
Chaocipher Revealed: The Algorithm     1

 
 

CHAOCIPHER REVEALED: THE ALGORITHM 
 

Moshe Rubin 

© 2 July 2010 
(Updated 30 July 2010) 

 

ADDRESS: Rechov Shaulson 59/6, Jerusalem 95400 ISRAEL;  mosher@mountainvistasoft.com. 
 
ABSTRACT:  Chaocipher is a method of encryption invented by John F. Byrne in 1918, who tried unsuccessfully to 
interest the US Signal Corp and Navy in his system.  In 1954, Byrne presented Chaocipher-encrypted messages as a 
challenge in his autobiography “Silent Years”. Although numerous students of cryptanalysis attempted to solve the 
challenge messages over the years, none succeeded.  Chaocipher has been a closely guarded secret known only to a 
handful of persons.  Following fruitful negotiations with the Byrne family during the period 2009-2010, the 
Chaocipher papers and materials have been donated to the National Cryptologic Museum in Ft. Meade, MD.  This 
paper presents the first full disclosure and description of Byrne’s Chaocipher algorithm. 
 
KEYWORDS:  Chaocipher, John F. Byrne, cryptanalysis, William F. Friedman, National Cryptologic Museum, 
Silent Years, Lou Kruh, Cipher Deavours 
 
Introduction 
 
The story of John F. Byrne and his Chaocipher encryption scheme has been told before in the open 
literature.  The fascinating and colorful story of Chaocipher, from its invention in 1918, through 
negotiations with William F. Friedman and others in the US Signal Corps and Navy, up to the present 
locating of the Chaocipher material, and concluding with its donation to the National Cryptologic Museum 
in Ft. Meade, MD [5] have been amply described in the numerous references (for an introduction to 
Chaocipher and its history, see [1] and [8]).  The author and other researchers plan on writing future papers 
examining these fascinating technical and historic areas of research. 
 
The purpose of this paper is to disclose the algorithm underlying the Chaocipher encryption system, as 
described in the papers of John F. Byrne.  The author believes that the disclosure of Chaocipher’s algorithm 
will spur other cryptanalysts to research and examine this engaging system which is, interestingly, a simple 
yet very difficult cryptographic system to break. 
 
Description of Byrne’s Primitive Chaocipher Model 
 
It was previously known that John F. Byrne had blueprints for a Chaocipher machine drawn up back in the 
1920’s.  It is clear today that no such machine was ever constructed.  The donated Chaocipher material, 
however, does contain a primitive Chaocipher model made of cardboard and wooden letters (see figure 1, 
[6]).  This model was reconstructed by Byrne’s son, John, and provides us with an approximation of the 
model used by Byrne to encipher the Exhibits in “Silent Years” [4]. 
 



Chaocipher Revealed: The Algorithm     2

 
 

Figure 1. A primitive mechanical model of the Chaocipher device 
(photo courtesy of National Cryptologic Museum) 

 
The device consists of two disks, each disk rotating on a spindle.  Along the periphery of each disk is a 
modifiable 26-character alphabet consisting of the letters A to Z in some order.  The disks are meant to 
mesh (“engage”) on their periphery so that rotating one of the disks in one direction (i.e., clockwise or 
counterclockwise) rotates the other disk in the opposite direction with a ratio of 1:1. 
 
The novel principle of the Chaocipher algorithm is each alphabet is slightly permuted each time a letter is 
enciphered or deciphered.  The continuous alphabet permutations result in nonlinear and highly diffused 
alphabets.  The exact method of permuting the alphabets will be described in detail in the next section. 
 
John F. Byrne thought of Chaocipher in mechanical terms, such as “engaging” and “disengaging” the disks 
to prevent simultaneous rotation of the disks at certain points in the enciphering/deciphering process.  The 
mechanical aspects of Chaocipher will be discussed in a future paper.  This paper will focus on the 
algorithmic aspects of Chaocipher; the model described here is not constrained by mechanical concerns. 
 
The Chaocipher Algorithm Explained 
 
Although Byrne had the physical model in mind when he invented Chaocipher, this paper will use a 
simplified model that does not require disks.  We will represent each disk’s alphabet as a 26-character string 
consisting of the letters A to Z. Figure 2 shows an example of both left and right alphabets, each one being a 
mixed permutation of the standard alphabet. 
 
              +            * 
   LEFT (ct): HXUCZVAMDSLKPEFJRIGTWOBNYQ 
  RIGHT (pt): PTLNBQDEOYSFAVZKGJRIHWXUMC 
              -------------------------- 
    Position: 12345678911111111112222222 
                                 01234567890123456 
 
  Figure 2. Left (ct) and right (pt) alphabets in a Chaocipher session 
 



Chaocipher Revealed: The Algorithm     3

It is important to note that the right alphabet is used for finding the plaintext letter, while the left alphabet is 
used for finding the corresponding ciphertext letter1. 
 
Note the two symbols ‘+’ and ‘*’ positioned above the alphabets in figure 2.  In Byrne’s descriptions these 
are called the zenith and nadir, corresponding to the 1st and 14th positions of each alphabet, respectively.  
These positions will play a major role when permuting each alphabet following each 
enciphering/deciphering step. 
 
Overview of Chaocipher Process 
 
Given left and right alphabets, with the alphabets aligned relative to their respective zenith points, 
enciphering a plaintext character consists of three stages: 
 

1. Determine the ciphertext letter corresponding to the plaintext letter. 
2. Permute the left alphabet. 
3. Permute the right alphabet. 

 
These three steps are performed continuously until the plaintext input is exhausted.  As an example we will 
encipher the plaintext letter “A” using the alphabets shown in figure 2. 
 
How to Encipher Plaintext 
 
To encipher a plaintext letter, locate it in the right (pt) alphabet.  The letter in the left (ct) alphabet directly 
above the plaintext letter is the ciphertext letter. 
 
In our example, to encipher the plaintext letter “A”, we locate it in the right (pt) alphabet (in the 13th 
position) and take the corresponding letter directly above it in the left (ct) alphabet, which is a “P”.  So 
plaintext “A” is enciphered as ciphertext “P” (see the vertical arrow ‘�’): 
 
              +           �* 
   LEFT (ct): HXUCZVAMDSLKPEFJRIGTWOBNYQ 
  RIGHT (pt): PTLNBQDEOYSFAVZKGJRIHWXUMC 
              -------------------------- 
    Position: 12345678911111111112222222 
                                 01234567890123456 
 
Permuting the Alphabets 
 
Now that we know the plaintext letter and its corresponding ciphertext letter, we can proceed to permute the 
alphabets in preparation for enciphering the next plaintext letter.  To stress again, we permute the left and 
right alphabets with full knowledge of the just-enciphered plain- and ciphertext letters. 
 
Permute the Left Alphabet 
 
Permuting the left alphabet involves the following steps: 
 

1. Shift the entire left alphabet cyclically so the ciphertext letter just enciphered is positioned at the 
zenith (i.e., position 1). 

2. Extract the letter found at position zenith+1 (i.e., the letter to the right of the zenith), taking it out 
of the alphabet, temporarily leaving an unfilled ‘hole’. 

                                                           
1 It is perfectly logical to alternate between locating the plaintext letter in the right or left alphabet based on 
some prearranged pattern.  As will be shown in a future paper, Byrne used this alternating alphabet method 
for deriving the starting alphabets. 



Chaocipher Revealed: The Algorithm     4

3. Shift all letters in positions zenith+2 up to, and including, the nadir (zenith+13), moving them one 
position to the left. 

4. Insert the just-extracted letter into the nadir position (i.e., zenith+13). 
 
Let’s perform the above steps on the left (ct) alphabet using our example.  Performing step (1) we shift the 
entire alphabet to bring the ciphertext letter “P” to the zenith position: 
 
              +            * 
   LEFT (ct): PEFJRIGTWOBNYQHXUCZVAMDSLK 
 
Performing step (2), we extract the letter at position zenith+1 (i.e., “E”) leaving a momentary ‘hole’.  This 
leaves the left alphabet looking like this: 
 
              +            * 
   LEFT (ct): P.FJRIGTWOBNYQHXUCZVAMDSLK 
 
For step (3) we shift all letters beginning with zenith+2 (“F”) up to and including the nadir (“Q”), moving 
the sequence (“FJRIGTWOBNYQ”) as a complete block one position to the left.  The left alphabet now 
looks like this: 
 
              +            * 
   LEFT (ct): PFJRIGTWOBNYQ.HXUCZVAMDSLK 
 
In the final step (4), we insert the extracted letter (“E”) back into the alphabet at the nadir position: 
 
              +            * 
   LEFT (ct): PFJRIGTWOBNYQEHXUCZVAMDSLK 
 
This is the new permuted left alphabet. 
 
Permute the Right Alphabet 
 
Permuting the right alphabet is similar to that of the left alphabet, with small but significant differences.  It 
consists of the following steps: 
 

1. Shift the entire right alphabet cyclically so the plaintext letter just enciphered is positioned at the 
zenith. 

2. Now shift the entire alphabet one more position to the left (i.e., the leftmost letter moves 
cyclically to the far right), moving a new letter into the zenith position. 

3. Extract the letter at position zenith+2, taking it out of the alphabet, temporarily leaving an unfilled 
‘hole’. 

4. Shift all letters beginning with zenith+3 up to, and including, the nadir (zenith+13), moving them 
one position to the left. 

5. Insert the just-extracted letter into the nadir position (zenith+13). 
 
Let’s perform the above steps on the right (pt) alphabet using our example.  For step (1) we shift the entire 
alphabet cyclically to bring the plaintext letter “A” to the zenith position: 
 
              +            * 
  RIGHT (pt): AVZKGJRIHWXUMCPTLNBQDEOYSF 

 



Chaocipher Revealed: The Algorithm     5

In step (2) we shift the alphabet one more position to the left, bringing the letter “V” to the zenith (don’t 
forget to always do this step for the right-hand (pt) alphabet!): 
 
              +            * 
  RIGHT (pt): VZKGJRIHWXUMCPTLNBQDEOYSFA 

 
Next, in step (3), we select the letter located two positions to the right of the zenith (i.e., “K”) and extract it 
momentarily.  This leaves the right-hand (pt) alphabet looking like this: 
 
              +            * 
  RIGHT (pt): VZ.GJRIHWXUMCPTLNBQDEOYSFA 

 
For step (4) shift all the remaining letters following the ‘hole’ up to, and including, the nadir 
(“GJRIHWXUMCP”) one position to the left: 
 
              +            * 
  RIGHT (pt): VZGJRIHWXUMCP.TLNBQDEOYSFA 

 
As the last step, step (5), insert the just-extracted letter (“K”) back into the alphabet at the nadir position: 
 
              +            * 
  RIGHT (pt): VZGJRIHWXUMCPKTLNBQDEOYSFA 
 
At this point we have two newly permuted left and right alphabets: 
 
              +            * 
   LEFT (ct): PFJRIGTWOBNYQEHXUCZVAMDSLK 
  RIGHT (pt): VZGJRIHWXUMCPKTLNBQDEOYSFA 
 
In a real-life case we would be ready to encipher the next plaintext character.  The enciphering process is 
now identical for every plaintext letter until the end of the input (a) find the plaintext letter in the right 
alphabet, (b) determine the ciphertext letter, and (c) permute the two alphabets. 
 
Enciphering a Longer Plaintext Sequence 
 
Now that you’ve seen how a plaintext letter is enciphered into its corresponding ciphertext letter, you 
should prove to yourself that you understand it correctly by performing an exercise: encipher a specific 
sequence of plaintext letters into ciphertext given the starting alphabets. 
 
The starting alphabets are the same ones presented above in figure 2: 
 
              +            * 
   LEFT (ct): HXUCZVAMDSLKPEFJRIGTWOBNYQ 
  RIGHT (pt): PTLNBQDEOYSFAVZKGJRIHWXUMC 
 
The plaintext to encipher is: 
 
  WELLDONEISBETTERTHANWELLSAID 
 
You’ll know you understand the algorithm if the resulting ciphertext is: 
 
  OAHQHCNYNXTSZJRRHJBYHQKSOUJY 
 



Chaocipher Revealed: The Algorithm     6

For the record, here are all the alphabets you should have generated in the process: 
 

    Left Alphabet (ct)         Right Alphabet (pt)        CT � PT 
 
HXUCZVAMDSLKPEFJRIGTWOBNYQ  PTLNBQDEOYSFAVZKGJRIHWXUMC     O     W 
ONYQHXUCZVAMDBSLKPEFJRIGTW  XUCPTLNBQDEOYMSFAVZKGJRIHW     A     E 
ADBSLKPEFJRIGMTWONYQHXUCZV  OYSFAVZKGJRIHMWXUCPTLNBQDE     H     L 
HUCZVADBSLKPEXFJRIGMTWONYQ  NBDEOYSFAVZKGQJRIHMWXUCPTL     Q     L 
QUCZVADBSLKPEHXFJRIGMTWONY  NBEOYSFAVZKGQDJRIHMWXUCPTL     H     D 
HFJRIGMTWONYQXUCZVADBSLKPE  JRHMWXUCPTLNBIEOYSFAVZKGQD     C     O 
CVADBSLKPEHFJZRIGMTWONYQXU  YSAVZKGQDJRHMFWXUCPTLNBIEO     N     N 
NQXUCVADBSLKPYEHFJZRIGMTWO  BIOYSAVZKGQDJERHMFWXUCPTLN     Y     E 
YHFJZRIGMTWONEQXUCVADBSLKP  RHFWXUCPTLNBIMOYSAVZKGQDJE     N     I 
NQXUCVADBSLKPEYHFJZRIGMTWO  MOSAVZKGQDJERYHFWXUCPTLNBI     X     S 
XCVADBSLKPEYHUFJZRIGMTWONQ  AVKGQDJERYHFWZXUCPTLNBIMOS     T     B 
TONQXCVADBSLKWPEYHUFJZRIGM  IMSAVKGQDJERYOHFWZXUCPTLNB     S     E 
SKWPEYHUFJZRILGMTONQXCVADB  RYHFWZXUCPTLNOBIMSAVKGQDJE     Z     T 
ZILGMTONQXCVARDBSKWPEYHUFJ  LNBIMSAVKGQDJOERYHFWZXUCPT     J     T 
JILGMTONQXCVAZRDBSKWPEYHUF  LNIMSAVKGQDJOBERYHFWZXUCPT     R     E 
RBSKWPEYHUFJIDLGMTONQXCVAZ  RYFWZXUCPTLNIHMSAVKGQDJOBE     R     R 
RSKWPEYHUFJIDBLGMTONQXCVAZ  YFZXUCPTLNIHMWSAVKGQDJOBER     H     T 
HFJIDBLGMTONQUXCVAZRSKWPEY  LNHMWSAVKGQDJIOBERYFZXUCPT     J     H 
JDBLGMTONQUXCIVAZRSKWPEYHF  MWAVKGQDJIOBESRYFZXUCPTLNH     B     A 
BGMTONQUXCIVALZRSKWPEYHFJD  VKQDJIOBESRYFGZXUCPTLNHMWA     Y     N 
YFJDBGMTONQUXHCIVALZRSKWPE  HMAVKQDJIOBESWRYFGZXUCPTLN     H     W 
HIVALZRSKWPEYCFJDBGMTONQUX  RYGZXUCPTLNHMFAVKQDJIOBESW     Q     E 
QXHIVALZRSKWPUEYCFJDBGMTON  SWYGZXUCPTLNHRMFAVKQDJIOBE     K     L 
KPUEYCFJDBGMTWONQXHIVALZRS  NHMFAVKQDJIOBRESWYGZXUCPTL     S     L 
SPUEYCFJDBGMTKWONQXHIVALZR  NHFAVKQDJIOBRMESWYGZXUCPTL     O     S 
OQXHIVALZRSPUNEYCFJDBGMTKW  WYZXUCPTLNHFAGVKQDJIOBRMES     U     A 
UEYCFJDBGMTKWNOQXHIVALZRSP  GVQDJIOBRMESWKYZXUCPTLNHFA     J     I 
JBGMTKWNOQXHIDVALZRSPUEYCF  OBMESWKYZXUCPRTLNHFAGVQDJI     Y     D 
 

Note that the leftmost column in the left alphabet table vertically mirrors the generated ciphertext, while the 
rightmost column of the right alphabet table corresponds to the plaintext.  This property stems logically 
from the method of generating the alphabets and can serve as a verifying check of your work. 

 
How to Decipher Ciphertext 
 
Deciphering a Chaocipher-encrypted message is identical to the steps used for enciphering.  The sole 
difference is that the decipherer locates the known ciphertext letter in the left (ct) alphabet, with the 
plaintext letter being the corresponding letter in the right (pt) alphabet.  Alphabet permuting is identical in 
enciphering and deciphering. 
 
Implementing Chaocipher in Software 
 
Although the Chaocipher algorithm is relatively simple once revealed, it is tedious and error-prone if done 
by hand.  It is therefore highly recommendable to implement the Chaocipher algorithm as a software 
program in the language of your choice.  To date Chaocipher has been implemented in a host of 
programming languages, including Perl (see appendix A), Haskell, C++, C#, Java, JavaScript, Python, and 
Scheme. 
 
Present and Future Papers 
 
It was decided to concentrate in this paper solely on the algorithmic description of the Chaocipher system.  
The author deliberately did not describe how to decipher Exhibits 1 and 4 from John F. Byrne’s 
autobiography “Silent Years” to enable would-be decipherers to try their hands at solving them armed only 



Chaocipher Revealed: The Algorithm     7

with the knowledge of the system.  Anyone interested in doing so can find the challenge messages in 
computer-readable format [3] on The Chaocipher Clearing House [1] web site. 
At the present time of writing, exhibits 2 and 3 from “Silent Years”, and exhibit 5 from Lou Kruh’s and 
Cipher Deavours’s 1990 article in Cryptologia [7], have not yet been deciphered. 
 
Future papers will deal with such topics as deciphering the “Silent Years” exhibits, assessing Chaocipher 
cryptographic security, the mechanical aspects of Chaocipher as seen by Byrne, cryptanalysis of 
Chaocipher, Byrne’s proposed key distribution scheme, and more. 
 
Conclusion 
 
Numerous cryptanalytic researchers, both professional and amateur, have leveled justified charges against 
the fact that John F. Byrne violated Kerckhoff’s famous principle [2] that “a cryptosystem should be secure 
even if everything about the system, except the key, is public knowledge”.  This paper attempts to rectify 
that valid criticism by revealing the Chaocipher algorithm.  Students of cryptanalysis can now try their 
hands at solving the Chaocipher challenge messages armed with the inner workings of the system. 
 
Acknowledgements 
 
The author would like to thank Jeff Calof for his excellent proofreading of this paper.  Without Jeff’s sharp 
eyes and astute comments, many readers’ initial understanding of Chaocipher would have been marred by 
typos and inconsistencies. 
 
A special thanks of gratitude is owed to Mrs. Patricia Byrne, the daughter-in-law of John F. Byrne and the 
wife of his late son, John.  It is due to Mrs. Byrne’s wish to preserve her father-in-law’s legacy that the 
entire collection of Chaocipher material now resides in the National Cryptologic Museum in Ft. Meade, 
MD.  Without her magnanimity, the secret of Chaocipher could conceivably have been lost forever. 
  
References 
 
[1] “What is Chaocipher?” The Chaocipher Clearing House web site, 
http://www.mountainvistasoft.com/chaocipher/what-is-chaocipher.html (last accessed 29 June 2010). 
 
[2] For one of many descriptions of the principle, see Wikipedia: 
http://en.wikipedia.org/wiki/Kerckhoffs'_principle (last accessed 29 June 2010) 
 
[3] “ASCII versions of all Chaocipher Exhibits”, The Chaocipher Clearing House, 
http://www.mountainvistasoft.com/chaocipher/Chaocipher-ASCII-versions.htm (last accessed 29 June 
2010). 
 
[4] Byrne, John F. 1953.  Silent Years: An Autobiography with Memoirs of James Joyce and Our Ireland.  
New York: Farrar, Straus & Young. 
 
[5] The Chaocipher Clearing House, Progress Report #16, 
http://www.mountainvistasoft.com/chaocipher/chaocipher-016.htm (last accessed 29 June 2010). 
 
 [6] “Chaocipher Machine and Papers”, web site of the National Cryptologic Museum Foundation, 
http://www.cryptologicfoundation.org/content/Direct-Museum-
Support/recentacquisitions.shtml#Chaocipher (last accessed 29 June 2010) 
 
[7] Chaocipher Enters the Computer Age When its Method is Disclosed to Cryptologia Editors; John 
Byrne, Cipher A. Deavours, Louis Kruh; Cryptologia (1990), Volume 14, Issue 3 
 



Chaocipher Revealed: The Algorithm     8

[8] "Chaocipher: Analysis And Models", Jeffrey A. Hill (2003, revised 2009), located on The Chaocipher 
Clearing House web site, http://www.mountainvistasoft.com/chaocipher/chaocipher-009.htm , (last accessed 
2 July 2010).



Chaocipher Revealed: The Algorithm     1

Appendix A: Perl implementation of the Chaocipher Algorithm 
 
# ChaoSim.pl : Simulation of Chaocipher enciphering/deciphering 
# (c) Moshe Rubin, August 2010 
# email: mosher@mountainvistasoft.com 
 
use strict; 
use diagnostics; 
use warnings; 
 
my $left = uc($ARGV[1]); 
my $right = uc($ARGV[2]); 
my $mode = $ARGV[3]; 
my $pt = ""; 
my $ct = ""; 
my $len = 0; 
my $trace = 0; 
 
if (scalar(@ARGV) == 0) 
{ 
   usage(); 
   exit (-1); 
} 
 
if (exists ($ARGV[4])) 
{ 
   $trace = 1; 
} 
 
# Read input file 
if ($mode eq "encipher") 
{ 
   $pt = getFile ($ARGV[0]); 
   $len = length($pt); 
} 
else 
{ 
   $ct = getFile ($ARGV[0]); 
   $len = length($ct); 
} 
 
printf "\n"; 
printf "Left: $left    Right: $right"; 
 
for (my $i=0; $i<$len; ++$i) 
{ 
   my $p; 
   my $c; 
   my $shift; 
 
   if ($mode eq "encipher") 
   { 
      # Encipher plaintext letter 
      $p = substr ($pt, $i, 1); 
      ($right, $shift) = bringToZenith ($right, $p); 
      $left = rotate ($left, $shift); 
      $c = substr ($left, 0, 1); 
      $ct .= $c; 
   } 
   else 
   { 
      # Decipher ciphertext letter 
      $c = substr ($ct, $i, 1); 
      ($left, $shift) = bringToZenith ($left, $c); 
      $right = rotate ($right, $shift); 
      $p = substr ($right, 0, 1); 
      $pt .= $p; 
   } 
 
   printf "  ($p,$c)\n" if $trace; 
    
   # Permute alphabets 
   $left = permute ($left, 1); 
   $right = rotate ($right, 1); 
   $right = permute ($right, 2); 
    
   printf "Left: $left    Right: $right" if $trace; 
} 



Chaocipher Revealed: The Algorithm     2

 
printf "\n\n"; 
printf "Plaintext: $pt\n"; 
printf "\n"; 
printf "Ciphertext: $ct\n"; 
 
sub getFile 
{ 
   my ($f) = @_; 
   my $text = ""; 
   my $line; 
 
   open (FILE, "<$f"); 
 
   while ($line = <FILE>) 
   { 
      chomp($line); 
      $line =~ s/\s+//g; 
      $line = uc($line); 
 
      $text .= $line; 
   } 
 
   close (FILE); 
 
   return $text; 
} 
 
sub bringToZenith 
{ 
   # Bring letter to zenith position 
   my ($alphabet, $letter) = @_; 
   my $index = index ($alphabet, $letter); 
   return (rotate ($alphabet, $index), $index); 
} 
 
sub rotate 
{ 
   # Rotate alphabet N positions counterclockwise 
   my ($alphabet, $shift) = @_; 
   return ($shift > 0) ? 
             substr ($alphabet, $shift) . substr ($alphabet, 0, $shift) :  
             $alphabet; 
} 
 
sub permute 
{ 
   # Generic Chaocipher alphabet permutation (i.e., Nick Pelling's "twizzling") 
   my ($alphabet, $offset) = @_; 
   return substr ($alphabet, 0, $offset) .  
             substr ($alphabet, $offset+1, 13-$offset) .  
             substr ($alphabet, $offset, 1) .  
             substr ($alphabet, 14); 
} 
 
sub usage 
{ 
   printf "Usage: perl ChaoSim.pl <input_file> <left_alphabet> <right_alphabet>\n"; 
   printf "                       <'encipher' | 'decipher'> [trace]\n\n"; 
   printf "Example: perl ChaoSim.pl my.ct.txt emkxgdclirwpvqutnbjshyaozf\n"; 
   printf "                         zpjkelbohdtycavirufmnxgqsw decipher\n\n"; 
   printf "         perl ChaoSim.pl my.pt.txt bfurkashexcymnvqzgijtldwpo\n"; 
   printf "                         uslfieavpdcybjzthogkmnxwqr encipher 1\n"; 
} 

 


