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Abstract

Approaches based on the maximum likelihood (ML) method and on the order statistics are described and evaluated for the
estimation of the mean and standard deviation of a normal population from a left-singly censored sample, i.e. a sample for
which some measurement results fall below the reporting limit of the analytical method. The performance of the methods is
evaluated by means of data simulations. The sample size considered is small to moderate: N = 6–18. Simulation data show
that the ML method performs better than the method based on order statistics, especially in difficult situations, e.g. large
expected censored proportion hex (hex ≥ 50%) and for small sample size (N = 6). The reliability of the estimates depends
on the censored proportion. The larger the censored proportion, the poorer the quality of the estimates. When the expected
censored proportion does not exceed 50%, i.e. when the true mean µ of the measurement results is above the reporting limit,
the performance of the ML method in the estimation of the mean of a censored sample is very acceptable, i.e. it is comparable
to that using classical moment calculation on a complete (non-censored) sample. When the expected censored proportion is
very high (e.g. 83%) the estimates are, as expected, largely biased. The performance of the ML method in the estimation of
the standard deviation of censored data is not as good as in the estimation of the mean. A formula is given for the approximate
sample size required to have a specified confidence level that a ML estimated mean for the censored sample will not differ
from the true mean by a certain magnitude. © 2001 Elsevier Science B.V. All rights reserved.

Keywords: Maximum likelihood; Maximum likelihood estimation (MLE); Order statistics; Mean; Standard deviation; Censored data;
Censored samples; Reporting limit; Sample size

1. Introduction

Most of the current literature on analysis of mea-
surement data concerns unrestricted (i.e. complete)
sample data. However, in some situations, restricted
(incomplete) sample data, i.e. truncated data, censored
data, are encountered [1,2]. Truncated data are data of
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which some (unknown amount of) data are missing. It
is known that the missing data are those values below
the lower limit and/or above the upper limit. Cen-
sored data are data of which some have no numerical
values and are only known to be below a lower limit
and/or above an upper limit. If the non-numerical data
are the values below a lower limit, they are called
left-censored data. If the non-numerical data are the
values above an upper limit, they are right-censored.
For analytical purposes, the left-censored data are
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Nomenclature

CI confidence interval
h observed proportion of test results

which are not known numerically,
but only as ‘<yL’

hex expected proportion of test results
which are not known numerically,
but only as ‘<yL’

n observed number of test results that
are numerically known, i.e. number
of test results (in a dataset) that are
above the reporting limit

n1 observed number of test results (in a
dataset) for which no result except a
‘<yL’ is obtained

n1ex expected number of test results (in a
dataset) for which no result except a
‘<yL’ is obtained

N total number of test results in a dataset
s2 variance of the n numerically known

test results
v variance
V covariance matrix of normal

order statistics
ȳ arithmetic mean of the n numerically

known test results
yi individual test results
y(i) sample order statistics
yL reporting limit or lower limit

Greek letters
γ parameter used to find the associated

constant λ in the maximum likelihood
estimation

η standardized reporting limit
λ constant derived from Tables 1 and 2
µ population mean of test results
µ11 variance factor of µ̂

σ population standard deviation
ξ (i/N) expected value of the ith (standard)

normal order statistic for the sample
size N

Superscripts
∧ superscript put on the parameters to

represent the parameter estimates

most important and the further discussion will focus
on this type of data. Indeed, a trace analysis of which
the measurements are carried out around the report-
ing limit of the analytical method and of which some
measurement results fall below the reporting limit,
yields a left-censored dataset. This situation is often
encountered in, e.g. certification of reference materi-
als [3], food and environmental analyses [4–7]. The
problem is how to estimate the mean and standard
deviation of a left-censored dataset. We can calculate
the mean ȳ and the standard deviation σ of the nu-
merically known data. However, ȳ will overestimate
the true mean µ and σ will underestimate the true
standard deviation σ since the censored data with low
values (<reporting limit) are not taken into account
in the calculation. Several attempts have been made
to consider these non-numerical data too in order to
obtain more realistic estimates of the mean and stan-
dard deviation. Cohen [1,2] applied the maximum
likelihood (ML) method to estimate the parameters
of normal populations from truncated and censored
samples. Gupta [8], Sarhan and Greenberg [9] em-
ployed the method based on order statistics to derive
the coefficients of the best linear unbiased estimator
(BLUE) for µ and σ of normal populations from cen-
sored samples. Using also order statistics, Travis et al.
[4] proposed a probability plot which estimates µ and
σ from the intercept and slope, respectively, of a least
squares line fit to the data above the reporting limit.
For non-normally distributed censored samples, robust
methods [5] or data transformation combined with the
iterative ML method via expectation-maximization
algorithm [7,10] can be used. Statistical softwares
were made available for the computation of parameter
estimates based on censored samples [5,10,11].

In this paper, two methods for the analysis of a
left-singly censored sample from a normal popula-
tion have been extensively evaluated and compared
by means of simulations, namely the ML method
[1,2,12] and the method based on order statistics
[4,6,8,9,13] (the methods can also be applied to log-
normal samples by analyzing the logarithms of the
data and then re-transform these back, however, for
a lognormal distribution, the mean µ determines the
median, i.e. antilog(µ) = median [4,5,11]). The sam-
ple size considered is small to moderate (N = 6–18).
Various proportions of censoring, ranging between 17
and 83%, are studied in order to evaluate the degree
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of censoring which still permits a reliable estimation
of the mean and standard deviation. Though some-
what similar studies have been previously addressed
[5–7], a different approach for the evaluation of the
method performance is used in this work. Instead of
measuring the method performance in terms of the
estimated coverages of 90% confidence interval (CI)
[7], the root mean squared error (RMSE), the bias
or variance of the estimates [5,6], the distribution of
estimates around the true value is considered. This
gives us a good idea of how close an estimate is to its
true value and how reliable an estimate is. In addition,
by comparing the distributions of estimates obtained
from censored samples with those using classical
moment calculation on complete (non-censored) sam-
ples, the degree of censoring which still permits a
reliable estimation of the statistical parameters could
be evaluated (see Section 3).

2. Methods

To evaluate the reliability of the estimates for the
mean and the standard deviation of a left-censored
dataset, complete (non-censored) datasets and cen-
sored datasets, with a known true mean µ (of low
value around the reporting limit) and a known true
standard deviation σ , are generated (see Section 2.1).
The estimates of the mean and the standard deviation
are then calculated from those datasets (see Section
2.2) and their distributions are considered (see Section
2.3). The efficiency of the methods is determined by
comparing the distributions of the estimates obtained
for censored datasets with the distributions of the es-
timates obtained in the classical way with the method
of moments (see Eqs. (2) and (3) in Section 2.2) for
the complete (non-censored) datasets (see Section 3).

2.1. Data simulations

2.1.1. Parameters applied in the data simulations
The situation where an analysis is carried out around

the reporting limit is taken as a case study. Other situ-
ations where censored data arise can be found in [1].
The parameters for the simulations are as follows:

Sample size:

N = 6, 12, 18

For each N, the following means and standard devia-
tions are considered:

Population mean:

µ=
{

1.19, 1.09, 1.00, 0.91, 0.87, 0.81 (for σ=0.20)

1.34, 1.15, 1.00, 0.85, 0.76, 0.66 (for σ=0.35)

Population standard deviation:

σ = 0.20, 0.35

Reporting limit:

yL = 1 for all censored cases

the units for µ, σ , and yL are arbitrary.
The different means µ (calculated from Eq. (1))

considered in the simulations are determined in such a
way that the probabilities to obtain a test result below a
reporting limit of yL = 1 equal the expected censored
proportions hex. The values of hex considered are 17,
33, 50, 67, 75 and 83%. Thus, n1ex = 0.01hexN , is the
expected number of test results obtained from a sample
of size N that are reported as below the reporting limit,
e.g. with N = 12 and hex = 17, 33, 50, 67, 75 and
83%, n1ex are 2, 4, 6, 8, 9 and 10, respectively.

Use is made of the relationship:

µ = yL + z(100−hex)σ (1)

where z(100−hex) is the (100 − hex)th percentile of
the standard normal distribution, i.e. the value below
which a standard normal random variable falls with a
probability (100 − hex)% with hex = 17, 33, 50, 67,
75 and 83%.

2.1.2. Complete (non-censored) datasets
For each situation considered, 10,000 datasets,

each consisting of N random test results normally
distributed around the true mean µ with the standard
deviation σ , are generated by the RANDN function in
Matlab 4.0 [14]. Note that a complete (non-censored)
dataset may contain values below the reporting limit.

2.1.3. Singly censored datasets
In what follows, N is the sample size (i.e. the total

number of test results), n1 is the number of test results
which are censored since they are below the reporting
limit yL and n is the number of remaining test results
after data censoring (N = n1 + n).
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Fig. 1. Distributions of the observed number of censored test
results, n1, for different expected censor proportions hex (sample
size N = 12). Relative frequency is obtained as the proportion of
datasets with the observed n1 (hex: expected censored proportion,
n1ex: expected number of censored test results). (a) hex = 17%
(n1ex = 2). (b) hex = 50% (n1ex = 6). (c) hex = 75% (n1ex = 9).

The censored datasets were derived from the com-
plete (non-censored) datasets (generated as described
in Section 2.1.2) by leaving out those test results which
are smaller than the reporting limit. The number of test
results that were left out from each dataset, n1, is not
fixed but random. As an example, distributions of n1,
associated with (>10,000) complete (non-censored)
datasets of N = 12 from which 10,000 censored
datasets were originated, are represented in Fig. 1. The
datasets with n1 = 0, N −1 and N are discarded since
(i) the data are not censored when n1 = 0, and (ii) the
analysis of censored data required at least two numer-
ically known data, n1 ≤ N − 2 (see Section 2.2). Be-
cause some datasets have to be discarded, more than
10,000 complete (non-censored) datasets were simu-
lated in order to obtain 10,000 censored datasets, i.e.

the simulations of complete datasets were iterated till
the number of censored datasets (with 1 ≤ n1 ≤ N−2)
reached 10,000.

2.2. Calculation of the estimates µ̂ and σ̂

For the complete (non-censored) datasets, the es-
timates µ̂ and σ̂ are calculated in the classical way
(applying the method of moments) from

µ̂ =
∑N

i=1yi

N
(2)

σ̂ =
√∑N

i=1(yi − µ̂)2

N − 1
(3)

For the censored datasets, the estimates µ̂ and σ̂ are
calculated using the ML method and the method based
on order statistics.

2.2.1. Maximum likelihood method
For each censored dataset, the ML estimates of

the mean and the standard deviation are obtained as
follows [12].

1. Calculate the mean ȳ and the variance s2 of the n
numerically known data as

ȳ =
∑n

i=1yi

n
(4)

s2 =
∑n

i=1(yi − ȳ)2

n − 1
(5)

2. Calculate the proportion of censored data h and the
parameter γ̂ as

h = n1

N
(6)

γ̂ = s2

(ȳ − yL)2
(7)

3. Use the h and γ̂ (obtained from Eqs. (6) and (7)) to
find the associated constant λ(h, γ̂ ) from Tables 1
and 2, apply linear interpolation if the values of h
and γ̂ are not the same as those in Tables 1 and 2.

4. Calculate the ML estimates µ̂ and σ̂ as

µ̂ = ȳ − λ(ȳ − yL) (8)

σ̂ =
√

s2 + λ(ȳ − yL)2 (9)
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We have observed from data simulations that the
estimated gamma (γ̂ ) obtained from Eq. (7) can be
larger than 1. This can be the case when N is small
and/or the censored proportion is large (h > 50%).
However, γ̂ larger than 3 is rarely observed. For
example, from data simulations of 10,000 censored
samples with hex = 50% and N = 6, 17 and 0.03%
of censored samples are found to have γ̂ larger than 1
and 3, respectively. Therefore, the tables of constant
λ in [12], which are limited to entries for γ ≤ 1,
have been enlarged to include the values of λ(h, γ )
for γ ranging between 0 and 3 (Tables 1 and 2). The
original tables given by Cohen [1,2] are also limited
to γ ≤ 1.

2.2.2. Method based on order statistics
The method makes use of the expected values of

order statistics, also called rankits [15,16]. The ap-
proach is more commonly known as a technique used
to check the normality of data [13,15]. It can, however,
as is further explained, also be adapted to estimate
the mean and the standard deviation of censored data.

Let y(1) ≥ y(2) ≥ · · · y(i) · · · y(n) be the n numer-
ically known data, arranged in descending order, ob-
served in a censored sample of size N from a normal
distribution with mean µ and standard deviation σ .
These ordered observations y(i) are called sample or-
der statistics. It can then be written as

E(y(i)) = µ + σξ(i/N) (10)

where E(y(i)) is the expected value of the ith sample
order statistic and ξ (i/N) is the expected value of the
ith (standard) normal order statistic for the sample size
N.

The practical meaning of ξ (i/N) is as follows: if
samples of size N are repeatedly taken from a normal
population with mean µ and standard deviation σ , the
average of y(i), the ith largest value, obtained from
all samples would be on ξ (i/N) standard deviations
from the mean. For example, ξ (i/N) for sample size
N = 6 and i = 1–6 is 1.267, 0.642, 0.202, −0.202,
−0.642 and −1.267, respectively. Thus, the first and
the second largest values of a normally distributed
sample with N = 6 are on the average, respectively,
1.267 and 0.642 standard deviations above the mean.
Values of ξ (i/N) for the sample size N = 2–50 can be
found in literature [13,16].

To represent all observations of the sample, Eq. (10)
can be rewritten in a more generalized form in matrix
notation as

E(y) = Xβ (11)

where

yT = [y(1), y(2), . . . , y(i), . . . , y(n)]

βT = [µ, σ ] X = [1n, x],

with 1n an n × 1 column vector of ones and

xT = [ξ(1/N), ξ(2/N), . . . , ξ(i/N), . . . , ξ(n/N)]

It follows from Eq. (11) that the estimates of the
y-intercept (β̂0) and the slope (β̂1) of the straight line
regressed between the sample order statistics y(i) as or-
dinates and the expected values ξ (i/N) as abscissae cor-
respond to the estimates of the mean and the standard
deviation of the sampled population, respectively. The
least squares estimates of the intercept and the slope,
β̂0 and β̂1, respectively, are calculated as follows [17]

β̂ = (XTX)−1XTy (12)

where

β̂T = [β̂0, β̂1] = [µ̂, σ̂ ]

the matrix X and the vector y are the same as in
Eq. (11).

To obtain a better estimate of β, the variance–
covariance between the expected values of the (stan-
dard) normal order statistics should be taken into
account in the least square fitting of a straight
line through the data pairs (ξ (i/N), y(i)). Therefore,
Eq. (12) becomes [8]

β̂ = (XTV−1X)−1XTV−1y (13)

where V is the covariance matrix of the normal or-
der statistics which can be obtained from [9] for the
sample size N = 2–20.

To illustrate the application of the method for the
analysis of censored samples, an example is given
below.

Example. The following censored dataset (N =
6, n1 = 1) is obtained [1.5, 1.4, 1.2, 1.1, 1.0 and
<1.0]. Notice that the data are arranged in descending
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order. To estimate the mean and the standard devia-
tion, the matrix X and the vector y (in Eq. (13)) are
defined as

X =




1 ξ(1/6)

1 ξ(2/6)

...
...

1 ξ(5/6)


 =




1 1.267

1 0.642

1 0.202

1 −0.202

1 −0.642




,

y =




1.5

1.4

1.2

1.1

1.0




The corresponding covariance matrix V of ξ (i/N); i =
1, 2, . . . , 5 and N = 6 (source [9]) is

V =




0.4159 0.2085 0.1394 0.1024 0.0774

0.2085 0.2796 0.1890 0.1397 0.1059

0.1394 0.1890 0.2462 0.1833 0.1397

0.1024 0.1397 0.1833 0.2462 0.1890

0.0774 0.1059 0.1397 0.1890 0.2796




β̂ is estimated from Eq. (13) as[
1.17

0.27

]
.

Therefore, the estimated mean and standard deviation
correspond to β̂0 = 1.17 and β̂1 = 0.27, respectively.

2.3. Building the distributions of the estimates

2.3.1. Observed distribution of the estimates
The performance of the methods for the estimation

of µ and σ is evaluated by considering the distribu-
tion of estimates around the true value. These are de-
rived by categorizing the estimates (µ̂ or σ̂ ) of 10,000
datasets into appropriate intervals. The number of es-
timates which falls in each interval is then counted and
divided by the total number of estimates (10,000). This
is then expressed as the percent of µ̂ (or σ̂ ) included
in the interval. Since the relative frequency is based on
a large number of estimates, i.e. 10,000, it can also be
interpreted as the probability that an estimate will be

observed in the interval. To describe and summarize
the distributions of the estimated means µ̂, the follow-
ing intervals are considered for each distribution:

µ ± dµ

σ√
N

with dµ = 0.67, 1 and 1.96, these intervals describe
for a given distribution the range within which the
estimated mean is expected to lie with 50, 68 and
95% probability.

The distributions of the estimated standard devia-
tions σ̂ are described and summarized by considering
the following intervals for each distribution:

σ ± dσ σ

with dσ = 0.25, 0.50, 0.75 and 1.0. These intervals
of course are not CIs but they describe the probability
that an estimate σ̂ would not differ from its true value
by more than 25, 50, 75 and 100%, respectively.

2.3.2. Expected distribution of the ML estimates µ̂

Since the results from the simulations demonstrate
that the performance of the method based on order
statistics are inferior to that of the ML method (see
Section 3.1), the distributions of the estimates µ̂ are
not considered here for the order statistical method.
Moreover, only the expected distribution of the esti-
mates µ̂ is presented here since it provides a basis for
the approximation of the sample size required to ob-
tain a specified confidence level that the ML estimate
µ̂ of a censored sample will not deviate from the true
value µ by more than a certain magnitude (see Sec-
tion 3.4). The performance of the ML method in the
estimation of the standard deviation being not as good
as in the estimation of the mean we do not consider
here the expected distribution of the estimates σ̂ .

The expected distribution of the ML estimate µ̂ is
based on the variance of µ̂. The asymptotic variance
of µ̂ is calculated as [2]

v(µ̂) = σ 2

N
µ11 (14)

where µ11 is the variance factor of µ̂ which is a func-
tion of the censored proportion h, or the reporting limit
expressed in terms of the deviation from the mean
value in standard deviation units: η = (yL − µ)/σ .
Values of µ11 associated with h or η can be found
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Table 3
Variance factor µ11 for singly censored samples from the normal distribution [1,2]

η µ11 h (%) η µ11 h (%) η µ11 h (%) η µ11 h (%)

−4.00 1.000002 0.00 −0.54 1.132963 29.46 0.48 2.795042 68.44 1.50 33.338560 93.32
−3.50 1.000013 0.02 −0.52 1.139788 30.15 0.50 2.892934 69.15 1.52 35.376900 93.57
−3.00 1.000096 0.13 −0.50 1.146963 30.85 0.52 2.996396 69.85 1.54 37.550910 93.82
−2.50 1.000559 0.62 −0.48 1.154506 31.56 0.54 3.105761 70.54 1.56 39.870140 94.06
−2.40 1.000777 0.82 −0.46 1.162437 32.28 0.56 3.221383 71.23 1.58 42.344780 94.29
−2.30 1.001072 1.07 −0.44 1.170775 33.00 0.58 3.343639 71.90 1.60 44.985830 94.52
−2.20 1.001470 1.39 −0.42 1.179542 33.72 0.60 3.472929 72.57 1.62 47.805090 94.74
−2.10 1.002000 1.79 −0.40 1.188761 34.46 0.62 3.609677 73.24 1.64 50.815210 94.95
−2.00 1.002704 2.28 −0.38 1.198456 35.20 0.64 3.754337 73.89 1.66 54.029830 95.15
−1.95 1.003137 2.56 −0.36 1.208652 35.94 0.66 3.907390 74.54 1.68 57.463590 95.35
−1.90 1.003634 2.87 −0.34 1.219376 36.69 0.68 4.069347 75.17 1.70 61.132230 95.54
−1.85 1.004203 3.22 −0.32 1.230656 37.45 0.70 4.240754 75.80 1.72 65.052670 95.73
−1.80 1.004854 3.59 −0.30 1.242521 38.21 0.72 4.422191 76.42 1.74 69.243150 95.91
−1.75 1.005598 4.01 −0.28 1.255004 38.97 0.74 4.614275 77.04 1.76 73.723240 96.08
−1.70 1.006447 4.46 −0.26 1.268138 39.74 0.76 4.817664 77.64 1.78 78.514040 96.25
−1.65 1.007416 4.95 −0.24 1.281956 40.52 0.78 5.033058 78.23 1.80 83.638270 96.41
−1.60 1.008520 5.48 −0.22 1.296498 41.29 0.80 5.261203 78.81 1.82 89.120360 96.56
−1.55 1.009776 6.06 −0.20 1.311800 42.07 0.82 5.502893 79.39 1.84 94.986640 96.71
−1.50 1.011205 6.68 −0.18 1.327906 42.86 0.84 5.758976 79.95 1.86 101.265500 96.86
−1.45 1.012829 7.35 −0.16 1.344859 43.64 0.86 6.030354 80.51 1.88 107.987400 96.99
−1.40 1.014673 8.08 −0.14 1.362704 44.43 0.88 6.317988 81.06 1.90 115.185400 97.13
−1.35 1.016765 8.85 −0.12 1.381491 45.22 0.90 6.622904 81.59 1.92 122.895000 97.26
−1.30 1.019139 9.68 −0.10 1.401271 46.02 0.92 6.946196 82.12 1.94 131.154400 97.38
−1.25 1.021829 10.56 −0.08 1.422099 46.81 0.94 7.289031 82.64 1.96 140.005000 97.50
−1.20 1.024878 11.51 −0.06 1.444032 47.61 0.96 7.652652 83.15 1.98 149.491200 97.61
−1.15 1.028331 12.51 −0.04 1.467132 48.40 0.98 8.038388 83.65 2.00 159.661200 97.72
−1.10 1.032241 13.57 −0.02 1.491463 49.20 1.00 8.447655 84.13 2.02 170.566900 97.83
−1.05 1.036667 14.69 0.00 1.517094 50.00 1.02 8.881966 84.61 2.04 182.264200 97.93
−1.00 1.041677 15.87 0.02 1.544097 50.80 1.04 9.342936 85.08 2.06 194.813600 98.03
−0.98 1.043860 16.35 0.04 1.572548 51.60 1.06 9.832289 85.54 2.08 208.280500 98.12
−0.96 1.046155 16.85 0.06 1.602529 52.39 1.08 10.351870 85.99 2.10 222.735500 98.21
−0.94 1.048565 17.36 0.08 1.634124 53.19 1.10 10.903640 86.43 2.12 238.254800 98.30
−0.92 1.051098 17.88 0.10 1.667427 53.98 1.12 11.489700 86.86 2.14 254.920800 98.38
−0.90 1.053759 18.41 0.12 1.702531 54.78 1.14 12.112310 87.29 2.16 272.822800 98.46
−0.88 1.056555 18.94 0.14 1.739540 55.57 1.16 12.773860 87.70 2.18 292.057200 98.54
−0.86 1.059493 19.49 0.16 1.778561 56.36 1.18 13.476920 88.10 2.20 312.728200 98.61
−0.84 1.062579 20.05 0.18 1.819708 57.14 1.20 14.224230 88.49 2.22 334.948600 98.68
−0.82 1.065821 20.61 0.20 1.863103 57.93 1.22 15.018740 88.88 2.24 358.840700 98.75
−0.80 1.069228 21.19 0.22 1.908875 58.71 1.24 15.863580 89.25 2.26 384.536600 98.81
−0.78 1.072808 21.77 0.24 1.957159 59.48 1.26 16.762110 89.62 2.28 412.179500 98.87
−0.76 1.076569 22.36 0.26 2.008100 60.26 1.28 17.717940 89.97 2.30 441.924500 98.93
−0.74 1.080520 22.96 0.28 2.061851 61.03 1.30 18.734920 90.32 2.32 473.939600 98.98
−0.72 1.084673 23.58 0.30 2.118574 61.79 1.32 19.817160 90.66 2.34 508.406800 99.04
−0.70 1.089036 24.20 0.32 2.178441 62.55 1.34 20.969090 90.99 2.36 545.523600 99.09
−0.68 1.093621 24.83 0.34 2.241636 63.31 1.36 22.195430 91.31 2.38 585.503900 99.13
−0.66 1.098439 25.46 0.36 2.308352 64.06 1.38 23.501260 91.62 2.40 628.579700 99.18
−0.64 1.103502 26.11 0.38 2.378794 64.80 1.40 24.892000 91.92 2.42 675.002900 99.22
−0.62 1.108823 26.76 0.40 2.453182 65.54 1.42 26.373480 92.22 2.44 725.046500 99.27
−0.60 1.114415 27.43 0.42 2.531747 66.28 1.44 27.951930 92.51 2.46 779.007200 99.31
−0.58 1.120292 28.10 0.44 2.614735 67.00 1.46 29.634060 92.79 2.48 837.206900 99.34
−0.56 1.126470 28.77 0.46 2.702408 67.72 1.48 31.427030 93.06 2.50 899.995000 99.38
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in [2]. For the convenience of the readers, Table 3 with
more extensive entries of µ11 for the singly censored
sample has been added here. They were completely
recomputed. Values of µ11 are provided with more
decimal places, as well as for more elaborated inter-
vals of the argument h or η than those given in [2].
For the values of h or η that do not correspond with
those in Table 3, linear interpolation can be applied.

It is known that for large sample size, the ML es-
timates are unbiased and approximately normally dis-
tributed [18]. By assuming a normal distribution of the
ML estimates µ̂, their expected distributions for the
chosen intervals µ±dµ(σ/

√
N) can then be obtained

as the proportion of the whole area under the standard
normal distribution that lies between z = −dµ/

√
µ11

Table 4
Distributions of the estimated means µ̂

hex
a (%) Probabilityn < 2 (%)b Percent of µ̂ included in the intervalc

µ ± 0.67(σ/
√

N) µ ± (σ/
√

N) µ ± 1.96(σ/
√

N)

N = 6 N = 12 N = 18 N = 6 N = 12 N = 18 N = 6 N = 12 N = 18 N = 6 N = 12 N = 18

17 0 0 0 49 50 50 68 68 68 92 94 94
51 51 50 69 69 68 94 95 95
44 34 24 61 50 39 90 86 79
49 67 94

33 2 0 0 49 47 47 70 64 64 93 91 92
51 47 47 67 64 64 92 92 92
23 7 2 38 14 5 78 55 35
47 64 93

50 11 0 0 52 44 43 68 61 60 95 87 88
42 41 41 59 57 58 88 87 88
5 0 0 13 1 0 55 18 4
42 58 89

67 35 6 1 40 35 34 58 52 49 95 83 80
21 25 28 36 38 41 78 74 75
0 0 0 0 0 0 20 1 0
33 47 78

75 53 16 4 22 26 26 38 40 39 92 79 72
14 17 19 23 26 30 64 57 59
0 0 0 0 0 0 3 0 0
26 38 67

Non-censoredd 50 68 95

a hex: proportion of test results which are expected to be censored.
b Probability that a set of N test results would contain only one or even no test result above the reporting limit and thus it is not

possible to calculate the estimates based on either the ML method or the order statistics (see Section 3.2).
c Values appearing in normal, italic, and bolded italic fonts are related to the distributions of the estimates obtained by the ML method,

the method based on order statistics, and the method of moments (using only numerically known data), respectively. Bolded values are the
expected distributions of the ML estimates (see Section 2.3.2 for details), they are the same for all N, µ and σ applied in the simulations.

d The observed distributions of the estimated mean obtained with the method of moments from the complete (non-censored) datasets
coincide with the theoretical expectation, i.e. for all N, they are 50, 68 and 95% for the intervals µ ± 0.67(σ/

√
N), µ ± (σ/

√
N) and

µ ± 1.96(σ/
√

N), respectively.

and dµ/
√

µ11. Despite the small sample sizes con-
sidered in this article, simulation results (see Section
3.4) demonstrate that the approximation to the normal
distribution is satisfactory for (i) predicting the distri-
bution of the estimated means, and (ii) the estimation
of the optimum sample size required for the censored
samples.

3. Results and discussion

The distributions of the estimates, µ̂ and σ̂ , ob-
tained from 10,000 censored datasets, are summa-
rized in Tables 4 and 5, respectively. For illustration,
histograms of the distributions are given in Fig. 2.
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Table 5
Distributions of the estimated standard deviations σ̂

hex
a (%) Percent of σ̂ included in the intervalb

σ ± 25% σ ± 50% σ ± 75% 0 → 2σ

N = 6 N = 12 N = 18 N = 6 N = 12 N = 18 N = 6 N = 12 N = 18 N = 6 N = 12 N = 18

17 55 72 81 86 96 99 95 99 100 98 100 100
46 69 80 78 96 99 93 99 100 97 100 100
39 50 54 76 93 97 96 100 100 100 100 100

33 47 64 74 81 93 97 94 98 100 97 99 100
39 59 71 71 91 97 89 98 100 96 99 100
26 29 28 61 78 86 90 99 100 100 100 100

50 40 54 65 74 88 94 92 96 98 97 99 100
33 49 61 62 83 92 84 95 98 95 98 99
18 18 15 47 58 65 80 94 98 100 100 100

67 35 44 53 68 77 86 90 93 96 98 97 98
27 38 48 53 69 81 78 88 94 94 96 98
13 12 10 34 40 44 68 81 90 100 100 100

75 32 40 46 64 73 79 89 91 94 98 97 97
24 32 39 49 61 72 74 82 89 94 94 96
11 10 8 29 32 34 62 71 79 100 100 100

Non-censoredc 56 76 86 90 98 100 99 100 100 100 100 100

a hex: proportion of test results which are expected to be censored.
b Values appearing in normal, italic, and bolded italic fonts are related to the distributions of the estimates obtained by the ML method,

the method based on order statistics, and the method of moments (using only numerically known data), respectively.
c The observed distributions of the estimated standard deviations obtained with the method of moments from the complete (non-censored)

datasets. They are the same for all µ and σ applied in the simulations.

Fig. 2. Histograms obtained with N = 6, µ = 1, σ = 0.35, yL = 1. The full line corresponds to distributions of the estimates obtained
from 10,000 complete (non-censored) datasets by the method of moments. The broken line corresponds to distributions of the estimates
obtained from 10,000 censored datasets by the ML method. Adjacent broken line bars should touch each other as the bars with full
lines do, they are separated for better visualisation. Relative frequency is obtained as the proportion of estimates that fall in the observed
intervals. (a) Distributions of the estimated means µ̂. (b) Distributions of the estimated standard deviations σ̂ .
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Of course, the observed distributions for µ̂ and σ̂

obtained by the method of moments from the complete
(non-censored) datasets, summarized by considering
the intervals µ±dµ(σ/

√
N) and σ±dσ σ , respectively,

are independent of µ and σ .
The distributions of µ̂ and σ̂ observed for censored

data are independent on the value of σ but are depen-
dent on the value of µ applied in the simulation. In
fact, the difference is not really due to the value of
µ but to the expected censored proportion hex. Since
the limit where the test results are censored is fixed at
yL = 1, different µ result in different hex-values. Con-
sequently, different combinations of the two parame-
ters, µ and σ , applied in the simulations (see Section
2.1.1) are represented in Tables 4 and 5 by a single
parameter hex (see Eq. (1) for the relationship of µ, σ

and hex).
In order to demonstrate a typical problem of cen-

sored data, distributions of the estimates µ̂ and σ̂ ,
calculated by the simple method of moments on nu-
merically known data, are also given (see Tables 4
and 5). A comparison of the results obtained from the
three methods (ML method, order statistical method,
method of moments) clearly shows relatively large er-
rors for the simple moment calculation. For example,
for a sample size N = 6 and an expected censored
proportion hex = 50%, the probability that an esti-
mate µ̂ would lie within µ± 0.67(σ/

√
N) is only 5%

for the simple moment calculation versus 52% for the
ML method.

3.1. Comparison between the ML method and the
method based on order statistics

It follows from Tables 4 and 5 that the performance
of the method based on order statistics is generally
inferior to that of the ML method. Both have compa-
rable performance in the estimation of the mean only
when the expected censored proportion is not large,
i.e. hex < 33%. The larger the expected censored pro-
portion (e.g. hex ≥ 50%) and the smaller the sam-
ple size (e.g. N = 6), the better the performance of
the ML method is relative to the method based on or-
der statistics. Since the overall efficiency of the ML
method is much better than the method based on order
statistics, only the ML method is discussed further in
what follows.

3.2. Performance of the ML method in the
estimation of the mean of censored datasets

As follows from Table 4, in general, the larger the
censored proportion, the smaller the probability (ex-
pressed as percent of the estimates µ̂) that an estimate
µ̂ lies close to the true value µ and, thus, the worse the
performance of the ML method is. When the expected
censored proportion (hex) does not exceed 50%, i.e.
when the true mean of the test results, µ, is not below
the limit where the test results are censored (here the
reporting limit), the performance of the ML method
in the estimation of the mean of a censored dataset
is very comparable to the performance of the method
of moments in the estimation of the mean of the
complete (non-censored) dataset. When hex ≤ 50%,
results from data simulations (not shown in the table)
also demonstrate that the 95% CIs of the means (cal-
culated using Eq. (15)) obtained with the ML method
really contain the true mean about 95% of the times,
while less confidence is obtained when hex > 50%.
It is remarkable that with N = 6, the probability that
an estimate µ̂ falls in the intervals µ ± dµ(σ/

√
N)

is higher than when N = 12 or N = 18. That is,
the performance of the ML method in the estimation
of the mean from the censored sample with N = 6
is better than when N = 12 or N = 18 (notice that
in the evaluation of the performance, standardized
distributions are considered; the distribution of the
means of course becomes wider with smaller N due
to an increase of the variance). This might be due to
the fact that the probability, that an observed censored
proportion h = 100n1/N (or an observed number
of censored test results n1) corresponds with the ex-
pected censored proportion hex (or n1ex), is larger
with smaller N. For example, from data simulations of
10,000 censored samples with hex = 50% and N = 6,
12 and 18, the probability that the n1 observed for
censored samples corresponds with the n1ex are 36, 23
and 18%, respectively. The accuracy of the estimates
depends on the degree of correspondence between the
observed censored proportion (h = 100n1/N ) and
the expected censored proportion hex. The higher the
degree of correspondence, the smaller the probability
that an estimate is biased and, thus, the better the
performance of the ML method.

When the true value of the test results, µ, is below
the limit at which the data are censored, i.e. when
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more than half of the test results are expected to be
censored, it should first be noticed that with N = 6,
it is quite probable (e.g. probability = 35% when µ

is below yL for about half a standard deviation) that
the ML estimates cannot be calculated due to the fact
that almost all test results of the sample are below the
limit. In case that it is possible to calculate the ML
estimates, the more the true µ is below the (reporting)
limit (i.e. the larger the expected censored proportion
is), the poorer the ML estimates of µ are. When the
expected censored proportion is as high as 83%, the
quality of estimates becomes so poor that it is not
recommended to do any computation.

The problem, however, is that in practice the true
µ is unknown. We then have no idea of the expected
censored proportion nor whether µ is above or be-
low the (reporting) limit. When µ is above the limit
(i.e. hex < 50%), the performance of the ML method
applied to censored datasets is quite acceptable. On
the other hand, when µ is below the (reporting)
limit (i.e. hex > 50%), the quality of the ML esti-
mates deteriorates. Fortunately, the probability that
the ML estimates cannot be calculated in that case
(probabilityn < 2 in Table 4) also increases, especially
when the sample size is small. Probabilityn < 2 is
obtained by determining the percentage of datasets
(based on >10,000 datasets) that are discarded because
the number n of test results that remains after leaving
out those test results that are below the reporting limit
is either 1 or 0. A total number of >10,000 datasets is
simulated in order to obtain 10,000 censored datasets
(see Section 2.1.3). From Table 4, it can be seen for
example that with the expected censored proportion
hex = 75%, the probability that the ML estimates can-
not be calculated (probabilityn < 2) is as high as 53%
for N = 6, and therefore, it is less probable that such
poor ML estimates as displayed in the table would be
obtained.

In a previous study [5,6], simulations were per-
formed and the method performance was evaluated
using the average bias and variance for each value
of the observed number of data censor n1 (not the
true value of n1ex or hex). It was then concluded
that the ML method and the linear method (which
is analogous to the method based on order statistics)
produced large bias and large variance for small N
(N = 5, 10, 15). This conclusion is contradictory
to the above finding that for small censored samples

(N = 6, 12, 18), the ML method and the method
based on order statistics perform acceptably if the
censored proportion hex does not exceed 50 and 33%,
respectively. However different approaches were used
in the evaluation of the method performance. The cur-
rent approach seems more justified for the following
reasons.

1. Using the observed n1 as in the previous study [6]
makes less sense than using the true value n1ex or
analogously, hex (as in this study) since an observed
value of n1 is only a randomly sampled value of the
true value n1ex, observed with a certain probabil-
ity (see Fig. 1). The grouping of censored datasets
based on a value of n1 may represent as little as
5% of the total censored samples when the true
censored proportion is hex [6]. Though all possible
values of n1 were considered in [6], the evaluation
of method performance was performed separately
for different values of n1 (despite they are observed
values of the same true value n1ex). Consequently,
the observed n1 might not well represent the real
situation of censored samples as the true value of
n1ex or hex does.

2. In [5,6], the performance of the methods is judged
only by comparing the averages for bias and vari-
ance or mean square error among different meth-
ods applied to censored samples. Here the method
performance is evaluated by comparing the dis-
tribution of the estimates around their true value
not only for different methods applied to censored
samples but the comparison is also made with the
classical method of moments applied on complete
(non-censored) samples. The performance of the
former are judged reliable when they are compa-
rable to that of the non-censored samples.

3. The performance of the methods should not be
judged only by considering the averages for bias
and variance or mean square error [5,6], but also
by considering the distribution of the estimates
around their true value.

3.3. Performance of the ML method in the estimation
of the standard deviation of censored datasets

It follows from Table 5 that in general, the probabil-
ity that an estimated standard deviation of a censored
dataset lies close to the true value is smaller than that
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observed from complete (non-censored) dataset. The
distributions of the ML estimates of σ are broader
than the distributions of σ̂ obtained from the complete
(non-censored) datasets by the method of moments.
The performance of the ML method in the estimation
of the standard deviation of a censored sample is not
as good as in the estimation of the mean. The more the
data are censored, the larger the variance of σ̂ is. The
efficiency in the estimation of σ depends of course
not on the true value σ but on the sample size N and
on the expected censored proportion hex. The larger
the sample size and the smaller the expected censored
proportion, the better the ML method performs in the
estimation of σ .

3.4. Calculation of the optimum sample size
required to obtain a specified confidence level
on the ML estimate µ̂

It can be seen from Table 4 that the observed dis-
tributions of the ML estimates of the mean µ corre-
spond well with the expected distributions determined
with the method described in Section 2.3.2. Gener-
ally, when they do not correspond well, the observed
distributions are narrower than the expected ones.
Simulations demonstrate that an observed distribu-
tion converges to the expected one when the sample
size grows large, e.g. N ≥ 60 (results not shown).
In addition to the small sample size, the deviation
of the observed censored proportion h from the ex-
pected hex also plays a role in the difference between
the expected and the observed distributions. How-
ever, the data simulations from Table 4 show that the
ML method for the estimation of the mean of a cen-
sored sample is efficient with small N (N = 6–18).
Moreover, as explained below, the sample size re-
quired to have a specified confidence level that an
estimate will not differ from the true mean by a cer-
tain magnitude can be determined before carrying out
an analysis.

Suppose that we want to determine the sample size
N required to have 95% confidence that a µ̂ estimated
(by the ML method) from the censored sample will
not differ from the true value µ by more than dspec.
The question can be restated as finding the sample size
N such that the resulting 95% CI for µ, µ̂ ± dobs, has
its half width dobs not larger than dspec.

By assuming a normal distribution of µ̂, the half
width dobs of the 95% CI for µ can be obtained as

dobs = 1.96
√

V (µ̂) ≤ dspec (15)

where 1.96 is the two-sided tabulated z-value of the
standard normal distribution at the significance level
α = 0.05.

By substituting Eq. (14) into Eq. (15), we obtain

1.96

√
σ 2

N
µ11 ≤ dspec (16)

From this, the approximate sample size N required
to have 95% confidence that an estimate µ̂ will not
differ from the true mean µ by more than dspec can be
calculated as

N ≥
(

1.96σ

dspec

)2

µ11 (17)

Example. If the censored proportion hex and the stan-
dard deviation σ are expected to be at most 50% and
0.35, respectively, the approximate sample size N re-
quired to have 95% confidence that the ML estimate
µ̂ of a censored sample will not differ from the true
value µ by more than dspec = 0.20 can be determined
as

N ≥
(

1.96 × 0.35

0.20

)2

µ11

From Table 3, µ11 associated with h = 50% is
1.517094. Thus,

N ≥
(

1.96 × 0.35

0.20

)2

1.517094, or N ≥ 17.8 ≥ 18

Therefore, if the expected censored proportion hex
and standard deviation σ do not exceed 50% and 0.35,
respectively, 18 measurements are required to have
a confidence of about 95% that the ML estimate µ̂

will not differ from its true value µ by more than
0.2. If a confidence level of only 90% is required,
the z-value of 1.96 in Eq. (17) can be replaced by
1.645. Thus, the required N would be 13, instead of
18. Results from data simulations (based on 10,000
censored samples of µ = 1 and yL = 1 (i.e. hex =
50%), σ = 0.35, N = 13 and 18) verify that the
sample size approximation satisfies the requirement:
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µ̂ falls in the interval, µ ± dspec = µ ± 0.2, 89 and
93% of the times for N = 13 and 18, respectively.

4. Conclusion

The performance of the ML method and the method
based on order statistics in the estimation of the mean
and the standard deviation of a normal population
from a censored sample, i.e. a sample of which some
test results fall below the reporting limit of the an-
alytical method, has been investigated by means of
simulations. The study, focussed on small to moderate
sample size (N = 6–18), demonstrates that reliable
estimates for censored samples can be obtained. The
approaches are computationally simple and provide
the possibility to utilize all data for obtaining more
realistic estimates of the mean and standard devia-
tion. The reliability of the estimated mean and the
estimated standard deviation for the censored sam-
ples depends on the proportion of data expected to
be censored hex (hex is the proportion of test results
that are not known numerically since they are below
the reporting limit). The larger the expected censored
proportion, the less reliable the methods are. When
the expected censored proportion hex is not large, e.g.
hex = 33%, either method proposed in this paper
(Section 2.2) can be applied to obtain good estimates
µ̂ and σ̂ . However, in practice it is likely that the
value of hex is unknown. Moreover, the observed cen-
sored proportion h does not necessarily correspond to
the true value hex. Since the simulations demonstrate
that the ML method is more robust to large censored
proportions, as well as to small sample sizes, the ML
method is preferred to the method based on order
statistics when pre-knowledge about the censored
sample is not available. The reliability of the ML
estimates is rather poor for very large censored pro-
portions (e.g. hex ≥ 75%) and therefore, the method
is not recommended when the observed censored

proportion h is larger than 50% because then hex might
be very large. If pre-knowledge about the precision
of the analytical method and the expected censored
proportion is available, the approximate sample size
required to obtain a specified confidence level on the
ML estimate of the mean can be determined before
the experiment is carried out.
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