩ se compose de tous les nombres rationnels, nous
obtenons une solution discontinue à chaque point. Cette fonction est nommée fonction de
Dirichlet.

Voici maintenant un exemple de solution non mesurable L de la forme (11), dû à
M. W. Sierpiński.

SoitH une base de Hamel et soit b un élément donné deH . Définissons l’ensembleΩ
de façon suivante :
x ∈ Ω si dans le développement de x de la forme x = a1b1 + a2b2 + . . . + ambm,

où b1, b2, . . . , bm sont des éléments de la base H , et a1, a2, . . . , am sont des nombres ra-
tionnels, non nuls, (b1, b2, . . . , bm) ne contient pas l’élément b. De l’unicité des développe-
ments considérés, il résulte sans peine, que Ω est un groupe additif, et comme Ω est non
mesurable L (voir [5], p. 108), la fonction f est non mesurable.

Examinons maintenant la structure des solutions triviales prenants aussi la valeur −1.
Désignons

Ω = {x : f (x) = 1}, Ω∗ = {x : f (x) = −1}, B = {x : f (x) = 0}.
L’ensemble Ω forme un groupe (composé éventuellement de 0 ou des éléments isolés)
dont l’ensemble Ω∗ doit être une translation. D’autre part on démontre facilement que
si nous prenons un groupe additif quelconque Ω — different de l’ensemble de tous les
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nombres réels, — si nous désignons parΩ∗ une translation autre queΩ lui-même et parB
l’ensemble (−∞,∞)− (Ω +Ω∗) et si nous définissons la fonction f (x) par la formule

f (x) =

⎧⎪⎨⎪⎩
1 quand x ∈ Ω
−1 quand x ∈ Ω∗
0 quand x ∈ B

nous recevrons une solution de l’équation (1).
Le problème se pose, si l’ensemble B peut être vide. Or, la réponse est négative. Nous

démontrerons que si a ∈ Ω∗ alors
a

2
∈ B. En effet, s’il était

a

2
∈ Ω alors on aurait

a

2
+ a

2
= a ∈ Ω , contre l’hypothèse. S’il était

a

2
∈ Ω∗ alors, vu que a ∈ Ω∗, on aurait

a − a
2
= a

2
∈ Ω , ce qui est impossible. Donc il doit être

a

2
∈ B.

A. Łomnicki a démontré dans le travail cité [4] que l’ensemble des périodes d’une fonc-
tion mesurable, non constante, est de mesure nulle. Il a démontré aussi que chaque fonction
mesurable, micropériodique et non constante, possède une soi-disant valeur privilégiée,
c’est-à-dire il existe un nombre p tel que l’ensemble

E = {x : f (x) �= p}
est de mesure nulle. Or, dans le cas de notre équation, pour chaque solution mesurable,
micropériodique et non-constante, ce nombre privilégié p est égal à 0.

Pour le démontrer observons, que l’ensemble des périodes coïncide avec l’ensemble
Ω = {x : f (x) = 1}, car comme nous avons vu, f (x0) = 1 entraîne f (y + x0) ≡ f (y)
et si p est une période alors f (p) = f (0) = 1.

Si le nombre q �= 0 est la valeur de la fonction f (x) alors l’ensemble Q = {x :
f (x) = q} est une translation de l’ensemble Ω . Car si f (x) = f (y) = q �= 0, alors en
vertu du lemme 1, x−y ∈ Ω . Puisque l’ensembleΩ en vertu du premier des théorèmes de
Łomnicki est de mesure nulle, l’ensemble Q est aussi de mesure nulle, par là l’ensemble
E = A.

5.

Occupons nous maintenant avec les solutions non micropériodiques discontinues.

Lemme 8. Si f (x) est une solution de l’équation (1) et s’ils existent des nombres x1 et x2
tels que :

(12)
f (x1) �= 0, 1, −1; f (x2) �= 0,

[1− f (x2)]x1 �= x2[1− f (x1)],
alors la fonction f (x) est micropériodique.

Démonstration. Soit y1 = f (x1), y2 = f (x2),

z0 = 0, zn = y
n
1 − 1

y1 − 1
x1 ;
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nous affirmons, que

(13) f (zn) = yn1 , pour n = 0,±1,±2, . . . .

En effet, pour n = 0 et n = 1 la formule est vraie (f (0) = 1, f (z1) = y1). Supposons,
qu’elle soit vraie pour n � 0 et substitutions à (1) x = zn, y = x1. Nous aurons :c

f [zn + x1 · f (zn)] = f [zn + x1y
n
1 ] = f (x1) · f (zn) = y1 · yn1 = yn+1

1 .

D’autre part

zn + x1 · f (zn) = x1

[yn1 − 1

y1 − 1
+ yn1

]
= x1 · y

n+1
1 − 1

y1 − 1
= zn+1.

Soit à son tour dans (1) x = zn, y = z−n ; nous obtenons :

f [zn + z−n · f (zn)] = f (zn) · f (z−n),
mais

zn + z−n · f (zn) = y
n
1 − 1

y1 − 1
x1 + y

−n
1 − 1

y1 − 1
x1 · yn1 =

x1

y1 − 1

[
yn1 − 1+ 1− yn1

] = 0.

De là nous avons : f (z−n) = 1

f (zn)
= y−n1 et la formule (13) se trouve démontrée. Posons

maintenant dans l’équation (1) x = zn, y = x2, ensuite x = x2, y = zn. Nous aurons alors

f (zn + yn1 · x2) = f (zn) · f (x2) = y2 · yn1 �= 0

f (x2 + zny2) = f (x2) · f (zn) = y2 · yn1 �= 0.

D’où, en vertu du lemme 1, chacun des nombres

ωn = x2 + zny2 − zn − x2y
n
1

est la période de la fonction f . Les nombres

ωn+1 − ωn = y2(zn+1 − zn)− (zn+1 − zn)− x2(y
n+1
1 − yn1 )

= y
n+1
1 − yn1
y1 − 1

(y2 − 1)x1 − x2y
n
1 (y1 − 1) = yn1

{
(y2 − 1)x1 − x2(y1 − 1)

}
sont aussi des périodes. Mais d’après l’hypothèse (12) la dernière parenthèse n’est pas
nulle, donc ωn+1−ωn �= 0. Quand |y1| < 1, alors yn1 → 0 pour n→∞, quand |y1| > 1,
alors yn1 → 0 pour n → −∞. Il en résulte, que f (x) a des périodes aussi petits qu’on
veut, c’est-à-dire f (x) est micropériodique, ce que nous voulions démontrer. 	


Observons comme résultat secondaire, que selon que |y1| < 1 ou |y1| > 1 la suite zn
respectivement z−n tend vers

ξ = x1

1− f (x1)
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et alors f tend vers zéro, ainsi, que, l’hypothèse de notre lemme étant admise, zéro est le
point d’accumulation des valeurs de la fonction f (x) quel que soit le voisinage du point ξ .

Nous avons dit plus haut, que si la solution f (x) est micropériodique, alors zéro est sa
valeur privilégiée. On voit, qu’aussi pour les solutions non micropériodiques zéro est une
valeur “privilégiée” dans un certain sens. Le théorème suivant le démontre :

Théorème 2. Pour que la fonction non micropériodique f soit une solution non triviale
de l’équation (1) il faut et il suffit qu’il existe un nombre m �= 0 ainsi qu’un groupe G
multiplicatif, contenant outre ±1 encore d’autres nombres et tel que

(14) f (x) =
{

1+mx quand (1+mx) ∈ G
0 quand (1+mx) /∈ G.

Démonstration. Nécessité. Il existe un x0 tel, que

y0 = f (x0) �= 0, +1, −1.

Évidemment x0 �= 0, puisque f (0) = 1. Comme f (x) n’est pas micropériodique, on a en
vertu du lemme 8 pour chaque x l’alternative

f (x) = 0 ou x0[1− f (x)] = x(1− y0).

En posant

m
def= x0 − 1

x0

nous avons m �= 0 et on peut écrire l’alternative nommée ci-dessus dans la forme

f (x) = 0 ou f (x) = 1+mx.

Il faut démontrer, que l’ensemble des y, pour lesquels f
(y − 1

m

)
= y �= 0 forme un

groupe multiplicatif.
Prenons deux valeurs y1 et y2 de l’ensemble

G =
{
y : f

(y − 1

m

)
= y �= 0

}
.

Nous avons

f
(y1 − 1

m

)
= y1, f

(y2 − 1

m

)
= y2.

S’il y avait

f

( y1
y2
− 1

m

)
�= y1

y2
,

alors il devrait être

f

( y1
y2
− 1

m

)
= 0,
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d’où nous aurions :

f
(y1 − 1

m

)
= f

(
y2 − 1

m
+ y2 ·

y1
y2
− 1

m

)
= f

[
y2 − 1

m
+
y1
y2
− 1

m
f
(y2 − 1

m

)]
= f

(y2 − 1

m

)( y1
y2
− 1

m

)
= 0

et on aboutit à une contradiction. Donc f

( y1
y2
− 1

m

)
= y1

y2
c’est-à-dire si y1 ∈ G et y2 ∈ G

aussi
y1

y2
∈ G d’où il résulte que G est un groupe multiplicatif.

Suffisance. Nous vérifions que la fonction f (x) remplit l’équation (1).
Quand (1+mx) /∈ G, alors f (x) = 0 et

f [x + y · f (x)] = f (x) = 0 = f (x) · f (y).
Quand (1+mx) ∈ G et (1+my) ∈ G, alors

f (x) · f (y) = (1+mx) · (1+my)
1+m[x + y · f (x)] = 1+m · x +m · y · (1+mx) = (1+mx) · (1+my) ∈ G,

donc

f [x + y · f (x)] = (1+mx) · (1+my) = f (x) · f (y).
Quand (1+mx) ∈ G et (1+my) /∈ G, alors f (y) = 0, et en même temps

1+m · [x + y · f (x)] = 1+mx +my · (1+mx) = (1+mx) · (1+my) /∈ G
d’où

f [x + y · f (x)] = 0.

Par là nous avons démontré, que f (x) est une solution de (1) et le théorème se trouve
démontré. 	


Il est à remarquer, que les solutions f (x) en question sont bornées dans chaque inter-
valle fini. En outre chaque solution est continue au point

x = − 1

m
.

Pour caractériser les points de discontinuité de la fonction f (x) observons que, quel que
soit le groupe G, un des cas suivantes subsiste :

G se compose des nombres an ou ±an, où a est un nombre réel �= 0,(15)

et n = 0,±1,±2 . . . .

G est en même temps dense et frontière sur la demidroite (0,∞).(16)

G contient toute la demidroite (0,∞).(17)
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Dans le cas (16) la fonction f est discontinue soit sur la demidroite (x,∞) (sim > 0),
soit sur la demidroite (−∞, x) (si m < 0).

Dans le cas (17) une fonction f est de la forme 1 + mx (si G se compose de tous
les nombres réels �= 0) ou bien de la forme (10) (si G se compose de tous les nombres
positifs).

Puisque toutes les solutions micropériodiques sont discontinues sur toute la droite,
nous pouvons renforcer le théorème 1 de façon suivante :

Théorème 3. Si la solution non-triviale n’est ni de la forme (3) ni de la forme (10) elle
est soit discontinue sur une demidroite, soit elle est de la forme (14) où G remplit (15).

Quant aux solutions de la forme (14) partout discontinues, S. Marcus a remarqué que
nous pouvons obtenir une solution non mesurable de cette forme, prenant commeG le corps
non-mesurable des nombres réels, dont l’existence est démontrée dans la note posthume
de M. Souslin, rédigée par C. Kuratowski ([6], p. 315).

6.

Le problème se pose si l’équation (1) possède des solutions non triviales micropério-
diques. Or nous démontrerons le

Théorème 4. L’équation (1) possède des solutions non triviales micropériodiques.

Nous allons construire deux groupes : un groupe additifΩ et un groupe multiplicatifG,
tels que

1) Ω contient non seulement le nombre zéro, G contient non seulement les nombres 1
et −1,

2) y ∈ G, ω ∈ Ω =⇒ yω ∈ Ω ,
3) y1, y2 ∈ G, (y1 − y2) ∈ Ω =⇒ y1 = y2.

Des paires de tels groupes existent.
Il suffit de classer dansΩ tous les nombres de la forme r

√
2, dansG tous les nombres

r �= 0, où r est un nombre rationnel quelconque.
Posons

f (x) =
{
y s’il existe ω ∈ Ω tel que y = 1+ x + ω ∈ G
0 si un tel ω n’existe pas.

La fonction f est bien définie. En effet, supposons qu’il existe ω′, ω′′ ∈ Ω et y′, y′′ ∈ G
tels que 1 + x + ω′ = y′, 1 + x + ω′′ = y′′ ; alors y′′ − y′ = (ω′′ − ω′) ∈ Ω , d’où
y′ = y′′. Ensuite la fonction f (x) est périodique. Prenons en effet un ω ∈ Ω quelconque.
Si f (x) = 0, alors f (x + ω) = 0 car s’il existait un ω′ tel que 1 + (x + ω) + ω′ ∈ G,
alors il existerait aussi un ω′′ = ω + ω′ tel que 1 + x + ω′′ ∈ G en contradiction avec
f (x) = 0 ; or si f (x) �= 0, alors 1 + x + ω ∈ G d’où 1 + x + ω + 0 ∈ G et alors
f (x + ω) = 1+ x + ω = f (x).
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Le nombre zéro est un point d’accumulation de l’ensembleΩ pour la raison suivante.
Puisque le groupe G est non-trivial, 0 est son point d’accumulation. Comme yω ∈ Ω ,
quand ω ∈ Ω alors y ∈ G, donc il existe des périodes aussi petites que l’on veut, c’est-à-
dire f est micropériodique.

Nous démontrerons maintenant, que f satisfait à l’équation (1). En effet, si f (x) = 0,
alors l’équation (1) est satisfaite d’une façon triviale. Si f (x) = 1 + x + ω, alors nous
distinguons deux cas : 1) ou bien f (y) = 0, 2) ou f (y) = 1+ y + ω1.

Dans le premier cas le second membre de l’équation est zéro. Supposons pour le
moment, que le premier membre ne soit pas zéro : f [x+y ·f (x)] �= 0, donc 1+x+yf (x)+c

ω2 ∈ G, c’est-à-dire 1+x+ω0+y ·f (x)+ω2−ω0 ∈ G, ou f (x)+y ·f (x)+ω2−ω0 ∈ G
ou (comme f (x) �= 0) 1+ y+ ω2 − ω0

f (x)
∈ G. Mais f (x) ∈ G,

1

f (x)
∈ G, ω2−ω0 ∈ G,

donc

ω1 = ω2 − ω0

f (x)
∈ Ω

et comme 1 + y + ω1 ∈ G, donc f (y) �= 0 et on aboutit à une contradiction. Donc le
premier membre de l’équation est aussi égal à zéro.

Dans le second cas on a
f (x) = 1+ x + ω0 ∈ G,
f (y) = 1+ y + ω1 ∈ G,

d’où

x + y · f (x) = f (x)− 1− ω0 + [f (y)− 1− ω1] · f (x)
= f (x) · f (y)− [ω0 + ω1f (x)] − 1,

c’est-à-dire

1+ x + y · f (x) = f (x) · f (y)− [ω0 + ω1 · f (x)].
Mais f (x) ∈ G, doncω1f (x) ∈ Ω etω2 = ω0+ω1 ·f (x) ∈ Ω . Ensuite f (x) ·f (y) ∈ G.
Alors on a 1+ x + y · f (x)+ ω2 ∈ G, donc

f [x + y · f (x)] = 1+ x + y · f (x)+ ω2 = f (x) · f (y).
Nous avons ainsi démontré que la fonction f (x) est une solution de l’équation (1).

Observons enfin que le théorème 2 nous donne la structure générale de toutes les so-
lutions non triviales et non micropériodiques, mais le théorème 4 nous donne seulement
un certain ensemble des solutions non triviales et micropériodiques, n’épuisant pas néces-
sairement l’ensemble de toutes les solutions de ce type.

Le problème de la forme de toutes les solutions mesurables reste aussi ouvert.
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1.

Let

(1) F(D)f (x) = 0

be a (homogeneous) linear differential equation with constant coefficients, of order d.
Suppose that F(D) has real coefficients, and that the roots of F(λ) = 0 are all real though
not necessarily distinct. As is well known, any solution of (1) is of the form

(2) f (x) = P1(x)e
λ1x + . . .+ Pk(x)eλkx,

where λ1, . . . , λk are the distinct roots ofF(λ) = 0 andP1(x), . . . , Pk(x) are polynomials
of degrees at most m1 − 1, . . . , mk − 1, where m1, . . . , mk are the multiplicities of the
roots, so that m1 + . . .+mk = d .

Let

(3) f1(x), . . . , fn(x)

be n distinct (but not necessarily independent) solutions of (1). For each real number x,
apart from a finite number of exceptions, there will be just one of the functions (3) which
is greater than all the others. We can therefore dissect the real line into N intervals

(−∞, x1), (x1, x2), . . . , (xN−1,∞)
such that inside any one of the intervals (xj−1, xj ) a particular one of the functions (3) is
the greatest, and such that this function is not the same for two consecutive intervals. It is
almost obvious that N is finite, and a formal proof will be given below.

The problem of finding how large N can be, for given d and given n, was proposed
to one of us (in a slightly different form) by K. Malanowski. This problem can be made
to depend on a purely combinatorial problem, by the following considerations. With each
j = 1, 2, . . . , N there is associated the integer i = i(j) for which fi(x) is the greatest
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of the functions (3) in the interval (xj−1, xj ). (We write x0 = −∞ and xN = ∞ for
convenience.) This defines a sequence of N terms

(4) i(1), i(2), . . . , i(N),

each term being one of 1, 2, . . . , n. This sequence has no two consecutive terms equal,
which we may express by saying that it has no immediate repetition. The sequence has the
further property that it contains no subsequence of the form

(5) a, b, a, b, . . . with d + 1 terms and a �= b.
For suppose that j1 < j2 < . . . < jd+1 and that

i(j1) = a, i(j2) = b, i(j3) = a, . . . .

Then the function fa(x) − fb(x) is positive in (xj1−1, xj1), negative in (xj2−1, xj2), and
so on. Hence this function has a zero between xj1 and xj2−1, another zero between xj2 and
xj3−1, and so on, making at least d distinct zeros. But fa(x)− fb(x) is itself a function of
the type (2), and it is known(1) that any such function has at most d − 1 zeros.

We are therefore led to the following combinatorial problem: to find the greatest length
of a sequence with no immediate repetition, each term of which is one of 1, 2, . . . , n, and
which contains no subsequence of the type (5). We shall denote this greatest length (that
is, greatest number of terms) byNd(n). Any upper bound obtained forNd(n) will be valid
for the number N defined earlier in relation to the differential equation (1). We do not
know whether the two problems are fully equivalent, though this appears to be the case
for a few small values of d and n. The combinatorial problem is plainly equivalent to the
problem of the maximum number of intervals for n functions which are continuous but not
necessarily of the form (2), and which have the property that any two of them are equal
for at most d − 1 values of x.

An obvious upper bound for Nd(n) follows from the consideration that the pairs of
integers

i(j), i(j + 1), for j = 1, 2, . . . , N − 1,

can include any given pair i1, i2 at most d times. Since the number of pairs i1, i2 with

1 � i1 � n, 1 � i2 � n, i1 �= i2
is n(n− 1), it follows that

(6) Nd(n) � dn(n− 1)+ 1.

The problem of evaluatingNd(n) is trivial when d = 2, for then there is no subsequence
a, b, a, and therefore any integer can occur only once. The longest sequences are simply
the permutations of 1, 2, . . . , n, and we have

(7) N2(n) = n.
The case d = 3 is also simple. We prove:

(1) See, for example, [1], Section V, Problem 75.
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Theorem 1. We have

(8) N3(n) = 2n− 1,

and two examples of maximal sequences are

(9)

{
1, 2, 3, . . . , n− 1, n, n− 1, . . . , 3, 2, 1;
1, 2, 1, 3, . . . , 1, n− 1, 1, n, 1.

For d > 3 the problem becomes much more difficult and appears to change its character.
We shall concern ourselves mainly with the behaviour of Nd(n) for fixed d and large n.
As regards a lower bound for Nd(n), we prove:

Theorem 2. We have

Nd(n) � (d2 − 4d + 3)n− C(d) if d is odd and d > 3,(10)

Nd(n) � (d2 − 5d + 8)n− C(d) if d is even and d > 4,(11)

where C(d) depends only on d . Also N4(n) � 5n− C.

As regards upper bounds, we prove:

Theorem 3. We have

(12) N4(n) < 2n(1+ log n),

and, for d > 4,

(13) Nd(n) < An exp
(
B(log n)1/2

)
,

where A,B depend only on d and

(14) B = B(d) = 10(d log d)1/2.

2. Proof of Theorem 1

We give two proofs, based on different principles. Neither of them appears to be ca-
pable of extension to the case d > 3. In both proofs, S denotes a sequence of maximal
length satisfying the conditions of the problem, that is, having no immediate repetition and
containing no subsequence of the form a, b, a, b. We abbreviate N3(n) to N(n).

First proof. We can suppose without loss of generality that the first term of S is 1. We can
write S as

1, S1, 1, S2, . . . , 1, Sk, (1),

where each Sm is a sequence formed from the integers 2, 3, . . . , n, and where the final 1
may or may not occur. The sequences Sm are disjoint; for if an integer x occurred in two



1330 M. Other papers

of them, there would be a subsequence 1, x, 1, x in S. Thus if nm denotes the number of
distinct integers in Sm, we have

n1 + n2 + . . .+ nk � n− 1.

Since Sm is a segment of S, it satisfies the conditions of the problem, and therefore the
number of terms in Sm is at most N(nm). It follows that

N(n) � k + 1+N(n1)+ . . .+N(nk).
By induction, starting from N(1) = 1, we obtain

N(n) � k + 1+ (2n1 − 1)+ . . .+ (2nk − 1) � 2n− 1.

The fact that the particular sequences (9) have the desired property is obvious, and this
proves (8). 	


Second proof. We begin with an observation, made to us by Mrs. Turán, that there is some
one of the integers 1, 2, . . . , n which occurs only once in S. For if a is any integer which
occurs twice in S, so that

i(j1) = a, i(j2) = a, j1 < j2,

there must be some integer b which occurs between, say

i(j3) = b, j1 < j3 < j2.

This integer b cannot occur as i(j) for j < j1 or j > j2, for then we should have a
subsequence b, a, b, a or a, b, a, b. If b occurs only once we have the result, and if not we
can repeat the argument with b instead of a, and this process must terminate.

Now suppose, as we may without loss of generality, that n occurs only once in S. If we
delete the term n from S, we obtain a sequence whose terms are formed from 1, 2, . . . , n−1
and which has no subsequence of the form a, b, a, b. This sequence may, however, have
one immediate repetition, namely if the neighbours of n in S are equal:

. . . , x, n′, n, n′, y, . . . .

But this immediate repetition disappears if we delete also one of the two terms n′, since
x �= n′ and y �= n′. Hence by deleting at most two terms from S we can obtain an admissible
sequence whose terms are formed from 1, 2, . . . , n− 1. It follows that

N(n) � N(n− 1)+ 2,

and this again gives (8). 	
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3. Proof of Theorem 2

Suppose first that d is odd. Let A denote the sequence

1, 2, . . . , n,

and let D denote the sequence

n− 1, n− 2, . . . , 2.

Then the

(15) A,D,A,D, . . . ,A,D, 1

(which is symmetrical, in spite of its appearance) satisfies the conditions of the problem,
provided each A and D is taken (d − 1)/2 times. For if a < b, the successive pairs a, b in
a subsequence a, b, a, b, . . . must have their a’s in different A’s, assuming (as we may)
that we take the last occurrence of each a before the corresponding b. Consequently there
cannot be (d + 1)/2 such pairs. By symmetry the same holds if a > b.

The sequence (15) has length (d − 1)(n − 1) + 1. If d > 3 it can be expanded into a
longer sequence, which is still admissible, as follows. We replace each element in A, say
the first element 1, by

1, x, 1, x, . . . , 1, x with d − 3 terms.

Here x is an integer greater than n, and we use the same integer for all the elements of
the first A in (15). We do the same with each A and D in (15), but using a different new
integer for each of them, and finally we replace the last term 1 in (15) by

1, t, 1, t, . . . , 1, t to d − 3 terms,

where t is the same new integer as that used to expand the last D. We now have a sequence
with n+ (d − 1) distinct terms, and of length

(d − 3)
(
(d − 1)(n− 1)+ 1

)
.

We shall prove that this sequence satisfies the conditions of the problem, and it will follow
that

Nd(n+ d − 1) � (d − 1)(d − 3)(n− 1)+ (d − 3),

which gives (10).
We have to prove that the expanded sequence contains no subsequence a, b, a, b, . . .

with d+1 terms. No further proof is needed if a � n and b � n, since then the subsequence
is a subsequence of (15). The result is obviously true if a > n and b > n, that is, if a and b
both belong to the set x, y, . . . of additional integers, for then there is no subsequence of
the form x, y, x. Thus we can suppose that either a � n and b > n or a > n and b � n,
and it will be enough to treat the former case. We replace b by y for ease of comparison
with the construction.

In any subsequence

(16) a, y, a, y, . . . , a, y,
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all the occurrences of y must be in the expansion of the same A or D in (15), or possibly
in that of the final D and 1. Except for the first y in (16), the a’s which precede each y
are in that same A or D. The number of y’s is therefore at most 1

2 (d − 3)+ 1. Hence the
length of the subsequence (16) is at most d − 1, and this, when we allow for the possible
occurrence of another a after (16), means a total length of at most d. Hence the expanded
sequence has the desired property.

Suppose now that d is even. We start from the sequence

(17) A,D,A,D, . . . ,A,

whereAoccurs 1
2d times andDoccurs 1

2d−1 times.The longest subsequencea, b, a, b, . . .
in (17) has length d , or indeed only d − 1 if a > b.

We expand (17) by replacing each element a in the first A by

a, x, a, x, . . . , a, x to d − 2 terms,

where x is an integer greater than n. We apply the same treatment to the last A, using a
different integer greater than n. We also expand the intermediate A’s and D’s, but here we
replace each element a by

a, x, a, x, . . . , a, x to d − 4 terms,

again using a different integer x for each A and D. It can be proved, on the same lines as
before, that the expanded sequence contains no subsequence a, b, a, b, . . . of d+1 terms.

The number of distinct terms in the expanded sequence is n+ d − 1, and the length is

> 2(d − 2)n+ (d − 4)(d − 3)(n− 2) = (d2 − 5d + 8)n− 2(d − 3)(d − 4).

Hence

Nd(n+ d − 1) � (d2 − 5d + 8)n− 2(d − 3)(d − 4),

and this gives (11). If d = 4 we do not expand the intermediate A’s and D’s, and get
N4(n) � 5n− C. 	


4.

Proof of (12). Let S be a sequence of maximal length for d = 4, this length being N4(n).
Let k(a) denote the number of times that a occurs in S, for a = 1, 2, . . . , n. Then

(18)
n∑
a=1

k(a) = N4(n).

If we delete a wherever it occurs in S, we obtain a sequence formed from the n − 1
integers other than a, and this sequence has no subsequence a, b, a, b, . . . of length greater
than 4. But it may have immediate repetitions. To remove these, we must delete not only
each occurrence of a but also one of the neighbours of a whenever these two neighbours
are equal, as in the second proof of Theorem 1.
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We now prove, for any a, that there are at most two occurrences of a, namely the first
and the last, which can have equal neighbours. This is immediate, for in the contrary case
we should have

. . . , a, . . . , x, a, x, . . . , a, . . . ,

containing a subsequence a, x, a, x, a of 5 terms.
It follows that by deleting k(a) + 2 elements from S we can obtain an admissible

sequence formed from n− 1 distinct integers. Hence

N4(n) � N4(n− 1)+ k(a)+ 2.

Summing for a = 1, . . . , n and using (18), we obtain

nN4(n) � nN4(n− 1)+N4(n)+ 2n.

This can be written
N4(n)

n
− N4(n− 1)

n− 1
� 2

n− 1
.

Writing down a series of such equations and adding them, and noting that N4(2) = 4, we
obtain

N4(n)

n
− 2 � 2

(1

2
+ 1

3
+ . . .+ 1

n− 1

)
< 2

∫ n−1

1
t−1 dt = 2 log(n− 1).

This proves (12). 	


5.

We now prove (13), and begin with a simple lemma. Throughout this section S will
denote an admissible sequence for d and n, that is, a sequence formed from the integers
1, 2, . . . , n, with no immediate repetition, which contains no subsequence a, b, a, b, . . . of
d+1 terms. These conditions imposed on S are unaffected by a permutation of 1, 2, . . . , n,
and by choosing a suitable permutation, as in the lemma, we can simplify the later expo-
sition.

Lemma. After a suitable permutation of 1, 2, . . . , n, the sequence S has the following
properties:

(i) before any occurrence of any integer m in S there occur all integers less than m;
(ii) S contains no subsequence

(19) m, a, b, a, b, . . . , to d terms altogether,

with

(20) m � b > a.

Proof. We take the first term of S to be 1, the second term to be 2, the next term other than 1
and 2 to be 3, and so on, numbering the terms in the order of their first appearance in S.
Plainly (i) holds.
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Suppose S has a subsequence of the form (19), wherem, a, b satisfy (20). Then before
the first term,m, in (19), or possibly coinciding with it, there occurs a term b, since b � m.
Before this term b there occurs a term a, since a < b. But then there is a subsequence
a, b, a, b, . . . to d + 1 terms, contrary to hypothesis. This proves the lemma. 	


We remark that (ii) implies the original hypothesis that S contains no subsequence
a, b, a, b, . . . to d+1 terms, since such a sequence always contains a sequence of d terms
with the first term greater than the second, and this is excluded by (19) with m = b.

Proof of (13). For any integer m with 1 < m < n we pick out the first occurrence of m
in S and dissect S into

(21) S′,m, S′′,

so that every term in S′ is one of 1, 2, . . . , m− 1.
We write S′′ as

(22) S1
(1), a1, S1

(2), a1, . . . , S1
(r1), a1, S2

(1), a2, . . . , ak, Sk
(rk), ak,T,

where a1, . . . , ak are all the terms not exceeding m that occur in S′′, and all the terms of
the sequences Si

(j) and T are integers greater thanm. Note that the integers a1, . . . , ak are
not necessarily distinct, though ai �= ai+1 as a consequence of our choice of notation.

The sequence S′ consists of terms each of which is one of 1, 2, . . . , m − 1, and is an
admissible sequence. Hence

(23) L(S′) � Nd(m− 1),

where L(S′) denotes the length of S′.
The sequence a1, a2, . . . , ak has each term less than or equal to m and has no imme-

diate repetition. It also contains no subsequence a, b, a, b, . . . of d terms, for this would
necessarily contain a similar subsequence of d − 1 terms with the first term less than the
second, and this, preceded by m, would contradict (ii) of the lemma. Hence

(24) k � Nd−1(m).

The sequence

S1
(1), S1

(2), . . . , S1
(r1), S2

(1), . . . , S2
(r2), . . . , Sk

(1), . . . , Sk
(rk),T

has all its terms greater thanm, and is an admissible sequence except for possible immediate
repetitions. These occur only when the last term of one of the above sequences is the same
as the first term of the next. They can be removed by deleting at most

∑
ri terms at the

ends of the sequences. Hence

(25)
k∑
i=1

ri∑
j=1

L(Si
(j))+ L(T) � Nd(n−m)+

k∑
i=1

ri .

It remains to estimate
∑
ri . For this we consider only the sequences Si

(j) with j > 1.
None of them can be empty, since otherwise there would be an immediate repetition of
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some ai in (22). We select from each of these sequences a term xi(j). Among the terms

(26) xi
(2), xi

(3), . . . , xi
(ri ),

for given i, the same integer cannot occur more than 1
2d times, since otherwise there would

be a subsequence

x, ai, x, ai, . . . , x, ai

of more than d terms. It follows that the number of distinct integers among (26) is at least
2(ri − 1)/d .

Let Xi be a subsequence of (26) containing si distinct terms, where si � 2(ri − 1)/d.
The sequence

(27) X1,X2, . . . ,Xk

is admissible for d , except for possible immediate repetitions. Since the terms of each Xi
are distinct among themselves, all immediate repetitions can be removed by deleting at
most k − 1 terms. Since all the terms in (27) are greater than m, and the total number of
terms is

∑
si , we have

k∑
i=1

si � Nd(n−m)+ k − 1.

It follows that

2d−1
k∑
i=1

(ri − 1) � Nd(n−m)+ k − 1,

whence

(28)
k∑
i=1

ri <
1
2dNd(n−m)+ ( 1

2d + 1)k.

By (23), (24), (25), (28) we have

L(S) � L(S′)+ 1+
k∑
i=1

ri +
k∑
i=1

ri∑
j=1

L(Si
(j))+ L(T)

� Nd(m− 1)+ 1+
k∑
i=1

ri +Nd(n−m)+
k∑
i=1

ri

� Nd(m− 1)+ (d + 1)Nd(n−m)+ (d + 2)k

� Nd(m− 1)+ (d + 1)Nd(n−m)+ (d + 2)Nd−1(m).

Taking S to be a maximal sequence, we obtain the inductive inequality

(29) Nd(n) � Nd(m)+ (d + 1)Nd(n−m)+ (d + 2)Nd−1(m).
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Suppose that d � 5 and that

(30) Nd−1(m) < A1m exp(B1
√

logm)

for all m, where

(31) B1 = 10
(
(d − 1) log(d − 1)

)1/2
and A1 depends only on d . This is a legitimate assumption when d = 4, by (12).

Choose A sufficiently large to ensure that the inequality

(32) Nd(m) < Am exp(B
√

logm),

where

(33) B = 10(d log d)1/2,

holds for all m � n0, where n0 = n0(d) will be chosen later (in a manner which does not
depend on the choice of A). Suppose also that

(34) A > 2(d + 2)A1.

Now suppose that n > n0 and that (32) holds for all m < n; we have to prove that it
holds for m = n. Define C = B − B1. Let h be the integer defined by

(35) h− 1 < n exp
(−C√log n

)
� h.

We suppose n0 chosen sufficiently large to ensure that 1 < h < n. By (29),

Nd(n) � Nd(n− h)+ (d + 1)Nd(h)+ (d + 2)Nd−1(n− h)
< A(n− h) exp

(
B
√

log n
)+ (d + 1)Ah exp

(
B
√

logh
)

+ (d + 2)A1(n− h) exp
(
B1
√

log n
)
.

This will be less than An exp
(
B
√

log n
)
, thus giving the desired conclusion, provided that

Ah exp
(
B
√

log n
)
> (d + 1)Ah exp

(
B
√

logh
)+ (d + 2)A1n exp

(
B1
√

log n
)
.

Since n/h � exp
(
(B − B1)

√
log n

)
by (35), it will suffice if

A > (d + 1)A exp
(−B√log n+ B√logh

)+ (d + 2)A1.

By (34), this will hold if

1 > 2(d + 1) exp
(−B√log n+ B√logh

)
.

Now, by (35),√
log n−√logh >

√
log n−

√
log 2n− C√log n > 1

3C,

provided n0 is sufficiently large. Hence it suffices if

BC > 3 log 2(d + 1).
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By (31), (33),

C = B − B1 = 10
(
(d log d)1/2 − ((d − 1) log(d − 1)

)1/2)
> 5d−1/2(log d)1/2.

Hence

BC > 50 log d,

and this amply suffices. This completes the proof of (13). 	


Note added in proof. Since the paper was written we have improved on the results of
Theorems 2 and 3.
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Letf (p) be a harmonic function defined on the plane and positive in the discD(o,R) =
{p : |p| � R}, where |p| is the Euclidean distance from the origin o. The classical
Harnack’s inequality (see [2], p. 35, Th. 1.18) asserts that

− 2|p|
R − |p| f (o) � f (o)− f (p) � 2|p|

R + |p| f (o).
This inequality has been extended to discrete harmonic functions by S. Verblunsky [8] and
R. Duffin [1]. They have proved the existence of an absolute constant A (� 50) such that
every function f (p) defined on the integral lattice Z2 satisfying the equation

Δf (p) = f (p + e1)+ f (p − e1)+ f (p + e2)+ f (p − e2)− 4f (p) = 0,

e1 = (1, 0), e2 = (0, 1)
and positive in the disc D(o,R) satisfies the inequalities∣∣f (ej )− f (o)∣∣ � A

R
f (o) (j = 1, 2).

An analogue of Harnack’s inequality for positive superharmonic functions is easily deduced
from the well known convexity properties of subharmonic functions. Indeed, let f be a
superharmonic function positive in a disc D(o,R) and let us set for r � R

B(r) = sup
|p|=r

(
f (o)− f (p)).

f (o) − f (p) is a subharmonic function, hence by a well known theorem (see [2], p. 66,
Th. 2.13) B(r) is a convex function of log r in the interval 1 � r � R, i.e.

B(r) � logR − log r

logR
B(1)+ log r

logR
B(R).

But log r � 0 and B(R) � f (o). Thus for |p| � 1

f (o)− f (p) � B(1)+ log |p|
logR

f (o).

The main aim of the present paper is to prove an analogue of Harnack’s inequality
for discrete superharmonic functions, i.e. functions f (p) defined on Z2 and satisfying the
inequality Δf (p) � 0. We formulate it as
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Theorem 1. Let f (p) be a function on Z2 superharmonic and non-negative in the disc
D(o,R). Then

(1)
∣∣f (p)− f (o)∣∣ < π + o(1)

2 logR
f (o), if |p| = 1, R→∞

and

(2) − logp +O(1)
log(R − |p|)− logp

f (o) < f (o)− f (p) < log |p| +O(1)
logR

f (o)

if |p| → ∞ and R � |p| or R > |p| for the left hand side and the right hand side of (2)
respectively.

It will be clear from Lemma 3 below that the inequalities (1) and (2) are best possible
or nearly best possible. It follows from the theorem that all functions superharmonic and
positive on Z2 are constants. This is known and apparently proved for the first time in a
more general context by Kemeny and Snell [3].

Instead of the lattice Z2 one can consider other lattices or more generally networks.
From the results on electric currents in networks due to Nash-Williams [6] one obtains the
following theorem.

Theorem 2. LetL be a regular lattice on the plane (triangular, square or hexagonal)with
o ∈ L and the minimal distance 1. If f (p) defined on L satisfies∑

q∈L,|q−p|=1

(
f (q)− f (p)) � 0 for all p ∈ L

and f (p) � 0 for |p| � R then for |p| = 1∣∣f (p)− f (o)∣∣ � 2+ o(1)
logR

.

In particular if f (p) � 0 for all p ∈ L, f (p) is constant.

Theorem 3 related directly to the work of Nash-Williams requires more notation and
therefore, its formulation is postponed.

The present paper has originated in a problem proposed at the XXVIII Polish Mathe-
matical Olympiad, which requires a proof of the last statement of Theorem 2 with L re-
placed by Z. I thank Professor Z. Ciesielski, Dr K. Malanowski, Professor W. M. Schmidt,
Dr M. Skwarczyński and Professor E. Wirsing for their valuable suggestions.

LetG be a locally finite graph, i.e. a set of points and lines joining some of these points
such that every point is joined to only finitely many others (and none is joined to itself). Let
c be a function with positive real values defined on the lines ofG. The pair [G, c] is called
an electric network. For a set V of points of G let V = V ∪ {q ∈ G : ∃p ∈ V pq ∈ G}.
V is called connected inG if for any two points p, q ∈ V there exists a sequence of points
pi ∈ V such that p0 = p, pn = q and pipi+1 ∈ G. We shall call a function f (p) defined
on V c-superharmonic on V if for all p ∈ V

Δcf (p) =
∑
pq∈G

cpq
(
f (q)− f (p)) � 0.
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It is convenient to denote the set of points ofG by V (G), the set of lines by E(G) and
put cpq = 0 if pq /∈ G; αp = ∑

q∈G
cpq .

Lemma 1. If V is a finite set of points connected inG and a function h(p) is c-superhar-
monic on V then either V �= V and

min
p∈V h(p) > min

p∈V \V
h(p)

or h(p) is constant on V .
Moreover, if h(p) � 0 for all p ∈ V then for any two points p ∈ V , q ∈ V

h(q) � a(p, q)h(p),
where a(p, q) is independent of h.

Proof. Let for any two points p, q, where p ∈ V , q ∈ V , v(p, q) be the minimal length n
of a sequence of points p0, p1, . . . , pn−1 ∈ V such that

(3) p0 = p, pn = q, pipi+1 ∈ G.
Let further

(4) a(p, q) = min
αp0αp1 · · ·αpn−1

cp0p1cp1p2 · · · cpn−1pn

,

where an empty product is 1 and the minimum is taken over all sequences satisfying (3).
Finally, let m = min

p∈V
h(p). We shall show by induction on v(p, q) the following two

assertions, which clearly imply the lemma.

A. If h(p) = m, then h(q) = m.
B. If h(V ) ⊂ [0,∞], then h(q) � a(p, q)h(p).

If v(p, q) = 0 both A and B are obvious. Assume that they are true if v(p, q) < n
and let v(p, q) = n. Take any sequence pi satisfying (3). From the inductive assumption
applied with q = pn−1 we get:

if h(p) = m then h(pn−1) = m;
if h(V ) ⊂ [0,∞] then h(pn−1) � a(p, pn−1)h(p).(5)

Now, from the inequalities c > 0 on E(G) andc

Δch(pn−1) =
∑
r∈V
cpn−1r

(
h(r)− h(pn−1)

)
� 0

we get

if h(p) = m then h(q) = m;
if h(V ) ⊂ [0,∞] then h(q) � αpn−1

cpn−1q

h(pn−1).(6)

The inductive proof for A is complete, B follows by comparison of (4), (5) and (6). 	
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Lemma 2. Let V �= V be a finite set of points connected in G and o ∈ V . A function
f (p) c-superharmonic on V and non-negative for all p ∈ V satisfies for all these p the
inequality

(7) f (p) � g(p, V )

g(o, V )
f (o),

where g(p, V ) is the unique function defined on V such that

(8) g(p, V ) = 0 if p ∈ V \ V

(9) Δcg(p, V ) =
{
−1 if p = o
0 if p ∈ V, p �= o.c

Proof. A function h defined on the set V can be regarded as a point in N -dimensional
Euclidean space, where N is the cardinality of V . The set S of all functions h satisfying
h(o) = 1, h(p) � 0 for p ∈ V , Δch(p) � 0 for p ∈ V is closed. It is also bounded since
by Lemma 1 we have

h(p) � a(o, p)h(o).

Therefore S is compact and for any p0 ∈ V the functional h(p0) assumes in S its
minimum m. The set S0 = {h ∈ S : h(p0) = m} is again compact hence the functional∑

p∈V
h(p)

assumes in S0 its minimum. Let h0 ∈ S0 be a function for which the minimum is assumed.
We assert that it satisfies the conditions

h0(p) = 0 if p ∈ V \ V(10)

Δch0(o) < 0, Δch0(p) = 0 for p ∈ V, p �= o.(11)

Indeed, if h0(p1) �= 0 for a p1 ∈ V \ V , setting

h1(p) =
{
h0(p) for p �= p1

0 for p = p1

we find that h1 ∈ S, h1(p0) � h0(p0) and

(12)
∑
p∈V

h1(p) <
∑
p∈V

h0(p),

contrary to the definition of h0.
Secondly if Δch0(p1) < 0 for p1 ∈ V , p1 �= o, we set

h1(p) =
⎧⎨⎩h0(p) for p �= p1

h0(p1)+ α−1
p1
Δch0(p1) = α−1

p1

∑
q∈G

cpqh0(q) for p = p1.

Again h1 ∈ S, h1(p0) � h0(p0) and (12) holds.



1342 M. Other papers

Finally if Δch0(o) = 0 we infer from Lemma 1 applied to −h0(p) thatc

max
p∈V h0(p) � max

p∈V \V
h0(p) = 0

contrary to h0(o) = 1.

It follows from (10) and (11) that the function

(13) g(p, V ) = h0(p)

|Δch0(o)|
satisfies the conditions (8) and (9).

If g′(p) is any function satisfying the same conditions we have

g′(p)− g(p, V ) = 0 if p ∈ V \ V,
Δc
(
g′(p)− g(p, V )) = 0 if p ∈ V,

hence applying Lemma 1 to g′(p)− g(p, V ) and to g(p, V )− g′(p) we get

max
p∈V

∣∣g′(p)− g(p, V )∣∣ � 0, g′(p) = g(p, V ).

Thus g(p, V ) is unique and taking p = o in (11) we get independently of p0

(14)
∣∣Δch0(o)

∣∣ = h0(o)

g(o, V )
= 1

g(o, V )
.

If f (o) = 0 the inequality (7) is trivially satisfied. If, on the other hand, f (o) > 0 then
f (p)/f (o) ∈ S and for any p ∈ V we have by (13) and (14)

f (p)

f (o)
� h0(p) = g(p, V )

g(o, V )
. 	


Remark. Lemma 2 and at least a part of Lemma 1 can be deduced from the Maximum
Principle and the Principle of Domination of the transient potential theory for Markov
chains (see [4], Corollary 8-44 and Theorem 8-45). The proof obtained in this way would
be about twice shorter than one given above but far from self-contained. The existence and
uniqueness of g(p, V ) has been proved first by Nash-Williams (see [6], Lemma 4 and 9).

Lemma 3. Let G be the two-dimensional Euclidean lattice graph, c = 1 on E(G) and
VR the set of all points ofG contained in the discD(o,R− 1). Then for any p ∈ VR \ {o}

(15) g(p, VR) = 1

2π

(
logR − log |p| +O

( 1

R

)
+O

( 1

|p|2
))
.

Moreover

(16) g(o, VR)− g(p, VR) = 1
4 if |p| = 1.c

Proof. McCrea and Whipple [5] and independently Stöhr [7] found a function φ(p) on Z2
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with the following properties: φ(o) = 0,

Δφ(p) =
{

1 for p = o
0 for p �= o,

φ(p) = 1

2π
log |p| + 3

4π
log 2+ 1

2π
C +O

( 1

|p|2
)
,

where C is Euler’s constant (see [7], p. 342, Theorem 1). Let us consider the function

(17) h(p) = g(p, VR)+ φ(p)− 1

2π
logR − 3

4π
log 2− 1

2π
C.

For p ∈ VR we have Δh(p) = 0. If p ∈ V R \ VR we find R − 1 < |p| � R and

(18) |h(p)| =
∣∣∣φ(p)− 1

2π
logR − 3

4π
log 2− 1

2π
C

∣∣∣ = O( 1

R

)
.

Hence by Lemma 1 applied to h(p) and to−h(p)we have h(p) = O
( 1

R

)
for all p ∈ V R .

(15) follows now from (17) and (18).

In order to prove (16) let us observe that the graph G and the set VR are symmetric
with respect to the coordinate axes, hence g(p, VR)must exhibit the same symmetry. Thus
g(p, VR) has the same value for p = ±e1,±e2 and (16) follows fromΔg(o, VR) = −1.	


Proof of Theorem 1. LetG be the graph described in Lemma 3, c = 1 onE(G). A function
f (p) superharmonic and non-negative in D(o,R) is c-superharmonic in VR , and non-
negative in V R . If |p| = 1 we get from Lemmata 2 and 3

f (o)− f (p) � g(o, VR)− g(p, VR)
g(o, VR)

= π + o(1)
2 logR

f (o).

If |p| → ∞ and R � |p| we have similarly

f (o)− f (p) � log |p| +O(1)
logR +O(1) f (o) =

log |p| +O(1)
logR

f (o).

In order to estimate f (o)− f (p) from below let us shift the roles of points o and p. Since
D(p,R − |p|) ⊂ D(o,R) we get

f (p)− f (o) � π + o(1)
2 log(R − 1)

f (p) if |p| = 1,

f (p)− f (o) � log |p| +O(1)
log(R − |p|) f (p) if |p| → ∞ and R − |p| � |p|.

c

(1) and (2) follow now by simple algebraic transformations. 	


In order to prove Theorem 2 we need a lemma due to Nash-Williams [6]. A finite
sequence Y0, Y1, . . . , Yn (n � 1) of disjoint subsets of V (G) is called a constriction of G
if Y0 ∪ Y1 ∪ . . . ∪ Yn = V (G) and p ∈ Yj , q ∈ Yk , pq ∈ G implies |j − k| � 1. Using
this notion we can state
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Lemma 4. Let V be a finite set of points connected in G, o ∈ V . For any constriction
C = 〈Y0, Y1, . . . , Yn〉 of G such that o ∈ Y0, V (G) \ V ⊂ Yn we have

g(o, V ) �
n∑
k=1

nk(C)
−1,

where

nk(C) =
∑
p∈Yk−1
q∈Yk

cpq .

Proof. Let S = [G, c, o, V (G)\V ]. In the language of [6]φ = g(p, V )
g(o, V )

is an S-admissible

G-potential and fcφ(o) = g(o, V )−1. The lemma follows now from Lemma 5 of [6]. 	


Proof of Theorem 2. Let G be a graph consisting of all points of L and all lines between
points of distance 1, let c = 1 on E(G). Take for VR the set of all points of G contained
in D(o,R − 1). A function satisfying the conditions of the theorem is c-superharmonic
on VR and non-negative on V R . Since G and VR are symmetric with respect to the α0
lines joining o to the nearest points (α0 = 3, 4 or 6), the function g(p, V ) must exhibit
the same symmetry. Thus g(p, VR) takes the same value for all p with |p| = 1 and
Δcg(o, VR) = −1 implies for these p

g(o, VR)− g(p, VR) = α−1
0 .

Hence if |p| = 1 we obtain from Lemma 2

(19) f (o)− f (p) � α−1
0 g(o, VR)f (o).

Consider now the following constriction C of G: Yk = {p ∈ G : d(o, p) = k} (k < [R]),c

Y[R] = {p ∈ G : d(o, p) � [R]}, where d(o, p) is the minimal number n such that for
suitable pi ∈ G: p0 = o, pn = p, pipi+1 ∈ G.

An easy geometric argument shows that

nk(C) =

⎧⎪⎨⎪⎩
3 if α0 = 3, k = 1,

6k − 6 if α0 = 3, k > 1,

α0(2k − 1) if α0 = 4 or 6.

Thus in any case nk(C) � α0(2k − 1) and

(20)
[R]∑
k=1

nk(C)
−1 � α−1

0

∫ [R]+1

1

dt

2t − 1
= log(2[R] + 1)

2α0
.

It follows from (19), (20) and Lemma 4 that

(21) f (o)− f (p) � 2

log(2[R] + 1)
f (o).

Changing the roles of o and p and observing that D(p,R − 1) ⊂ D(o,R) we obtain

(22) f (p)− f (o) � 2

log(2[R] − 1)
f (p).
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The first assertion of Theorem 2 follows from (21), (22) and Lemma 4. Passing with R to
infinity we get f (p) = f (o) whenever d(o, p) = |p| = 1. By induction on d(o, p) we
obtain f (p) = f (o) for all p. 	


Our last theorem is a counterpart of Lemma 4.

Theorem 3. Let V be a finite set of points connected in G, o ∈ V . For any constriction
C = 〈Y0, Y1, . . . , Yn〉 of G such that Y0 = {o}, Yn = V (G) \ V we have

(23) g(o, V ) �
n∑
k=1

m0(C)
−1m1(C)

−1 · · ·mk−1(C)
−1,

where

m0(C) = α0, mk(C) = min
p∈Yk

∑
q∈Yk+1

cpq∑
q∈Yk−1

cpq
(k � 1),

the minimum is taken over fractions with non-zero denominator and if mk(C) = 0, we
take m−1

k (C) = ∞.

Proof. If any of the numbers mk(C) (k < n) is zero the bound is trivial.
Therefore, assume that mk = mk(C) > 0 for k < n and set

�r = 1−
(

1+
n−1∑
s=r

s∏
k=r

1

mk

)−1

(1 � r � n).

We have 1 > �r > 0 (r < n), �n = 0, moreover it is easily verified that for r < n

(24) mr(1− �r+1) = �−1
r − 1.

Let us now define for p ∈ Yk

f (p) =
k∏
r=1

�r .

We have f (o) = 1, Δcf (o) = α0(�1 − 1) < 0 and for p ∈ Yk (n > k > 0)

(25)
Δcf (p)

f (p)
= ap(�−1

k − 1)+ bp(�k+1 − 1),

where

ap =
∑
q∈Yk−1

cpq, bp =
∑
q∈Yk+1

cpq.

It follows from (24), (25) and the definition of mk that for k < n

Δcf (p)

f (p)
= (1− �k+1)(apmk − bp) � 0.
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Thus f (p) is c-superharmonic on V and since it is also non-negative we have by Lemma 2

f (o)− f (p) � g(o, V )− g(p, V )
g(o, V )

.

Multiplying by cop and summing over all p adjacent to o we get

−Δcf (o) � −Δcg(o, V )g(o, V )−1 = g(o, V )−1,

hence

g(o, V ) � −(Δcf (o))−1 = m−1
0 (1− �1)

−1

= m−1
0

(
1+

n−1∑
s=1

s∏
k=1

m−1
k

)
=
n−1∑
s=0

s∏
k=0

m−1
k . 	


Furthermore one can show that the equality sign holds in (23) provided g(p, V ) is
constant on Yk and deduce from it a formula for g(o, V ) analogous to Theorem 1 of [6].
We shall however not pursue the matter.
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An inequality for determinants with real entries

In memory of Bohuslav Diviš

The aim of this note is to prove the following

Theorem. For every matrix A = (aij )i,j�n with real entries we have the inequality

(1) |detA| �
n∏
i=1

max

( n∑
j=1
aij>0

aij , −
n∑
j=1
aij<0

aij

)
.

Proof. First we consider matrices A satisfying the condition

(2) each row of A contains at most one positive and at most one negative element.

Inequality (1) takes then the form

(3) |detA| �
n∏
i=1

max
j
|aij |.

We prove the latter inequality by induction with respect to n. For n = 1 it is obvious.
Assume that it is satisfied by all square matrices A satisfying (2) of degree less than n. If
for some i0 and j0 we have ai0j = 0 for all j �= j0, then

detA = ±ai0j0 det(aij ) i �=i0
j �=j0

,

and, by the inductive assumption,∣∣det(aij ) i �=i0
j �=j0

∣∣ � ∏
i �=i0

max
j �=j0

|aij |

which implies (3). Therefore, suppose that for every i � n and for some ki < li � n we
have

aiki aili < 0, aij = 0 for j �= ki, li .
Without loss of generality we may assume that k1 = 1, l1 = 2, and

(4) |a11| � |a12|.



1348 M. Other papers

We have

(5) detA =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 a12 a13 . . . a1n

0 a22 − a21

a11
a12 a23 . . . a2n

0 a32 − a31

a11
a12 a33 . . . a3n

...
...

...
. . .

...

0 an2 − an1

a11
a12 an3 . . . ann

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= a11 detB,

where

B =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

a22 − a21

a11
a12 a23 . . . a2n

a32 − a31

a11
a12 a33 . . . a3n

...
...

. . .
...

an2 − an1

a11
a12 an3 . . . ann

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The matrix B satisfies condition (2). Indeed, if i � 2 and ki > 1, then

(6) ai2 − ai1
a11
a12 = ai2

and the (i − 1)-st row of B contains exactly two non-zero elements, namely the numbers
of opposite signs: aiki and aili . If ki = 1 and li > 2, then the (i − 1)-st row of B contains
also exactly two non-zero elements of opposite signs, namely ai2 − (ai1/a11)a12 and aili .
Besides, by (4),

(7)
∣∣∣ai2 − ai1

a11
a12

∣∣∣ = ∣∣∣ ai1
a11
a12

∣∣∣ � |ai1|.
Finally, if ki = 1 and li = 2, then the (i − 1)-st row of B contains only one non-zero

element, namely ai2 − (ai1/a11)a12. Since

ai2 − ai1
a11
a12 > 0,

we have

(8)
∣∣∣ai2 − ai1

a11
a12

∣∣∣ < max
(
|ai2|,

∣∣∣ ai1
a11
a12

∣∣∣) � max
(|ai2|, |ai1|).

By the inductive assumption, (6), (7), and (8), we have

(9) |detB| �
n∏
i=2

max
j
|aij |,

and (3) follows from (5) and (9). Thus (1) is true for all matrices A satisfying (2). In the
general case we proceed by induction with respect to the number of non-zero elements
of A.
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If this number is 0, then detA = 0 and (1) holds. Assume that (1) is true for all square
matrices with less than N non-zero elements and consider a square matrix A with exactly
N non-zero elements. If A satisfies (2), then (1) holds. If (2) is not fulfilled, then for a
certain i0 there exist j1 and j2 such that

j1 �= j2, ai0j1ai0j2 > 0.

Assuming, without loss of generality, that i0 = 1, j1 = 1, and j2 = 2, we have

detA = a11

a11 + a12

∣∣∣∣∣∣∣∣∣
a11 + a12 0 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...

an1 an2 . . . ann

∣∣∣∣∣∣∣∣∣
+ a12

a11 + a12

∣∣∣∣∣∣∣∣∣
0 a11 + a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...

an1 an2 . . . ann

∣∣∣∣∣∣∣∣∣ .
The inductive assumption applies to the determinants on the right hand side, since the

relevant matrices contain only N − 1 non-zero elements. Hence

|detA| �
(∣∣∣ a11

a11 + a12

∣∣∣+ ∣∣∣ a12

a11 + a12

∣∣∣) n∏
i=1

max

( n∑
j=1
aij>0

aij , −
n∑
j=1
aij<0

aij

)

=
n∏
i=1

max

( n∑
j=1
aij>0

aij , −
n∑
j=1
aij<0

aij

)

and the proof is complete. 	


Inequality (9) gives, in general, weaker bounds than Hadamard’s inequality does. There
are however cases in which the situation is reverse. Such cases are considered in [1] (proof
of Theorem 2) and in [2] (Note at the end of the paper).
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1. Introduction

Let P(n) be the set of polynomials P(X) = Q(X)2 whereQ is a non-zero polynomial
of degree < n with non-negative real coefficients. We are interested in

A(n) = n−1 sup
P∈P(n)

|P |1/|P |∞,

where |P |1 is the sum, and |P |∞ the maximum of the coefficients of P . Let F be the set
of functions f = g ∗ g where ∗ denotes convolution and g runs through non-negative, not
identically zero, integrable functions with support in [0, 1]. Functions in F have support
in [0, 2]. We set

B = sup
f∈F

|f |1/|f |∞

where |f |1 is the L1-norm and |f |∞ the sup norm of f .
It is fairly obvious that

1 � A(n) � 2− 1/n.

Indeed, the left inequality follows on taking

P = Q2 with Q(X) = 1+X + . . .+Xn−1,

the right inequality is obtained by noting that P ∈ P(n) has at most 2n − 1 non-zero
coefficients, so that |P |1/|P |∞ � 2n− 1. In a similar way one sees that

1 � B � 2.

Theorem 1. For natural n, l,

(i) A(n) � A(nl),
(ii) A(n) � B,
(iii) A(n) > B(1− 6n−1/3).
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It follows that

B = lim
n→∞A(n) = sup

n
A(n).

The determination of B appears to be difficult.

Theorem 2. 4/π � B < 1.7373.

A slightly better upper bound will in fact be proved. We should mention that Ben Green
[1] showed in effect that

(|f |1/|f |2)2 < 7/4

for f ∈ F, where |f |2 denotes the L2-norm. In fact he has the slightly better bound
1.74998. . . Since |f |22 � |f |1|f |∞, this yields B < 1.74998 . . . , which is only slightly
weaker than the upper bound in Theorem 2. However, Green’s result is valid without the
assumption g � 0.

On the other hand, Prof. Stanisław Kwapień (private communication) proved that

A(n) � B
(
1− 3(B/4)1/3n−1/3).

2. Assertions (i), (ii) of Theorem 1

When R is a polynomial or power series a0 + a1X + . . . , set |R|∞ for the maximum
modulus of its coefficients. For such R, and for a polynomial S,

(2.1) |RS|∞ � |R|∞|S|1.
When P ∈ P(n), say P = Q2, set

Q̃ = (1+X + . . .+Xl−1)Q(Xl) and P̃ = Q̃2.

Then deg Q̃ � l − 1 + l(n − 1) = ln − 1, so that P̃ ∈ P(ln). Further |Q̃|1 = l|Q|1,
yielding

(2.2) |P̃ |1 = |Q̃|21 = l2|Q|21 = l2|P |1.
For polynomials or series R = a0 + a1X + . . . , S = b0 + b1X + . . . with non-negative
coefficients, write R $ S if ai � bi (i = 0, 1, . . . ). Then

Q(Xl)2 $ |Q2|∞(1+Xl +X2l + . . . ) = |P |∞(1+Xl +X2l + . . . ).
Therefore

P̃ = (1+X + . . .+Xl−1)2Q(Xl)2

$ |P |∞(1+Xl +X2l + . . . )(1+X + . . .+Xl−1)2

= |P |∞(1+X +X2 + . . . )(1+X + . . .+Xl−1).

Now (2.1) gives |P̃ |∞ � |P |∞l. Together with (2.2) this yields n−1|P |1/|P |∞
� (ln)−1|P̃ |1/|P̃ |∞ � A(nl). Assertion (i) follows. 	
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We now turn to (ii). Let P ∈ P(n) be given, say P = Q2 withQ = a0 + a1X+ . . .+
an−1X

n−1. Let g be the function with support in [0, 1) having

g(x) = ai for i/n � x < (i + 1)/n (i = 0, 1, . . . , n− 1),

i.e., for %nx& = i. Then |g|1 = n−1|Q|1, so that f = g ∗ g has

(2.3) |f |1 = n−2|Q2|1 = n−2|P |1.
Let x be given. The interval I = [0, 1) is the disjoint union of the intervals (possibly

empty) Ii,j (x) (i = 0, 1, . . . , n− 1; j ∈ Z) consisting of numbers y with

%ny& = i, %n(x − y)& = j − i.
When y ∈ Ii,j (x) and 0 � i′ < n, then y + (i′ − i)/n ∈ Ii′,j (x). Therefore Ii,j (x) has
length independent of i; denote this length by Lj (x). Clearly Lj (x) = 0 unless j = %nx&
or %nx − 1&. We have

(2.4) 1 =
n−1∑
i=0

∑
j

Lj (x) = n
∑
j

Lj (x).

For y ∈ Ii,j (x) with 0 � i < n,

g(y)g(x − y) =
{
aiaj−i when j − n < i � j,
0 otherwise.

Therefore

(2.5)
∫
Ii,j (x)

g(y)g(x − y) dy =
{
aiaj−i when j − n < i � j,
0 otherwise.

Now

j∑
i=0

aiaj−i = bj � |P |∞,

where bj is the coefficient of Xj in P . Taking the sum of (2.5) over i = 0, 1, . . . , n − 1
and j ∈ Z, and observing (2.4), we obtain

f (x) =
∫
g(y)g(x − y) dy � |P |∞

∑
j

Lj (x) = |P |∞/n.

Therefore |f |∞ � |P |∞/n, so that in conjunction with (2.3),

n−1|P |1/|P |∞ � |f |1/|f |∞ � B.

Assertion (ii) follows. 	
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3. Assertion (iii) of Theorem 1

Pick f ∈ F with |f |1/|f |∞ close to B. We may suppose that |f |∞ = 1 and |f |1 is
close to B, in particular that |f |1 � 1. Say f = g ∗ g. Then for r < s,

(3.1)
(∫ s

r

g(x) dx
)2

�
∫∫

2r�x+y�2s

g(x)g(y) dx dy

=
∫ 2s

2r
dz

∫
g(y)g(z− y) dy =

∫ 2s

2r
f (z) dz � 2(s − r).

SettingG(y) = ∫ y0 g(y) dy, so thatG(y) �
√

2y, and using partial integration, we obtain

(3.2)
∫ δ

0
(δ − x)g(x) dx =

∫ δ

0
G(y) dy �

∫ δ

0
(2y)1/2 dy < δ3/2.

Similarly, ∫ 1

1−δ
(
δ − (1− x))g(x) dx < δ3/2.

With c ∈ 1
2 Z in 1 � c � (n− 1)/2 to be determined later, set

ai = n

2c

∫ (i+1/2+c)/n

(i+1/2−c)/n
g(x) dx (0 � i < n)

and

Q(X) =
n−1∑
i=0

aiX
i.

Then

|Q|1 =
n−1∑
i=0

ai = n

2c

∫ 1

0
ν(x)g(x) dx

where ν(x) is the number of integers i, 0 � i < n, having (i + 1/2 − c)/n � x �
(i + 1/2+ c)/n. Then ν(x) is the number of integers i having

max(0, nx − 1/2− c) � i � min(n− 1, nx − 1/2+ c).
When (c+ 1/2)/n � x � 1− (c+ 1/2)/n, this becomes the interval nx− 1/2− c � i �
nx− 1/2+ c, so that ν(x) � 2c, as c ∈ 1

2 Z. When x < (c+ 1/2)/n, the interval becomes
0 � i � nx − 1/2 + c, and ν(x) � nx + c − 1/2 = 2c − (c + 1/2 − nx). On the other
hand when x > 1− (c + 1/2)/n, then ν(x) � 2c − (c + 1/2− n(1− x)). Therefore

(3.3) |Q|1 � n
∫ 1

0
g(x) dx − n

2c

∫ (c+1/2)/n

0
(c + 1/2− nx)g(x) dx

− n

2c

∫ 1

1−(c+1/2)/n
(c + 1/2− n(1− x))g(x) dx.
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Applying (3.2) with δ = (c + 1/2)/n we obtain

n

2c

∫ (c+1/2)/n

0
(c + 1/2− nx)g(x) dx

<
n2

2c

(
(c + 1/2)/n

)3/2
< n((c + 1/2)/n)1/2.

The same bound applies to the last term on the right hand side of (3.3), so that

|Q|1 � n|g|1(1− 2((c + 1/2)/n)1/2/|g|1).
Here |g|1 � 1 since |f |1 � 1.

The polynomial P = Q2 lies in P(n) and has

(3.4) |P |1 � n2|f |1
(
1− 4((c + 1/2)/n)1/2

)
.

The coefficients of P are

bl =
∑
i+j=l

aiaj =
( n

2c

)2 ∑
i+j=l

∫ (i+1/2+c)/n

(i+1/2−c)/n

∫ (j+1/2+c)/n

(j+1/2−c)/n
g(x)g(y) dx dy.

Setting z = x + y, so that (l + 1− 2c)/n � z � (l + 1+ 2c)/n, we obtain

bl =
( n

2c

)2
∫ (l+1+2c)/n

(l+1−2c)/n
dz

∫
μ(z, x)g(x)g(z− x) dx

where μ(z, x) is the number of integers i in 0 � i � n − 1 with (i + 1/2 − c)/n �
x � (i + 1/2 + c)/n and (l − i + 1/2 − c)/n � z − x � (l − i + 1/2 + c)/n. Thus
h = i − nx + 1/2 lies in the range

max(−c,−c + l + 1− nz) � h � min(c, c + l + 1− nz),
and μ(z, x) � λ(z), which is the length of the “interval” (possibly empty)

(3.5) −c − 1/2+max(0, l + 1− nz) � h � c + 1/2+min(0, l + 1− nz).
Therefore

bl �
( n

2c

)2
∫
dz λ(z)

∫
g(x)g(z− x) dx

=
( n

2c

)2
∫
λ(z)f (z) dz �

( n
2c

)2
∫
λ(z) dz.

But
∫
λ(z) dz is the area of the domain in the (h, z)-plane given by (3.5). Here h is

contained in an interval of length 2c + 1, and given h, the variable z lies in an interval of
length � (2c + 1)/n, so that

bl �
( n

2c

)2 (2c + 1)2

n
= n

(
1+ 1

2c

)2
.
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Therefore |P |∞ � n
(
1+ 1/(2c)

)2, and by (3.4),

A(n) � 1

n
|P |1/|P |∞ � |f |1

(
1− 4

((
c + 1

2

) /
n

)1/2) / (
1+ 1

2c

)2
.

We now pick c ∈ 1
2 Z with n1/3 − 1 � c < n1/3 − 1/2. When n � 8, which we may

clearly suppose in proving assertion (iii), then 1 � n1/3/2 � c < (n− 1)/2. Since f may
be chosen with |f |1 arbitrarily close to B,

A(n) � B(1− 4n−1/3)/(1+ n−1/3)2 > B(1− 6n−1/3). 	


4. The lower bound in Theorem 2

Set f = g ∗ g where g(x) = x−1/2 in 0 < x < 1, and g(x) = 0 otherwise. Then
f ∈ F, and |f |1 = |g|21 = 4. For 0 < z � 2,

f (z) =
∫
(z− x)−1/2x−1/2 dx,

with the range of integration max(0, z− 1) � x � min(1, z). Setting x = y2z we obtain

f (z) = 2
∫

dy

(1− y2)1/2
,

the integration being over y � 0 with 1 − 1/z � y2 � min(1/z, 1). When 0 < z � 1,
this range is 0 � y � 1, so that f (z) = π , whereas in 1 < z � 2 the range is smaller, and
f (z) < π . We may conclude that |f |∞ = π , and B � |f |1/|f |∞ = 4/π . 	


5. The upper bound B � 7/4

The upper bound of Theorem 2 will be established in three stages. Here we will show
that B � 7/4 = 1.75, and in the following stages we will prove that B � 7/4 − 1/80 =
1.7375, then that B � 1.7373.

Our problem is invariant under translations. To exhibit symmetry, we therefore rede-
fine F to consist of functions f = g ∗g with g non-zero, non-negative and integrable, with
support in [−1/2, 1/2], so that f has support in [−1, 1]. We will suppose throughout that
f ∈ F with |f |∞ = 1, and we will give upper bounds for |f |1.

Lemma 1. ∫ 1

1/2
f (z)f (−z) dz � 1/4.
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As a consequence of this lemma,

|f |1 =
∫ 1

−1
f (z) dz =

∫ 1

0

(
f (z)+ f (−z)) dz � 1+

∫ 1

1/2

(
f (z)+ f (−z)) dz

� 1+
∫ 1

1/2

(
1+ f (z)f (−z)) dz � 3

2
+ 1

4
= 7

4
,

so that indeed B � 7/4.

Proof of Lemma 1.

(5.1) f (z) = (g ∗ g)(z) =
∫
g(x)g(z− x) dx = 2

∫
x+y=z
x�y

g(x)g(y) dx.

(It is to exhibit symmetry that we write y for z− x.) Similarly

(5.2) f (−z) = 2
∫

u+v=−z
u�v

g(u)g(v) du.

Here x, y, u, v may be restricted to lie in [−1/2, 1/2]. When δ � 0 and z � 1/2− δ, then
x = z− y � 1/2− δ − 1/2 = −δ, also v = −u− z � 1/2− 1/2+ δ = δ, so that

u � v � δ, −δ � x � y.

We obtain∫ 1

1/2−δ
f (z)f (−z) dz � 4

∫ 1

1/2−δ
dz

∫∫
u�v�δ
−δ�x�y
x+y=z
u+v=−z

g(x)g(y)g(u)g(v) dx du.

In this integral u � −z/2 � −1/4+ δ/2, and y � z/2 � 1/4− δ/2. Settingw = u+y =
−x − v we have w � u+ 1/2 � 1/4+ δ/2, and in fact |w| � 1/4+ δ/2. Replacing the
variables x, u, z in the above integral by x, y = z−x,w = u+z−x, we obtain the bound

(5.3) 4
∫ 1/4+δ/2

−1/4−δ/2
dw

∫∫
y+u=w
x+v=−w−δ�x�y
u�v�δ

x+y�1/2−δ

g(x)g(y)g(u)g(v) dx dy.

Let us now take δ = 0. In this case∫ 1

1/2
f (z)f (−z) dz � 4

∫ 1/4

−1/4
dw

∫∫
x+v=−w
y+u=w

u�v�0�x�y

g(x)g(y)g(u)g(v) dx dy.
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Interchanging the rôles of the variables x, y, and as a result those of u, v, and replacing
w by −w, we get an integral as before, except that the region u � v � 0 � x � y is
replaced by the region v � u � 0 � y � x. These regions are essentially disjoint, and are
contained in u � 0 � y, v � 0 � x. We therefore obtain

� 2
∫ 1/4

−1/4
dw
( ∫
x+v=−w
v�0�x

g(x)g(v) dx
)( ∫
y+u=w
u�0�y

g(y)g(u) dy
)

= 2
∫ 1/4

−1/4
dw f̃ (w)f̃ (−w)

with

(5.4) f̃ (w) =
∫

y+u=w
u�0�y

g(y)g(u) dy.

Thus

(5.5)
∫ 1

1/2
f (z)f (−z) dz � 4

∫ 1/4

0
f̃ (w)f̃ (−w) dw.

It is clear from (5.1) and (5.4) that f̃ (w) � f (w)/2 � 1/2, so that we obtain � 1/4, and
Lemma 1 follows. 	


6. The upper bound B � 1.7375

With f = g ∗ g as above, and ε = ±1, set

Iε =
∫ 1/8

0
g(εx) dx, Jε =

∫∫
εy>0, εu>0
ε(y+u)�1/4

g(y)g(u) dy du.

Lemma 2.

(i)
∫ 1

1/2 f (z)f (−z) dz � 1/4− Jε.
(ii) For 0 � δ � 1/6,∫ 1

1/2−δ
f (z)f (−z) dz � 1

4
+ δ

2
+
(∫ δ

−δ
g(x) dx

)2
.
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As a consequence,

(6.1) |f |1 =
∫ 1

0

(
f (z)+ f (−z)) dz = ∫ 1/2−δ

0
+
∫ 1

1/2−δ

� 1− 2δ +
∫ 1

1/2−δ
(
1+ f (z)f (−z)) dz

� 3

2
− δ +

∫ 1

1/2−δ
f (z)f (−z) dz � 7

4
− δ

2
+
(∫ δ

−δ
g(x) dx

)2
.

Setting δ = 1/8 we obtain

(6.2) |f |1 � 27

16
+ (I1 + I−1)

2 � 27

16
+ 4M2

withM = max(I1, I−1). On the other hand, by (i),

(6.3) |f |1 � 3

2
+
∫ 1

1/2
f (z)f (−z) dz � 7

4
− max
ε=±1

Jε � 7

4
−M2.

In conjunction with (6.2) this gives |f |1 � 7/4 − 1/80 = 1.7375, so that indeed B �
1.7375.

Proof of Lemma 2. When w > 0, we cannot have y + u = w and u � y < 0. Therefore
f̃ (w) as given by (5.4) is

f̃ (w) =
∫

y+u=w
u�y

g(y)g(u) dy −
∫

y+u=w
0�u�y

g(y)g(u) dy = 1

2
f (w)− 1

2
f̂ (w)

with

f̂ (w) =
∫

y+u=w
y,u�0

g(y)g(u) dy.

Now (5.5) yields∫ 1

1/2
f (z)f (−z) dz �

∫ 1/4

0

(
f (w)− f̂ (w))f (−w) dw �

∫ 1/4

0

(
1− f̂ (w)) dw

= 1

4
−
∫ 1/4

0
dw

∫
y+u=w
y,u�0

g(y)g(u) dy

= 1

4
−

∫∫
y,u�0
y+u�1/4

g(y)g(u) dy du = 1

4
− J1.

The bound 1/4− J−1 is obtained similarly, so that assertion (i) is established.
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We will now suppose δ > 0, and we return to the bound (5.3). We first deal with the
part where v � x in the integral, so that

(6.4) u � v � x � y.

After interchanging the rôles of x and y, and of u and v, and replacing w by −w, the
integrand will be the same, but now

(6.5) v � u � y � x.

The interiors of the domains (6.4), (6.5) are disjoint, and are contained in the region with
v � x and u � y, so that this part of (5.3) is

(6.6) � 2
∫ 1/4+δ/2

−1/4−δ/2
dw
( ∫
x+v=−w
v�x

g(x)g(v) dx
)( ∫
y+u=w
u�y

g(y)g(u) dy
)

= 1

2

∫ 1/4+δ/2

−1/4−δ/2
dw f (−w)f (w) =

∫ 1/4+δ/2

0
f (w)f (−w) dw � 1/4+ δ/2.

It remains for us to deal with the part of (5.3) where x � v in the integral, so that
−δ � x � v � δ. This part is

� 4
∫
dw

∫
x+v=−w−δ�x�v�δ

g(x)g(v) dx

∫
y+u=w

y�1/2−δ−x
u�δ

g(y)g(u) dy.

When 0 < δ � 1/6, then y � 1/2− 2δ � δ � u, and the last integral is

�
∫

y+u=w
u�y

g(y)g(u) dy = f (w)/2 � 1/2.

Therefore the part in question of (5.3) becomes

� 2
∫
dw

∫
x+v=−w−δ�x�v�δ

g(x)g(v) dx =
∫
dw

∫
x+v=−w−δ�x,v�δ

g(x)g(v) dx =
(∫ δ

−δ
g(x) dx

)2
.

Together with (6.6) this gives the asserted bound for
∫ 1

1/2−δ f (z)f (−z) dz. 	


7. The upper bound 1.7373

In fact we will show that

(7.1) B � 7/4− 1/80− ξ < 1.7373

where ξ = 0.000200513 . . . is a root of the transcendental equation

F(b(x)/a(x)) = 1/2,
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where a(x) = 1/10− 2x, b(x) = (√1/20− x −√1/80+ x)2/2, and

F(x) =
√
x2 + x + log(

√
x2 + x +√x).

The calculation of ξ has kindly been performed by Dr. A. Pokrzywa.
We will suppose that f ∈ F, |f |∞ = 1 and

(7.2) |f |1 > 7/4− 1/80− ξ,
and we will reach a contradiction, thereby establishing the truth of (7.1), and hence of
Theorem 2.

Retaining earlier notation we now set a = a(ξ),
u = I1 + I−1, v = |I1 − I−1|, m = min(I1, I−1) = (u− v)/2,

and observe thatM = max(I1, I−1) = (u+v)/2.Also, u0, u1 will be the positive numbers
with

u2
0 = 1/20− ξ = a/2, u2

1 = 1/20+ 4ξ.

We may suppose that

(7.3) u � u0,

for otherwise (6.2) yields |f |1 � 27/16+ u2
0 = 7/4− 1/80− ξ , against (7.2). We further

may suppose that

(7.4) u+ v � u1,

for otherwise (6.3) yields |f |1 � 7/4− u2
1/4 = 7/4− 1/80 − ξ , contradicting (7.2). As

a consequence,

2u2 −m2/2 = 2u2 − (u− v)2/8 = 3u2/2+ u(u+ v)/2− (u+ v)2/8
� 3u2/2+ 3u(u+ v)/8 � 15u2

1/8 < 1/10− 2ξ = a,
so that

(7.5) 0 = 2u2
0 − a � 2u2 − a < m2/2.

Lemma 3.

7

4
− |f |1 � 1

4
(u2 + v2)+

∫ m2/2

2u2−a
(√
(η + a)/2− u) dη√

2η
.

Proof. By (6.1) and (7.2),

1/80+ ξ > δ/2−
(∫ δ

−δ
g(x) dx

)2

for δ in 0 < δ < 1/6. Setting δ = 1/8+ η with 0 < η < 1/24, this gives(∫ 1/8+η

−1/8−η
g(x) dx

)2
> η/2+ 1/20− ξ = (η + a)/2,
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and

(7.6) G(η) :=
∫ 1/8+η

1/8
(g(x)+ g(−x)) dx > √(η + a)/2− u.

On the other hand, by (6.3) and (7.2), and since m2/2 � u2/8 � u2
1/8 < 1/24 < 1/8,

1

80
+ ξ > 1

2

∑
ε=±1

Jε = 1

2

(
I 2

1 + I 2−1 + 2
∑
ε=±1

∫ 1/4

1/8
g(εx) dx

∫ 1/4−x

0
g(εy) dy

)

� 1

2

(
u2 + v2

2
+ 2

∑
ε=±1

∫ 1/8+m2/2

1/8
g(εx) dx

∫ 1/4−x

0
g(εy) dy

)

= 1

4
(u2 + v2)+

∑
ε=±1

∫ m2/2

0
g(ε/8+ εη) dη

∫ 1/8−η

0
g(εy) dy.

By (3.1) with r = 1/8− η, s = 1/8,∫ 1/8−η

0
g(εy) dy = Iε −

∫ 1/8

1/8−η
g(εy) dy � Iε −

√
2η � m−√2η .

Thus

1

80
+ ξ > 1

4
(u2 + v2)+

∑
ε=±1

∫ m2/2

0
g(ε/8+ εη)(m−√2η

)
dη

= 1

4
(u2 + v2)+

∫ m2/2

0

(
g(1/8+ η)+ g(−1/8− η))(m−√2η

)
dη.

Integrating by parts we represent the last integral as∫ m2/2

0
G(η)

dη√
2η

�
∫ m2/2

2u2−a
G(η)

dη√
2η
.

Since m2/2 < 1/24 we may apply (7.6) to obtain the lemma. 	


Lemma 4. In the domain of points (u, v) with (7.3), (7.4), v � 0, the function

H(u, v) = 1

4
(u2 + v2)+

∫ 1
2 (
u−v)

2 )2

2u2−a
(
√
(η + a)/2− u) dη√

2η

satisfies H(u, v) � H(u0, u1 − u0).

Proof.

2H(u, v) = 1

2
(u2 + v2)+

∫ 1
2 (
u−v

2 )2

2u2−a

√
η + a
η

dη − u(u− v)+ 2u
√

4u2 − 2a.
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Hence

2
∂H(u, v)

∂v
= v + u+

(
(u− v)2 + 8a

(u− v)2
)1/2

· v − u
4

= v + u− 1

4

(
(u− v)2 + 8a

)1/2
.

We claim that this partial derivative is � 0 in our domain. For otherwise 16(u + v)2 −
((u−v)2+8a) > 0, or 15(u+v)2+4uv−8a > 0. Butu+ v � u1 and 4uv � 4u(u1−u) �
4u0(u1−u0) since u � u0 > u1/2. Therefore 15u2

1+4u0u1−4u2
0−8a > 0. Substituting

the values for a, u0, u1 gives

4u0u1 � 1/4− 80ξ.

Squaring, we get

16(1/20+ 4ξ)(1/20− ξ) > (1/4− 80ξ)2,

which is not true. Thus our claim is proven, and

(7.7) H(u, v) � H(u, u1 − u).
Next,

2H(u, u1 − u) = −u2 + 1

2
u2

1 +
∫ 1

2 (
2u−u1

2 )2

2u2−a

√
η + a
η

dη + 2u
√

4u2 − 2a ,

so that

2
d

du
H(u, u1 − u) = −2u+

(
(2u− u1)

2 + 8a

(2u− u1)2

)1/2

· 2u− u1

2
−
(

2u2

2u2 − a
)1/2

· 4u
+ 2(4u2 − 2a)1/2 + 8u2(4u2 − 2a)−1/2

= −2u+ 1

2

√
(2u− u1)2 + 8a + 2

√
4u2 − 2a .

We claim that this derivative is � 0 foru0 � u � u1. For otherwise 16u2 � (2u−u1)
2+8a,

so that 12u2 + 4uu1 − u2
1 > 8a. But this entails 15u2

1 > 8a, i.e.,

15(1/20+ 4ξ) > 4/5+ 16ξ,

which is not true. Thus our claim is correct, and

H(u, u1 − u) � H(u0, u1 − u0),

which together with (7.7) establishes the lemma. 	


It is now easy to arrive at the desired contradiction to (7.2). By Lemmas 3 and 4,

7/4− |f |1 � H(u0, u1 − u0)

= 1

4
(u2

0 + (u1 − u0)
2)+

∫ 1
2 (u0− 1

2u1)
2

2u2
0−a

(
1

2

√
η + a
η

− u0√
2η

)
dη.
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Here 2u2
0 − a = 0 and 1

2

(
u0 − 1

2u1
)2 = b(ξ) = b, say, and∫ x

0

√
η + a
η

dη = aF(x/a),
∫ x

0

dη√
2η
= √2x .

Therefore

7/4− |f |1 � 1

4
(2u2

0 − 2u0u1 + u2
1)+

a

2
F(b/a)− u0(u0 − u1/2)

= −u2
0/2+ u2

1/4+
a

2
F(b/a) = − 1

80
+ 3

2
ξ + a

2
F(b/a) = 1/80+ ξ,

contrary to (7.2). 	

Added in proof. Dr. Erik Bajalinov has checked that for n � 26 and n = 31, 36, 41, 46, 51:
A(n) < 4/π , which suggests that B = 4/π .

Addendum*

The following problem equivalent to the problem considered in this paper has been
proposed by L. Moser at the Institute in the Theory of Numbers (Boulder, Colorado 1959),
see Report of the said Institute, p. 342, Problem 29:

Let f (x) � 0, f (x) = 0 outside (0, 1),
∫ 1

0 f (x) dx = 1. Let

g(t) =
∫ t

0
f (x)f (t − x) dx.

FindM = min
f

max
t
g(t). Conjecture:M = π/4.

Reference

[1] B. Green, The number of squares and Bh[g] sets. Acta Arith. 100 (2001), 365–390.

* Added in 2006





Unsolved problems and unproved conjectures





Andrzej Schinzel
Selecta

Unsolved problems and unproved conjectures
proposed by Andrzej Schinzel

in the years 1956–2006
arranged chronologically

1 (conjecture) For every positive integerm there exist n0(m) and n1(m) such that for
n > n0(m) or n > n1(m) the equation

m

n
= 1

x
+ 1

y
+ 1

z

is solvable in positive integers x, y, z or in integers x, y, z respectively.
(formulated in [5])

2 (problem) Does the number of integer solutions of the equation x1+x2+ . . .+xs =
x1x2 · · · xs satisfying 1 � x1 � x2 � . . . � xs tend to infinity with s ? (formulated in [6])

3 (conjecture) For every even k the equation ϕ(x + k) = ϕ(x) has infinitely many
solutions. (paper 21)

4 (conjecture) If k is a positive integer and f1(x), f2(x), . . . , fk(x) irreducible poly-
nomials with integer coefficients and the leading coefficient positive such that
f1(x)f2(x) · · · fk(x) has no fixed divisor > 1, then there exist infinitely many positive
integers x such that all numbers fi(x) (1 � i � k) are primes. (paper 22=J1)

5 (conjecture) For all positive integers k and n, where n > 1, k � n, (k, n) = 1,
there exists at least one prime p ≡ k (mod n), p < n2. (paper 22=J1)

6 (conjecture) For every integer k > 34, k �= pα (p prime) there exists an integer n
such that n− i /| (n

i

)
for all i � k. (paper 26=H1)

7 (conjecture) Every integer n �≡ 0, 4, 7 (mod 8), n > 130, is a sum of three positive
squares. (paper 33=A4)

8 (conjecture) Every integer n �≡ 0, 4, 7 (mod 8), n > 627, is a sum of three distinct
squares. (paper 33=A4)

9 (conjecture) For every positive integer k

lim inf
n→∞

k times︷ ︸︸ ︷
σσ · · · σ(n)

n
<∞. ([3])
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10 (conjecture) The product p1p2 · · ·pk−1pk+1, where pi is the i-th prime, is the least
positive integer g(k) with the property that for every integer n sufficiently large at least
one of the numbers n+ 1, n+ 2, . . . , n+ g(k) has more than k prime divisors. ([4])

11 (problem) Apart from 2, 3, 5 and 3, 4, 5, 7, 11 does there exist a sequence a1 <

a2 < . . . < ar of positive integers such that

ar < [ai, aj ] (1 � i < j � r) and
r∑
i=1

1

ai
> 1 ? (paper 35)

12 (conjecture) For every k �= 1 and l � 0 there exists an integer m such that the
equations ϕ(x) = m and σ(y) = m have exactly k and l solutions respectively.

(paper 46=J2)

13 (conjecture) For every x � 8 there is a prime between x and x + (log x)2.
(paper 46=J2)

14 (problem) For every pair of relatively prime integers with |a| > |b| > 0 does there
exist n such that an − bn has three primitive prime factors? (paper 53=I1)

15 (problem) Does there exist a pair a, b (as above) with ab �= ±ch (h � 2) such that
an − bn has three primitive prime factors for infinitely many n? (paper 53=I1)

16 (problem) Does there exist a pair a, b (as above) with ab �= ±2c2,±ch (h � 2)
such that the greatest prime factor of an− bn is greater than 2n for all sufficiently large n?

(paper 53=I1)

17 (problem) Does there exist a polynomial f ∈ Q[x1, x2, . . . , xn, y, z] such that for
all integer systems (x1, . . . , xn) the equation

(1) f (x1, x2, . . . , xn, y, z) = 0

is soluble in integers y, z and for no rational functions

(2) ϕ,ψ ∈ Q(x1, x2, . . . , xn)

the identity

(3) f (x1, x2, . . . , xn, ϕ, ψ) = 0

holds? (paper 56=E1, cf. also 69=F1)

18 (problem) Does there exist a polynomial

f ∈ Q[x1, x2, . . . , xn, y, z]
such that for all rational systems (x1, . . . , xn) the equation (1) is soluble in rational y, z
and for no rational functions ϕ,ψ satisfying (2) the identity (3) holds? (paper 56=E1)

19 Let distinct polynomials f1, . . . , fk (k � 0) satisfy the assumptions of conjecture 4.
Let g be a polynomial with integral coefficients and the leading coefficient positive.

(conjecture) Let n be a positive integer such that n − g(x) is irreducible and
k∏
i=1
fi(x)(n − g(x)) has no fixed divisor > 1. Denote by N(x) = N the number of
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positive integers x such that n − g(x) > 0 and by P(n) the number of x’s such that all
numbers f1(x), f2(x), …, fk(x) and n− g(x) are primes. Then for large n we have

P(n) ∼ N

logk+1N
(h0h1 · · ·hk)−1

∏
p

(
1− ω(p)

p

)(
1− 1

p

)−k−1
,

where h0 = deg g, hi = deg fi and ω(p) is the number of solutions of the congruence
k∏
i=1
fi(x)(n− g(x)) ≡ 0 (mod p). (paper 60=J3)

20 (problem) Does there exist infinitely many solutions of the equation
(x2−1)(y2−1) = (z2−1)2 with x even, y, z odd or at least one solution with |x|, |y|, |z|
even and distinct? (paper 61)

21 (problem) Assume that f ∈ Z[x] and f (x) is representable as a sum of two integral
cubes for all sufficiently large integer x. Does it follow that f (x) = u(x)3+ v(x)3, where
u, v are integer valued polynomials? (paper 66=A6)

22 (problem) Is the inequality

σϕ(n) � 1

2
n

true for all n ? (paper 67=G5)

23 (conjecture) There exists a constant c > 0 such that for every algebraic integer
α �= 0 of degree n, that is not a root of unity,

α > 1+ c
n
. (paper 68=C1)

24 A factorization of a polynomial in Q[x] into a product of a constant and of coprime
powers of polynomials irreducible over Q is called standard. For a given polynomial
f �= 0, Kf denotes the factor of f of the greatest possible degree whose no root is 0
or a root of 1 and whose leading coefficient is equal to the leading coefficient of f . If
φ ∈ Q[x±1

1 , . . . , x±1
k ] \ {0}, then

Jφ = φ
k∏
i=1

x
− ordxi φ
i .

(conjecture) Let F(y1, . . . , yk) be a polynomial irreducible over Q which does not
divide y1 · · · ykJ (yδ11 y

δ2
2 · · · yδkk − 1) for any integers δ1, . . . , δk not all zero.

For every system of k positive integers n1, . . . , nk there exists an integral non-singular
matrix [νij ] (1 � i � k, 1 � j � k) satisfying the following conditions:

(i) 0 � νij � C1(F ) (1 � i � k, 1 � j � k);
(ii) ni =

k∑
j=1
νijuj (1 � i � k), uj integers � 0 (1 � j � k);

(iii) if

JF
( k∏
j=1

y
ν1j
j ,

k∏
j=1

y
ν2j
j , . . . ,

k∏
j=1

y
νkj
j

)
= const

r∏
s=1

Fs(y1, . . . , yk)
es
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is a standard factorization, then either

KF(xn1 , . . . , xnk ) = const
r∏
s=1

KFs(x
u1 , . . . , xuk )es

is a standard factorization or α1n1 + . . . + αknk = 0, where αi are integers not all
zero and |αi | � C0(F ) (1 � i � k). C0(F ) and C1(F ) are constants independent of
n1, . . . , nk . (paper 73=D2, cf. also paper 96=D4)

25 (conjecture) In every finite covering system of congruences ai (modmi) (mi > 1)
we have mi |mj for at least one pair 〈i, j〉 with i �= j . (paper 86=D3)

26 Let S be the set of all polynomials with integral coefficients and the leading coeffi-
cient positive.

(problem) Does there exist for every polynomial f (x) ∈ S and every ε > 0 a
polynomial h(x) ∈ S of degree d such that the degree of each irreducible factor of f (h(x))
is less than εd ? (paper 87, §5=J4).

27 (problem) Does there exist an identity
4∑
i=1
f 3
i (x) = Px +Q, where fi ∈ Z3[x],

P,Q ∈ Z3, P �= 0,Q ≡ 4 (mod 9) ? (paper 89)

28 (conjecture) Every genus of primitive binary quadratic forms with discriminantD
represents a positive integer � c(ε)|D|ε for every ε > 0. (paper 99)

29 (problem) To estimate the number of irreducible non-cyclotomic factors of a poly-
nomial f ∈ Z[x] by a function of ‖f ‖ alone, where ‖f ‖ is the sum of squares of the
coefficients of f . (paper 105=C6)

30 (problem) Let K be an algebraic number field. Does there exist a sequence {αi}
of integers in K such that for every ideal q of K , integers α1, α2, . . . , αN(q) represent all
residue classes modulo q ?

(formulated in [7], earlier for K = Q(i) proposed orally by J. Browkin)

31 (problem) To improve the estimate (log n)2/ log log n for the number of non-zero
coefficients of the cyclotomic polynomial with a square-free index n. (formulated in [1])

32 (conjecture) If a polynomialP(x)with rational coefficients has at least three simple
zeros, then the equation y2z3 = P(x) has only finitely many solutions in integers x, y, z
with yz �= 0. (paper 115=A8)

33 (problem) Given a, b with |a| �= |b|, do there exist infinitely many quotients r such
that for suitable integers m, n: m/n = r and K(axm+n + bxm + bxn + a) is reducible?

(paper 121=D7, the operation K is defined in 24 above)

34 (conjecture) Let F ∈ Z[x, y] be a form such that

F(x, y) = F1(ax + by, cx + dy) for any F1 ∈ Z[x, y] and any a, b, c, d ∈ Z

implies

∣∣∣∣a bc d
∣∣∣∣ = ±1.

If f ∈ Z[t1, . . . , tr ] has the fixed divisor equal to its content and the equation

(4) F(x, y) = f (t1, . . . , tr )
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is soluble in integers x, y for all integral vectors [t1, . . . , tr ], then there exist polynomials
X, Y ∈ Z[t1, . . . , tr ] such that identically

(5) F
(
X(t1, . . . , tr ), Y (t1, . . . , tr )

) = f (t1, . . . , tr ). (paper 128=J5)

35 (conjecture) Let F ∈ Z[x, y] be any form and f ∈ Z[t1, . . . , tr ] any polynomial.
If the equation (4) is soluble in integers x, y for all integer vectors [t1, . . . , tr ], then there
exist polynomials X, Y ∈ Q[t1, . . . , tr ] satisfying (5). (paper 128=J5)

36 (problem) Does the divisibility φ(n)+1 |n imply n = p or 2p, where p is a prime?
(formulated in [2], p. 52)

37 (conjecture) If F ∈ Z[x, y, t] is irreducible, the highest homogeneous part F0 of F
with respect to x, y is reducible over Q(t) and every arithmetic progression contains an
integer t∗ such thatF(x, y, t∗) = 0 is solvable in integers x, y, then there exist polynomials
X, Y ∈ Q[t] such that F

(
X(t), Y (t), t

) = 0. (paper 132=A12)

38 (problem) Let a(0) = [a1(0), . . . , an(0)] ∈ Rn and an infinite sequence

a(t) = [a1(t), . . . , an(t)]
be formed by means of the formulae

ai(t + 1) = |ai(t)− ai+1(t)|,
where the addition of indices is mod n. Is it true that for every n and every a(0) ∈ Rn

either lim
t→∞ a(t) = 0 or there exists c ∈ R such that a(t) ∈ {0, c}n for all sufficiently

large t ? (paper 155)

39 Given m linearly independent vectors n1, . . . ,nm ∈ Zk , let H(n1, . . . ,nm) denote
the maximum of the absolute values of all minors of order m of the matrix⎛⎜⎝n1

...

nm

⎞⎟⎠
and D(n1, . . . ,nm) the greatest common divisor of these minors. Furthermore, let

c0(k, l, m) = sup inf

(
D(n1, . . . ,nm)

H(n1, . . . ,nm)

)(k−l)/(k−m) l∏
i=1

H(pi),

where the supremum is taken over all sets of linearly independent vectors
n1, . . . ,nm ∈ Zk and the infimum is taken over all sets of linearly independent vectors
p1, . . . ,pl ∈ Zk such that

ni =
l∑
j=1

uijpj , uij ∈ Q.

(problem) Is lim sup
k,l→∞

c0(k, l, m) finite? (paper 166=L2)
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40 (problem) Given an integer m � 3, does there exist a number K such that every
polynomial in Q[x] with m non-zero coefficients has a factor irreducible over Q with at
most K non-zero coefficients? (paper 168, for m = 3 already paper 56=E1)

41 (conjecture) If fi(x) = aix2 + bix + ci ∈ Z[x] (i = 1, 2, 3),
√
a1a2a3 /∈ Q, then

the numberN(x) of integers x3 such that |x3| � x and the equation f3(x3) = f1(x1)f2(x2)

is soluble in integers x1, x2, satisfies N(x)� xε for every ε > 0. (paper 170)

42 (conjecture) For every algebraic number fieldK there exist setsFν,μ ⊂ K2 (ν ∈ N,
μ ∈ N) such that ⋃

〈ν,μ〉

⋃
〈a,b〉∈Fμ,ν(K)

{xν + axμ + b} is finite

and if xn + axm + b, where n � 2m > 0, 〈a, b〉 ∈ K∗2, is reducible over K , at least one
of the following conditions is satisfied:

(i) xn/(n,m) + axm/(n,m) + b has a proper linear or quadratic factor over K ,

(ii) there exists an integer l such that 〈n/l,m/l〉 = 〈2p, p〉 (p prime), 〈6, 1〉, 〈6, 2〉,
〈7, 1〉, 〈8, 2〉, 〈8, 4〉, 〈9, 3〉, 〈10, 2〉, 〈10, 4〉, 〈12, 2〉, 〈12, 3〉, 〈12, 4〉, 〈15, 5〉, 〈7, 2〉,
〈7, 3〉, 〈8, 1〉, 〈9, 1〉, 〈14, 2〉, 〈21, 7〉,

(iii) there exists an integer l such that 〈n/l,m/l〉 =: 〈ν, μ〉 ∈ Z2 and a = uν−μa0(v),
b = uνb0, where 〈a0, b0〉 ∈ Fν,μ.

Consequence 1. For every algebraic number field K there exists a constant
C1(K) such that if n1 > C1(K) and a, b ∈ K∗ then xn + axm + b is reducible over
K if and only if (i) holds.

Consequence 2. For every algebraic number field K there exists a constant
C2(K) such that if a, b ∈ K then xn + axm + b has in K[x] an irreducible factor with at
most C2(K) non-zero coefficients.

Consequence 3. There are only finitely many integers b such that for some n �= 2m,
xn + bxm + 1 is reducible over Q. (paper 175=D10)

43 (problem) What is the least positive integer n such that all integers 2kn − 1 (k =
1, 2, . . . ) are composite? (paper 179=G6)

44 (problem) Have the integers not of the form n− ϕ(n) a positive lower density?
(paper 179=G6)

45 (conjecture) Let k,m, a, b be positive integers,m > kb. There are no polynomials
F1, F2, . . . , Fk ∈ Z[x] with the leading coefficient positive such that

m

ax + b =
k∑
i=1

1

Fi(x)
. (paper 198=A15)

46 (problem) Do there exist two trinomials Ti ∈ C[x] (i = 1, 2) such that (T1, T2) has
more than six non-zero coefficients? (paper 199=D16)
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47 (conjecture) For every algebraic number field K and d = 1, 2 there exist sets
Fdν,μ(K) ⊂ N2 × {xd + . . .+ cd : c1, cd ∈ K} such that the set⋃

ν,μ,F

⋃
〈a,b,F 〉∈Fdν,μ

{xν + axμ + b}

is finite and if n,m ∈ N, n > m, n1 = n/(n,m),m1 = m/(n,m), a, b ∈ K∗, F is a monic
factor of xn1 + axm1 + b in K[x] of maximal possible degree d ∈ {1, 2}, n1 > 6, then
(xn+axm+b)F (x(n,m))−1 is reducible overK if and only if there exists an integer l such
that 〈n/l,m/l〉 =: 〈ν, μ〉 ∈ N2 and a = uν−μa0, b = uνb0, F = u(ν,μ)dF0(x/u

(ν,μ)),
where u ∈ K∗, 〈a0, b0, F0〉 ∈ Fdν,μ(K).

(paper 200=D14, for d = 1 already paper 197=D13)

48 (conjecture) For every field K such that charK > d every polynomial F ∈
K[x1, x2] can be represented as

d∑
μ=1

fμ(αμ1x1 + αμ2x2), where fμ ∈ K[z], αμi ∈ K
(1 � μ � d, 1 � i � 2). (paper 208=E8)

49 (problem) LetK be a real quadratic field, β be a primitive integer ofK , p a rational
prime and M the set of Mahler measures of all algebraic numbers. Do the conditions
β ∈ M and p splits in K imply pβ ∈ M in general, or for β = (1 +√17)/2, p = 2 in
particular? (paper 211=C10)

50 (problem) Let K be a field of characteristic 0, n a positive integer. Is it true that a
monic polynomial f ∈ K[x] of degree n with exactly k distinct zeros is determined up to
finitely many possibilities by any k of its non-zero proper coefficients? (paper 213)

51 (problem) Let f ∈ Z[x] have the leading coefficient positive and assume that the
congruencef (x) ≡ y2 (modm) is solvable for every positive integerm. Does there exist an

odd integer k > 0 and integers x1, . . . , xk such that
k∏
i=1
f (xi) is a square? (paper 214=A16)

52 (problem) Let f be a non-singular binary form over C. Can the existence of a
non-trivial automorph of f be characterized in terms of invariants of f exclusively?

(paper 219=E9)

53 (conjecture) The explicit value for the maximal order of the group of weak auto-
morphs divided by the group of trivial automorphs of a binary form f of degree n defined
over a field of characteristic π , where 0 < π � n. (paper 219=E9)

54 (problem) How to compute l(P ) for cubic polynomials P over R, in particular for
P(x) = 2x3 + 3x2 + 4 ? Here l(P ) = inf L(PG), where L(F) is the length of F and
G runs through all monic polynomials over R. (paper 221=D17)

55 (problem) Is it true that l(P ) ∈ K(P ) for all P ∈ R[x] with no zeros inside the
unit circle? Here l(P ) has the meaning of Problem 54 and K(P ) is the field generated by
the coefficients of P . (paper 221=D17)
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56 (conjecture) Let k, n and bi (1 � i � k) be positive integers, and let ai (1 � i � k)
be any integers. The number N(n; a1, b1, . . . , ak, bk) of solutions of the congruence

k∑
i=1

aixi ≡ 0 (mod n) in the box 0 � xi � bi

satisfies the inequality N(n; a1, b1, . . . , ak, bk) � 21−n k∏
i=1
(bi + 1). (paper 222)
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20 (1959), 221–229, MR0112864 (22 #3710).

[36] (with A. Białynicki-Birula and J. Browkin) On the representation of fields
as finite unions of subfields, Colloq. Math. 7 (1959), 31–32, MR0111739
(22 #2601).

[37] (with A. Wakulicz) Sur l’équation ϕ(x + k) = ϕ(x) II, Acta Arith. 5 (1959),
425–426, MR0123506 (23 #A831).
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[12] Ułamki łańcuchowe, Delta nr 5 (65) (1979), 1–3.
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